
Chapter 2
Decision Systems

The correct statement of the laws of physics involves some very unfamiliar ideas
which require advanced mathematics for their description. Therefore one needs a
considerable amount of preparatory training even to learn what the words mean.

Richard Feynman

2.1 Preliminaries

Decision theory emerged from the requirements of diverse fields of human ac-
tivity such as medicine, gambling, politics, warfare, economics and finance, and
engineering. Perhaps this is the reason for the terminological diversity that some-
times impedes not only mutual understanding between specialists in different
fields but also the development of decision theory itself. In this sense, control
theory has been more fortunate, for its terminology turned out to be common to
many spheres of its application.

There are two points of view on the relationship between decision theory
and control theory. According to one such view, they have nothing in common.
According to the other, these theories are gradually converging because the dif-
ferences between them are not fundamental [14, 18]. The author of this book is
an adherent of the latter viewpoint, and proposes the following motivation.

In control theory one studies a control system that consists of a pair of objects:
a plant and a controller. In decision theory one studies a pair consisting of a
decision situation and a decision-maker. It is natural to call such a pair a decision
system. A control system is defined similarly.

The problem of choice of a decision or a control—an action that produces
some consequence—is a problem common to both systems. In both systems,
one may encounter two basic difficulties in the process of making this choice:
dynamics and uncertainty. The development of control theory began in engineer-

9
DOI 10.1007/978-1-4419-5548-7_2, © Springer Science+Business Media, LLC 2010
V.I. Ivanenko, Decision Systems and Nonstochastic Randomness,



10 2 Decision Systems

ing, and the dynamics of plants became its central problem. The development of
decision theory began in economics, and uncertainty became its central problem.
While this dichotomy still exists, more and more attention is now being devoted
to uncertainty in control theory [53] and to dynamics in decision theory [14].

But there is still an essential difference. Whereas the choice of decision cri-
terion is at the center of decision theory, it is still on the periphery in control
theory.

A systematic mathematical study of a control system becomes possible only
if we define mathematical models of its components: the controlled plant, the
controller, and the experiment (observation) the controller can perform over the
plant. The same must be true about a decision system. Therefore, in this chap-
ter we introduce the notion of a decision system and mathematical models of
its components: the decision situation, the decision-maker, and the experiment
(observation) the decision-maker can perform over the decision situation. An
attempt to define a model of the second component of a decision system (the
decision-maker) may seem surprising if we do not mention that our model con-
cerns only the sequence of specific operations any decision-maker performs in
the process of decision-making.

The existence of two types of real decision situations—nonparametric and
parametric—leads to the existence of two types of model of these situations,
called respectively the lottery model and the matrix model.

The lottery model has the form

Sl = (Zl , Il),

where

• Zl = (U,C,ψ(·)) is called a lottery scheme;
• U is the set of possible decisions or actions;
• C is the set of all possible consequences;
• ψ :U → 2C is a model of the cause–effect mechanism of the decision situation

in the form of a multivalued mapping;
• Il is some datum or regularity of this mechanism, available to the decision-

maker by the moment at which the decision is made.

The matrix model has the form

Sm = (Zm, Im),

where

• Zm = (Θ ,U,C,g(·, ·)) is called a matrix scheme;
• U and C have the same meaning as in the lottery model;
• Θ is the set of values of the parameter that affects a decision consequence;
• g : Θ ×U → C is a model of the cause–effect mechanism of the decision

situation in the form of a function of two variables;
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• Im is some datum or regularity of this mechanism, available to the decision-
maker by the moment at which the decision is made.

It turns out (Theorem 2.1) that the matrix and lottery models are equivalent,
that is, each of them can be used to describe parametric as well as nonparametric
situations.

In real parametric situations, two types of experiments (observations) are con-
ceivable: first, observation of the parameter θ ∈ Θ if it is physically possible,
and second, the observation of the consequence c ∈C of the previous decision.
In nonparametric situations a decision-maker can observe only the consequences
c ∈ C of previous decisions. In real life, parametric situations are less frequent
than nonparametric situations, but their natural (matrix) model happens to be
more convenient for the purposes of accounting and processing the data obtained
in the experiment.

So the model of experiment in a nonparametric situation has the form

hl : C → Yhl ,

while in a parametric situation it has the form

hθ
m : C → Yhθ

m

or

hc
m : Θ → Yhc

m ,

where the Y ’s are the sets in which the results of the experiments take values.
In describing a nonparametric situation in terms of the matrix model, the set

Θ of values of the parameter θ is introduced artificially. That is why the pa-
rameter θ may not be observed explicitly. But due to the equivalence of the
matrix and lottery models—due to their one-to-one correspondence—the artifi-
cial parameter θ characterizes the cause–effect mechanism of the nonparametric
situation.1

We assume further that any decision-maker that happens to be in a situation
demanding a decision has her own preference regarding the consequences of
her decisions. This preference, or more precisely, preference relation2 that the
decision-maker establishes on the set C of consequences, is denoted by βC. It
turns out that the decision situation scheme Z and the preference relation βC de-
termine together whether there is uncertainty in the decision system. Theorem
2.2 establishes necessary and sufficient conditions for the existence of uncer-
tainty in a decision system. In this way, uncertainty reveals itself as a system
notion: there is no uncertainty without a definite decision-maker, without his

1 Observation of consequences allows one to construct an estimate θ̂(y,u) of this parameter. This is
discussed in Chapter 8.
2 See Appendix A.1.
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personal preference relation βC. In two different decision systems that share the
same decision situation but have different decision-makers (different preference
relations βC), uncertainty can exist in one system and be absent in the other.
It turns out that uncertainty in a decision system is what creates the problem
of choice of decision criterion, or in other words, the problem of choice of a
decision, a problem with a strong psychological accent.

2.2 The Structure of Decision Systems

Let us begin by considering some examples.

Example 2.1. In many folktales there appears the following type of episode: a
hero, together with his beloved and his treasure, is riding his horse along a road
and eventually comes to a crossroads, where there stands a stone with the fol-
lowing inscription:

If you go left you may lose your beloved

If you go right you may lose your horse

If you go straight you may lose your wealth

The hero cannot turn back. After all, he is the hero! He must choose one
of the three roads on which to continue his travels. He is keenly aware of the
possible consequences of each of the three decisions. Our hero, preferring his
beloved and his horse to his wealth, with little deliberation goes straight. But
he eventually reaches another crossroads, and another stone, with the following
inscription:

If you go left you may lose your beloved or your wealth

If you go right you may lose your horse or your wealth

If you go straight you may lose your horse or your beloved

This choice is more difficult. Being a typical hero, he will most likely prefer
his beloved to his horse and therefore turn to the right. After all, typical heroes
value their beloved more than anything else. But eventually he is confronted
with a new crossroads and a new stone:

If you go left you may lose your horse or your wealth or your beloved

If you go right you may lose your horse or your wealth or your beloved

If you go straight may lose your horse or your wealth or your beloved

And now the hero has a problem: wherever he goes, he is in danger of losing
his beloved. His preferences (or priorities)—the beloved is more valuable than
the horse and the horse is more valuable than wealth—do not help him to choose
the optimal road. A conscious choice, a reasonable preference of one road over
another, is impossible in this situation: the hero’s preference for one or another
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of the possible consequences of his choice do not apply at this crossroads. The
hero can, of course, throw a die, thereby submitting himself to the whims of
chance. But if he wishes to justify his decision, he needs some additional data
as to which direction offers the least likelihood that he will lose his beloved and
a good chance of losing nothing. In order to obtain such data he addresses an
old raven sitting on a branch in a nearby oak who has seen many travelers at this
crossroads. It turns out that indeed, the probabilities are different: on the left-
hand road, there is a greater chance of losing nothing and less chance of keeping
his beloved than on the right-hand road. Now the hero’s decision depends on his
personality: a self-confident hero—perhaps he views himself as an invincible
fighter—may turn to the left, while the more cautious, more prudent hero turns
right, for he is ready to lose his horse or his treasure if he can keep his beloved.
Which of the two is our hero? Which type is more “rational”?

