Chapter 2
Information Trajectory of Optimal Learning

Roman V. Belavkin

Summary The paper outlines some basic principles of geometric and nonasymp-
totic theory of learning systems. An evolution of such a system is represented by
points on a statistical manifold, and a topology related to information dynamics is
introduced to define trajectories continuous in information. It is shown that opti-
mization of learning with respect to a given utility function leads to an evolution
described by a continuous trajectory. Path integrals along the trajectory define the
optimal utility and information bounds. Closed form expressions are derived for two
important types of utility functions. The presented approach is a generalization of
the use of Orlicz spaces in information geometry, and it gives a new, geometric in-
terpretation of the classical information value theory and statistical mechanics. In
addition, theoretical predictions are evaluated experimentally by comparing perfor-
mance of agents learning in a nonstationary stochastic environment.

2.1 Introduction

The ability to learn and adapt the behavior with respect to changes in the environ-
ment is arguably one of the most important characteristics of intelligent systems.
The study of learning algorithms has become an active area of research in artifi-
cial intelligence closely related to different areas of mathematics, cognitive science,
psychology and neurobiology. The optimization and information theories are of par-
ticular importance. This paper presents a geometric approach to the evolution of a
learning system that is inspired by information geometry [1, 7], and it is closely
related to the information value theory of Stratonovich [23].

Learning can be considered as a process of incorporating new information to
improve the performance of a system. Thus, learning by this definition assumes
incomplete information. On the other hand, optimization is the main motivation for
learning. This duality principle of the utility and information in learning systems is
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fundamental for the theory presented [4]. We now briefly outline the main principles
of the classical methods and their limitations.

Without uncertainty, optimization problems are the problems of finding the ex-
trema (minimum or maximum) of some functions, which are called utilities, costs
or fitness functions depending on the particular convention. These functions repre-
sent someone’s preference relation on the underlying choice set, which can be the
set of lottery prizes, errors of an estimation algorithm, space-time evolutions of a
dynamical system and so on. The utility function may incorporate multiple con-
straints and objectives in a single Lagrange function, the extreme values of which
are used to find solutions to optimization problems in variational analysis and the
theory of optimal control. In particular, the maximum principle [15] defines the nec-
essary conditions of optimality in canonical form of the Euler system of differential
equations. This approach to optimal control is often referred to as the trajectory ap-
proach. An alternative is the dynamic programming approach [6] that is solved by
partial differential equations (i.e., the Hamilton—Jacobi—Bellman equation), and it is
often referred to as the wavefront approach.

Under uncertainty, the problem is usually formulated using methods of probabil-
ity theory. The elements of a choice set are drawn stochastically as the outcomes of
some lottery that is represented by a probability measure over the choice set. The
idea is then to ‘play’ a lottery that maximizes the utility (or minimizes the risk) on
average. Maximization of conditional expected utility is used in Bayesian approach
to stochastic optimal control and estimation [25, 26], and sequential stochastic opti-
mization is usually solved via dynamic programming [6]. A significant development
in this area was the theory of conditional Markov processes [22] that allows one to
reduce the number of variables for additive utility functions and represent the space-
time evolution of the system by stochastic differential equations [21].

These methods of optimal control have been also used in the design of intelligent
and adaptive systems [11, 24]. One of the main challenges, however, is that these
systems operate with incomplete information, and thus optimality of the described
above methods (which assume a given model of the system) is no longer guaranteed.
However, often one can consider asymptotic optimality under certain assumptions.
Some of these assumptions are:

1. The limits of empirical distributions exist.
2. Data is obtained from independent and identically distributed samples.
3. The ‘true’ distributions are stationary.

The first assumption allows one to pick some priors and then update them using
empirical frequencies [16]. If these frequencies converge to the ‘true’ distributions,
then asymptotically the system becomes optimal. The first assumption, however,
depends on the second (the weak law of large numbers). Its last part (identically
distributed) is equivalent to the third assumption. It is now becoming increasingly
apparent that these basic assumptions may be violated in learning systems.

Indeed, the last assumption may not be valid if the agents’ interaction with the en-
vironment changes the underlying distributions (i.e., there is a dependency between
the agents and their environment). Dropping the stationary assumption, however, is
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not a problem because the Bernoulli theorem is then replaced by the Poisson the-
orem, where the limit of empirical frequencies is the average of the distributions.
Much more important, however, is the assumption of independent trials. Note that
this does not mean that the evolution of the system is a sequence of independent
events. This can be a Markov or even the conditional Markov process. However, if
the Markov transitional probabilities are not known, then the samples updating the
empirical transitional frequencies are assumed to be independent.

