
Chapter 2
Adapting the Instrument Element to Support
a Remote Instrumentation Infrastructure

M. Prica, R. Pugliese, A. Del Linz, and A. Curri

Abstract GRIDCC was a project funded by the European Commission with the
goal to extend the grid by integrating instruments and sensors with traditional com-
puting and storage resources. This chapter describes how the GRIDCC’s instrument
element concepts have been implemented to support the challenging requirements
of the DORII project and of a usable remote instrumentation infrastructure. The new
Instrument Element has been designed in order to be easy to use for both the appli-
cation engineers and the scientists who are the final users of both the instruments
and the grid infrastructure.

Keywords Grid · Middleware · Remote operations · Remote instruments · Sensors ·
Online processing

1 Introduction

Current grid technologies offer unlimited computational power and storage capacity
for scientific research and business activities in heterogeneous areas all over the
world. Thanks to the grid, different virtual organizations can operate together in
order to achieve common goals. As the technology of the classical grid infrastruc-
ture (typically composed of computing and storage elements) matured, the attention
shifted toward the actual sources of data: the instruments and sensors. A signifi-
cant effort worldwide is being put in providing a closer interaction between various
types of instruments accessible from the grid on the one hand and the traditional
grid infrastructure on the other hand. The goal is to provide an end-to-end grid
environment for scientific activity, connecting the points of data collection with the
points of data analysis. The GRIDCC [13] project proposed and realized a new grid
component called the Instrument Element (IE) [20, 10, 21] that provides the tradi-
tional grid with an abstraction of real instruments and grid users with an interactive
interface to control them.

M. Prica (B)
Sincrotrone Trieste S.C.p.A., Strada Statale per Basovizza 14, 34012 Trieste, Italy
e-mail: milan.prica@elettra.trieste.it

F. Davoli et al. (eds.), Remote Instrumentation and Virtual Laboratories,
DOI 10.1007/978-1-4419-5597-5_2, C© Springer Science+Business Media, LLC 2010

11

12 M. Prica et al.

A new implementation of the Instrument Element (IE2) will be among the build-
ing blocks of DORII [6]. DORII (deployment of remote instrumentation infrastruc-
tures) is a 30-month project that started in February 2008 and is funded by the
European Commission under the seventh framework program. It seeks to deploy a
testbed for remote instrumentation, building on the experience of several preceding
projects like RINGrid [27], GRIDCC, g-Eclipse [11], or int.eu.grid [16]. For the
Instrument Element, DORII will mark the passing step from the prototype imple-
mentation to production quality software. The IE2 integrates easily to the Open
Geospatial Consortium (OGC) [24] reference model and particularly to the sensor
web enablement principles thanks to its flexible and extensible architecture. Also,
the IE2 will be included in the Italian Grid Infrastructure [14].

2 Related Work

In September 2004, the GRIDCC project was launched by the European Union. Its
main goal was to exploit grid opportunities for secure and collaborative work of
distributed teams to remotely operate and monitor scientific equipment. GRIDCC
also focused on adoption of the grid’s massive memory and computing resources for
storing and processing data generated by such equipment. Moreover, the GRIDCC
middleware has been deployed on a few pilot applications with the aim to validate
it and show its use and effectiveness, both in real contexts and in testbed environ-
ments. These applications have been selected in strategic sectors such as follows:
(1) the remote control and monitoring of a large particle physics experiment [5]; (2)
the remote operation of an accelerator facility [7, 25]; (3) the remote control and
monitoring of a widely sparse network of small, but numerous, power generators (a
real power grid); (4) the landslide hazards monitoring; (5) the ensemble limited area
of forecasting meteorology; and (6) the device farm for the support of cooperative
distributed measurements in telecommunications and networking laboratories.

The instrument element (IE) is a concept unique to the GRIDCC project. It is
an abstraction of the instrument (or group of instruments) into a standard interface,
which can be used within the rest of the GRIDCC architecture. The term instrument
is used in this context to define a piece of equipment that needs to be initialized,
configured, operated (start, stop, standby, resume, application-specific commands),
monitored, or reset.