Example 2.2. A college graduate wants to choose a direction for further studies:
humanities, sciences, or engineering. He may be more apt at one of the three,
but he does not know which one. If his choice coincides with his abilities, his
life will be more satisfying. But how is he to make a choice if he does not know
his abilities? Again, like the hero in the previous example, our graduate must
obtain further data about his state, where we assume that he is in one of only
three possible states, that is, that he possesses the greatest ability in only one of
the three areas. Our student may take some aptitude tests, but there are no tests
that can rule out the possibility of a mistake. So the uncertainty of the situation
cannot be eliminated.

Example 2.3. The expression “Hobson’s choice” refers to a situation in which
there is an appearance of choice, but in fact no choice at all. Thomas Hobson
(1544–1610) was an entrepreneur in Cambridge, England, where he operated
a livery stable with horses for hire. Having found that customers preferred the
best horses, which were becoming overworked, Hobson instituted the rule that
the customer had to accept the first horse in line at the stable gate. Thus the
customer was unable to indulge any preference regarding the horse’s color or
temperament. Today we might say that by paying the fee to hire a horse, the
customer has paid for the right to participate in a lottery with the horses as the
prizes (or the consequences): the customer will receive one horse from the set of
horses held in the stable. In fact, there is no choice (or decision-making) here.
The choice has been offered to the client earlier: knowing the rules of the stable,
he could agree to hire a horse or refuse to do so. Here we would say that he
chooses between two alternatives:

(1) participation in the lottery with “any of Hobson’s horses” as a consequence;
(2) participation in the lottery with “none of Hobson’s horses” as a consequence.

Perhaps it was not so easy to refrain from participating in the Hobson’s horse
lottery. Different ethical (aesthetic, moral, social) considerations could favor the
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decision to hire an arbitrary Hobson’s horse. For example, it is possible that
those who frequented the stables were members of a particular group, or a club,
to which it was important to belong, and thus it was worthwhile to risk getting a
bad horse.

Decision theory today considers only ethically neutral alternative acts. A lot-
tery, in which the consequences are monetary gains and the preference relation
regarding the consequences is determined by the gain size, is the traditional ex-
ample of such neutrality. Let $10 be the price for the right to participate in any
of the two following lotteries: the first lottery offers the gains $1,000,000, $10,
$0, while the second offers $10,000, $100, and $0. Which lottery do we prefer?
Most likely, we will not be able to make an informed choice, for the situation is
rather uncertain. Of course, the desire for riches might make some of us choose
the first lottery. But such a choice would be opposed to the neutrality of the
alternatives. Therefore, we would first wish to get some complementary data re-
garding the probabilities of gains in each of the two lotteries. Here we can say
that the uncertainty in the choice of the best alternative appears due to the un-
certainty of the situation: the same act can result in different consequences, and
the same consequence can result from different acts.

One should not think that such an ambiguity in the consequences of our ac-
tions appears only in situations in which a human being deals with systems
created by human beings, i.e., those that function not according to the laws of
nature, but according to other laws devised by people. The influences of our ac-
tions on various physical or chemical systems and their responses (or the conse-
quences of our actions) have been studied in control theory and its applications,
a discipline close to decision theory and its applications. Ambiguity in the afore-
mentioned responses also leads to decision-making under uncertainty. Here is an
example.

Example 2.4. Consider the construction of some part or subassembly that will
go into a certain technological device. During construction, the part will be
tested by subjecting it to a certain influence (a temperature field, a vacuum,
ionic/molecular bombardment, etc.) for a certain period of time t. Each part re-
quires its own processing time t∗. But time t∗ is unknown at the moment that
processing time t is chosen. However, we know that t∗ ∈ [T1,T2], and in order
for a part to be certified, it is necessary that time t not deviate from t∗ by more
than ∆ t, that is, t should be chosen in such a way that |t∗ − t|< ∆ t. If this condi-
tion is not satisfied, the part is declared unfit. It is clear that if ∆ t < |T1 −T2|/2,
there is no chance for all the parts to be certified. Thus, the problem is to choose
a value for t that minimizes the quantity of unfit parts. So far, what is important
for us is to choose a certain value of t. But when t∗ is not known in advance, the
result (or the consequence) of the operation is uncertain: for any choice of t at
least two outcomes are possible: the part is good or it is bad. The set of possible
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alternatives is the set of all possible time values t ∈ |T1 −T2|. So the question is,
what value of t shall we choose?

This problem resembles the game “guess the number,” in which a player is
to guess a number chosen from [1, . . . ,10] by another person. If he guesses cor-
rectly, he wins a prize, and if not, he loses something. This game is artificial,
whereas in our technological situation we are dealing with the laws of physics
and chemistry. Here ambiguity appears, due to the fact that the system is open
to an external influence about which we know nothing. In this sense, there is
no principal difference between physical and socioeconomic systems: both can
be under the influence of factors “chosen by us” or “by the decision-maker” as
well as “chosen by something (somebody) else,” and hence our decisions and
corresponding actions do not determine the consequence uniquely.3

It is easy to see that all our examples have much in common. Indeed, every-
where in the above examples, someone—a decision-maker—happens to be in a
situation demanding that he make a decision (alternative, action) out of a certain
set of possible decisions. In the first example, it is the choice of the road; in the
second, it is the choice of the educational profile; in the third, it is the choice
of the lottery; in the fourth, it is the choice of the processing time. In all these
examples, the choice—making a decision—implies an action leading to certain
consequences. We call such situations decision situations.

In all our examples, at least one action may have several possible conse-
quences, only one of which will take place. In all the examples, the consequence
of interest to the decision-maker can be the result of more than one of his ac-
tions, and the decision-maker does not know for certain which action generates
this consequence. It is for this reason that such actions are called “decisions
under uncertainty.”

In all the examples, the decision-maker may have some data about “probabil-
ities” in favor of one or another consequence. Sometimes, before making a de-
cision, a decision-maker can execute some experiment (observation) that would
provide additional data about these “probabilities.” Therefore, data about the
decision situation are usually divided into a priori data, those that the decision-
maker has before the experiment, and a posteriori data, those that he has after
the experiment.

Note that in all our examples there is no dependency between consequences
of different actions: whatever the consequence of an action, it in no way in-
fluences the consequences of other actions. We limit ourselves in this book to
this independence of consequences. As we shall see later, this independence, in-
duced by the structure of the cause–effect mechanism of a situation, increases in
a certain sense the complexity of the decision situation.

3 This situation is similar to the situation in which at each moment of time, a portfolio manager or a
trader makes a decision to change or not to change the structure of his investment portfolio.
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Finally, note that our examples naturally form two groups. The first group
includes Examples 2.1 and 2.3, while the second includes Example 2.2 and
2.4. Namely, in situations belonging to the second group, there is an explic-
itly present “physical”4 parameter that along with the decision-maker’s actions
influences the consequences. Thus in Example 2.2, this parameter is the true but
unknown vocation of a college graduate; in Example 2.4, it is the true, but un-
known to the decision-maker, processing time of a machine part. In situations
of the first group, there is no such explicit parameter. Nevertheless, the sets of
possible outcomes (consequences) that correspond to a decision-maker’s actions
still are such that he does not know which of his actions will lead to the required
outcome.

