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42 2. Important Special Cases of the Logistic Model

Introduction

Abbreviated
Outline

In this chapter, several important special cases of the logis-
tic model involving a single (0, 1) exposure variable are
considered with their corresponding odds ratio expres-
sions. In particular, focus is on defining the independent
variables that go into the model and on computing the
odds ratio for each special case. Models that account for
the potential confounding effects and potential interaction
effects of covariates are emphasized.

The outline below gives the user a preview of the material
to be covered by the presentation. A detailed outline for
review purposes follows the presentation.

I. Overview (page 45)
II. Special case — Simple analysis (pages 46-49)
III. Assessing multiplicative interaction (pages 49-55)

IV. TheE, V, Wmodel - A general model containing a
(0, 1) exposure and potential confounders and
effect modifiers (pages 55-64)
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Objectives Upon completion of this chapter, the learner should be
able to:

1. State or recognize the logistic model for a simple
analysis.

2. Given a model for simple analysis:

a.

b.

state an expression for the odds ratio describing the
exposure—disease relationship

state or recognize the null hypothesis of no
exposure—disease relationship in terms of
parameter(s) of the model

compute or recognize an expression for the risk for
exposed or unexposed persons separately

compute or recognize an expression for the odds of
getting the disease for exposed or unexposed
persons separately

3. Given two (0, 1) independent variables:

a.

state or recognize a logistic model that allows for
the assessment of interaction on a multiplicative
scale

state or recognize the expression for no interaction
on a multiplicative scale in terms of odds ratios for
different combinations of the levels of two (0, 1)
independent variables

state or recognize the null hypothesis for no
interaction on a multiplicative scale in terms of one
or more parameters in an appropriate logistic
model

4. Given a study situation involving a (0, 1) exposure
variable and several control variables:

a.

state or recognize a logistic model that allows
for the assessment of the exposure-disease
relationship, controlling for the potential
confounding and potential interaction effects
of functions of the control variables

compute or recognize the expression for the odds
ratio for the effect of exposure on disease status
adjusting for the potential confounding and
interaction effects of the control variables in the
model

state or recognize an expression for the null
hypothesis of no interaction effect involving one
or more of the effect modifiers in the model

assuming no interaction, state or recognize an
expression for the odds ratio for the effect of
exposure on disease status adjusted for
confounders
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e. assuming no interaction, state or recognize the null
hypothesis for testing the significance of this odds
ratio in terms of a parameter in the model

5. Given a logistic model involving interaction terms,
state or recognize that the expression for the odds ratio
will give different values for the odds ratio depending
on the values specified for the effect modifiers in the
model.
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I. Overview

Special Cases:

e Simple a |l b
analysis
c d

e Multiplicative interaction

e Controlling several
confounders and effect
modifiers

General logistic model formula:

1
1 + e (#+X5X)
X = (XI’XZr "'!Xk)

o, f; = unknown parameters

P(X) =

D = dichotomous outcome

logit P(X) = o+ Y B;X;
—_—

linear sum

k
Bi(X1i—Xoi)
ROR = ef; e

k
— H eliXii—Xo)
i=1

X, specification of X
for subject 1

Xo specification of X
for subject 0

This presentation describes important special
cases of the general logistic model when there
is a single (0, 1) exposure variable. Special case
models include simple analysis of a fourfold
table, assessment of multiplicative interaction
between two dichotomous variables, and con-
trolling for several confounders and interaction
terms. In each case, we consider the definitions
of variables in the model and the formula for the
odds ratio describing the exposure-disease rela-
tionship.

Recall that the general logistic model for k
independent variables may be written as P(X)
equals 1 over 1 plus e to minus the quantity
o plus the sum of .X;, where P(X) denotes the
probability of developing a disease of interest
given values of a collection of independent
variables X;, X5, through X, that are collec-
tively denoted by the bold X. The terms o and
f; in the model represent unknown parameters
that we need to estimate from data obtained
for a group of subjects on the Xs and on D, a
dichotomous disease outcome variable.

An alternative way of writing the logistic model
is called the logit form of the model. The
expression for the logit form is given here.

The general odds ratio formula for the logistic
model is given by either of two formulae. The
first formula is of the form e to a sum of linear
terms. The second is of the form of the product
of several exponentials; that is, each term in the
product is of the form e to some power. Either
formula requires two specifications, X; and X,
of the collection of k independent variables X;,
X, ..., X,

We now consider a number of important spe-
cial cases of the logistic model and their
corresponding odds ratio formulae.
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Il. Special Case — Simple

Analysis
X, = E = exposure (0, 1)

D = disease (0, 1)

1
PX) =1 T e-(HRE)’
where E = (0, 1) variable.

Note: Other coding schemes
(1: _1)1 (11 2)1 (2) 1)

logit P(X) = o + f1E

P(X) = Pr(D = 1|E)
E=1:R,=Pr(D=1E=1)
E=0:R,=Pr(D = 1|E = 0)

We begin with the simple situation involving
one dichotomous independent variable, which
we will refer to as an exposure variable and will
denoteit as X; = E. Because the disease variable,
D, considered by a logistic model is dichoto-
mous, we can use a two-way table with four
cells to characterize this analysis situation,
which is often referred to as a simple analysis.

For convenience, we define the exposure vari-
able as a (0, 1) variable and place its values in
the two columns of the table. We also define the
disease variable as a (0, 1) variable and place its
values in the rows of the table. The cell frequen-
cies within the fourfold table are denoted as a, b,
¢, and d, as is typically presented for such a table.

A logistic model for this simple analysis situa-
tion can be defined by the expression P(X)
equals 1 over 1 plus e to minus the quantity o
plus f; times E, where E takes on the value 1
for exposed persons and 0 for unexposed per-
sons. Note that other coding schemes for E are
also possible, such as (1, —1), (1, 2), or even
(2, 1). However, we defer discussing such alter-
natives until Chap. 3.

The logit form of the logistic model we have
just defined is of the form logit P(X) equals the
simple linear sum o plus f; times E. As stated
earlier in our review, this logit form is an alter-
native way to write the statement of the model
we are using.

