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1 Introduction

When analyzing and controlling large-scale systems, it is extremely important to
develop efficient modeling processes. The key dynamic elements must be identified
and spurious dynamic elements eliminated. This allows the controls engineer to
implement the optimal control strategy for the problem at hand. Model reduction
techniques provide an extremely effective way to address this requirement.

In this chapter the evolution of model reduction techniques for designing con-
trol systems for large-scale systems is summarized. These start with simple ap-
proaches such as spectral decomposition and simultaneous gradient error reduction
and then progresses through a variety of balanced and related model reduction ap-
proaches. Motivations for the use of these methods are given. Emphasis is given
to approaches which are easily applied to the large, generalized models which are
created by Computer Aided Design (CAD) tools. A U-2S example application is
provided and described.

The provided example of a large-scale system of very high order is a model of
an air vehicle with significant aeroservoelastic coupling. Future unstable vehicles, or
those employing features such as relaxed static stability, can display aeroservoelastic
coupling. Evaluation of the interactions between the dynamic modes must be ac-
complished using an efficient, integrated modeling approach. The extensive use of
composite materials has also resulted in greater aeroservoelastic coupling. Finite el-
ement models of complex systems are sparse and are also intrinsically of very high
order. Such large-scale systems must be subjected to comprehensive analysis.

The methods discussed in this chapter preserve the frequency response character-
istics of the system model being examined while reducing its size to one practical for
direct controls design. They support a variety of optimal and robust control system
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design approaches. Some control system design methods require the use of all of the
system’s states. Without the use of model reduction techniques the full state control
system design would be too large to practically implement. States that would be
included within the controller might also be outside the bandwidth of the servos or
actuators. This might generate an ill-conditioned problem. The use of model reduc-
tion methods provides a way to generate full state controller solutions of reduced
size, and to further simplify these full state feedback solutions once they have been
generated.

2 Spectral Decomposition

This method is an efficient way to generate a reduced order model of a large-scale
system when all of its subsystems are decoupled or are at most weakly coupled.
It was initially developed by Chiodi and Davis at the Lockheed Corporation [1].
It depends on systems having distinct eigenvalues within well separated frequency
responses as shown in Fig. 1. These modal groupings are then decoupled using the
eigenvector matrix.

The starting point for this method is the standard nth order state space represen-
tation given in (1).

dx/dt = Ax + Bu;y = Cx (1)

Fig. 1 Distinct frequency range groupings of a model’s eigenvalues
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The system matrix A is then represented using the system’s eigenvalue and
eigenvector matrices as shown in (2).

dx/dt = VΛ V−1x + Bu;y = Cx (2)

This system description can then be expanded into the following series repre-
sentation as provided in (3). Note that the sum is initially computed using the full
number of states within the model, but that for control system design it is computed
using the eigenvalues to be obtained. Also, please note that ViV

−1
i is the residue of

the eigenvalue λi in (sI−A)−1.

dx/dt = [∑ ViV
−1
i λi]x + Bu;y = Cx (3)

From this representation the system can be reduced into its individual elements as
is done in (4)

dxi/dt = Aix + Biu (4)

The spectral decomposition process is described in Fig. 2. The system eigenval-
ues and eigenvectors are next calculated. For each eigenvalue to be retained within
the reduced order model the eigenvector and its inverse are multiplied to generate
ViV−1

i . Each matrix element is multiplied by its corresponding eigenvalue λi. The
transformed state matrix is then constructed by solving for the sum as given in (5)
for all the retained eigenvalues.

A =∑ViV
−1
i λi (5)

Fig. 2 Spectral decomposition process
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To calculate B = T B and C = CT the transformation matrix T must also be cal-
culated. This transformation is provided as in (6).

T =∑ViV
−1
i (6)

After spectral decomposition the system is transformed into that provided as in
(7)–(9).

dx1/dt = A11x1 + A12x2 + B1u (7)

dx2/dt = A21x1 + A22x2 + B2u (8)

y = C1x1 +C2x2 (9)

The reduced system model as described by the states to be used for the design of
the control system is given as in (10) and (11).

dx1/dt = A11x1 + B1u (10)

y = C1x1 (11)

3 Simultaneous Gradient Error Reduction

This method provides an efficient way to generate a reduced order model of a large-
scale system whether all of its subsystems and their outputs are decoupled or not. It
does require that all of its inputs are no more than weakly coupled to each other. For
flying qualities prediction and for aeroservodynamic modeling [2,3] the author orig-
inally developed this method for simultaneously fitting several frequency responses
depicting high order systems to low order transfer functions including time delays
[4, 5]. This method has been applied to the design the control systems for several
large-scale aerospace systems.