To see that this assumption can be violated in a learning system, one has to con-
sider the exchangeability concept, introduced by Bruno de Finetti [8]. Exchange-
able sequences are such that their joint distributions are invariant under permutation
of the sequence order. For finite sequences, there are more exchangeable distribu-
tions than independent, and they coincide only when sequences are infinite (the de
Finetti’s theorem). Thus, if the sequence is not exchangeable, then it is also not inde-
pendent. Now, learning is a process when new information, obtained from samples,
is used to adapt the system in order to improve the performance. This means that
the order, in which data is sampled and used, may be important, and therefore learn-
ing sequences are generally not exchangeable and are not independent. Without this
condition, the first assumption is too strong, and therefore the limit may not exist
in the traditional sense (i.e., as convergence in the laws of large numbers). As an
illustration of this argument, consider a cat learning the distribution of mice. What
is the limit of this distribution, if the mice also learn the distribution of the cat?

The problem of incomplete prior information should not be confused with the
complexity issues arising in many optimization problems, such as the ‘curse of di-
mensionality’ in sequential optimization. Given unlimited computational power, one
theoretically could use the dynamic programming approach to optimize decisions
even over infinite sequences, and some researchers suggested that it could resolve
problems of incomplete information, such as the exploration-exploitation dilemma
[24]. This idea, however, contradicts the statistical nature of information, because
new information can only be obtained through measurements, and it can only be
lost in transmission (such as computation). The dynamic programming method is
a technique for optimization of utility over sequences, but it does not address the
problem of incomplete prior information.

Problems of optimization with information constraints have been considered in
information theory [12, 13, 18, 19] leading to optimal solutions in the form of ex-
ponential family of distributions. The dual problem of entropy maximization with
linear constraints was considered in statistical mechanics [9, 10]. The information
value theory was developed as an application of these results to cybernetics and sta-
tistical decisions [23]. It was shown also that the results of this theory hold for a
wide class of the entropically and informationally stable systems. In particular, this
class includes sequences of nonstationary, nonindependent random variables. These
results, therefore, can be applied to a more general class of learning systems than
those considered by the traditional methods.

This paper presents geometric approach to the analysis of learning systems, and
describes also a simple experiment as an illustration. The theory defines nonasymp-
totic optimality conditions relative to available information, and defines the evolu-
tion of an optimal learning by a trajectory on the statistical manifold. The analysis
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has similarities with the use of Orlicz spaces and exponential statistical manifolds in
non-parametric information geometry to describe systems of bounded entropy [14].
Here, however, the theory is developed for more general class of convex functionals
representing information. The corresponding spaces are quasi-pseudo-metric gen-
eralizing normed spaces. The approach leads to a nonasymptotic and nonparamet-
ric theory for optimization of the evolution of a learning system by empirical con-
straints. Some examples are closely related to information theory and statistical me-
chanics. The optimal trajectory also defines the utility and information bounds of
a learning system, which are given by the analogue of a gradient theorem for path
integrals in conservative vector fields.

2.2 Topology and Geometry of Learning Systems

In this section, we recall some elements of the theory of optimal choice under uncer-
tainty [25] and information value theory [23] that are relevant to our representation
of the learning systems. Then we define a topology on a functional space related to
information dynamics in such systems.

2.2.1 Problem Statement and Basic Concepts

Fundamental concept in the theory of rational choice is the preference relation on
a set 2, which is a complete and transitive binary relation < C £2 x £2 (i.e., total
pre-order). Subset of symmetric pairs ~C < is the equivalence relation, and the
set of antisymmetric pairs < C < is a partial order on £2. The quotient set 2/~
is totally ordered. We assume that §2/~ can be embedded into the extended real
line R = R U {£00}. In this case, the preference relation can be represented by a
utility function u : 2 — R (i.e., w; < s iff u(wy) < u(ws)). The rational choice
(optimization) corresponds to maximization of the utility.

Under uncertainty, one considers probability measures y : R — R on a o -algebra
R(£2) C 2%, Probability measures can be interpreted as lotteries over the choice set
(82, <). For example, the Dirac §-measures (8, (dw) = 1 if w € dw; 0 otherwise)
correspond to the elements @ € §2 observed with certainty. Other probability mea-
sures are unique convex combinations of the §-measures, and therefore the set P (£2)
of all probability measures on $R(£2) is a simplex in some linear space L—a con-
vex hull of the set A of all §-measures on §2 (P(£2) is a Choquet simplex if §2 is
infinite).