2.1 Motivations for the New Implementation

The 3 year long experience of the GRIDCC project indicated a set of requirements
for the Instrument Element middleware. First, ease of use is a fundamental fea-
ture for the adoption of the IE framework by its target communities. In particular,
attaching devices to the middleware must be kept as simple and intuitive as possible.
Second, the security issues must be addressed properly. IE should provide an

2 Instrument Element to Support a Remote Instrumentation Infrastructure 13

effective multi-user environment with a locking mechanism that prevents concur-
rent access to operations that alter the instrument state. The locking mechanism
should allow the reservation of an instrument or a group of instruments for the dura-
tion of an experiment. IE middleware must support the grid operations in the most
transparent way possible for the final users, while taking care of all the necessary
steps to allow safe connection to the grid world. Effective handling of the alarms
and the events triggered by the instruments is another highly desirable feature. The
orginal IE lacked a few of these features, most seriously the concurrency control
mechanism. Besides, connecting new devices required a very complex and hardly
intuitive procedure. All of the above suggested a radically different design approach
for the IE middleware and thus the new implementation.

3 Design Approach

Despite the fact that the IE2 is a completely new implementation of the GRIDCC’s
Instrument Element concept, the existing IE WSDL [15] interface has been kept
unchanged in order to assure the compatibility with the rest of the GRIDCC middle-
ware, in particular with the virtual control room (VCR) [26]. VCR is a portal-based
client for the GLite [12] Grid and GRIDCC instruments that integrates a set of col-
laboratory tools in support of team work. Minor WSDL changes will likely occur in
the near feature to allow for additional features and will require some modifications
on the VCR side as well. Just as the original IE, the IE2 runs in the Apache’s Tomcat
[3] container as an Axis [2] web service. IE2 is entirely implemented in Java. Unlike
the old version, it does not use database back-end for storing configuration data
and registering new devices. Instead, the framework uses the local XML files for
storing such information. Another major difference is the user interface: the old IE
had both a web-service interface for remote clients like the VCR and a proper web
interface. The latter, however, could provide only remote access to the instrument,
but was lacking the support for the grid security. With the new IE, we kept just the
web-service interface. Currently, the VCR is the only front-end to the IE2, but other
clients (e.g., g-Eclipse) might follow soon.

The interface to a single instrument is called instrument manager (IM). It is a pro-
tocol adapter that allows the middleware to talk to the physical instrument or, more
precisely, its control system. The major novelty regards the IM creation process,
which is described in detail in the next section.

Two locking mechanisms are provided: implicit locking of the IM access occurs
automatically during the execution of commands that trigger state change on the
instrument or modify the values of its parameters or attributes. Explicit locking of
an instrument for a certain time period is triggered by a user command, e.g., to
perform a set of operations on the instrument. The explicit locking is also the base
for integration with the reservation service.

Instruments can be grouped in logical units called contexts, and contexts can
be further grouped in other contexts creating a tree-like structure. Near future

14 M. Prica et al.

Fig. 2.1 Architecture of the Instrument Element 2

development will certainly include the locking of the entire context in order to sup-
port reservation of a set of instruments needed for complex experiments. A simple
schema of the IE architecture can be seen in Fig. 2.1.

User authentication is performed using the GLite security model. The IE exports
a web-service interface for delegation of the client’s VOMS proxy certificates. Cer-
tificates are used for both user authentication and authorization. The client, in our
case the VCR, delegates the user proxy certificate to the IE where the certificate
is used for the user authentication. The VOMS attributes may be used for more
fine-grained control of the user authorization. The proxy certificates are further used
for accessing the grid, in particular the storage elements. The framework supports
the grid operations providing a utility that allows instrument managers to store their
output to a grid storage element transparently. All a developer of an instrument
manager has to do is to invoke from the command implementing code the utility
methods specifying only the basic parameters like the name of the file to be copied
and its location on a storage element. The middleware performs the authentication
behind the scenes and copies selected files using the GridFTP protocol.