The term P(X) for the simple analysis model
denotes the probability that the disease vari-
able D takes on the value 1, given whatever the
value is for the exposure variable E. In epidemi-
ologic terms, this probability denotes the risk
for developing the disease, given exposure sta-
tus. When the value of the exposure variable
equals 1, we call this risk Ry, which is the con-
ditional probability that D equals 1 given that E
equals 1. When E equals 0, we denote the risk
by Ry, which is the conditional probability that
D equals 1 given that E equals 0.
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RORE:I vs.E=0 —

Substitute P(X) = ——F«———
( ) 1+ e—(ochZﬁlX,»)
into ROR formula:

1

E=1:R = 10—
1
- 1+ e (+h)
E-—0:Rj= —
15 o GaThxa)
. 1
 lte
R; 1
1-R —(+p1)
ROR = RO 1 _ 14 el
1-— R() 1+4+e®

algebra .ﬁ

General ROR formula used for
other special cases

47

We would like to use the above model for sim-
ple analysis to obtain an expression for the
odds ratio that compares exposed persons
with unexposed persons. Using the terms R
and Ry, we can write this odds ratio as R,
divided by 1 minus R; over Rq divided by 1
minus Rg.

To compute the odds ratio in terms of the para-
meters of the logistic model, we substitute the
logistic model expression into the odds ratio
formula.

For E equal to 1, we can write R; by substitut-
ing the value E equals 1 into the model formula
for P(X). We then obtain 1 over 1 plus e to
minus the quantity « plus ; times 1, or simply
1 over 1 plus e to minus « plus f;.

For E equal to zero, we write Rq by substituting
E equal to 0 into the model formula, and we
obtain 1 over 1 plus e to minus o.

To obtain ROR then, we replace R with 1 over
1 plus e to minus o plus f;, and we replace Rg
with 1 over 1 plus e to minus «. The ROR
formula then simplifies algebraically to e to
the B, where B is the coefficient of the expo-
sure variable.

We could have obtained this expression for the
odds ratio using the general formula for the
ROR that we gave during our review. We will
use the general formula now. Also, for other
special cases of the logistic model, we will use
the general formula rather than derive an odds
ratio expression separately for each case.
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General:

k
i (X1i—Xoi
RORX], X, = eé]ﬁ:( 0)

Simple analysis:

kzl’X:(Xl)’ﬁi:ﬁl

group 1: X;=E=1
group0: Xo=E=0

Xi =@ ) =01
Xo = (Xo1) = (0)

RORy,, x, = e/1*n=o)
— h1-0)

of

The general formula computes ROR as e to the
sum of each f3; times the difference between X;
and X,;, where X;; denotes the value of the ith X
variable for group 1 persons and X, denotes
the value of the ith X variable for group 0 per-
sons. In a simple analysis, we have only one X
and one f; in other words, k, the number of
variables in the model, equals 1.

For a simple analysis model, group 1 corre-
sponds to exposed persons, for whom the
variable X, in this case E, equals 1. Group
0 corresponds to unexposed persons, for
whom the variable X; or E equals 0. Stated
another way, for group 1, the collection of Xs
denoted by the bold X can be written as X; and
equals the collection of one value X;;, which
equals 1. For group 0, the collection of Xs
denoted by the bold X is written as Xg and
equals the collection of one value Xjy;, which
equals 0.

Substituting the particular values of the one X
variable into the general odds ratio formula
then gives e to the f; times the quantity X,
minus Xy;, which becomes e to the f; times
1 minus 0, which reduces to e to the f;.

SIMPLE ANALYSIS
SUMMARY

1
- | 4+ e—(@+BiE)

ROR = e

P(X)

In summary, for the simple analysis model
involving a (0, 1) exposure variable, the logis-
tic model P(X) equals 1 over 1 plus e to minus
the quantity « plus f; times E, and the odds
ratio that describes the effect of the exposure
variable is given by e to the f8;, where f; is the
coefficient of the exposure variable.

R/O\Rxl, X, = eBl

We can estimate this odds ratio by fitting the
simple analysis model to a set of data. The
estimate of the parameter f; is typically
denoted as f5;. The odds ratio estimate then
becomes e to the ;.
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B o The reader should not be surprised to find out
E=1E=0 . .

that an alternative formula for the estimated

D=1 a b odds ratio for the simple analysis model is the

D=0 B d familiar a times d over b times ¢, where a, b, c,

and d are the cell frequencies in the fourfold
table for simple analysis. That is, e to the f3,
obtained from fitting a logistic model for sim-

ROR = ef = ad /bc ple analysis can alternatively be computed as
ad divided by bc from the cell frequencies of the
fourfold table.

Simple analysis: does not need Thus, in the simple analysis case, we need
computer not go to the trouble of fitting a logistic model
to get an odds ratio estimate as the typical
formula can be computed without a computer
program. We have presented the logistic model
version of simple analysis to show that the
logistic model incorporates simple analysis as
Other special cases: require computer a special case. More complicated special cases,
involving more than one independent variable,
require a computer program to compute the

odds ratio.

Ill. Assessing We will now consider how the logistic model
Multiplicative allows the assessment of interaction between
Interaction two independent variables.

X, =A = (0, 1) variable Consider, for example, two (0, 1) X variables,

X, = B = (0, 1) variable X, and X5, which for convenience we rename as

A and B, respectively. We first describe what we
mean conceptually by interaction between
these two variables. This involves an equation
involving risk odds ratios corresponding to dif-
ferent combinations of A and B. The odds
ratios are defined in terms of risks, which we
now describe.

Interaction: equation involving
RORs for combinations of A and B

Rap = risk given A, B Let R,p denote the risk for developing the dis-
=Pr(D=1|A, B) ease, given specified values for A and B; in
other words, R, equals the conditional proba-

bility that D equals 1, given A and B.

B=1 B=0 Because A and B are dichotomous, there are

four possible values for Ry, which are shown

A=1| Ry Ry in the cells of a two-way table. When A equals 1
A=0 | Ry Roo and B equals 1, the risk Ry3 becomes R;;. Sim-

ilarly, when A equals 1 and B equals 0, the risk
becomes R;g. When A equals 0 and B equals 1,
the risk is Rgq, and finally, when A equals 0 and
B equals 0, the risk is Rq.



50 2. Important Special Cases of the Logistic Model

Note: above table not for simple
analysis.