The set of all probability measures, P(£2), will be referred to as statistical man-
ifold, as in information geometry, and it is the set of all lotteries. The choice prob-
lem under uncertainty requires an extension of the preference relation (£2, <) onto
P(£2). This extension should be compatible with (§2, <) in the following sense
(A, S) = (82, 5). One such extension is given by the expected utility: E,{u} =
f_Q u(w) dy(w). Thus, measure p is preferred to ¢ if and only if E,{u} > E,{u}.
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Furthermore, a fundamental result of game theory states that expected utility is the
only representation that also satisfies two additional axioms: continuity and substi-
tution independence [25].

The main difference problems of optimization under uncertainty, described
above, and the learning problems is that the latter are concerned with incomplete
information. In particular, this means that the probability measures on the choice
set are not known exactly, or in other words that the learner does not know pre-
cisely which lotteries he plays. For an agent with limited resources, this presents
a dilemma of collecting more information (exploration) or using already available
information for optimal control (exploitation).

The traditional approach to solving this dilemma is to treat it as a statistical prob-
lem of estimating unknown parameters 6 € R” of some known family of distribu-
tions y(dw | 0). Points 0 of the parameter space R” define points on the statistical
manifold, and the corresponding relations and metrics are the subject of information
geometry [1, 7]. The approach taken in this work is similar to infinite-dimensional
nonparametric information geometry [14], where probability measures are studied
directly in the corresponding functional space. This allows for considering all fam-
ilies of measures and to derive nonasymptotic optimality conditions using the con-
jugate duality theory [17]. The topologies will be defined using quasi-norms and
quasi-metrics related to information constraints, which is more appropriate for de-
scribing learning systems, and it is a generalization of the standard approach using
normed spaces (i.e., Orlicz spaces in [14]).

Observe that optimization under uncertainty is concerned with at least two types
of real functions on the choice set (§2, <)—utilities and probability measures.
Moreover, for a fixed utility function, the expected utility is a linear functional on
measures; for a fixed measure, the expected utility is a linear functional on util-
ity functions. Thus, measures and utility functions can be represented by elements
of dual linear spaces L and L*, where the expected utility implements the pairing
(n):L*x L —>R:

(x,y) = /Q (@) dy(@) @1

Note that because we only deal with preference relations that have a utility rep-
resentation, set §£2/~ is a separable, complete, metrizable space, and therefore we
only need to consider Radon measures. Such measures are finite on compact sub-
sets £2. C £2, and they are in one-to-one correspondence with linear functionals
y(f) = (f,y) on the space C.(£2) of continuous functions with compact support.
Thus, we associate measures with nonnegative elements of space L = C}(£2), dual
of C.(£2). Utility functions are the elements of its second dual L* = C}*(£2).

The theory presented is also largely inspired by information value theory [23].
Consider two points on the statistical manifold, yy (prior) and y (posterior), associ-
ated with an observation of some random event. The associated change (x, y — yo)
of the expected utility represents the value of this event, and it is different for agents
with different utility functions x € L*. On the other hand, information is usually
represented by some functional F : L — R as a divergence of y from fixed point
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yo on the statistical manifold, and it does not take the utility into account. Thus,
different y € L with the same divergence F(y) = I may have different values for
the agent. The value of information amount I € R is defined as the maximum of the
expected utility subject to information constraint F'(y) < I:

Ul :=sup{(x,y): F(y) <1} (2.2)

Note that the original definition in [23] is more specific using Shannon information
for F(y). Clearly, an optimization of information dynamics in a learning system
should be closely related to information value—the optimal system should adapt
to learn only the most valuable information. We now define a topology related to
information value to facilitate the analysis of such systems.

2.2.2 Asymmetric Topologies and Gauge Functions

Let L and L* be a dual pair of linear spaces over the field R with bilinear form
(-,+) : L* x L — R separating L and L*: (x, y) =0, Vx € L* implies y =0 € L, and
(x,y)=0,Vy e L implies x =0 € L*. We shall define topologies on L and L* that
are compatible with respect to the pairing (-, -), but subbases of these topologies will
be formed by systems of neighborhoods of zero that are generally nonbalanced sets
(i.e., y € M does not imply —y € M). Thus, the spaces may fail to be topological
vector spaces. The gauge functions will define quasi-norms and quasi-metrics (i.e.,
nonsymmetric generalizations of a norm and a metric). The main motivation for this
asymmetry is to avoid nonmonotonic operations on functions, such as x — |x]|.