Java Message Service (JMS) [17] allows for asynchronous reception of the mes-
sages from the instrument thus eliminating the need for the client polling. In Fig. 2.2
the difference between the JMS monitoring and regular time-interval polling for
an attribute can be seen. All four graphs show the output (distance measure) from
a proximity sensor. JMS monitoring shows its advantage over client polling both
when the variable changes its value frequently (top graph) and in the opposite case
when the variable value change occurs seldom (third graph). In the same situations,
the regular time-interval client polling either looses intermediate values (second
graph) or keeps polling the constant value (bottom graph), thus wasting resources.
Another important use of the JMS in the IE2 framework is for signaling alarms and
events to the users. IE2 has been tested with the Narada Brokering [23] and the
IBM’s proprietary implementation, Reliable Multicast Messaging (RMM) [28], but
it should work with any provider conforming to the JMS standard.

2 Instrument Element to Support a Remote Instrumentation Infrastructure 15

Fig. 2.2 Attribute value polling vs. the JMS monitoring

A centralized information system stores the end point addresses of the published
Instrument Elements together with some additional information like status and oper-
ative parameters regarding those IEs. Information is kept consistent using the BDII
[4] information system adopted by the LCG [18].

The new IE architecture makes the development of the generic plug-ins for con-
trol systems much simpler. We provide such a plug-in for TANGO [30], an object-
oriented distributed control system based on CORBA, born at ESRF [8] and being

16 M. Prica et al.

actively developed as a collaborative effort among four institutes: ESRF, SOLEIL
[29], ALBA [1], and ELETTRA.

4 Implementation Issues

4.1 Implementing an Instrument Manager

Instrument manager is the actual protocol adapter used to access remotely an instru-
ment. The first step in creating a new manager is writing the XML file that fully
describes the instrument. This XML file contains the list of possible instrument
states that together define the state machine, together with the details about the com-
mands, attributes, and parameters. Next, for each command, attribute, or parameter,
the developer must write the implementing class that extends the ones provided by
the framework. Most of the time it suffices to implement a single method for each
such class.

The instrument’s XML descriptor must conform to the document type definition
(DTD) file. Advanced IDE tools like Eclipse provide substantial aid in building and
validating the file against DTDs.

Setup of four attributes is required to configure an IM: name, implementation,
id, and the initialStatus. Implementation field contains the fully qualified name of
the main class of the IM. InitialStatus indicates the state in which the instrument
manager should be when first created. Note that the state of the instrument manager
is not the same as the state of the instrument itself. An instrument may be already
switched on and running while the IM is in the off state. (In such case, the meaning
of the IM’s off state might be disconnected from the instrument, while on state
would mean successfully connected to the instrument.) The IE internally identifies
each IM by a unique id. Such an id is also used to assign an IM to a context and
to represent the IM on the client side. Name attribute has similar function and is
used only internally in the IE, thus it is redundant and likely shall be removed in
the future. An example IM and its state machine configuration may be seen in XML
Descriptor 2.1.

Algorithm 2.1 IM and State Machine definition

<instrumentManager name="Thermostat"
implementation="it.trieste.elettra.uos.test.impl.

Thermostat"
id="InstrumentManagerID" initialStatus="off">

<stateMachine>
<status statusName="on"/>
<status statusName="off"/>
<status statusName="error"/>
<status statusName="any"/>

</stateMachine>
...
</instrumentManager>

2 Instrument Element to Support a Remote Instrumentation Infrastructure 17

The IM – implementing class must extend the framework’s InstrumentManager
class. It is the class that actually connects to the physical instrument. All other
classes that implement commands, attributes, and parameters use this one as the
common link.

4.2 Attributes

Attributes are instrument (sensor) variables. Attribute values are normally set through
commands, but since in some control systems (e.g., Tango) they may be set directly,
we allow for that option as well. The outcome of setting an attribute is identical to
running a command that alters that attribute value.

To configure an instrument attribute, the user must specify three mandatory
fields: name, description, and the enableInStatus. All remaining fields are optional.
The enableInStatus defines the state in which the attribute is active (and thus may
be monitored) and the unique attribute name. The name identifies the attribute in the
framework and in the user interface. Attribute’s description is intended as a help for
the final users. The optional implementation field contains the fully qualified name
of the implementing class. If omitted, the framework will attempt to construct the
implementing class name from the instrument manager implementation directory
and the attribute name. Another optional field is subscribable: if set to true each
variation of the attribute value registered by the IM will trigger a JMS message.
Lockable indicates whether the access to the attribute may be locked. Accessibility
field indicates the type of the attribute, read-only, write-only, or read and write.
Read-only attributes cannot be locked. The last optional field is the unit of measure-
ment. An example of attribute configuration may be seen in XML Descriptor 2.2.