A=1 Ry Rio
A - 0 ROI ROO

A=1
A=0 Q—- referent cell

OR;; = odds(1, 1)/odds(0, 0)
OR ;o = odds(1, 0)/odds(0, 0)
ORy; = odds(0, 1)/0dds(0, 0)

odds (A,B) = Rap/(1 — Rap)

~ Rut/(I—=Ru1)  Rir(1—Roo)
OR(1 = =
Roo/(1 —Roo) Roo(1 —Ri1)
OR _ Rio/(1 —Ri0) Rio(1 —Roo)
10
Roo/(1 —Roo) Roo(1 —Rio)
ORy; _ Rot/(1 =Ro1) _ Ro1(1 = Roo)
Roo/(1 —Roo)  Roo(1 — Ro1)
Ras(1 —Roo)
OR\g =
AB Roo(1 — RaB)

Note that the two-way table presented here
does not describe a simple analysis because
the row and column headings of the table
denote two independent variables rather than
one independent variable and one disease vari-
able. Moreover, the information provided
within the table is a collection of four risks
corresponding to different combinations of
both independent variables, rather than four
cell frequencies corresponding to different
exposure-disease combinations.

Within this framework, odds ratios can be
defined to compare the odds for any one cell
in the two-way table of risks with the odds for
any other cell. In particular, three odds ratios
of typical interest compare each of three of the
cells to areferent cell. The referent cell is usually
selected to be the combination A equals 0 and B
equals 0. The three odds ratios are then defined
as OR;;, OR;y, and ORy;, where OR;; equals
the odds for cell 11 divided by the odds for cell
00, OR g equals the odds for cell 10 divided by
the odds for cell 00, and ORg; equals the odds
for cell 01 divided by the odds for cell 00.

As the odds for any cell A,B is defined in terms
of risks as R, divided by 1 minus R,p, we can
obtain the following expressions for the three
odds ratios: OR;; equals the product of Ry,
times 1 minus Ry divided by the product of
Rop times 1 minus R;;. The corresponding
expressions for OR;g and ORg; are similar,
where the subscript 11 in the numerator and
denominator of the 11 formula is replaced by
10 and 01, respectively.

In general, without specifying the value of A
and B, we can write the odds ratio formulae
as OR, 3 equals the product of R, and 1 minus
Ry divided by the product of Rog and 1 — Ry,
where A takes on the values 0 and 1 and B takes
on the values 0 and 1.
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DEFINITION
OR]I = ORIO X OROl

no interaction

ona multiplication
multiplicative

scale

No interaction:

effect of combined
A and B effect of
. = A and B
acting :
together acting
separately
T T
OR11 ORlO X 0R01
multiplicative
scale

no interaction formula:
ORU = OR10 X OR01

Now that we have defined appropriate odds
ratios for the two independent variables situa-
tion, we are ready to provide an equation for
assessing interaction. The equation is stated as
OR;; equals the product of OR;y and ORy;. If
this expression is satisfied for a given study
situation, we say that there is “no interaction
on a multiplicative scale.” In contrast, if this
expression is not satisfied, we say that there is
evidence of interaction on a multiplicative
scale.

Note that the right-hand side of the “no inter-
action” expression requires multiplication of
two odds ratios, one corresponding to the com-
bination 10 and the other to the combination
01. Thus, the scale used for assessment of inter-
action is called multiplicative.

When the no interaction equation is satisfied,
we can interpret the effect of both variables A
and B acting together as being the same as
the combined effect of each variable acting
separately.

The effect of both variables acting together is
given by the odds ratio OR;; obtained when A
and B are both present, that is, when A equals 1
and B equals 1.

The effect of A acting separately is given by the
odds ratio for A equals 1 and B equals 0, and
the effect of B acting separately is given by the
odds ratio for A equals 0 and B equals 1. The
combined separate effects of A and B are then
given by the product OR g times ORy;.

Thus, when there is no interaction on a multi-
plicative scale, OR;; equals the product of
OR]O and OR01.
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As an example of no interaction on a multipli-
cative scale, suppose the risks R,p in the four-
fold table are given by Ry equal to 0.0350, R;q
equal to 0.0175, Ry, equal to 0.0050, and Rgo
equal to 0.0025. Then the corresponding three
odds ratios are obtained as follows: OR;;
equals 0.0350 times 1 minus 0.0025 divided by
the product of 0.0025 and 1 minus 0.0350,
which becomes 14.4; OR;q equals 0.0175
times 1 minus 0.0025 divided by the product
of 0.0025 and 1 minus 0.0175, which becomes
7.2; and ORy; equals 0.0050 times 1 minus
0.0025 divided by the product of 0.0025 and
1 minus 0.0050, which becomes 2.0.

EXAMPLE

To see if the no interaction equation is satis-
fied, we check whether OR;; equals the prod-
uct of OR ;g and ORgy;. Here we find that OR;
equals 14.4 and the product of OR; and ORy;
is 7.2 times 2, which is also 14.4. Thus, the no
interaction equation is satisfied.

In contrast, using a different example, if the
risk for the 11 cell is 0.0700, whereas the
other three risks remained at 0.0175, 0.0050,
and 0.0025, then the corresponding three odds
ratios become OR;; equals 30.0, OR;( equals
7.2, and ORy; equals 2.0. In this case, the no
interaction equation is not satisfied because
the left-hand side equals 30 and the product
of the two odds ratios on the right-hand side
equals 14. Here, then, we would conclude that
there is interaction because the effect of both
variables acting together is more than twice
the combined effect of the variables acting
separately.
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EXAMPLE (continued)

Note: “=” means approximately equal
(=)

e.g., 14.5 ~ 14.0 = no interaction

REFERENCE

multiplicative interaction vs.
additive interaction
Epidemiologic Research, Chap. 19

Logistic model variables:

X1 =A
©.1) main effects
X2 =B,
X; = A x B interaction effect

variable

logit P(X) =o + 1A + B
+ ﬁ3A X B,

where

P(X) = risk given A and B

= Rup

3 ¢ OR]() X OROl

Note that in determining whether or not the no
interaction equation is satisfied, the left- and
right-hand sides of the equation do not have to
be exactly equal. If the left-hand side is approx-
imately equal to the right-hand side, we can
conclude that there is no interaction. For
instance, if the left-hand side is 14.5 and the
right-hand side is 14, this would typically be
close enough to conclude that there is no inter-
action on a multiplicative scale.

A more complete discussion of interaction,
including the distinction between wmultipli-
cative interaction and additive interaction, is
given in Chap. 19 of Epidemiologic Research
by Kleinbaum, Kupper, and Morgenstern
(1982).

We now define a logistic model that allows
the assessment of multiplicative interaction
involving two (0, 1) indicator variables A and
B. This model contains three independent vari-
ables, namely, X; equal to A, X, equal to B, and
X3 equal to the product term A times B. The
variables A and B are called main effect vari-
ables and the product term is called an interac-
tion effect variable.