We call the situations of the first type (first group) nonparametric situations,
while the situations of the second type (second group) are called parametric sit-
uations. In this connection there are two types of experiments, or observations,
that may be provided by a decision-maker. In situations of nonparametric type, a
decision-maker can observe only consequences (probably distorted) of his pre-
vious actions (decisions). So, in Example 2.1, the hero obtains such observations
from the raven. In the situations of parametric type, the decision-maker also may
observe consequences of his previous actions. But sometimes, before making a
decision he may observe the value (which may be distorted) of the parameter
that affects the consequences. So in Example 2.2, the graduate may observe the
results of some special tests. Note also that in parametric situations, both types
of observation may sometimes be provided.

Finally, we note that all our examples have the same structure, a sketch of
which is presented in Figure 2.1:

In the figure, DM = decision-maker, DMS = decision-making situation. They
are connected by channels 1 and 2. Through channel 1 the decision-maker re-
ceives the data S = (Z, I) about the situation before making a decision. Through
channel 2 the decision-maker makes decisions u ∈ U , which result in conse-
quences c ∈C in channel 3. Channel 4 is an experiment of the first type; channel
5 is an experiment of the second type. Finally, θ ∈Θ is the unknown parameter
in the parametric decision situation.

We call the structure consisting of a decision-making situation and a decision-
maker a decision system, in analogy to control theory, where the pair consisting
of a controlled plant and a controller is called a control system. If an experi-
ment is provided, we shall say that we are dealing with a decision system with
experiment.

Our goal is to study decision systems. For such a study we need mathematical
models of all parts of the decision system: the decision situation, the decision-
maker, and the experiment. Decision systems with experiment will be studied in
Chapters 6, 7, and 8.

4 We use the word “physical” in the widest possible sense, meaning “actually existing,” following Bell-
man [7].
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Fig. 2.1 The structure of a decision system.

2.3 Decision Situations

We suppose that everything that is unknown to the decision-maker is introduced
into the decision system only by the decision situation. We shall construct a
mathematical model of the decision situation in the form of the pair S = (Z, I),
where Z is the scheme of the decision situation and I is the data about the reg-
ularity of the cause–effect mechanism. The above-mentioned existence of two
classes of decision situations—nonparametric and parametric—engenders two
different models of decision situations.

2.3.1 The Scheme of a Decision Situation

For any situation we admit the following terminology and notation. We say that
a decision-maker has to choose a decision u from some set U of all admissible
decisions for a given situation, i.e., u ∈ U .5 We shall identify a decision u with
an action that may generate some consequence c from the set of all possible
consequences Cu for this decision.

5 Henceforth, if it is not specified, we mean arbitrary sets.
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Let
⋃

u∈U

Cu =C

denote the set of all possible consequences of the situation.
We call the triple

Zl = (U,C,ψ(·)) (2.1)

a lottery scheme of a decision situation, or simply a lottery scheme for short.
The mapping ψ(·) will sometimes be written in the form of a parametric set
(Cu, u ∈U), and the lottery scheme analogously in the form of the triple

Zl = (U,C,(Cu, u ∈U)) .

We call the quadruple

Zm = (Θ ,U,C,g(·, ·)) (2.2)

a matrix scheme. Here Θ is the set of all possible values of the unknown param-
eter θ that may be chosen by someone other than a decision-maker.

In the lottery scheme (2.1), the multivalued mapping

ψ : U → 2C ∈ {
2C}U

describes the cause–effect mechanism of generation, or generator, of the con-
sequences in a decision situation. In the matrix scheme (2.2), the single-valued
mapping

g : Θ ×U →C

is another description of the cause–effect mechanism of generation of conse-
quences.

If the decision-maker knows nothing about the regularity of the cause–effect
mechanism, then the model of the situation is reduced to, or becomes exhausted
by, its scheme.

It seems natural to use the lottery scheme Zl in modeling a nonparametric sit-
uation, and the matrix scheme Zm in modeling a parametric situation. However,
it is not difficult to see that a parametric situation can be described in terms of
a lottery scheme Zl , and a nonparametric situation in terms of a matrix scheme
Zm.

Indeed, let the nonparametric situation be described in terms of the lottery
scheme

Zl = (U,C,ψ(·)) .
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Fig. 2.2 Consistency between a lottery and a matrix scheme.

In order to describe this situation in terms of the matrix scheme Zm, it is nec-
essary to construct the set Θ and the mapping g(·, ·) in such a way that will
conserve the “complexity” of the original lottery scheme.

Having noted that in response to the chosen action u ∈ U , the cause–effect
mechanism generates only one consequence c ∈Cu, we describe the complexity
of the original nonparametric situation in terms of the set of all complex events

Θ̂ =
{

θ̂ ∈ (U →C) : θ̂(u) ∈Cu, ∀u ∈U
}
. (2.3)

Here θ̂(·) is a single-valued function with the domain of definition U (see Fig-
ure 2.2).

In addition, it is reasonable to evaluate the complexity of the situation de-
scribed in terms of the lottery scheme (2.1) by the capacity m of the set Θ̂ ,
assuming m(Θ̂) = m(CU).

In the case of finite sets U and C, it is obvious that the complexity is given by
the number

Card(Θ̂) = Card(CU). (2.4)

Setting
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θ̂(u) = ĝ(θ̂ ,u), (2.5)

we obtain a matrix scheme Ẑm = (Θ̂ ,U,C, ĝ(·, ·)) in which, in contrast to the
matrix scheme Zm = (Θ ,U,C,g(·, ·)) describing some parametric situation, the
parameter θ̂ is artificial and may not have physical sense. Following Savage
[73], one may call this artificially constructed parameter θ̂ a state of nature.

The procedure defined by the operations (2.3) and (2.5) is called parameteri-
zation. Parameterization defines the mapping

τ : Zl = {Zl = (U,C,ψ(·))}→ Ẑm
{

Ẑm = (Θ̂ ,U,C, ĝ(·, ·))} , (2.6)

where Zl and Ẑm are classes of all lottery schemes and matrix schemes equiva-
lent to them in capacity.

It is clear that the matrix scheme Ẑm can always serve to restore the original
lottery scheme Zl . Indeed, define the multivalued mapping ψ(·) according to the
following rule:

ψ(u) =
{

ĝ(θ̂ ,u) : θ̂ ∈ Θ̂
} ∀u ∈U. (2.7)

We call this procedure compression. It defines the inverse mapping

χ : Ẑm =
{

Ẑm =
(
Θ̂ ,U,C, ĝ(·, ·))}→ Zl = {Zl = (U,C,ψ(·))} . (2.8)

The mappings (2.6) and (2.8) are bijective, and therefore the set Zl and Ẑm are
equivalent (have equal capacities).

Then taking into account (2.6) and (2.8), we have

χ [τ(Zl)]

= χ[τ(U,C,ψ(·))]
= χ[{θ ∈ (U →C) : θ(u) ∈ ψ(u),∀u ∈U},U,C,{g(·, ·) : (2.9)

g(θ ,u) = θ(u),∀θ ∈Θ ,∀u ∈U}]
= (U,C,({θ(u) : θ ∈Θ},∀u ∈U)) = (U,C,ψ(·)) = Zl,∀Zl ∈ Zl .

This result may be written as our next theorem.

