
CHAPTER II

A DUALITY IN INTEGRAL GEOMETRY

§1 Homogeneous Spaces in Duality

The inversion formulas in Theorems 3.1, 3.7, 3.8 and 6.2, Ch. I suggest
the general problem of determining a function on a manifold by means
of its integrals over certain submanifolds. This is essentially the title of
Radon’s paper. In order to provide a natural framework for such problems
we consider the Radon transform f → ̂f on Rn and its dual ϕ → ϕ̌ from
a group-theoretic point of view, motivated by the fact that the isometry
group M(n) acts transitively both on Rn and on the hyperplane space Pn.
Thus

(1) Rn = M(n)/O(n) , Pn = M(n)/Z2 ×M(n− 1) ,

where O(n) is the orthogonal group fixing the origin 0 ∈ Rn and
Z2 ×M(n − 1) is the subgroup of M(n) leaving a certain hyperplane ξ0
through 0 stable. (Z2 consists of the identity and the reflection in this
hyperplane.)

We observe now that a point g1O(n) in the first coset space above lies
on a plane g2(Z2 ×M(n − 1)) in the second if and only if these cosets,
considered as subsets of M(n), have a point in common. In fact

g1 · 0 ⊂ g2 · ξ0 ⇔ g1 · 0 = g2h · 0 for some h ∈ Z2 ×M(n− 1)

⇔ g1k = g2h for some k ∈ O(n) .

This leads to the following general setup.
Let G be a locally compact group, X and Ξ two left coset spaces of G,

(2) X = G/K , Ξ = G/H ,

where K and H are closed subgroups of G. Let L = K ∩ H . We assume
that the subset KH ⊂ G is closed. This is automatic if one of the groups
K or H is compact.

Two elements x ∈ X , ξ ∈ Ξ are said to be incident if as cosets in G they
intersect. We put (see Fig. II.1)

x̌ = {ξ ∈ Ξ : x and ξ incident}
̂ξ = {x ∈ X : x and ξ incident} .

Let x0 = {K} and ξ0 = {H} denote the origins in X and Ξ, respectively.
If Π : G → G/H denotes the natural mapping then since x̌0 = K · ξ0 we
have

Π−1(Ξ− x̌0) = {g ∈ G : gH /∈ KH} = G−KH .
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In particular Π(G−KH) = Ξ− x̌0 so since Π is an open mapping, x̌0 is a
closed subset of Ξ. This proves the following:

Lemma 1.1. Each x̌ and each ̂ξ is closed.

Using the notation Ag = gAg−1 (g ∈ G,A ⊂ G) we have the following
lemma.

Lemma 1.2. Let g, γ ∈ G, x = gK, ξ = γH. Then

x̌ is an orbit of Kg, ̂ξ is an orbit of Hγ ,

and
x̌ = Kg/Lg , ̂ξ = Hγ/Lγ .

Proof. By definition

(3) x̌ = {δH : δH ∩ gK �= ∅} = {gkH : k ∈ K} ,

which is the orbit of the point gH under gKg−1. The subgroup fixing gH
is gKg−1 ∩ gHg−1 = Lg. Also (3) implies

x̌ = g · x̌0 , ̂ξ = γ · ̂ξ0 ,

where the dot · denotes the action of G on X and Ξ.
We often write τ(g) for the maps x→ g · x, ξ → g · ξ and

f τ(g)(x) = f(g−1 · x) , Sτ(g)(f) = S(f τ(g
−1))

for f a function, S a distribution.

Lemma 1.3. Consider the subgroups

KH = {k ∈ K : kH ∪ k−1H ⊂ HK} ,
HK = {h ∈ H : hK ∪ h−1K ⊂ KH} .

The following properties are equivalent:
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(a) K ∩H = KH = HK .

(b) The maps x→ x̌ (x ∈ X) and ξ → ̂ξ (ξ ∈ Ξ) are injective.

We think of property (a) as a kind of transversality of K and H .

Proof. Suppose x1 = g1K, x2 = g2K and x̌1 = x̌2. Then by (3) g1 · x̌0 =
g1 · x̌0 so g · x̌0 = x̌0 if g = g−1

1 g2. In particular g ·ξ0 ⊂ x̌0 so g ·ξ0 = k ·ξ0 for
some k ∈ K. Hence k−1g = h ∈ H so h · x̌0 = x̌0, that is hK ·ξ0 = K ·ξ0. As
a relation in G, this means hKH = KH . In particular hK ⊂ KH . Since
h · x̌0 = x̌0 implies h−1 · x̌0 = x̌0 we have also h−1K ⊂ KH so by (a) h ∈ K
which gives x1 = x2.