The logit form of the model is given by the
expression logit of P(X) equals « plus f; times
A plus f, times B plus f3 times A times B. P(X)
denotes the risk for developing the disease
given values of A and B, so that we can alterna-
tively write P(X) as Ryp.

For this model, it can be shown mathemati-
cally that the coefficient 3 of the product
term can be written in terms of the three odds
ratios we have previously defined. The formula
is fi3 equals the natural log of the quantity OR;
divided by the product of OR ¢ and ORgy;. We
can make use of this formula to test the null
hypothesis of no interaction on a multiplicative
scale.
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Hy no interaction on a multiplica-
tive scale
=4 H() :ORy; = OR10 X 0R01

ORy; _
OR,o x ORy;

OR

< Hp : Ine (Wlé)Rm) =In.1
< Hp : ﬁ3 =0

< Hp :

logit P(X) =a+ 1A + BB + 3 AB
Ho: no interaction < f; =0

Test result Model

not significant = o+ ;A + f,B

significant =a+ A+ BB

+f>AB

MAIN POINT:
Interaction test = test for product
terms

EXAMPLE

Case-control study

ASB = (0, 1)  variable for asbestos
exposure
SMK = (0, 1) variable for smoking
status
D =(0,1) variable for bladder

cancer status

Important Special Cases of the Logistic Model

One way to state this null hypothesis, as
described earlier in terms of odds ratios, is
OR;; equals the product of OR;y and ORg;.
Now it follows algebraically that this odds
ratio expression is equivalent to saying that
the quantity OR;; divided by OR g times OR;
equals 1, or equivalently, that the natural log of
this expression equals the natural log of 1, or,
equivalently, that B3 equals 0. Thus, the null
hypothesis of no interaction on a multiplicative
scale can be equivalently stated as B3 equals 0.

In other words, a test for the no interaction
hypotheses can be obtained by testing for the
significance of the coefficient of the product
term in the model. If the test is not significant,
we would conclude that there is no interaction
on a multiplicative scale and we would reduce
the model to a simpler one involving only main
effects. In other words, the reduced model
would be of the form logit P(X) equals « plus
p1 times A plus 8, times B. If, on the other
hand, the test is significant, the model would
retain the 3 term and we would conclude that
there is significant interaction on a multiplica-
tive scale.

A description of methods for testing hypoth-
eses for logistic regression models is beyond
the scope of this presentation (see Chap. 5).
The main point here is that we can test for
interaction in a logistic model by testing for
significance of product terms that reflect inter-
action effects in the model.

As an example of a test for interaction, we
consider a study that looks at the combined
relationship of asbestos exposure and smoking
to the development of bladder cancer. Suppose
we have collected case-control data on several
persons with the same occupation. We let ASB
denote a (0,1) variable indicating asbestos
exposure status, SMK denote a (0, 1) variable
indicating smoking status, and D denote a
(0, 1) variable for bladder cancer status.
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logit (X) = o + ;ASB + f,SMK
+ B;ASB x SMK

H, : no interaction (multiplicative)
< Hp: 53 =0

Test Result Conclusion

No interaction on
multiplicative scale

Not Significant

Significant Joint effect >
(p5 > 0) combined effect

Significant Joint effect <
(p3 < 0) combined effect
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To assess the extent to which there is a multi-
plicative interaction between asbestos expo-
sure and smoking, we consider a logistic
model with ASB and SMK as main effect vari-
ables and the product term ASB times SMK as
an interaction effect variable. The model is
given by the expression logit P(X) equals «
plus fB; times ASB plus f, times SMK plus f3;
times ASB times SMK. With this model, a test
for no interaction on a multiplicative scale is
equivalent to testing the null hypothesis that
f3, the coefficient of the product term, equals 0.

If this test is not significant, then we would
conclude that the effect of asbestos and smok-
ing acting together is equal, on a multiplicative
scale, to the combined effect of asbestos and
smoking acting separately. If this test is signif-
icant and f; is greater than 0, we would con-
clude that the joint effect of asbestos and
smoking is greater than a multiplicative com-
bination of separate effects. Or, if the test is
significant and f; is less than zero, we would
conclude that the joint effect of asbestos and
smoking is less than a multiplicative combina-
tion of separate effects.

IV. The E, V, W Model — A
General Model
Containing a (0, 1)
Exposure and
Potential Confounders
and Effect Modifiers

The variables:
E = (0, 1) exposure

Cy, Cy, ..., C, continuous or
categorical
EXAMPLE
D = CHD(,y
E = CAT o)
Cl — AGEcontinous
Cont l C2 — CHLcontinous
on E C3 = SMK(, 1
variables Cs = ECG, )

C5 = HPT(O’l)

We are now ready to discuss a logistic model
that considers the effects of several indepen-
dent variables and, in particular, allows for
the control of confounding and the assessment
of interaction. We call this model the E, V, W
model. We consider a single dichotomous (0, 1)
exposure variable, denoted by E, and p extra-
neous variables C;, C;, and so on, up through
C,. The variables C; through C, may be either
continuous or categorical.

As an example of this special case, suppose the
disease variable is coronary heart disease sta-
tus (CHD), the exposure variable E is catechol-
amine level (CAT), where 1 equals high and
0 equals low, and the control variables are
AGE, cholesterol level (CHL), smoking status
(SMK), electrocardiogram abnormality status
(ECG), and hypertension status (HPT).
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EXAMPLE (continued)

1 E: CAT
5Cs: AGE, CHL, SMK, ECG, HPT

Model with eight independent
variables:

2 E x Cs: CAT x CHL

CAT x HPT

logit P(X) = o + SCAT

+7,AGE +7,CHL +7;SMK +7,ECG +7s HPT

main effects

+ 0,CAT x CHL + 9,CAT x HPT

interaction effects

Parameters:
o, B, ys, and Js instead of o and fs,

where
B: exposure variable
ys: potential confounders
Js: potential interaction variables

The general E, V, W Model

single exposure, controlling for Cy,
Cy ..., Cp

Important Special Cases of the Logistic Model

We will assume here that both AGE and CHL
are treated as continuous variables, that SMK
is a (0, 1) variable, where 1 equals ever smoked
and 0 equals never smoked, that ECGisa (0, 1)
variable, where 1 equals abnormality present
and 0 equals abnormality absent, and that HPT
is a (0, 1) variable, where 1 equals high blood
pressure and 0 equals normal blood pressure.
There are, thus, five C variables in addition to
the exposure variable CAT.

We now consider a model with eight indepen-
dent variables. In addition to the exposure var-
iable CAT, the model contains the five C
variables as potential confounders plus two
product terms involving two of the Cs, namely,
CHL and HPT, which are each multiplied by
the exposure variable CAT.