Simultaneous gradient error reduction is applied over a finite bandwidth. Con-
trols analysis and design are always accomplished over a finite bandwidth. This
allows modes outside of the control bandwidth to be neglected without impacting
the responsiveness or the robustness of the closed loop system. As an example, for
representative handling qualities it is believed that the low and the high order system
models must have sufficiently similar frequency responses between approximately
1 to 10 rps. This means that, in the case of such a fit, that the pilot will judge the
dynamics to be equivalent between the high order and the reduced order system
models.

This procedure uses a conjugate gradient search routine to adjust the parame-
ters of transfer functions including pure time delays with the desired form until
their frequency responses are as close as possible to the frequency responses from
the high order dynamics model. This is a multi-variable approach whereby several
output frequency responses to the same input can be analyzed simultaneously. The
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Fig. 3 Simultaneous gradient error reduction

user is allowed to fix, free, or simultaneously fit the various modes, including time
delays, after selecting the order of the transfer function [5] This procedure is out-
lined in Fig. 3.

The desired result is to match a transfer function to each of the given plant’s
magnitude A(ω) and phase frequency response Θω data over the control band-
width. Expressed in the form of a complex number A(ω)e jΘ (ω), these plant transfer
functions should respond in an equivalent manner to the full order plant model over
the desired frequency range for the given pair of inputs and outputs. The reduced
order transfer function representation is given in factored form and incorporates a
pure time delay. All of the output responses to a single large-scale system input can
be simultaneously fit using this approach. The output response models to the other
large-scale system’s inputs are generated in subsequent analysis.

The cost function J represents the fit error between the plant data and the reduced
order model. It is formulated as the integral of the absolute value of the error squared
between the data and the reduced order model as shown in (12)

J =
∫ ∞

0
|G( jω)−A(ω)e jΘ (ω)|2dω (12)

The fit error is weighted over each infinitesimal frequency interval. This fit error can
be assigned a relative importance as a function of frequency. A conjugate gradient
routine is used for error reduction because of its simplicity. Parameters are con-
strained to maintain the same sign during minimization. This is done to maintain
stability characteristics according to the Nyquist Stability Criteria. The gradient ΔJ
can be expressed analytically by differentiating the cost function given in (13).

ΔJ = Re∑[G( jωi)−A(ωi))e jΘωi ]ΔG( jω)dω (13)
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G( jω) is defined in (14). In this equation Z( jω) is composed of the partial deriva-
tives of G( jω) divided by their corresponding factors.

ΔG( jω) = G( jω)Z( jω) (14)

Gradient search techniques generally require parameter scaling to efficiently con-
verge. An ideal scaling uses a cost function equally sensitive to each parameter.
The law to accomplish this scales each parameter by its own magnitude as in (15).
Re-scaling is done after completing each separate iteration.

Pi = bi/|bi| (15)

The elements in the scaled gradient J are formed using (16).

δ J/δ pi = δ bi/δ pi ∗ δ J/δ bi = |bi| ∗ δ J/δ bi (16)

Simultaneously fit parameters are constrained within bounds derived by initially
allowing each transfer function to converge to an independent solution. An un-
weighted average is then computed, and is recomputed after each search. This is
continued until all reduced order transfer functions have converged, the simultane-
ously fit parameters have converged, or the maximum number of iterations have
been exceeded. In studies it was shown that the use of weighted averages did not
improve the cost function of the final result. Its use also created convergence stabil-
ity problems. If the problem as formulated does not have a true joint minimum, the
gradient search routine will give the best estimated joint minimum.

4 Balancing

This method offers an efficient way to generate a reduced order model of a large-
scale system whether all of its subsystems and their inputs and outputs are decou-
pled or not. This method for reducing the order of large-scale system models was
originally developed by Enns while he was at Stanford [6]. An internally balanced
system representation has input and output grammians that are equal and diagonal
[7]. The magnitude of each diagonal element provides a measure of the controlla-
bility and observability of the corresponding state [8]. This is used as a guide in
selecting those states which are the least controllable or observable for elimination
[9]. The sum of the diagonal elements of the grammian corresponding to the states
eliminated provides an error bound between the high order representation and the
reduced order model.