On the other hand, suppose the map x → x̌ is injective and suppose
h ∈ H satisfies h−1K ∪ hK ⊂ KH . Then

hK · ξ0 ⊂ K · ξ0 and h−1K · ξ0 ⊂ K · ξ0 .
By Lemma 1.2, h · x̌0 ⊂ x̌0 and h−1 · x̌0 ⊂ x̌0. Thus h · x̌0 = x̌0 whence by
the assumption, h · x0 = x0 so h ∈ K.

Thus we see that under the transversality assumption a) the elements ξ

can be viewed as the subsets ̂ξ of X and the elements x as the subsets x̌
of Ξ. We say X and Ξ are homogeneous spaces in duality.

The maps are also conveniently described by means of the following dou-
ble fibration

G/L

p

�����
���

�� π

��
��

��
��

��

G/K G/H

(4)

where p(gL) = gK, π(γL) = γH . In fact, by (3) we have

x̌ = π(p−1(x)) ̂ξ = p(π−1(ξ)) .

We now prove some group-theoretic properties of the incidence, supple-
menting Lemma 1.3.

Theorem 1.4. (i) We have the identification

G/L = {(x, ξ) ∈ X × Ξ : x and ξ incident}
via the bijection τ : gL→ (gK, gH).

(ii) The property
KHK = G

is equivalent to the property:

Any two x1, x2 ∈ X are incident to some ξ ∈ Ξ. A similar statement
holds for HKH = G.
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(iii) The property

HK ∩KH = K ∪H
is equivalent to the property:

For any two x1 �= x2 in X there is at most one ξ ∈ Ξ incident to both.
By symmetry, this is equivalent to the property:

For any ξ1 �= ξ2 in Ξ there is at most one x ∈ X incident to both.

Proof. (i) The map is well-defined and injective. The surjectivity is clear
because if gK ∩ γH �= ∅ then gk = γh and τ(gkL) = (gK, γH).

(ii) We can take x2 = x0. Writing x1 = gK, ξ = γH we have

x0, ξ incident ⇔ γh = k (some h ∈ H, k ∈ K)

x1, ξ incident ⇔ γh1 = g1k1 (some h1 ∈ H, k1 ∈ K) .

Thus if x0, x1 are incident to ξ we have g1 = kh−1h1k
−1
1 . Conversely if

g1 = k′h′k′′ we put γ = k′h′ and then x0, x1 are incident to ξ = γH .

(iii) Suppose first KH ∩HK = K ∪H . Let x1 �= x2 in X . Suppose ξ1 �= ξ2
in Ξ are both incident to x1 and x2. Let xi = giK, ξj = γjH . Since xi is
incident to ξj there exist kij ∈ K, hij ∈ H such that

(5) gikij = γjhij i = 1, 2 ; j = 1, 2 .

Eliminating gi and γj we obtain

(6) k−1
2 2 k2 1h

−1
2 1h1 1 = h−1

2 2h1 2k
−1
1 2 k1 1 .

This being in KH ∩HK it lies in K ∪H . If the left hand side is in K then
h−1

2 1h1 1 ∈ K, so

g2K = γ1h2 1K = γ1h1 1K = g1K ,

contradicting x2 �= x1. Similarly if expression (6) is in H , then k−1
1 2 k1 1 ∈ H ,

so by (5) we get the contradiction

γ2H = g1k1 2H = g1k1 1H = γ1H .

Conversely, suppose KH ∩ HK �= K ∪ H . Then there exist h1, h2, k1, k2

such that h1k1 = k2h2 and h1k1 /∈ K ∪H . Put x1 = h1K, ξ2 = k2H . Then
x1 �= x0, ξ0 �= ξ2, yet both ξ0 and ξ2 are incident to both x0 and x1.
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Examples

(i) Points outside hyperplanes. We saw before that if in the coset
space representation (1) O(n) is viewed as the isotropy group of 0 and
Z2M(n−1) is viewed as the isotropy group of a hyperplane through 0 then
the abstract incidence notion is equivalent to the naive one: x ∈ Rn is
incident to ξ ∈ Pn if and only if x ∈ ξ.

On the other hand we can also view Z2M(n − 1) as the isotropy group
of a hyperplane ξδ at a distance δ > 0 from 0. (This amounts to a different
embedding of the group Z2M(n−1) into M(n).) Then we have the following
generalization.

Proposition 1.5. The point x ∈ Rn and the hyperplane ξ ∈ Pn are
incident if and only if distance (x, ξ) = δ.

Proof. Let x = gK , ξ = γH where K = O(n), H = Z2M(n − 1). Then if
gK∩γH �= ∅, we have gk = γh for some k ∈ K,h ∈ H . Now the orbit H ·0
consists of the two planes ξ′δ and ξ′′δ parallel to ξδ at a distance δ from ξδ.
The relation

g · 0 = γh · 0 ∈ γ · (ξ′δ ∪ ξ′′δ )

together with the fact that g and γ are isometries shows that x has distance
δ from γ · ξδ = ξ.