First, we recall some properties that depend only on the pairing (-, -), and not
on particular topologies chosen. Nonzero x € L* are in one-to-one correspondence
with hyperplanes H :={y e L : (x,y) =«a} C L,0¢ H, and inequality (x, y) <«
defines a closed half-space. The intersection of all closed half-spaces containing set
M C L is a convex closure of M denoted by co M. Set M is a closed convex set if
M = co M. The polar of M is

M*:={xeL*:(x,y) <1, ye M}

The polar set is always closed, convex and 0 € M*. Also, M** = co[M U {0}], and
M = M** if and only if M is closed, convex and 0 € M. Without loss of generality,
we shall assume 0 € M.

Set M is called absorbing if for each y # 0 € L there exists § > 0 such that
y € BM; set N is called bounded if N C BM for all § > & and some ¢ > 0. Set
M is absorbing if and only M* is bounded (to see this, observe that y # 0 are in
one-to-one correspondence with closed half-spaces in L*).

Given a closed convex set M C L absorbing with respect to 0 € M, the collection
of sets M := {BM : > 0} is the subbasis of closed neighborhoods of zero uniquely
defining a topology on L. If in addition M is bounded, then the polar M* 5 0 is also
absorbing, and the collection 90t* := {~!M* : B! > 0} is the subbasis of the polar
topology on L*.



2 Information Trajectory of Optimal Learning 35
Given set M C L, the gauge function pys : L — R is defined as
pu(y):=inf{f >0:yepM}, py0):=0

If M is absorbing with respect to 0 € M, then py(y) < ocoforall y € L, and if M is
bounded, then pjy;(y) = 0 only if y = 0. The gauge is positively homogeneous func-
tion of the first degree, py (Ay) = Apy(y), A > 0, and if M is convex, then it is also
subadditive, pys (y1+y2) < pm(y1)+ pam(y2). Thus, the gauge of an absorbing con-
vex set satisfies all axioms of a semi-norm apart from symmetry, py (y) # pm(—y),
and therefore it is a quasi-pseudonorm. Function dyps(y1, y2) = py(y1 — y2) is a
quasi-pseudometric on L. If M is also bounded, then py, is a quasi-norm, and dyy
is a quasi-metric (i.e., dy (y1, y2) # dpy (72, y1))-

Gauge functions are closely related to support functions. The support of set M is
function A : L* — R defined as

hy(x) = sup{(x, y):y€ M}

Generally, /37 (x) = py=(x), and if M is convex, then Ay« (y) = pp(y) (otherwise,
hy+(y) < pm(y)).

2.2.3 Trajectories Continuous in Information

Observe now that the value of information, defined by (2.2), is equal to support /s
of subset M = {y € L : F(y) < I} of the statistical manifold, defined by information
constraint. It is common to represent information by a closed, convex functional, and
therefore M is closed and convex. For the theory of convex functions, see [17, 20].
Here, we recall some basic concepts.

Convex functional F : L — R is called proper if its effective domain dom F :=
{y: F(y) < oo} is nonempty and F(y) > —oo. Proper convex functional is closed
if sublevel sets {y : F(y) < A} are closed for each A € R. The dual functional F* :
X — R is the Legendre-Fenchel transform of F:

F*(x) := sup{(x, ) — F(»)}

It is always closed and convex. Closed convex functionals are continuous on the
(algebraic) interior of dom F', and they have the property

X€IF(y) << OIF*(x)>y

where set 0 F (yg) :={x € L*: {x, y — yo) < F(y) — F(yo), Vy € L} is called subd-
ifferential, and its elements are called subgradients (a generalization of the Gateaux
differential and gradient). In particular, 0 € d F(yg) implies F(yg) < F(y) for all
y €L (ie.,inf F = F(yp)). If F(y) is strictly convex at y (or F* is G-differentiable
at x € L*), then dF*(x) = {y} for all x € dF(y). Consequently, if dual convex
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functionals are both strictly convex (or G-differentiable), then d F : L — L* is a bi-
jection. Below are examples of such dual convex functionals that are used often in

information theory.

Example 1 (Relative information) Given positive yo € L, let F': L — R be:

F(y) = / in 22 dy(w) - / d[y(@) - yo(@)]
2 Yolw) Q

if y is positive, F'(0) := fg dyp(w), and F(y) := oo for negative y. This functional

is closed, strictly convex, and its G-derivative is Fé; (y) =In v% on the interior of

dom F. Note that F(y) > 0 for all y, because F/;(yo) = 0 and inf F = F(yo) = 0.
When y and yg are both probability measures, then relative information is equivalent
to the Kullback-Leibler divergence [13]. Relative information can be used also to
represent negative entropy or Shannon mutual information.