Nested element policy defines how the instrument manager reads the attribute
value. Direct means that each read is triggered by the user request, while polling
periodically (time value in milliseconds) reads the value. Also, there is a possibility
for the IM developer to define a custom policy extending a framework class. Nested
element value defines the value type of the attribute. Handled types are string, short,
integer, long, float, double, calendar, vector, and enumeration.

The implementing class must extend the framework’s Attribute and implement
the getter and setter methods for the reading and writing of the attribute’s value on
the physical instrument (in most cases, the setter will be a no-operation method,
since physical instruments often do not allow for setting of the attributes).

XML Descriptor 2.2 Attribute definition

<attribute enableInStatus="on" name="CurrentTemp"
description="Read_the_temperature_value_from_the_sensor."
implementation="TempSensor" subscribable="TRUE" unit="Degree_C">

<doubleValue value="0.0" />
<policy>

<polling time="10000" />
</policy>

</attribute>

18 M. Prica et al.

4.3 Parameters

Parameters regard instrument settings only. Common practice is to set parameters
directly, but they may be set also through commands. The procedure required to
configure a parameter is almost identical to the one seen for the attributes. Configur-
ing a parameter is the same as configuring an attribute, except that the subscribable
and lockable fields are omitted. Also the required nested elements are the same
as for the attributes. An example of parameter configuration may be seen in XML
Descriptor 2.3.

The implementing class must extend the framework’s Parameter and implement
the getter and setter methods for the reading and writing of the parameter’s value on
the actual device.

XML Descriptor 2.3 Parameter definition

<parameter enableInStatus="off" name="StratingTemp"
description="The target temperature"
implementation="" unit="Degree C">

<doubleValue value="19.5" />
<policy>

<polling time="10000" />
</policy>

</parameter>

4.4 Commands

Commands include both the state transitions and the regular commands that do not
trigger a state change in the instrument. From the implementation point of view, the
two are just the same. As with attributes and parameters, the implementation of a
command should be written in a class that extends the one provided by the middle-
ware, while the configuration is performed in the instrument deployment descriptor.

There are four mandatory fields that must be specified when configuring a com-
mand. The first one is the command name. The remaining three deal with the instru-
ment state. The field initialStatus defines the state in which the command may be
triggered, finalStatus is the uniquely defined state that results from the command
execution. The errorStatus is the state to which the instrument moves in case an
error occurs during the execution. Optional fields are description, implementation,
and lockable. Nested elements to commands are command input parameters. Each
command may have an arbitrary number of commandParameters. Commands con-
figuration may be seen in XML Descriptor 2.4.

Command parameters also have a couple of required fields (name and descrip-
tion) and a couple of optional ones like the unit of measurement and a field that
states whether that parameter is a mandatory input to the command.

For the attributes, parameters or command parameters that are numeric or cal-
endar types, it is possible to define the range of admissible values (min, max) used

2 Instrument Element to Support a Remote Instrumentation Infrastructure 19

both by the IE2 and the VCR. An attempt of setting a variable to a value out of range
would cause an exception.

XML Descriptor 2.4 Commands definitions

<command finalStatus="on" name="TurnOn" errorStatus="error"
initialStatus="off" />

<command finalStatus="off" name="TurnOff" errorStatus="error"
initialStatus="on" />

<command finalStatus="on" name="ChangeTemperature" errorStatus="error"
initialStatus="error">

<commandParameter name="Temperature" description="" mandatory="TRUE"
unit="Degree C">

<doubleValue />
</commandParameter>

</command>

The Command class must implement the executeCommand method. Mostly,
what it does is a simple forward of the user’s call to the physical instruments API.

4.5 Deployment

Once the XML descriptor is completed and all the command, attribute and parameter
classes are implemented, everything should be packaged in a jar file that must have
the following manifest attribute: InstrumentManager: DescriptorFileName.xml. The
IE ignores jars lacking such attribute. Jars are then deployed to the proper location
in the Tomcat’s webapp folder. Sample Ant build file provided with the framework
greatly simply building, packaging, and deployment operations.