On the other hand if distance (x, ξ) = δ, we have g·0 ∈ γ·(ξ′δ∪ξ′′δ ) = γH·0,
which means gK ∩ γH �= ∅.

(ii) Unit spheres. Let σ0 be a sphere in Rn of radius one passing through
the origin. Denoting by Σ the set of all unit spheres in Rn, we have the
dual homogeneous spaces

(7) Rn = M(n)/O(n) ; Σ = M(n)/O∗(n)

where O∗(n) is the set of rotations around the center of σ0. Here a point
x = gO(n) is incident to σ0 = γO∗(n) if and only if x ∈ σ.

§2 The Radon Transform for the Double Fibration

With K, H and L as in §1 we assume now that K/L and H/L have positive
measures dμ0 = dkL and dm0 = dhL invariant underK andH , respectively.
This is for example guaranteed if L is compact.

Lemma 2.1. Assume the transversality condition (a). Then there exists a
measure on each x̌ coinciding with dμ0 on K/L = x̌0 such that whenever
g · x̌1 = x̌2 the measures on x̌1 and x̌2 correspond under g. A similar
statement holds for dm on ̂ξ.
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Proof. If x̌ = g · x̌0 we transfer the measure dμ0 = dkL over on x̌ by the
map ξ → g · ξ. If g · x̌0 = g1 · x̌0 then (g ·x0)

∨ = (g1 ·x0)
∨ so by Lemma 1.3,

g · x0 = g1 · x0 so g = g1k with k ∈ K. Since dμ0 is K-invariant the lemma
follows.

The measures defined on each x̌ and ̂ξ under condition (a) are denoted
by dμ and dm, respectively.

Definition. The Radon transform f → ̂f and its dual ϕ→ ϕ̌ are defined
by

(8) ̂f(ξ) =

∫

bξ

f(x) dm(x) , ϕ̌(x) =

∫

x̌

ϕ(ξ) dμ(ξ) ,

whenever the integrals converge. Because of Lemma 1.1, this will always
happen for f ∈ Cc(X), ϕ ∈ Cc(Ξ).

In the setup of Proposition 1.5, ̂f(ξ) is the integral of f over the two
hyperplanes at distance δ from ξ and ϕ̌(x) is the average of ϕ over the set
of hyperplanes at distance δ from x. For δ = 0 we recover the transforms
of Ch. I, §1.

Formula (8) can also be written in the group-theoretic terms,

(9) ̂f(γH) =

∫

H/L

f(γhK) dhL , ϕ̌(gK) =

∫

K/L

ϕ(gkH) dkL .

Note that (9) serves as a definition even if condition (a) in Lemma 1.3 is
not satisfied. In this abstract setup the spaces X and Ξ have equal status.
The theory in Ch. I, in particular Lemma 2.1, Theorems 2.4, 2.10, 3.1 thus
raises the following problems:

Principal Problems:

A. Relate function spaces on X and on Ξ by means of the transforms
f → ̂f , ϕ→ ϕ̌. In particular, determine their ranges and kernels.

B. Invert the transforms f → ̂f , ϕ→ ϕ̌ on suitable function spaces.

C. In the case when G is a Lie group so X and Ξ are manifolds let D(X)

and D(Ξ) denote the algebras of G-invariant differential operators on X

and Ξ, respectively. Is there a map D → ̂D of D(X) into D(Ξ) and a map

E → Ě of D(Ξ) into D(X) such that

(Df)b= ̂D ̂f , (Eϕ)∨ = Ěϕ̌ ?

D. Support Property: Does ̂f of compact support imply that f has com-
pact support?
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Although weaker assumptions would be sufficient, we assume now that
the groups G, K, H and L all have bi-invariant Haar measures dg, dk, dh
and d�. These will then generate invariant measures dgK , dgH , dgL, dkL,
dhL on G/K, G/H , G/L, K/L, H/L, respectively. This means that

(10)

∫

G

F (g) dg =

∫

G/K

(∫

K

F (gk) dk

)

dgK

and similarly dg and dh determine dgH , etc. Then

(11)

∫

G/L

Q(gL) dgL = c

∫

G/K

dgK

∫

K/L

Q(gkL) dkL

forQ ∈ Cc(G/L) where c is a constant. In fact, the integrals on both sides of
(11) constitute invariant measures on G/L and thus must be proportional.
However,

(12)

∫

G

F (g) dg =

∫

G/L

(∫

L

F (g�) d�

)

dgL

and

(13)

∫

K

F (k) dk =

∫

K/L

(∫

L

F (k�) d�

)

dkL .

We use (13) on (10) and combine with (11) taking Q(gL) =
∫

F (g�) d�.
Then we see that from (12) the constant c equals 1.