Theorem 2.1. The class of decision situations that can be represented by the
matrix scheme Zm coincides with the class of situations that can be represented
by the lottery scheme Zl, i.e.,

Zm = Zl . (2.10)

Thus we can use either of the two schemes Zl and Zm to describe any decision
situation, parametric or nonparametric.

The majority of real-life decision situations seem to be of nonparametric type.
However, in many real parametric situations the capacity of the set Θ of possi-
ble values of the parameter θ is less than the capacity of the set CU : some of
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the complex events θ(u) may be absent. This makes the parametric situation
less complex. So in our Example 2.2, the set Θ (the set of all possible abilities
of the graduate student) consists of three elements, whereas the set CU con-
sists of twenty-seven elements! In the degenerate case, in which it is known that
the graduate is talented in only one type of activity (for example, engineering),
the uncertainty of choice disappears; the complexity of the situation is minimal
(zero?).

It is clear that when m(Θ)≤ m(CU), one should describe the parametric deci-
sion situation in terms of the matrix scheme. In other words, compression of this
scheme into the lottery scheme can lead only to an unjustified complication of
the situation model, or to the loss of data about the simplicity of the parametric
situation. Indeed, if the real set Θ of the parametric situation is preserved (is not
forgotten) in the operation of compression, then the lottery scheme will consist
of the matrix scheme completed by the useless multivalued mapping. If, on the
other hand, after compression χ one does not preserve, or forgets, the data about
the set Θ , then such a compression turns out to be a surjection of the set Zm
onto the set Zl : a single lottery scheme (the image) corresponds to more than
one matrix scheme (the preimage).

2.3.2 Data about the Unknown

Looking back at the examples of decision situations from Section 2.2 and fit-
ting them to the decision schemes Zl and Zm, one can see that a scheme by
itself is insufficient to model a situation. In Examples 2.1 and 2.2, not only does
the decision-maker know the schemes Zl and Zm, but he receives as well some
additional data about peculiarities of the appearance of consequences of every
decision. We call these data the data about the unknown.

When we say “unknown,” we mean that the decision-maker does not know in
advance which consequence c ∈Cu will be the result of the chosen action u ∈U .
The notion of the unknown, with all its richness, can scarcely be formulated in
precise mathematical language. In this book, we shall confine our treatment of
the unknown to following, to a certain extent, R. Bellman [7]. Namely, we shall
assume that the consequence c ∈ Cu is induced by some cause–effect mecha-
nism, or generator of consequences, which is switched on by the chosen action
u ∈ U in a way shown in Figure 2.3 for nonparametric situations and in Figure
2.4 for parametric situations. It is precisely this cause–effect mechanism that
represents in our model the dependence, specific to each decision situation, of
consequences on actions. Clearly, the range of these dependencies is very wide,
from functional dependence to complete independence.

It is natural to suppose that the source of unknowns is the actual environment,
or the reality of the physical—in the widest possible sense of this word—world,
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Fig. 2.3 A nonparametric situation.

Fig. 2.4 A parametric situation.

in which the decision situation takes place. So, for example, the profit from
operations on the stock exchange depends on the totality of financial markets;
the outcome of a disease depends on the entire state of medicine; the length of a
human life depends on social conditions, but of course not on that only.

It is natural to consider the unknown consequence c ∈Cu as random, and the
cause–effect mechanism as the generator of such randomness. The specificity
of a decision situation consists then in some regularity of the considered ran-
dom phenomenon. Since these regularities are proposed by modern probability
theory, it would seem that there should be no new difficulties. But this is not
the case. Already Borel in [4] remarks that the world of random phenomena is
much wider than that of its parts, which is described in terms of probability the-
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ory and remarks on the absence of scientific means of studying this world. In
[47], Kolmogorov says in this respect the following: “Speaking of randomness
in the usual sense of this word, we mean those phenomena in which we do not
find regularities, allowing us to predict their behavior. Generally speaking, there
are no reasons to assume that phenomena random in this sense are subjected to
some probabilistic laws. Hence, it is necessary to distinguish the randomness in
this broad sense and stochastic randomness (which is the subject of probability
theory).”

However, what do the words “we do not find regularities, allowing us to pre-
dict their behavior” mean? We should scarcely understand them in the sense
that such regularities do not exist, that in the range between the determinism of
functional dependence and complete uncertainty there is only the regularity of
stochastic randomness. More likely, they express the need to find the regularities
of nonstochastic random phenomena. We shall return to this topic later.

So far, independent of the form—perhaps even a nonmathematical one—in
which the regularity of the cause–effect mechanism is expressed, we shall de-
note it by the symbol I. Denote the lottery and the matrix models of a decision-
making situation by Sl = (Zl, Il) and Sm = (Zm, Im) respectively.

We have already seen that the matrix and lottery schemes, Zm and Zl , are
equivalent ways of describing decision situations: each of them can be used for
the description of a parametric as well as a nonparametric situation. It seems
that the models Sl and Sm are equivalent in this sense as well: making use of the
operations of parameterization τ and compression χ , the regularity Im could be
rewritten in terms of Il and vice versa. However, so far one can see this only for
a concretely given regularity I.

In particular, let us demonstrate this equivalence of the models Sm and Sl
for situations with finite sets of decisions U and consequences C in the case of
stochastic regularity of the cause–effect mechanism.

For a certain situation, let its lottery model be Sl = (Zl , Il), where

Zl = (U,C,
{

Ck,k = 1,d
}
),

U = (u1,u2, . . . ,ud),

C = (c1,c2, . . . ,ct) =
d⋃

k=1

Ck,

and the stochastic regularity Il has the form of a family of probability distribu-
tions

Il = Q =
{

Qk,k = 1,d
}
, Qk = (qk(c1),qk(c2), . . . ,qk(ct)).

The matrix scheme Zm, constructed on the basis of the lottery scheme Zl

according to the parameterization τ (2.6), has the form Zm = (U,C,Θ̂ , ˆg(·, ·)),
where the artificial parameter θ̂ takes values in the set Θ̂ , Card(Θ̂) = n = td ,
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i.e.,

Θ̂ = (θ̂1, θ̂2, . . . , θ̂n), θ̂µ : U
µ→C,

µ = 1,n, θ̂µ(uk) = g(θ̂µ ,uk), ∀k = 1,d.

Here θ̂µ is a “complex” event, consisting of the “simple” events cνµ k, ν = 1, t
that constitute θ̂µ .

In order not to complicate our example, suppose that there is no dependency
between the consequences of different actions, in other words, that consequences
are overall independent. Then the regularity Im in terms of the probability distri-
bution over the set Θ̂ is given as

Im = P(Θ̂) =
(

p(θ̂1), p(θ̂2), . . . , p(θ̂n)
)
, (2.11)

where

p(θ̂µ) =
d

∏
k=1

qk(cνµ ), µ = 1,n. (2.12)

The matrix model Sm = (Zm, Im) obtained is equivalent to the original (prim-
itive) lottery model Sl = (Zl , Il). Indeed, we make the inverse transformation
from Sm to Sl , the compression (2.8). To do this we need to reconstruct Il from
Im in the form of the family

Q′
k = (q′k(c1),q′k(c2), . . . ,q′k(ct)), k = 1,d, (2.13)

where

q′k(cν) = p
{

θ̂µ ,µ = 1,n : g(·,uk) = cν
}
, ν = 1, t. (2.14)

The model Sl = (U,C,
{

Ck,Q′
k,k = 1,d

}
) constructed in this way coincides

with the original model Sl .6

To prove this equivalence in the case of arbitrary sets C and U is techni-
cally more complicated. Nevertheless, in what follows we shall everywhere, un-
less otherwise specified, write down the model of the decision-making situation
omitting the indices, i.e., as S = (Z, I).