The model is written as logit P(X) equals « plus
p times CAT plus the sum of five main effect
terms 7, times AGE plus 7, times CHL and so
on up through 75 times HPT plus the sum of §;
times CAT times CHL plus d, times CAT times
HPT. Here the five main effect terms account
for the potential confounding effect of the vari-
ables AGE through HPT and the two product
terms account for the potential interaction
effects of CHL and HPT.

Note that the parameters in this model are
denoted as «, f3, ys, and Js, whereas previously
we denoted all parameters other than the con-
stant o as f;s. We use f, ys, and s here to
distinguish different types of variables in the
model. The parameter f indicates the coeffi-
cient of the exposure variable, the ys indicate
the coefficients of the potential confounders in
the model, and the Js indicate the coefficients
of the potential interaction variables in the
model. This notation for the parameters will
be used throughout the remainder of this
presentation.

Analogous to the above example, we now
describe the general form of a logistic model,
called the E, V, W model, that considers the
effect of a single exposure controlling for the
potential confounding and interaction effects
of control variables Cy, C,, up through C,,.



E, V, W Model

k

p1 + p2 + 1 = no. of variables
in model
p1 = no. of potential confounders
p» = no. of potential interactions

1 = exposure variable

CHD EXAMPLE

p1 = 5:AGE, CHL, SMK, ECG, HPT
p2 = 2: CAT x CHL, CAT x HPT

e Vi, ...,V, arepotential
confounders

e Vs are functions of Cs

eg,Vi=C, Vo= (C)% Vs = C xCs

CHD EXAMPLE

V), = AGE, V, = CHL, V; = SMK,
V4 = ECG, Vs = HPT

e Wi, ..., W, are potential effect
modifiers

e Ws are functions of Cs

c.g., W1 = Cl’ Wz = Cl X C3

CHD EXAMPLE

W, = CHL, W, = HPT
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The general E, V, W model contains p; plus p»
plus 1 variables, where p; is the number of
potential confounders in the model, p; is the
number of potential interaction terms in the
model, and 1 denotes the exposure variable.

In the CHD study example above, there are p,
equals to five potential confounders, namely,
the five control variables, and there are p,
equal to two interaction variables, the first of
which is CAT x CHL and the second is CAT x
HPT. The total number of variables in the
example is, therefore, p; plus p, plus 1 equals
5 plus 2 plus 1, which equals 8. This corre-
sponds to the model presented earlier, which
contained eight variables.

In addition to the exposure variable E, the gen-
eral model contains p; variables denoted as V,
V, through V), . The set of Vs are functions of
the Cs that are thought to account for con-
founding in the data. We call the set of these
Vs potential confounders.

For instance, we may have V; equal to Cy, V,
equal to (C,)?, and V3 equal to C; x Cs.

The CHD example above has five Vs that are
the same as the Cs.

Following the Vs, we define p, variables that
are product terms of the form E times Wy, E
times W>, and so on up through E times W,
where Wy, W,, through W, , denote a set of
functions of the Cs that are potential effect
modifiers with E.

For instance, we may have W; equal to C; and
W, equal to C; times Cs.

The CHD example above has two Ws, namely,
CHL and HPT, that go into the model as prod-
uct terms of the form CAT x CHL and CAT x
HPT.
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REFERENCES FOR CHOICE OF Vs
AND Ws FROM Cs

e Chap. 6: Modeling Strategy
Guidelines

e Epidemiologic Research,
Chap. 21

Assume: Vs and Ws are Cs or subset
of Cs

EXAMPLE

C, = AGE, C, = RACE, C; = SEX
Vi = AGE, V, = RACE, V3 = SEX
W, = AGE, W, = SEX

P1=3p2=2k=p+p2+1=6

NOTE
Ws ARE SUBSET OF Vs

EXAMPLE

T=-AGE, V, = RACE
=AGE, W, =

logitP(X) = o+ E+7,Vi+ 7,V
+ .- +’yp] Vpl +51EW1
+ 0 EWy 4+ +0p, EW),,

where
f = coefficient of E
ys = coefficient of Vs
0s = coefficient of Ws

logit P(X) = « + BE
Py P2
+ 20Vt E Y oW,
i=1 =

It is beyond the scope of this chapter to discuss
the subtleties involved in the particular choice
of the Vs and Ws from the Cs for a given model.
More depth is provided in a separate chapter
(Chap. 6) on modeling strategies and in Chap.
21 of Epidemiologic Research by Kleinbaum,
Kupper, and Morgenstern.

In most applications, the Vs will be the Cs
themselves or some subset of the Cs and the
Ws will also be the Cs themselves or some sub-
set thereof. For example, if the Cs are AGE,
RACE, and SEX, then the Vs may be AGE,
RACE, and SEX, and the Ws may be AGE and
SEX, the latter two variables being a subset of
the Cs. Here the number of V variables, p;,
equals 3, and the number of W variables, p»,
equals 2, so that k, which gives the total num-
ber of variables in the model, is p; plus p; plus 1
equals 6.

Note, as we describe further in Chap. 6, that
you cannot have a W in the model that is not
also contained in the model as a V; that is, Ws
have to be a subset of the Vs. For instance, we
cannot allow a model whose Vs are AGE and
RACE and whose Ws are AGE and SEX
because the SEX variable is not contained in
the model as a V term.

Alogistic model incorporating this special case
containing the E, V, and W variables defined
above can be written in logit form as shown
here.

Note that f is the coefficient of the single expo-
sure variable E, the ys are coefficients of poten-
tial confounding variables denoted by the Vs,
and the Js are coefficients of potential interac-
tion effects involving E separately with each of
the Ws.

We can factor out the E from each of the inter-
action terms, so that the model may be more
simply written as shown here. This is the form
of the model that we will use henceforth in this
presentation.



Adjusted odds ratio for E =1 vs.
E =0given Cy, C,, ..., C, fixed

P2
ROR = exp <ﬁ + > 5jo>

e y; terms not in formula

e Formula assumes E is (0, 1)

e Formula is modified if E has
other coding, e.g., (1, —1),
(2, 1), ordinal, or interval
(see Chap. 3 on coding)

Interaction:
ROR = exp(ﬁ + Z)
e 0;# 0= OR depends on W,

e Interaction = effect of E differs
at different levels of Ws
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We now provide for this model an expression
for an adjusted odds ratio that describes the
effect of the exposure variable on disease status
adjusted for the potential confounding and
interaction effects of the control variables C;
through C,. That is, we give a formula for the
risk odds ratio comparing the odds of disease
development for exposed vs. unexposed per-
sons, with both groups having the same values
for the extraneous factors C; through C,,. This
formula is derived as a special case of the odds
ratio formula for a general logistic model given
earlier in our review.