Balancing relies on the notion of a system as a mapping from the inputs to the
servos or actuators and then to the sensor outputs [10]. This mapping is viewed as a
combination of the reachability mapping from the actuator input signals to the state
vector and an observability mapping from the state to the sensor output signals. It
follows from this mapping concept that the state is an intermediate quantity between
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the inputs in the past and the sensor outputs in the future. The minimum amount of
control energy required to reach the desired state vector is inversely proportional to
the reachability grammian. Similarly, the amount of sensor output energy generated
by the state vector is proportional to the observability grammian. Balancing exam-
ines the amount each state component participates in the mapping from the input
to the output. The model reduction problem is now reduced into one of truncating
small terms from the partial fraction decomposition.

The following section pertains to a system again formulated as in (1), where A
and B are controllable and A and C are observable. Given these assumptions, the
controllability grammian U and the observability grammian Y are the solutions to
the Lyapunov equations given as in (17) and (18)

dx/dt = Ax + Bu = TAT−1x + T−1Bu (17)

y = Cx = CT x (18)

The transformation matrix T also relates the grammians through equations (19)
and (20) using an algorithm first developed by Laub [11, 12]. These contragedi-
ent transformations (where both U and Y are diagonal) can be calculated either
as the best conditioned contragedient transformation or as an internally balanced
transformation.

U = T−1UT−1 (19)

Y = T ′Y T (20)

For an internally balanced transformation in (21) applies. In this representation the
columns of T are the eigenvectors of the product UY .

UY = T−1Λ T (21)

To compute the balanced representation of the original large-scale system model,
it first must be decoupled into stable and unstable subsystem models. Balancing is
used for this step to generate a transformation based on the system’s eigenvalues. For
simplicity, neutrally stable modes can be slightly perturbed to make them marginally
stable. If the conditionality of the resulting stable projection is a concern, all neu-
trally stable modes can also be preserved as a part of the unstable system. This can
lead to a higher order final reduced system model. The resulting system is given
in (22). In this equation G+(s) is the stable subsystem and G−(s) is the unstable
subsystem

G(s) = C(sI−A)−1B = G+(s)+ G−(s) (22)

Without input or output weighting the stable subsystem is transformed into a
real Schur form. Next the Cholesky factors Lu and Ly of U and Y are computed. A
singular value decomposition of the product LyLu is then performed. The singular
values and the corresponding vectors are arranged in order of decreasing singu-
lar values. The transformation T is then computed in a final Schur transformation.
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Fig. 4 Balancing process

States which have relatively small singular values and thus have a relatively small
effect on the response of the large-scale system are then truncated from the model
of the stable subsystem. The unstable and ill conditioned subsystem is completely
preserved throughout this process. It is next recombined with the reduced order rep-
resentation of the stable subsystem. This process is shown in Fig. 4.

4.1 Techniques Not Requiring Balancing

Other model reduction methods with an equivalent range of applicability have been
designed to avoid the balancing process. One such method uses the Hankel Min-
imum Degree Approximate algorithm as described in [12]. This method is simi-
lar to balanced additive model reduction routines but can produce a reduced order
model more reliably when the desired reduced model has nearly controllable and/or
observable states [13]. These conditions are equivalent to having Hankel singular
values very close to the machine accuracy.

For a stable system the Hankel singular values indicate the relative energy of each
state with respect to the state energy of the entire system [14]. The reduced order
system is directly determined by examining the system’s Hankel singular values.
An optimal reduced order system is selected using this algorithm to satisfy the error
bound criterion regardless of the order selected at the beginning of the process [12].
Given the state space representation of the system as shown in (23), along with
the value selected for k (the desired reduced order), the reduced order model is
generated.

dx/dt = Ax + Bu;y = Cx (23)
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Fig. 5 Hankel minimum degree approximate process

The following steps, as shown in Fig. 5, produce a similarity transformation to
truncate the original state space system into the kth order reduced model. Weights
on the original model’s inputs and/or its outputs can make the model reduction algo-
rithm focus on the specific frequency range of interest. These weights are required
to be stable, minimum phase, and invertible. Note that as in the previous section the
unstable subsystem must be combined with the reduced order stable subsystem to
create the final reduced order model.

In more detail the steps to accomplish model reduction without balancing using
the Hankel Minimum Degree Approximate algorithm are given as follows. First,
the original large-scale system model must be decoupled into stable and unstable
subsystem models. Next, the controllability and observability grammians P and Q
must be generated. Using these grammians the descriptor given in (24) is generated

E = QP( jω )−ρ 2I (24)

where σk > ρ ≥ σk+1.
A singular value decomposition is then accomplished on the descriptor. The sys-

tem is next transformed to generate the system representation given in (25) and (26).

dx dt = U ′(ρ2A′+ QAP)Vx +U ′(QB−C′)u (25)

y = [CP−ρB′]Vu (26)

The resulting system is then partitioned and truncated to become a kth order system.
The final kth order Hankel Minimum Degree Approximate is the stable part of the
state space realization. Its unstable part must be recombined with the reduced order
model of the stable part.
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The nature of the resulting error between the original system G( jω) and the fi-
nal reduced order model is discussed in [14]. This error is described by an all-pass
function. A detailed description of the Hankel Minimum Degree Approximate algo-
rithm can be found in [13].