6 For situations with stochastic regularity in the case of an arbitrary set C and finite set U , the equivalence
of models is proved in [42]. In Chapter 6 we show the equivalence of the matrix and lottery models for
nonstochastic regularity.
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2.4 Experiments in Decision Systems

The models of experiment in decision systems discussed in this section will
be used only in the last three chapters of this book. Therefore, the impatient
reader may skip this section and proceed to the following one, returning here
only before reading those chapters.

Suppose the decision-maker is in the situation S = (Z, I). His knowledge
about the regularity of the cause–effect mechanism may be enriched by means
of an observation, or an experiment, over the decision situation.7 A description
of the regularity before observation is called a priori. We have already denoted
it by the symbol I. The regularity enriched by the observation is called a poste-
riori, and we denote it by the symbol Ih. Suppose that I and Ih are linked by the
relation

Ih = f (I,wh), wh ∈Wh, (2.15)

where f is some algorithm of transition from the a priori description of the
regularity I to the a posteriori description Ih under the observation wh from some
set Wh.

To limit the definition of experiment and make it more precise, we return
again to our examples in Section 2.2. Obviously there are two types of experi-
ments conducted by the decision-maker. An experiment of the first type is con-
ducted by the hero in Example 2.1: the raven informs the hero of the conse-
quences that followed the decisions of the hero’s predecessors. An experiment
of the second type is conducted in Example 2.2 when the young man explores
his inclinations toward different professional occupations.

Generalizing what we have said, we define the model of the experiment of the
first type as the mapping

hl : C →Whl . (2.16)

This corresponds to the structure of the decision system in Figure 2.5.
We define the model of an experiment of the second type as the mapping

hm : Θ →Whm (2.17)

corresponding to the structure of the decision system in Figure 2.6. These fig-
ures make it clear that an experiment of the first type may be provided both in
parametric and in nonparametric situations. An experiment of the second type
may be provided only in parametric situations and only if the parameter θ can
be observed. Statistical studies consider primarily this type of experiment [14].

There is a profound difference between the two types of experiment. While
observation wm depends only on the parameter θ ∈ Θ , observation wl is more
complicated. According to (2.16), the observation wl depends on the conse-
quence c ∈ C, and hence depends on the decision u ∈ U that resulted in this

7 We shall use the words “observation” and “experiment” as synonyms.
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Fig. 2.5 The structure of a decision system with an experiment of the first type.

Fig. 2.6 The structure of a decision system with an experiment of the second type.

consequence. The decision-maker uses this observation in order to construct an
a posteriori description of the regularity. Then this description is used for future
decision-making. Thus a dependence arises between sequential decisions. Such
dependencies produce some “information dynamics,” particularly important in
multistep decision systems, i.e., those in which the decision-maker makes se-
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quential decisions, remaining in the same situation and accumulating, step by
step, data about the regularity of the cause–effect mechanism.

Note finally that refusing to consider random functions of θ in our model
of experiments in no way restricts the generality of this model. Indeed, let, for
example, an experiment be written in the form of a random function of θ , i.e.,
as

hm : Θ ×Ω →Wm, (2.18)

where Ω is the set of primitive events. This model can always be reduced to
the model (2.17) by an obvious change of variables: it is enough to consider the
direct product Θ ×Ω as a new set Θ ′ of the unknown parameter.

2.5 The Decision-Maker

It follows from the examples of Section 2.2 that every decision-maker that hap-
pens to be in a decision situation has the goal of achieving what is in his opin-
ion the best outcome or consequence. To fulfill this task, the decision-maker,
equipped with the mathematical model of the situation S = (Z, I), has to choose
the action generating this outcome. We call this choice the decision problem or
the problem of choice. To solve this problem, the decision-maker must perform,
roughly speaking, the following sequence of steps:

1. Establish his personal preference relation8 (or in other words, a criterion) on
the set of all possible outcomes C. Denote this preference relation by βC.

2. Determine the best, according to βC, consequence c0 ∈C.
3. Establish some preference relation (criterion) on the set of all admissible

actions U . Denote this preference relation by βU .
4. Determine the best, according to βU , action u0 ∈U .

These four steps constitute a compound decision problem, compound because
each step in this sequence is a certain mathematical problem. Even the first
step—establishing a personal preference relation βC—is a mathematical prob-
lem: this relation must satisfy certain conditions if one wants to remain on stable
ground.

The second and the fourth steps—the search for c0 and the search for u0—are
optimization problems that, generally speaking, can be solved by appropriate
mathematical methods. These two steps are not problems specific to decision-
making only. The problem specific to decision-making is that of the third step,
namely, the problem of construction of the preference relation βU . This problem
is the kernel of the compound decision problem, and therefore, in speaking of
such problems we sometimes will mean only the problem of the third step.

8 See Appendix A.1.
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It is natural here to note that the data on the regularity I of the situation can
only simplify the decision problem. Therefore, following our model of the de-
cision situation, we say that if we know nothing of the situation but the scheme
Z, then we limit the model S of the situation to its scheme, i.e., S = Z. Never-
theless, the situation cannot be considered separately from the decision system,
or more accurately, independently from βC. Is it not obvious that some situation
can be simple for one decision-maker, i.e., for his preference relation βC, and be
complicated for another decision-maker that has another preference relation βC?
Suppose, for example, that the first is a colorblind person in a situation in which
the consequences are colors.

But the model S (or just the scheme Z) of the situation and the preference re-
lation βC do not define the unique preference relation βU . Indeed, it was already
in Example 2.1, at the third crossroads, where we saw that two different heroes
in the same situation, having the same preference βC, later chose two different
preferences βU and correspondingly made two different decisions, i.e., chose
two different roads. Each one justifies his choice in his own way, and each one
is right—in his own way. But then we are tempted to classify these choices as
arbitrary! To eliminate such arbitrariness it is necessary to transform the third
step into a precise mathematical problem.

Before doing this, let us turn again to our examples. In particular, in Exam-
ple 2.1, at the first crossroads, the hero of the story, having his preference βC
with respect to consequences, makes a decision without any speculation. In this
decision situation, the choice of the road is uniquely determined by the hero’s
preference βC, because a single consequence corresponds to only one road. We
generalize this episode in the following way. Consider the situation in which
the mapping ψ(·) of the decision set U in the set C of consequences is single-
valued. Denote such a mapping by ψ̂ . The inverse mapping ψ̂−1 : C →U is not
necessarily single-valued, and the consequence c ∈ C can be generated by any
element of some set Uc∈C ⊂U . Note that the sets Uci and Uc j are disjoint for all
ci,c j, i 6= j. Thus the mapping ψ̂−1 decomposes the decision set U into a system
Û of disjoint subsets {Uc,c ∈ C} = Û in such a way that ψ̂−1(ci)βCψ̂−1(c j)
follows from ciβCc j. Thus if the preference βC is satisfied for the set of images
C, then the same βC is satisfied for the set of preimages Û . But we denoted the
preference relation on the set U by the symbol βU . Thus the mapping ψ̂−1 trans-
ports, or projects, the preference relation from the set C onto the set U in such a
way that if ciβCc j and uci ∈ Uci ,uc j ∈ Uc j , then ψ̂(uci)βCψ̂(uc j). Clearly, there
exists a unique preference relation βU that does not contradict the preference re-
lation βC, or to put it briefly, retains (or supports) βC. We say that the third step
of such a decision problem is simple or degenerate simply because there exists
only one such preference relation βU . Indeed, in this case one must solve only
the optimization problem of the fourth step. In other words, the whole compound
decision problem degenerates into the optimization problem.
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So perhaps the decision problem does not become degenerate in the case that
the mapping ψ(·) is multivalued, and we do not know what the result of our
action will be. That is frequently the case, but not always. Here is an example.