Example 2 The dual of relative information is the following functional
F*(x) = / " dyo ()
2

Indeed, F/,(y) =1n y}_o = x, and therefore y = yge* = F{(x), which is the gradient
of the above functional. It is also closed, strictly convex and positive for all x € L*.
Normalization of functions y = yg e* (@ corresponds to transformation F*(x) >
In F*(x).

If inf F = F(0), then the gauge and the support functions of set {y : F(y) < I}
can be computed as:

pr(y) =inf{f>0:F(p~"'y) <1} 23)
hr(x) = sup{(x,y): F(y) <1} (2.4)

The support function above is the gauge of the polar set, which can also be computed
as pp+(x) =inf{B~1 > 0: F*(Bx) < I*}.

Thus, information functional F : L — R can be used to define a topology on the
statistical manifold as the collection of all elements y € L, for which set M ={y :
F(y) < I} is absorbing (and therefore pr(y) < 00). The topology on the dual space
(the space of utility functions) is the collection of x € L* for which the polar set is
absorbing (and therefore 2 f(x) < 00). We shall denote these topological spaces by
Lrand L.

A topology related to information I € R is useful for the analysis of learning
systems and their dynamics. In particular, an evolution that is continuous in infor-
mation is represented by a function y = f (/) that maps closed sets (—oo, I] C R
into closed sets M = {y : F(y) < I} on the statistical manifold. Note that such an
evolution is also order-preserving (monotonic) between (R, <) and pre-order < on
LF, defined by the gauge pr. We shall refer to such an evolution of a learning
system as a continuous information trajectory.
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2.3 Optimal Evolution and Bounds

An evolution of a learning system, even if described by a continuous trajectory, may
not be optimal. As mentioned earlier, an optimal evolution is the totality of points
y € L maximizing information value or the expected utility (x, y) subject to infor-
mation constraints. Thus, y must satisfy the extrema of (2.2) (or the support func-
tion (2.4)) for a given utility. Optimal solutions are found by the standard method of
Lagrange multipliers, which we present below for completeness of exposition.

Theorem 1 (Necessary and sufficient optimality conditions) The least upper bound
U(I) =sup{(x,y): F(y) <1 < oo} is achieved at y if and only if the following
conditions are satisfied

JedF*(Bx), FG)=1, pledu), p'>0

Proof The Lagrange functionis K (y, 87!, 1) = (x, y)+ B8~ [I — F(y)], where !
is the Lagrange multiplier corresponding to F(y) < I. Zero in the subdifferential of
K(y, B -y ) gives the necessary conditions of extrema:

WKy, B I)=x—p1OF(3)50, = BxeIF(Q)
91 K(3. 87 1)=1-F(3)30, = F@G =I

Noting that K (y, 81, 1) = U(I), gives 9; K (y, B~', [) =oU ) > B~.
Sufficient conditions are obtained by considering convexity. Because F is con-
vex and (x, -) is linear, the Lagrange function is concave for ﬂ_l > (0 and convex
for B! < 0. Therefore, y € 3 F*(Bx) with B~ > 0 defines the least upper bound
of U(I). O

Corollary 1 The optimal trajectory y = y(I) is continuous in information.

Proof The optimality condition F(y) = I implies that y € {y : F(y) < I} for any
I € R, and therefore y = y(/) cannot map any closed set (0o, I] C R outside closed
set{y:F(y)<I}inLp. O

Example 3 When F is the relative information from Example 1, the optimal solu-
tions are in the exponential form

y(w) = yo(w) exp{Bx(®) — ¥ (B)}

where ¥ (8) =In f o eP* dyo(w) from the normalizing condition. If yg = const, then
optimal function y is the canonical Gibbs distribution. When the utility function
is x = —|s|2 (i.e., negative squared deviation), then y is Gaussian with variance

o2=02B) 'and ¥ P = /7B~ =0/ 2m.
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The totality of optimal points y can be considered as one parameter family
of distributions, where parameter 8 € R is the gauge of y with respect to set
{y: F(y) <1}, and it can be determined from the information constraint I € R
(F(y) <I). Note, however, that § can also be determined from the expected utility
U = (x, y). Indeed, consider function I (U) :=inf{F(y) : Uy < U < (x, y)}, where
Up = (x, yo). Clearly, I (U) is the inverse of information value U (I). The Lagrange
function for 71 (U) is K(y, 8, U) = F(y) + B[U — (x, y)], and the solutions are de-
fined by

yeoF*(Bx), (x,y)=U, BedlU), B=0

Thus, the optimal information trajectory can be parametrized by the information or
by the expected utility constraints through the inverse of mappings 8 +— F(y(8)) =
I and B +— (x, ¥(B)) = U. These mappings can be conveniently expressed by the
generalized characteristic potentials:

o(p7"):=inf{p~'1 -~ UMD} w(B):=sup{BU — 1(U)}.