4.6 Front-End (VCR)

The VCR is currently the only available front-end to the IE2. Once registered in
the Virtual Organization’s BDII registry, Instrument Elements appear in the VCR’s
resource browser. A click on the IE link starts a https secure connection with the cho-
sen instrument element and expands the resource browser view of the IE’s tree-like
structure containing contexts and instrument managers. Selected managers appear
in the instrument control portlets, an example of which can be seen in Fig. 2.3.
The VCR also offers a user-friendly interface to the traditional grid resources of
the VO. A user can access data stored in the LFC file catalog and the storage ele-
ments or submit jobs to the workload management system by simply filling a form.
Security is handled transparently for the user. First time registration into the portal
requires the upload of the user’s certificate into a MyProxy [22] server. For the
successive logins into the portal, the user is asked for his user name and password
only, while the VOMS authorization will be performed automatically. Collective
use of the resources required by most applications can be programmed using the
scripting capability of the VCR or by integrating external workflow management

20 M. Prica et al.

Fig. 2.3 Instrument control portlet: Lego mindstorm robot control

systems. A set of tools provided by the VCR (e-logbook, chat, integrated third party
tools like Skype and EVO [9]) supports collaborative efforts.

5 Conclusions

A lesson we learned from GRIDCC is that the instrument element middleware
should offer simple, straightforward procedures to the application developers in
order to favor a wider adoption of the grid technologies. Otherwise, the risk is that
the sheer complexity of the deployment process might mask the true benefits that
this technology offers and discourage its widespread use. With the IE2 framework,
we tried to make the developer’s task much simpler than before.

Although the IE2 is yet to undergo extensive testing in the DORII pilot applica-
tions, we can already state that the IE2 provides a flexible solution for connecting
a variety of devices to the grid. In particular, IE2 is suitable to control and monitor

2 Instrument Element to Support a Remote Instrumentation Infrastructure 21

both large and complex facilities such as ELETTRA accelerator, as well as simple
sensors or even remotely controlled robots like the Lego Mindstorm [19].

An advanced GUI like the VCR makes a perfect front-end to the IE2 and together
the two tools offer the scientific community an excellent entry point into the grid
world.

References

1. ALBA – The Light Source for Spain. http://www.cells.es/
2. Apache Axis. http://ws.apache.org/axis/
3. Apache Tomcat. http://tomcat.apache.org/
4. BDII – Berkeley Database Information Index. https://twiki.cern.ch/twiki//

bin/view/EGEE/BDII
5. CMS – The Compact Muon Solenoid experiment. http://cms.cern.ch/
6. DORII – Deployment of Remote Instrumentation Infrastructures. http://www.dorii.

eu/
7. ELETTRA Sincrotrone Trieste. http://www.elettra.trieste.it/
8. ESRF – European Synchrotron Radiation Facility. http://www.esrf.eu/
9. EVO – The Collaboration Network. http://evo.caltech.edu/

10. E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato, and
S. Traldi. Instrument element: A new grid component that enables the control of remote instru-
mentation. In International Conference on Cluster Computing and Grid (CCGrid), Singapore,
May 2006.

11. g-Eclipse Integrated Workbench Framework to Access the Power of Existing Grid Infrastruc-
tures. http://www.geclipse.eu/

12. GLite: Lightweight Middleware for Grid Computing. http://glite.web.cern.ch/
glite/

13. GRIDCC – Grid Enabled Remote Instrumentation with Distributed Control and Computation.
http://www.gridcc.org/

14. INFN Grid – The Italian Grid Infrastructure. http://grid.infn.it/
15. Instrument Element VIGS WSDL. http://gladgw.lnl.infn.it:2002/rcms/

services/IEService?wsdl
16. int.eu.grid – Interactive European Grid Project. http://www.interactive-grid.

eu/
17. JMS – Java Message Service. http://java.sun.com/products/jms/
18. LCG – LHC Computing Grid Project. http://lcg.web.cern.ch/LCG/
19. LEGO MINDSTORMS NXT. http://mindstorms.lego.com/
20. F. Lelli, E. Frizziero, M. Gulmini, G. Maron, S. Orlando, A. Petrucci, and S. Squizzato. The

many faces of the integration of instruments and the grid. International Journal of Web and
Grid Services, 3(3):239–266, 2007.