Let Cu1 = {c1,c2} and Cu2 = {c3,c4}, and according to βC let c3βCc1, c3βCc2,
c4βCc1, c4βCc2, i.e., all results of the action u2 are preferred to all results of the
action u1. So we have here the multivalued function ψ(·). But there exists a
unique βU that does not contradict βC. This βU is produced by a specific combi-
nation of the inverse mapping ψ−1(·) (which is a surjection) and the preference
relation βC.

But the crossroads in the second and the third episodes from Example 2.1 are
different. Here, at every crossroads, it is not known which of the several conse-
quences will occur. In terms of the lottery model, in this situation the mapping
ψ(·) is many-valued, and it is such that the inverse mapping ψ−1(·) does not ex-
ist. Therefore, the hero’s preference βC does not determine the unique preference
βU . We say that this is the effect of uncertainty inherent in the situation.

And nevertheless, our hero is making his decision according to his personal,
i.e., arbitrary, preference relation βU .

We now resume our attempt to model the third step of the compound decision
problem. Denote by S the set of decision situations. For any decision situation
S ∈ S let BC denote the set of all preference relations βC on C, BC the subset of
BC available to the given decision-maker, BU the set of all preference relations
BU on U , and BU the subset of BU available for the decision-maker.

Definition 2.1. We call the mapping

π : S×BC → BU (2.19)

a projector or criterion choice rule.

Denote by Π the set of all possible projectors or criterion choice rules π .
Then it follows from the above that any decision-maker in a decision system
reacts in his own way to the information about what is unknown, executing in
his own way the operation of projection. In other words, any decision-maker in
the decision system is a certain projector π , or equivalently, has his own criterion
choice rule. This allows us to represent a decision-maker as a triple

Φ = (BC,BU ,π), BC ⊆ BC, BU ⊆ BU , with π ⊆ Π . (2.20)

This model allows us to describe the aforementioned arbitrariness in the fol-
lowing way: in the same situation S, with the same preference relations βC, two
different decision-makers π1 and π2 can establish two different preference rela-
tions β 1

U and β 2
U that can define two different best actions. A natural question

is then, which one of them has chosen the best action? And what does it mean,
“the best,” if each decision-maker, π1 or π2, has his own opinion, his own fourth
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step “optimization” problem according to which each of them determines his
own “best”?

The only exit from this arbitrariness is, most likely, to find and to put in the
same group all decision-makers that have the same criterion choice rule. This
will eliminate the arbitrariness inside the chosen group, or class: in the same
decision situation S, all representatives of this class, having the same preference
relation βC, will establish the same preference relation βU , and finally will make
the same decision. However, is there such a criterion choice rule? And if it exists,
then what kind of criterion βU does it generate?

We are not ready to answer these questions. The problem of choice arises, as
we saw, in decision systems with uncertainty, but we still do not have a precise
notion of what it means for uncertainty to exist in a decision system.

2.6 Existence of Uncertainty in Decision Systems

We have already mentioned a few times the word “uncertainty,” but we have thus
far never tried to make it precise. The sense of this word in everyday speech does
not need any refinement. However, in everyday speech the word “probably” also
does not need to be refined. Nevertheless, the quantitative characterization of
the probable event demands a precise mathematical method, namely probability
theory. Similarly, the notion of uncertainty demands at least a more precise defi-
nition. To begin with, note that in decision theory one has to be able to divide the
whole class of decision problems into two subclasses: decision problems with
and without uncertainty. For such a classification we need a criterion of exis-
tence of uncertainty in a decision system. Before we introduce such a criterion,
we shall make some remarks.

There are two parts of a decision system that can be sources of uncertainty:
the decision-maker and the decision situation. We suppose that the decision-
maker can reveal uncertainty only in the choice of the preference relation βC. So
let us restrict decision systems to those for which any decision-maker can have a
single personal preference relation βC for the given situation. In this case, when
βC is fixed, the decision situation becomes the only source of uncertainty in the
decision system, and thus in the corresponding decision problem.

Note that the data I can only decrease the uncertainty of the situation. Un-
der these assumptions, uncertainty in the decision system comes only from the
scheme Z of the situation.

To simplify our reasoning we limit the set BC to linear preferences (linear
ordering) and define

βC = (C,º).

Let
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Z = Zl = (C,U,ψ(·)).
Set

K= (2C)U ,

that is, the set of all mappings ψ : U → 2C.
Denote the class of mappings that bring uncertainty into the decision system

by K ⊆ K.

Definition 2.2. We say that decision u1 dominates decision u2 relative to βC =
(C,º) if Cu1 Â Cu2 , i.e., u1 Â u2 if c1 º c2 ∀c1 ∈ Cu1 and ∀c2 ∈ Cu2 , we have
Card(Cu1

⋂
Cu2)≤ 1,Cu1 6=Cu2 .

Definition 2.3. The procedure of constructing the preference relation βU =
(U,º) in accordance with the following conditions is called projecting:

Condition 1

Cu1 ÂCu2 ⇒ u1 Â u2, ∀u1,u2 ∈U ;

Condition 2

(Cu1 =Cu2 ,Card(Cu1) = 1)⇒ u1 ∼ u2, ∀u1,u2 ∈U.

Definition 2.4. A decision system contains uncertainty if the projecting proce-
dure is not single-valued.

Obviously the multivaluedness of the mapping ψ(·) is a necessary condition
for the existence of uncertainty, i.e., K 6= (2C)U . But it is clear that this condition
is not sufficient, i.e., K 6= (2C)U \CU .

Intuitively, one can easily propose some version of a sufficient condition.
Suppose for simplicity that the sets U and C are finite, and the mapping ψ is
single-valued everywhere but on one action u∗ ∈ U . At this point, let the set of
consequences be given by Cu∗ = {c1,c2}, c1 ≺ c2. Suppose there exists the ac-
tion u∗∗ with the consequence Cu∗∗ = {c3} such that c1 ≺ c3 ≺ c2. Then there
exist two variants of the preference relation βU : the first β (1)

U with u∗ Â u∗∗, and
the second β (2)

U with u∗ ≺ u∗∗. So a sufficient condition can be formulated as
follows: uncertainty exists if there is a situation S = Z and if there is a pair of
decisions u∗,u∗∗ with consequences Cu∗ = {c1,c2} and Cu∗∗ = {c3} such that
c1 ≺ c3 ≺ c2.

But it turns out that one can prove a much stronger statement. In order to
define the class K we need to prove our next lemma.

Lemma 2.1. We have ψ(·) ∈ K if there exist a preference relation (C,º) and
distinct u1,u2 ∈ U and consequences c1,c2 ∈ ψ(u1),c3,c4 ∈ ψ(u2) such that
c1 ≺ c3, c2 Â c4.
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Proof. Necessity. Let some relation (C,º) generate different projections on the set U . Assume the
converse. This means that for all u1,u2 ∈U,u1 6= u2, precisely one of the following conditions holds:

ψ(u1)≺ ψ(u2), Card(ψ(u1)∩ψ(u2))≤ 1,

ψ(u1)Â ψ(u2), Card(ψ(u1)∩ψ(u2))≤ 1,

ψ(u1) = ψ(u2), Card(ψ(u1)) = 1.