The potentials are real functions, and the extrema in their definitions are given
by conditions 8~' € U (1) and B € 31 (U). One can show also that @(8~!) =
—B~ 1w (B). The parametrization is based on the following theorem.

Theorem 2 (Parametrization) Parameter 8 € R defining solutions y to problems
U=sup{(x,y): F(y) <I} and I =inf{F(y) : U < (x, y)} is related to the con-
straints I € R or U € R by the following relations

Iedo(), Uedw(p)
TeBav(B) —¥(h), Ueploo(p ) -o(p)
Proof Consider the Legendre—Fenchel transforms of & and ¥:
U =inf{p'1—@ (™)},  1(U)=sup{pU - ¥(p)}

The extrema are satisfied when I € 9®(8~") and U € 3¥ (B), which is the first
pair of relations. Substituting them into the Legendre—Fenchel transforms gives the
second pair. g

Subdifferentials in Theorem 2 are replaced by derivatives <D’(,3_1) and ¥'(B) if
¥ and @ are differentiable. This is the case when F(y) is strictly convex.

Example 4 When solutions y are in the exponential from (Example 3), one obtains
U= (x,y)=[xeP*¥®B gy, and condition U = ¥'(B) gives

w(8)=In / A5 dyo()
2

The above is the cumulant generating function of measure y. Potential @ (8~!) =
— B~ W (B) in this case is the free energy.
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Fig. 2.1 Parametric T T
dependencies of / = F(y) on \ i
U = (x, y) in Examples 5 ! !
and 6 \ ;

\ Binary set — /
\ Uncountable set —-- /

P =1

Information amount is often represented by negative entropy, which corresponds
to relative information F' minimized at some uniform measure yp = 1/|£2| (if £2 is
finite) or a Lebesgue measure dyy = dw/ f do (if §2 is compact). Potential ¥ (8) in
these cases is

2

w(B)=InY M@ —In|2| or W(ﬁ)=1n/9eﬂx(w>dw—1nf dw
2

The following examples give expressions for U (8) in two important cases.

Example 5 (Binary utility) Let 2 = {w1, w2}, and x : 2 — {c — d, c + d}. Then
using ef (=4 4 P (c+d) = 20P¢ cosh(B d), we obtain

Ww(B)=pc+Incosh(Bd),  U(B)=c+dtanh(Bd)

Example 6 (Uncountable utility) Let £2 be compact, x : 2 — [c —d,c+d] CR
such that dx/dw = 1. Then [, ef*@ dw = [T P dx = 28~ 1ePC sinh(B ),
[odo= [ dx =2d, and we obtain

¥ (B) = B+ In|sinh(Bd)| — In|Bd|, U(B)=c+dcoth(Bd) — B!

Functions U = ¥/(8) and I = BW¥'(B) — W (B) define parametric dependency
between U and [ in a system evolving along the optimal information trajectory
y = y(¢), and it defines the following bounds on learning systems: U (/) is the max-
imum expected utility for a given information amount; 7 (U) is the least information
amount required to achieve a given expected utility. Figure 2.1 shows I (U) for func-
tions in Examples 5 and 6 withc=0and d = 1.

Continuity in information, introduced earlier, allows us to consider path inte-
grals of expected utility and information along a continuous trajectory. The upper
and lower bounds on these quantities can be expressed in the following convenient
form [5]. Here, we assume that ¥ and @ are differentiable.
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Theorem 3 (Optimal bounds) Lety = y(¢), t € [t1, t2] be a continuous information
trajectory of a learning system such that information F(y) = I(t) and expected
utility (x, y) = U (¢t) are increasing functions. Then

Y2
f (x, y)dy =¥ (B2) —¥(B1)

Y1

y2
/ Foyydy=o(87") - 2 (85")
y

1

where y1 = y(t1), y2 = y(t2), and By, B2 are determined from I (t1), I (t2) or U(ty),
U (1) using functions B~' = (@)~ (I) or B = (&)1 (U), respectively.