For our special case, the odds ratio formula
takes the form ROR equals e to the quantity
p plus the sum from 1 through p, of the ¢;
times W;.

Note that f is the coefficient of the exposure
variable E, that the J; are the coefficients of the
interaction terms of the form E times W}, and
that the coefficients y; of the main effect vari-
ables V; do not appear in the odds ratio
formula.

Note also that this formula assumes that the
dichotomous variable E is coded as a (0, 1)
variable with E equal to 1 for exposed persons
and E equal to 0 for unexposed persons. If the
coding scheme is different, for example,
(1, —1) or (2, 1), or if E is an ordinal or interval
variable, then the odds ratio formula needs to
be modified. The effect of different coding
schemes on the odds ratio formula will be
described in Chap. 3.

This odds ratio formula tells us that if our
model contains interaction terms, then the
odds ratio will involve coefficients of these
interaction terms and that, moreover, the
value of the odds ratio will be different depend-
ing on the values of the W variables involved in
the interaction terms as products with E. This
property of the OR formula should make sense
in that the concept of interaction implies that
the effect of one variable, in this case E, is
different at different levels of another variable,
such as any of the Ws.
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e Vs not in OR formula but Vs in
model, so OR formula controls
confounding:

logit P(X) = o+ BE + 3 @Vi

+EX @)W

No interaction:

all ; = 0 = ROR = exp (f)
1

constant

logit P(X) = o + BE + ). 3,V;
T

confounding
effects adjusted

EXAMPLE

The model:

logit P (X) = o + BCAT

+7,AGE + v,CHL +7,SMK +y,ECG + ysHPT
main effects

+ CAT(S,CHL + 5,HPT)

interaction effects

logit P(X) = o + pCAT
+79,AGE + 7,CHL + 7, SMK + 3,ECG + y;HPT

main effects: confounding
+ CAT(5,CHL + 8,HPT)

product terms: interaction

ROR = exp(f + &;CHL + 5,HPT)

Important Special Cases of the Logistic Model

Although the coefficients of the V terms do not
appear in the odds ratio formula, these terms
are still part of the fitted model. Thus, the odds
ratio formula not only reflects the interaction
effects in the model but also controls for the
confounding variables in the model.

In contrast, if the model contains no interac-
tion terms, then, equivalently, all the J; coeffi-
cients are 0; the odds ratio formula thus
reduces to ROR equals to e to f, where f is
the coefficient of the exposure variable E.
Here, the odds ratio is a fixed constant, so that
its value does not change with different values
of the independent variables. The model in this
case reduces to logit P(X) equals « plus f times
E plus the sum of the main effect terms involv-
ing the Vs and contains no product terms. For
this model, we can say that e to ff represents an
odds ratio that adjusts for the potential con-
founding effects of the control variables C,
through C, defined in terms of the Vs.

As an example of the use of the odds ratio
formula for the E, V, W model, we return to
the CHD study example we described earlier.
The CHD study model contained eight inde-
pendent variables. The model is restated here
as logit P(X) equals « plus f times CAT plus the
sum of five main effect terms plus the sum of
two interaction terms.

The five main effect terms in this model
account for the potential confounding effects
of the variables AGE through HPT. The two
product terms account for the potential inter-
action effects of CHL and HPT with CAT.

For this example, the odds ratio formula
reduces to the expression ROR equals e to the
quantity S plus the sum 6; times CHL plus
0, times HPT.
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In using this formula, note that to obtain a
numerical value for this odds ratio, not only
do we need estimates of the coefficients f and
the two ds, but we also need to specify values
for the variables CHL and HPT. In other words,
once we have fitted the model to obtain esti-
mates of the coefficients, we will get different
values for the odds ratio depending on the
values that we specify for the interaction vari-
ables in our model. Note, also, that although
the variables AGE, SMK, and ECG are not
contained in the odds ratio expression for this
model, the confounding effects of these three
variables plus CHL and HPT are being adjusted
because the model being fit contains all five
control variables as main effect V terms.

To provide numerical values for the above odds
ratio, we will consider a data set of 609 white
males from Evans County, Georgia, who were
followed for 9 years to determine CHD status.
The above model involving CAT, the five V vari-
ables, and the two W variables was fit to this
data, and the fitted model is given by the list of
coefficients corresponding to the variables
listed here.

Based on the above fitted model, the estimated
odds ratio for the CAT, CHD association
adjusted for the five control variables is given
by the expression shown here. Note that this
expression involves only the coefficients of the
exposure variable CAT and the interaction vari-
ables CAT times CHL and CAT times HPT, the
latter two coefficients being denoted by ds in
the model.
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EXAMPLE (continued)

l{(?R varies with values of CHL and HPT

e CHL = 220, HPT = 1
ROR = exp|—12.6894 + 0.0692(220)

effect modifiers

—2.3318(1)]

= exp(0.2028) =

e CHL = 200, HPT =0

This expression for the odds ratio tells us that we
obtain a different value for the estimated odds
ratio depending on the values specified for CHL
and HPT. As previously mentioned, this should
make sense conceptually because CHL and HPT
are the only two effect modifiers in the model,
and the value of the odds ratio changes as the
values of the effect modifiers change.

To get a numerical value for the odds ratio, we
consider, for example, the specific values CHL
equal to 220 and HPT equal to 1. Plugging these
into the odds ratio formula, we obtain e to the
0.2028, which equals 1.22.

As a second example, we consider CHL equal to
200 and HPT equal to 0. Here, the odds ratio

ROR = exp[—12.6894 + 0.0692(200)

—2.3318(0)]

= exp(1.1506) =

CHL =
(CIEIL, =

220, HPT = 1 = ROR = 1.22 Thus, we see that depending on the values of

becomes e to 1.1506, which equals 3.16.

controls for the confounding effects of
AGE, CHL, SMK, ECG, and HPT

Choice of W values depends on

investigator

EXAMPLE

TABLE OF POINT ESTIMATES ROR

CHL = 180
CHL = 200
CHL = 220
CHL = 240

EXAMPLE

No interaction model for Evans
County data (n = 609)

logit P(X) = o + BCAT

HPT =0 HPT =1

0.79 0.08
3.16 0.31
12.61 1.22
50.33 4.89

+ 11AGE + y,CHL
+ 'V3SMK a4 '))4ECG
+ ’VsHPT

200, HPT = 0 = ROR = 3.16 the effect modifiers we will get different values

for the estimated odds ratios. Note that each
estimated odds ratio obtained adjusts for the
confounding effects of all five control variables
because these five variables are contained in
the fitted model as V variables.