Then for the chosen (C,Â), according to Conditions 1 and 2, there exists a unique (U,Â), namely
u1 Â u2 ⇐⇒ ψ(u1)> ψ(u2), for all u1,u2 ∈U . This contradicts the assumption that the relation (C,º)
generates different projections on the set U . In other words, this contradicts the ambiguity of the choice
of the preference relations on the set of decisions U .

Sufficiency. Let the preference relation (C,Â) satisfy the conditions of Lemma 2.1. Then there exist
u′,u′′ ∈ U , u′ 6= u′′, c1,c2 ∈ ψ(u′), c3,c4 ∈ ψ(u′′) such that c1 ≺ c3, c2 Â c4. Let (U,º′) be some
preference relation on U (for example it may be a lexicographic relation with respect to (C,º)). Then
one can take another preference relation (U,º′′

) such that

u1 º′′ u2 ⇐⇒
{

u1 º′ u2,

u1 ¹′ u2, u1 ¹ u2.

The lemma is proved.

Next we need the following lemma.

Lemma 2.2. The necessary and sufficient conditions are equivalent to the fol-
lowing conditions: there must exist distinct u1,u2 ∈U and consequences c1,c2 ∈
ψ(u1), c3,c4 ∈ ψ(u2) such that either c1 ≺ c3 ≺ c2 or c1 = c3, c2 = c4, c1 6= c2.

Proof. Necessity. Suppose the conditions of Lemma 2.1 are satisfied for u1, u2, c1, c2, c3, c4. Then
without loss of generality, one may assume that c1 ¹ c2. If c1 = c2, then setting c1

′ = c4, c3
′ = c4

′ = c1,
c2

′ = c3, we obtain for c1
′,c2

′,c3
′,c4

′ the first condition of Lemma 2.2. If c1 ≺ c2, then when c3 Â c2, for
c1

′ = c4, c2
′ = c3, c3

′ = c2, c4
′ = c1 we obtain again the first condition of Lemma 2.2. The same holds

if c3 ≺ c2. In the case c3 = c2, if c1 = c4 we have at c1
′ = c1, c2

′ = c2, c3
′ = c3, c4

′ = c4 the second
condition of Lemma 2.2. And finally, if c1 6= c4, for example at c4 Â c1, then at c1

′ = c1, c2
′ = c2,

c3
′ = c4, c4

′ = c3 we have the second condition of Lemma 2.2
Sufficiency. Let the conditions of Lemma 2.2 be used for u1,u2,c1,c2,c3,c4. Then if c1 ≺ c3 ≺ c4,

the condition of Lemma 2.1 holds for c1
′ = c1, c2

′ = c2, c3
′ = c4

′, c4
′ = c3, and if c1 = c3 Â c2 = c4,

then the condition of Lemma 2.1 holds for c1
′ = c2, c2

′ = c1, c3
′ = c3, c4

′ = c4. The lemma is proved.

From these two lemmas we obtain the following theorem.

Theorem 2.2. A decision scheme Zl contains uncertainty if there is ψ(·) such
that one can determine distinct u1,u2 ∈ Dom(ψ) and c1,c2 such that either
ψ(u1) = ψ(u2) = {c1,c2} or there is also c3 different from c1 and c2 such that
c1,c2 ∈ ψ(u1) and c3 ∈ ψ(u2).

Now let Z = Zm = (Θ ,U,C,g(·, ·)), and this Zm is equivalent to Zl in the sense
of Theorem 2.1. Then Theorem 2.2 can be reformulated for Zm as follows.

Theorem 2.3. A decision scheme Zm contains uncertainty if and only if there
is g(·, ·) such that there exist distinct u1,u2 ∈ U for which either g(Θ ,u1) =
g(Θ ,u2) and Card(g(Θ ,u1)) = 2 or there are θ1,θ2 ∈ Θ such that g(θ1,u1) 6=
g(θ2,u1) 6= g(θ1,u2) = g(θ2,u2).
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In other words, these conditions define the class K of such schemes Z for
which there exists βC ∈BC such that one can project the pair (βC,Z) into more
then one preference relation βU , i.e., more than one criterion of choice of the
best action.

2.7 Criterion Choice Rule

Now we can return to the central, third, step of the compound decision problem
from Section 2.5, namely to the construction of the preference relation βU , or
in other words, of the criterion of choice of the best decision. We already know
that this problem becomes nontrivial if the decision situation contains uncer-
tainty. We have already seen that in any decision system uncertainty exists if for
a given preference relation βC there is a scheme Z of the decision situation such
that there exists more than one preference relation βU , i.e., there is more than
one criterion of choice of optimal decision. In other words, in this case the map-
ping (2.19) is multivalued, and the decision-maker can choose one of several
criteria following his personal tastes. As is known [58], the complement of the
decision scheme Z by the regularity I of the cause–effect mechanism does not,
in general, remove uncertainty and the resulting arbitrariness from the decision
system. To remove this arbitrariness one has to subordinate the projector π to
some conditions. In some sense, these conditions, or axioms, may be considered
as an axiomatic description, or a model, of the decision-maker. On the other
hand, these conditions define a class of projectors, or decision-makers, that in
the same decision situation S, having the same preference relation βC, project
the pair (S,βC) in their common preference relation βU . Thus at the fourth step
of the compound decision problem, they will choose the same optimal decision.

To proceed further with this task it is necessary to make the set BC and the set
BU common to all decision-makers that we are going to put in the same class.
To this end, we may assume, for example, that BC = BC and BU = BU , where
BC and BU are all possible preference relations on the sets C and U respectively.

As to the conditions imposed on the criterion choice rule, or on the projector
π , it is not clear now whether such conditions may be found in our quite general
formulation of the decision problem, i.e., in terms of preference relations. How-
ever, for some constraints on the class of decision situations, significant results
have been obtained in this direction. These results constitute today’s armory of
decision theory.

The first significant constraint is that instead of the preference relations B,
real-valued functions are used as the criterion for the ordering of the sets C and
U . In economics these functions are called utility functions, and in engineer-
ing they are called loss functions. This restriction was sufficient to suggest an
axiomatic description of four classes of projectors that brought forth four crite-
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ria (by Wald, Savage, Hurwicz, and Laplace [20, 58]) uniquely for the matrix
scheme Zm, i.e., for the matrix situation model Sm with strict uncertainty.

However, the central result, the foundation of modern decision theory and its
applications, particularly in economics, is the expected utility theorem [69, 61].
This theorem has played a principal role in microeconomics since the 1940s.
Therefore, we consider it here with some comments but without proof (see the
proof, for example, in [21, 61, 82].

Suppose that in a decision system there is a nonparametric stochastic situation
Sl = (Zl, Il), where Zl = (C,U,{Cu ∀u ∈U}) and the regularity of the cause–
effect mechanism Il is the family of stochastic distributions {Qu,∀u ∈U} on the
set C. Let the decision-maker choose some complete, reflexive, and transitive
binary preference relation βC = (C,º) ∈ BC that orders the set of consequences
C.