Proof The first path integral is bounded above by a path integral along the optimal
information trajectory y = y(¢). Similarly, the second integral is bounded below.
These path integrals exist, because the optimal trajectory is continuous in topol-
ogy LF (Corollary 1). The expected utility, (x, y) = U, in the optimal system is
given by U = ¥'(B), where =1 = (&)1 (I) (Theorem 2). Similarly, the infor-
mation amount, F(¥) = I, in the optimal system is given is [ = @’(B ’1), where
B = W) ' (U). Because I = I(¢) and U = U(t) are monotonic, the integrals
do not change if the trajectory is parametrized by B € [Bi, B2]. Thus, path inte-
grals along the optimal trajectory are equal to Riemann integrals | £ >dw(B) and

—1
f[f,' . d®(B~"). The final expressions are obtained by applying the Newton—Leibniz
2

formula. O

2.4 Empirical Evaluation on Learning Agents

The optimal learning trajectory is not an algorithm for optimal learning. It, however,
describes the equivalence class of evolutions of learning systems that is optimal
with respect to a utility function x and some measure of information F. Subdiffer-
ential 0 F*(x) of its dual defines the family of optimal distributions, which depends
also on the prior corresponding to the minimum of information. The points on the
optimal trajectory are then computed using the amount of empirical information
I € R or empirical expected utility U € R. Moreover, because / or U are local
constraints, the optimality is not asymptotic. Thus, an algorithm for nonasymptotic
optimal learning in the described above sense should be such that the evolution of
the system were as close as possible to the optimal information trajectory.

Here, we evaluate this idea in an experiment using an architecture for compar-
ing different action-selection strategies in agents, described in [3]. The architecture
consists of an agent placed in a virtual environment, and the main goal of the agent
is to find and collect as many rewards as possible. The rewards appear in the en-
vironment stochastically according to some probability law that is unknown to the
agent. The probabilities of rewards depend on some predefined initial pattern of the
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environment and also on the previous actions of the agent (recall the cat and mice
problem). Thus, the probability law defining the rewards is nonstationary.

The experiments, reported here, compare the performance of three agents in
an environment with five states ) = {y1, ..., y5} and rewards with a binary util-
ity x(y) € {0, 1}. The results are reported for rewards distributed according to two
initial patterns {p, 0, p, 0, p} and {p, 0,0, 0, p}, where p € [0, 1] is the probability
P(x =1]y;,x =0) of a reward appearing at state y; € J with no current reward.
Thus, p defines the average reward frequency in a state. The agent has three actions
Z ={z1, 22, z3}—moving left, right or do nothing.

The agent selected actions based on estimates x(y, z) of receiving a reward by
taking action z € Z in state y € Y (i.e., z(y) = arg max; x(y, z)). These estimates
were computed using empirical probability P, (x | y, z) based on joint empirical dis-
tribution P, (x, y, z) stored in the agent’s memory. Using different methods to com-
pute X(y, z) may result in the agent selecting different actions in the same states
leading to differences in performance and empirical distributions P, (x, y, z). The
empirical distribution P,(x, y, z) of an optimal system should evolve along the op-
timal learning trajectory.

Three agents were compared using the following estimation methods:

i(y,2) = Efx|y,z) (2.5)
¥y, 0 =Efx |y, 2} +& £eN(0,0%), o*=Var{x|y,z}  (2.6)

X

¥(y,2)=F'(&), &eRand(0,1), Fm:f dP(t|y,z) (2.7)

—0o0

The first agent, referred to as ‘max E{u}’ (max expected utility), estimates the utili-
ties by their empirical expectations. This strategy is known to be suboptimal in some
problems, and is often referred to as a greedy strategy. Note that max E{u} corre-
sponds to optimization without information constraints. Indeed, the maximum of
information gives $~! = 0 in Theorem 1, and the Lagrange function reduces to the
expected utility. Thus, the greedy strategy ‘overestimates’ the amount of empirical
information.

The second agent, referred to as ‘Noisy E{u}’, uses stochastic strategy, where
the conditional expectation is randomized by &, sampled from zero-mean normal
distribution with empirical variance. Thus, this method does not use statistics of
order higher than two. Generally, this corresponds to using less information than the
empirical distribution contains.

The third agent, referred to as ‘Rand ML(u)’ (for ‘random maximum likeli-
hood”), uses stochastic estimates sampled from probability measure P(x | y, z) that
is optimal with respect to empirical information constraints. Sampling is performed
using the inverse distribution function method. Note that P can be also parametrized
by the empirical expected utility U € R, and for binary utility function x € {0, 1}
there is only one distribution such that E{x} = U. Thus, for binary utility P = P,,
and x(y, z) are sampled directly from P,(x | y, z).