In general, when faced with an odds ratio
expression involving effect modifiers (W), the
choice of values for the W variables depends
primarily on the interest of the investigator.
Typically, the investigator will choose a range
of values for each interaction variable in
the odds ratio formula; this choice will lead to
a table of estimated odds ratios, such as the
one presented here, for a range of CHL values
and the two values of HPT. From such a table,
together with a table of confidence intervals, the
investigator can interpret the exposure-disease
relationship.

As a second example, we consider a model con-
taining no interaction terms from the same
Evans County data set of 609 white males.
The variables in the model are the exposure
variable CAT, and five V variables, namely,
AGE, CHL, SMK, ECG, and HPT. This model
is written in logit form as shown here.
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EXAMPLE COMPARISON
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Because this model contains no interaction
terms, the odds ratio expression for the CAT,
CHD association is given by e to the 8, where f
is the estimated coefficient of the exposure
variable CAT.

When fitting this no interaction model to the
data, we obtain estimates of the model coeffi-
cients that are listed here.

For this fitted model, then, the odds ratio is
given by e to the power 0.5978, which equals
1.82. Note that this odds ratio is a fixed num-
ber, which should be expected, as there are no
interaction terms in the model.

In comparing the results for the no interaction
model just described with those for the model
containing interaction terms, we see that the
estimated coefficient for any variable contained
in both models is different in each model. For
instance, the coefficient of CAT in the no inter-
action model is 0.5978, whereas the coefficient
of CAT in the interaction model is —12.6894.
Similarly, the coefficient of AGE in the no inter-
action model is 0.0322, whereas the coefficient
of AGE in the interaction model is 0.0350.
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Which model? Requires strategy

It should not be surprising to see different
values for corresponding coefficients as the
two models give a different description of the
underlying relationship among the variables.
To decide which of these models, or maybe
what other model, is more appropriate for
this data, we need to use a strategy for model
selection that includes carrying out tests of
significance. A discussion of such a strategy is
beyond the scope of this presentation but is
described elsewhere (see Chaps. 6 and 7).

This presentation is now complete. We have
described important special cases of the logis-
tic model, namely, models for

SUMMARY

1. Introduction

V(2. Important Special Cases )

e simple analysis
e interaction assessment involving two
variables

e assessment of potential confounding and
interaction effects of several covariates

3. Computing the Odds Ratio

We suggest that you review the material cov-
ered here by reading the detailed outline that
follows. Then do the practice exercises and
test.

All of the special cases in this presentation
involved a (0, 1) exposure variable. In the next
chapter, we consider how the odds ratio for-
mula is modified for other codings of single
exposures and also examine several exposure
variables in the same model, controlling for
potential confounders and effect modifiers.
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I. Overview (page 45)

A.

Focus:
e Simple analysis
e Multiplicative interaction

e Controlling several confounders and effect
modifiers

Logistic model formula when X = (X3, X5, ..., Xz):
1

S
l4+e (H; 1)

P(X) =

Logit form of logistic model:

k
logit P(X) =+ Y BiX.

=1
General odds ratio formula:

k
X, k
RORx, . x, = e"; Bi(X1—Xoi) _ Heﬁ,(xl,-fxo,).
i=1

II. Special case - Simple analysis (pages 46-49)

A.

o

The model:
1
PX) =T wm
Logit form of the model:
logit P(X) = o + S1E

0Odds ratio for the model: ROR = exp(f;)

Null hypothesis of no E, D effect: Hy: f; = 0.

The estimated odds ratio exp(f) is computationally
equal to ad/bc where a, b, ¢, and d are the cell
frequencies within the four-fold table for simple
analysis.

III. Assessing multiplicative interaction (pages 49-55)

A.

Definition of no interaction on a multiplicative
scale: OR11 = OR10 X OROI;

where OR 5 denotes the odds ratio that compares
a person in category A of one factor and category B
of a second factor with a person in referent
categories 0 of both factors, where A takes on the
values 0 or 1 and B takes on the values 0 or 1.

Conceptual interpretation of no interaction
formula: The effect of both variables A and B acting
together is the same as the combined effect of each
variable acting separately.
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C.

D.

F.

Examples of no interaction and interaction on a
multiplicative scale.

A logistic model that allows for the assessment of
multiplicative interaction:

logit P(X) = o + 1A + B + f3A x B

The relationship of 5 to the odds ratios in the no
interaction formula above:

f; =1n —ORU
3T OR]O X OR01

The null hypothesis of no interaction in the above
two factor model: Hy: 3 = 0.

IV. The E, V, W model - A general model containing a
(0, 1) exposure and potential confounders and
effect modifiers (pages 55-64)

A.

Specification of variables in the model: start with
E, Cy, Cy, ..., Cp; then specify potential
confounders Vy, V5, ..., V, , which are functions
of the Cs, and potential interaction variables (i.e.,
effect modifiers) Wy, W5, ..., W, , which are also
functions of the Cs and go into the model as
product terms with E, i.e., E x W,.

The E, V, W model:

P1 P2
logit P(X) =a+BE+ Y pVi+E) oW,
i=1 J=1

2

0Odds ratio formula for the E, V, W model, where E
is a (0, 1) variable:

P2
RORE: lvs.E =0 = €XpP (:B + Z 5]‘/1/])
=1

0Odds ratio formula for E, V, W model if no
interaction: ROR = exp(f).

Examples of the E, V, W model: with interaction
and without interaction
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True or False (Circle T or F)

T

F

F 10.

1.

A logistic model for a simple analysis involving
a (0, 1) exposure variable is given by logit
P(X) = « + BE, where E denotes the (0, 1) expo-
sure variable.

The odds ratio for the exposure-disease rela-
tionship in a logistic model for a simple analysis
involving a (0, 1) exposure variable is given by f,
where f is the coefficient of the exposure
variable.

The null hypothesis of no exposure-disease
effect in a logistic model for a simple analysis
is given by Hq: f = 1, where f is the coefficient
of the exposure variable.

The log of the estimated coefficient of a (0, 1)
exposure variable in a logistic model for simple
analysis is equal to ad/bc, where a, b, ¢, and d
are the cell frequencies in the corresponding
fourfold table for simple analysis.