4.2 Balancing Over A Disk

This procedure is a further development of the balancing technique. It was orig-
inally developed by Jonckheere at the University of Southern California [15, 16].
Its advantages are that it gives precise frequency response bounds over a desired
bandwidth. Elimination of eigenvalues by inspection makes the balancing better
conditioned and computationally efficient as well as further decreasing the final size
of the reduced order system.

As was done using the previous two approaches, the unstable subsystem is re-
moved and only the stable subsystem is processed and reduced. Note that with
proper sign changes the unstable subsystem could be balanced over a disk. Be-
cause of the Nyquist Stability Criteria the number of open loop poles should not be
reduced. In actual application work the number of unstable poles represents a very
small percentage of the total number of poles. Thus reducing the number of unstable
poles would have little effect on the dimension of the final reduced order system.

Standard balancing has infinite bandwidth. It thus does not necessarily provide
the smallest possible H∞ error. What is desired is the smallest frequency response
error over the selected bandwidth. An infinite bandwidth is not required. From the
Hankel Singular Values for each pole the error bound is generated as in (27).

sup|G(s)−G(s)|= Σδ (27)

To develop a reduced order model optimized over a finite bandwidth and to improve
the conditionality of the stable subsystem to be balanced, the subsystem is balanced
over a disk. This is accomplished over a region as shown in Fig. 6. The disk is placed
in the complex plane based on two considerations. First, the full order model G(s)
must be analytic in the disk [10, 17]. For the targeted error bound the disk must be
placed to exclude any eigenvalues of G( jω). Second, the disk should cover the in-
terval of real frequencies (−Ω < ω <Ω ). This bandwidth limit Ω is usually based
on the response limitations imposed by the control servos or actuators. This guar-
antees that the error bound only includes this critical frequency range. A good rule
is to use α = 1

2 (the largest real part of the poles of G( jω)). This is done using a
bilinear mapping as shown in Fig. 7. The error bound becomes that given in (28)

sup|G(s)−GDISK(s)|= ΣδDISK (28)

Note that δDISK ≤ δ . Those eigenvalues that have small singular values are
deleted from the stable subsystem. The reduced order stable subsystem is recombined
with the unstable subsystem. The overall process for reducing the order of a large-
scale system over a disk is presented in Fig. 8.
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Fig. 6 Balancing over a Disk

Fig. 7 Bilinear mapping

5 Example: Large-Scale System Application

The model reduction techniques discussed in the previous sections are based on
minimizing the error between the high order and the low order models as measured
within the frequency domain. Using these approaches, a large-scale 140th order
multiple input, multiple output full dynamics model of the U-2S including rigid
body and structural dynamics modes was reduced in order [4,18]. Within this section
90th, 80th and 40th order reduced models are documented. The response of the 90th
order model is, by visual inspection, identical to the 140th order large-scale system’s
response. The response of the 80th order model begins to show differences from that
of the large-scale system. The response shown in Fig. 9 is that of the roll rate due
to a rudder input. This difference results from the migration of two extremely high
frequency, lightly damped zeros from the left half into the right half of the complex
plane. The large-scale system has ten non-minimum phase zeros while the 80th
order model has 12 non-minimum phase zeros. Although the frequency response
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Fig. 8 Asymptotic Balancing Process

Fig. 9 Effect of non-minimum phase zeros

match shows very little variation between these two model’s responses up to the
frequency of this complex zero, the difference between the transient responses must
be noted. In practice this difference is so far outside the control bandwidth of the
servos that it will not have an impact on the design of the control laws.
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Fig. 10 Effect of Residualization

When the model is further reduced to 40th order a steady state offset error appears
in the pitch rate response due to an elevator input. This offset is seen in Fig. 10.
Residualization is easily used to shift the low order response to nearly overlay the
140th order large-scale system’s equivalent response. Only minor differences in the
peaks of the first 5 oscillations are seen after residualization. Besides this minor
error the residualized 40th order system’s transient response overlays that of the
140th order large-scale system. This residualized system’s time response is omitted
from Fig. 10 for clarity.
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