Definition 2.5. A real-valued function U defined on the ordered set C is a utility
function if it is monotonic, i.e., if for all pairs (ci,c j),

ci º c j ⇐⇒ U(ci)≥ U(c j). (2.21)

In order not to complicate this discussion we limit the presentation of this
result to decision situation models with finite sets of decisions U and con-
sequences C. Then, for example, the indices i of the ordered consequences
c1 º c2 º ·· · º ct , U(ci) = i, i = 1,2, . . . , t, can serve as a utility function. Thus
instead of the pair (S,βC) we have the pair (S,U(·)). But we need to construct
a criterion of choice of optimal decision, that is, a utility function of deci-
sions Û(·). In order to do this, first note that the set of probability distributions
Q = {Qu,u ∈ U} is homeomorphic to the set of decisions U , i.e., Qui Â Qu j if
and only if ui Â u j.9 Therefore, the set of probability distributions Q, or the set
of lotteries, can substitute the set U . Suppose that the decision-maker would like
her utility function on decisions to be linear on the set Q (i.e., on the set U). To
satisfy this demand, the preference relation on Q should satisfy the following
conditions:

Condition 3 For any Q1,Q2,Q3 ∈ Q the sets

{α : αQ1 +(1−α)Q2 º Q3} and {α : Q3 º αQ1 +(1−α)Q2}
for α ∈ [0,1] are closed.

Condition 4 For any Q1,Q2,Q3 ∈ Q, Q1 ∼ Q2, and for any α,0 ≤ α ≤ 1,

αQ1 +(1−α)Q3 ' αQ2 +(1−α)Q3.

9 In economics, the set Q is called the set of lotteries.
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The first condition is the condition of continuity of the preference relation on
Q. The second is the condition of independence of the preference relation on Q.
Both of these conditions, conveying the wish of the decision-maker to have a
linear decision utility function, are nevertheless purely mathematical, and could
be common to many decision-makers. But what conditions can be characterized
as specific to a certain group of decision-makers? Intuitively, it is clear that the
preference relation on the set of lotteries Q should be consistent with the prefer-
ence relation on the set of consequences C. One such consistency condition can
be written, roughly speaking, in the following form:

Condition 5 If c1 º c2, then

Q =
(( c1q1

)
,
( c2q2

))
º Q′ =

(( c1

q′1

)
,

( c2

q′2

))
(2.22)

if q1 > q′1.

That is, the decision-maker prefers the lottery in which the best consequence has
the highest probability.

We now have the following theorem.

Theorem 2.4. In order that a linear utility function Û(u) exist in the form

Û(u) = ∑
c∈C

U(c)qu(c), (2.23)

it is necessary and sufficient that on the set U, Conditions 3–5 be satisfied. The
utility function (2.23) is unique to within an increasing linear transformation.

The utility (2.23) is called the expected utility. One can reformulate Theorem
2.4 in terms of a matrix situation. The expected utility function in this case is

Û(u) = ∑
θ∈Θ

U(g(θ ,u))p(θ), (2.24)

where p(θ) and g(θ ,u) are found according to formulas (2.12) and (2.5) respec-
tively.

In other words, in our framework, Conditions (or axioms) 3–5 describe a
specific criterion choice rule or the class Π0 of projectors (or decision-makers)
π . All decision-makers from this class would in the identical situation make
decisions assuming that

∑
c∈C

U(c)qu1(c)≥ ∑
c∈C

U(c)qu2(c)⇔ u1 º u2. (2.25)

Note also that all conditions (axioms) of Theorem 2.4 presuppose that the
regularity of the cause–effect mechanism of the decision situation is a stochastic
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regularity in the form of a family of probability distributions I = {Qu,u ∈ U}.
Thus the preference relation (2.25) makes sense only for multiple, or mass, de-
cisions under stochastic regularity.

Recall, though, that (2.25) takes place only over a very large number (infi-
nite) of decisions in the same situation. When a single decision is made, the
consequence is random with the probability distribution that corresponds to the
chosen decision. This means that the consequence of a single choice of decision
u1 can be worse than the consequence of a single choice of decision u2. The
same is true for all criteria belonging to the so-called nonexpected utility criteria
group (see [59] and the literature therein), where the probability distribution on
consequences is used in one way or another.

It seems that the only decision-maker who can avoid this is the decision-
maker who makes decisions according to the criterion of Wald that sometimes
is called the principle of guaranteed result.10 In this case, the best decision has
the form

u0 = argmax
u

min
θ

L . (2.26)

In other words, the decision-maker does not use any information about the regu-
larity of the cause–effect mechanism. However, when in this situation decisions
are made multiply (or massively), i.e., by many decision-makers but only once,
or by one decision-maker but many times, this behavior, or attitude, seems less
reasonable.11

The mass character of decisions in the axiomatics of the expected utility is
presupposed by the regularity of the cause–effect mechanism in the form of a
probability distribution. Namely, the third axiom (Condition 5) reflects this psy-
chological element, demanding a decision-maker to prefer that decision where
the most “useful” consequence has the greatest probability. In [68, p. 4] the fol-
lowing is said on this occasion: “Once you have introduced probabilities into the
definition and measurement of utilities, you have made a bargain with the devil,
and you can’t get rid of them again.”

We can ask whether we might be able to conjure up such an axiomatics of a
criterion choice rule whereby the mass character of decisions does not rely on
the regularity of the cause–effect mechanism. Perhaps in this way we can obtain
a criterion that is good for decision-making in situations with regularities of
mass phenomena different from stochastic ones. But are there such regularities,
and what do we know about them?

To answer this question let us try—at first intuitively—to understand what
phenomena it is natural to consider as random. The foremost difference between
random and nonrandom phenomena consists in the fact that when we call some

10 The axiomatics of this principle can be found, for example, in [20, 82].
11 The author knew a professor who had the privilege of flying free of charge but never did so, fearing
an accident.
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phenomenon random, it always means that we do not know the regularities (call
them local) that would allow us to predict the behavior of the phenomenon.
The study of a random phenomenon can be twofold: one can reduce it to the
nonrandom, looking for its local regularities, and one can, if it is a mass random
phenomenon, try to find its global, statistical regularities, that is, regularities of
the asymptotic behavior of the average values of different characteristics of the
phenomenon. For example, this could be frequencies of certain consequences,
arithmetic averages of certain functionals, etc.

If with the increase of the number of decisions and, correspondingly, of the
number of appearances of their consequences, all these averages tend to cer-
tain limits (and some other similar conditions are satisfied as well; see details in
[47]), then this phenomenon is called statistically stable or stochastic. And as
is well known, the study of such phenomena is the subject matter of probability
theory. At the same time, we can call all such phenomena where the aforemen-
tioned sample averages do not tend to unique limits statistically unstable random
phenomena. It is reasonable to call these random phenomena nonstochastic. This
takes place, for example, for the increasing average lifetime of a human being:
for a newborn child, the probability of reaching the age of 60 has a tendency
to increase, due to successes of medicine and hygiene.12 Today such examples
may be found in excess in economics and finance: time series of equity price
indexes, interest rates, commodities, foreign exchange rates, etc.

It is natural to consider as random in a broad sense all mass phenomena that
are studied only to within their statistical regularities. Once again, if a decision-
maker happens to be in a situation with nonstochastic randomness, she cannot
make use of the optimality criterion from Theorem 2.4. There are two reasons
for this. First, the axioms of this theorem, i.e., the definition of the class Π0
of projectors, substantially use the regularity of stochastic randomness. Second,
she does not know whether there exists any regularity of a nonstochastic random
phenomenon.

Therefore two new problems appear. First, it is necessary to establish the
existence of regularity of phenomena that are random in a broad sense. Second,
it is necessary to find an axiomatic description of the class Π1 of decision-makers
that would take into account only the mass character of a random phenomenon
but not its regularity.

These two problems make up the core of the remainder of this book.

12 This example is due to Emile Borel [4].
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