Given the model logit P(X) = o + SE, where E
denotes a (0, 1) exposure variable, the risk for
exposed persons (E = 1) is expressible as e”.
Given the model logit P(X) = o + BE, as in
Exercise 5, the odds of getting the disease for
exposed persons (E = 1) is given by e*™.

A logistic model that incorporates a multiplica-
tive interaction effect involving two (0, 1) inde-
pendent variables X; and X, is given by logit
P(X) = o + B1X1 + f2Xo + f3X1Xo.

An equation that describes “no interaction
on a multiplicative scale” is given by
OR;; = OR,o/ORy;.

Given the model logit P(X) = o + fE + ySMK
+ OE x SMK, where E is a (0, 1) exposure vari-
able and SMK is a (0, 1) variable for smoking
status, the null hypothesis for a test of no inter-
action on a multiplicative scale is given by Hy:
6 =0.

For the model in Exercise 9, the odds ratio that
describes the exposure disease effect controlling
for smoking is given by exp(f + 9).

Given an exposure variable E and control vari-
ables AGE, SBP, and CHL, suppose it is of inter-
est to fit a model that adjusts for the potential
confounding effects of all three control vari-
ables considered as main effect terms and for
the potential interaction effects with E of all
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T F12.

T F 13.

T F 14.

T F 15.

T F 16.

three control variables. Then the logit form
of a model that describes this situation is
given by logit P(X) = « + E + y,AGE + y,SBP
+ y3CHL + 6;AGE x SBP + 6,AGE x CHL
+ 63SBP x CHL.

Given a logistic model of the form logit P(X) =
o + BE + y1AGE + y,SBP + y;CHL, where E is
a (0, 1) exposure variable, the odds ratio for the
effect of E adjusted for the confounding of AGE,
CHL, and SBP is given by exp(f).

If a logistic model contains interaction terms
expressible as products of the form EW; where
W; are potential effect modifiers, then the value
of the odds ratio for the E, D relationship will be
different, depending on the values specified for
the W, variables.

Given the model logit P(X) = o + SE + 7;SMK
+ 7,SBP, where E and SMK are (0, 1) variables,
and SBP is continuous, then the odds ratio for
estimating the effect of SMK on the disease,
controlling for E and SBP is given by exp(y;).
Given E, Cy, and C,, and letting V; = C; = W;
and V, =C, = W,, then the corresponding
logistic model is given by logit P(X) = « + SE
+ “/1C1 + V2C2 + E(51C1 + 52C2).

For the model in Exercise 15, if C; = 20 and
C, = 5, then the odds ratio for the E, D relation-
ship has the form exp(f + 200, + 5,).
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True or False (Circle T or F)

T

F

1.

Given the simple analysis model, logit P(X) = ¢
+ YQ, where ¢ and y are unknown parameters
and Q is a (0, 1) exposure variable, the odds ratio
for describing the exposure-disease relationship
is given by exp(¢).

Given the model logit P(X) = o« + E, where E
denotes a (0, 1) exposure variable, the risk for
unexposed persons (E = 0) is expressible as
1/exp(—a).

Given the model in Question 2, the odds of get-
ting the disease for unexposed persons (E = 0) is
given by exp(a).

Given the model logit P(X) = ¢ + yHPT
+ pECG + nHPT x ECG, where HPT is a (0, 1)
exposure variable denoting hypertension status
and ECG is a (0, 1) variable for electrocardio-
gram status, the null hypothesis for a test of no
interaction on a multiplicative scale is given by
Ho: exp(n) = 1.

For the model in Question 4, the odds ratio that
describes the effect of HPT on disease status,
controlling for ECG, is given by exp(yy + nECG).
Given the model logit P(X) = o + BE + ¢HPT
+ YECG, where E, HPT, and ECG are (0, 1) vari-
ables, then the odds ratio for estimating the
effect of ECG on the disease, controlling for E
and HPT, is given by exp().

Given E, Cy, and C,, and letting V| = C; = Wy,
V, = (C1)?, and V3 = C», then the corresponding
logistic model is given by logit P(X) = o + SE
+ 71C1 + “/2C12 + y3C> + OEC;.

For the model in Question 7, if C; =5 and
C, = 20, then the odds ratio for the E, D relation-
ship has the form exp(f + 200).
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Consider a 1-year follow-up study of bisexual males to
assess the relationship of behavioral risk factors to the
acquisition of HIV infection. Study subjects were all in
the 20-30 age range and were enrolled if they tested HIV
negative and had claimed not to have engaged in “high-
risk” sexual activity for at least 3 months. The outcome
variable is HIV status at 1 year, a (0, 1) variable, where a
subject gets the value 1 if HIV positive and 0 if HIV negative
at 1 year after start of follow-up. Four risk factors were
considered: consistent and correct condom use (CON),
a (0, 1) variable; having one or more sex partners in high-
risk groups (PAR), also a (0, 1) variable; the number of
sexual partners (NP); and the average number of sexual
contacts per month (ASCM). The primary purpose of this
study was to determine the effectiveness of consistent and
correct condom use in preventing the acquisition of HIV
infection, controlling for the other variables. Thus, the
variable CON is considered the exposure variable, and the
variables PAR, NP, and ASCM are potential confounders
and potential effect modifiers.

9. Within the above study framework, state the logit
form of a logistic model for assessing the effect of
CON on HIV acquisition, controlling for each of the
other three risk factors as both potential confounders
and potential effect modifiers. (Note: In defining your
model, only use interaction terms that are two-way
products of the form E x W, where E is the exposure
variable and W is an effect modifier.)

10. Using the model in Question 9, give an expression for
the odds ratio that compares an exposed person
(CON = 1) with an unexposed person (CON = 0)
who has the same values for PAR, NP, and ASCM.
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12.
13.
14.
15.
16.
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:OR =¢’

:Ho: p=0

el = ad/be

crisk for E = 1is 1/[1 + e @**7]

= =3 T T TS

F: OR“ = ORl() X OROI

: OR = exp(f + ISMK)
: interaction terms should be E x AGE, E x SBP, and
x CHL

HH a9 -SmTTdA



2 Springer
http://www.springer.com/978-1-4419-1741-6

Logistic Regression

& Self-Learning Text
Kleinbaum, D.G.; Klein, M,
2010, X\, 702 p., Hardcover
ISEM: 978-1-4419-1741-5



	2: Important Special Cases of the Logistic Model