The results are reported on Figs. 2.2, 2.3 and 2.4. Charts on the left are for pattern
{p,0, p,0, p} and on the right for {p, 0,0, 0, p}. All the points on the charts are
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Rewards Pattern {POP 0O P} Rewards Pattern {P0 0 0 P}
300 300
#88 Rand ML{u}
000 Noisy E{u}

=88 Rand ML{u}
000 Noisy E{u}

200 Max E{u} 200 Max E{u}
100 100
3 ,/“/
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Cycles Cycles

Fig. 2.2 Average numbers of rewards collected (ordinates) as a functions of cycles (abscissae) for
three strategies

Rewards Pattern {PO P O P} Rewards Pattern {P0 0 0 P}
100% 100%
50% 50% ————
=28 Rand ML{u} - =28 Rand ML{u}
000 Noisy E{u} 000 Noisy E{u}
Max E{u} Max E{u}
0% 0%
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Fig. 2.3 Percentage of rewards collected as a function of rewards’ frequency
I(x,y) Pattern {POP O P} I(x,y) Pattern {P 00 0 P}
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=@8 Rand ML{u} - =®8 Rand ML{u}
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Max E{u} Max E{u}
0.02 0.02
0.01 * 001 /'*{
5/ . =1
0 0
1/100 1/50 1/20 1/10 /5 172 1 1/100  1/50 1/20 1710 1/5 172 1
Rewards frequency Rewards frequency

Fig. 2.4 Posterior information amount as a function of rewards’ frequency

the average values from 30 experiments. The error bars on all charts are standard
deviations.

Figure 2.2 shows the numbers of rewards against the number of cycles in the
experiments with p = .1. One can see that the best performance was achieved by
the Rand ML(u) agent, the second is the Noisy E{u} agent, and the least number of
reward was collected by the max E{u} agent, as expected.

Figure 2.3 shows the percentage of rewards collected by the agents after 1000
cycles in different experiments with the control probability of rewards p € [.01, 1],
shown on the horizontal axis. Figure 2.4 shows, for the same experiments, the
amount of Shannon information I, , between rewards and states computed from
the empirical distribution P, (x, y) =) _ Pe(x, y, z). One can see that the agent col-
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lecting the greatest number of rewards also often requires the least amounts of in-
formation (particularly for p € [.01,.05]). These empirical results agree with the
theory, presented in previous sections.

2.5 Conclusion

This paper presented geometric representation of evolution of learning systems. The
representation is related to the use of Orlicz spaces in infinite-dimensional nonpara-
metric information geometry, but the topology considered here is based on more
general convex functions on linear spaces. The duality plays a very important role. In
particular, subdifferentials of dual convex functionals are (generally multi-valued)
monotone operators between the dual spaces, and they set up Galois connection
preserving pre-orders on the topological spaces. Monotone transformations are very
desirable in our theory, because when applied to utility functions, they also preserve
the preference relation (complete pre-order) on the space of outcomes. Note that
pre-order (order) is not symmetric (antisymmetric) binary relation, and preserving
this property was our main motivation for considering asymmetric topologies on the
statistical manifold.

The topology related to information allows for the definition of continuous tra-
jectories representing the evolution of a learning system. Optimality conditions have
been formulated using the information value theory, and generalized characteristic
potentials have been defined to parametrize the optimal information trajectory by
empirical constraints. Path integrals along the optimal trajectory define theoretical
bounds for a learning system that can be computed as a difference of the potentials
at the end points of the trajectory. This result has some similarity to the gradient
theorem about path independence of the integral in a conservative vector field.

The theory was illustrated not only on several theoretical examples, but also eval-
uated in an experiment. The results suggest that the theory can be very useful in
many applications of machine learning, such as nonasymptotic optimization of sys-
tems with dynamic information, optimization of communication networks based on
information value and optimization of the ‘exploration-exploitation’ balance in sta-
tistical decisions. The latter problem has been often approached using stochastic
methods based on Gibbs distributions with unknown parameter S~ (temperature).
Optimality conditions 8! € dU (1) or B € 91 (U) define the parameter from empir-
ical constraints, and with it the optimal level of exploration. Previously, the author
applied the relation between parameter ! and information to cognitive models of
human and animals’ learning behavior [2], and it improved significantly the corre-
spondence between the models and experimental data. Further development of the
theory and its applications to machine learning problems is the subject of ongoing
research.
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