21. F. Lelli and G. Maron. Integrating instruments into the grid. Electronic Journal, November
2006. GRID Today, Supercomputing ’06 Special Coverage, http://www.gridtoday.
com/grid/1086062.html

22. MyProxy, a Globus Project that Develops Software for Managing X.509 Credentials.
http://dev.globus.org/wiki/MyProxy

23. Narada Brokering Project. http://www.naradabrokering.org/
24. OGC – The Open Geospatial Consortium. http://www.opengeospatial.org/
25. M. Prica, R. Pugliese, C. Scafuri, L. Del Cano, F. Asnicar, and A. Curri. Remote operations of

an accelerator using the grid. In F. Davoli, N. Meyer, R. Pugliese, and S. Zappatore, editors,
Grid Enabled Remote Instrumentation, Signals and Communication Technology, pp. 527–536.

http://www.cells.es/
http://ws.apache.org/axis/
http://tomcat.apache.org/
https://twiki.cern.ch/twiki//bin/view/EGEE/BDII
https://twiki.cern.ch/twiki//bin/view/EGEE/BDII
http://cms.cern.ch/
http://www.dorii.eu/
http://www.dorii.eu/
http://www.elettra.trieste.it/
http://www.esrf.eu/
http://evo.caltech.edu/
http://www.geclipse.eu/
http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://www.gridcc.org/
http://grid.infn.it/
http://gladgw.lnl.infn.it:2002/rcms/services/IEService?wsdl
http://gladgw.lnl.infn.it:2002/rcms/services/IEService?wsdl
http://www.interactive-
grid.eu/
grid.eu/
http://java.sun.com/products/jms/
http://lcg.web.cern.ch/LCG/
http://mindstorms.lego.com/
http://www.gridtoday.com/grid/1086062.html
http://www.gridtoday.com/grid/1086062.html
http://dev.globus.org/wiki/MyProxy
http://www.naradabrokering.org/
http://www.opengeospatial.org/

22 M. Prica et al.

Springer US, 2008. ISSN 1860-4862, ISBN 978-0-387-09662-9 (Print) 978-0-387-09663-6
(Online).

26. R. Ranon, L. De Marco, A. Senerchia, S. Gabrielli, L. Chittaro, R. Pugliese, L. Del Cano,
F. Asnicar, and M. Prica. A web-based tool for collaborative access to scientific instruments
in cyberinfrastructures. In F. Davoli, N. Meyer, R. Pugliese, and S. Zappatore, editors, Grid
Enabled Remote Instrumentation, Signals and Communication Technology, pp. 237–251.
Springer US, 2008. ISSN 1860-4862, ISBN 978-0-387-09662-9 (Print) 978-0-387-09663-6
(Online).

27. RINGrid – Remote Instrumentation in Next-Generation Grids. http://www.ringrid.
eu/

28. RMM – Reliable Multicast Messaging by IBM Research. http://www.haifa.ibm.
com/projects/software/rmsdk/index.html

29. Synchrotron SOLEIL. http://www.synchrotron-soleil.fr/
30. Tango Control System. http://www.tango-controls.org/

http://www.ringrid.eu/
http://www.ringrid.eu/
http://www.haifa.ibm.com/projects/software/rmsdk/index.html
http://www.haifa.ibm.com/projects/software/rmsdk/index.html
http://www.synchrotron-soleil.fr/
http://www.tango-controls.org/

http://www.springer.com/978-1-4419-5595-1

	2 Adapting the Instrument Element to Support a Remote Instrumentation Infrastructure
	M. Prica, R. Pugliese, A. Del Linz, and A. Curri
	1 Introduction
	2 Related Work
	2.1 Motivations for the New Implementation

	3 Design Approach
	4 Implementation Issues
	4.1 Implementing an Instrument Manager
	4.2 Attributes
	4.3 Parameters
	4.4 Commands
	4.5 Deployment
	4.6 Front-End (VCR)

	5 Conclusions
	References