We shall now prove that f → ̂f and ϕ → ϕ̌ are adjoint operators. We
write dx for dgK and dξ for dgH .

Proposition 2.2. Let f ∈ Cc(X), ϕ ∈ Cc(Ξ). Then ̂f and ϕ̌ are continu-
ous and

∫

X

f(x)ϕ̌(x) dx =

∫

Ξ

̂f(ξ)ϕ(ξ) dξ .

Proof. The continuity statement is immediate from (9). We consider the
function

P = (f ◦ p)(ϕ ◦ π)

on G/L. We integrate it over G/L in two ways using the double fibration
(4). This amounts to using (11) and its analog with G/K replaced by G/H
with Q = P . Since P (gk L) = f(gK)ϕ(gkH), the right hand side of (11)
becomes

∫

G/K

f(gK)ϕ̌(gK) dgK .

If we treat G/H similarly, the lemma follows.
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The result shows how to define the Radon transform and its dual for
measures and, in case G is a Lie group, for distributions.

Definition. Let s be a measure on X of compact support. Its Radon
transform is the functional ŝ on Cc(Ξ) defined by

(14) ŝ(ϕ) = s(ϕ̌) .

Similarly σ̌ is defined by

(15) σ̌(f) = σ( ̂f) , f ∈ Cc(X) ,

if σ is a compactly supported measure on Ξ.

Lemma 2.3. (i) If s is a compactly supported measure on X, ŝ is a
measure on Ξ.

(ii) If s is a bounded measure on X and if x̌0 has finite measure then ŝ
as defined by (14) is a bounded measure.

Proof. (i) The measure s can be written as a difference s = s+ − s− of
two positive measures, each of compact support. Then ŝ = ŝ+ − ŝ− is a
difference of two positive functionals on Cc(Ξ).

Since a positive functional is necessarily a measure, ŝ is a measure.

(ii) We have
sup
x
|ϕ̌(x)| ≤ sup

ξ
|ϕ(ξ)|μ0(x̌0) ,

so for a constant K,

|ŝ(ϕ)| = |s(ϕ̌)| ≤ K sup |ϕ̌| ≤ Kμ0(x̌0) sup |ϕ| ,
and the boundedness of ŝ follows.

If G is a Lie group then (14), (15) with f ∈ D(X) , ϕ ∈ D(Ξ) serve
to define the Radon transform s → ŝ and the dual σ → σ̌ for distri-
butions s and σ of compact support. We consider the spaces D(X) and
E(X) (= C∞(X)) with their customary topologies (Chapter VII, §1). The
duals D′(X) and E ′(X) then consist of the distributions on X and the
distributions on X of compact support, respectively.

Proposition 2.4. The mappings

f ∈ D(X) → ̂f ∈ E(Ξ)

ϕ ∈ D(Ξ) → ϕ̌ ∈ E(X)

are continuous. In particular,

s ∈ E ′(X) ⇒ ŝ ∈ D′(Ξ)

σ ∈ E ′(Ξ) ⇒ σ̌ ∈ D′(X) .
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Proof. We have

(16) ̂f(g · ξ0) =

∫

bξ0

f(g · x) dm0(x) .

Let g run through a local cross section through e in G over a neighbor-
hood of ξ0 in Ξ. If (t1, . . . , tn) are coordinates of g and (x1, . . . , xm) the

coordinates of x ∈ ̂ξ0 then (16) can be written in the form

̂F (t1, . . . , tn) =

∫

F (t1, . . . , tn ; x1, . . . , xm) dx1 . . . dxm .

Now it is clear that ̂f ∈ E(Ξ) and that f → ̂f is continuous, proving the
proposition.

The result has the following refinement.

Proposition 2.5. Assume K compact. Then

(i) f → ̂f is a continuous mapping of D(X) into D(Ξ).

(ii) ϕ→ ϕ̌ is a continuous mapping of E(Ξ) into E(X).

A self-contained proof is given in the author’s book [1994b], Ch. I, § 3.
The result has the following consequence.

Corollary 2.6. Assume K compact. Then E ′(X)b⊂E ′(Ξ), D′(Ξ)∨⊂D′(X).

Ranges and Kernels. General Features

It is clear from Proposition 2.2 that the range R of f → ̂f is orthogonal to
the kernel N of ϕ→ ϕ̌. When R is closed one can often conclude R = N⊥,
also when ̂ is extended to distributions (Helgason [1994b], Chapter IV,
§2, Chapter I, §2). Under fairly general conditions one can also deduce

that the range of ϕ→ ϕ̌ equals the annihilator of the kernel of T → ̂T for
distributions (loc. cit., Ch. I, §3).

In Chapter I we have given solutions to Problems A, B, C, D in some
cases. Further examples will be given in § 4 of this chapter and Chapter III
will include their solution for the antipodal manifolds for compact two-point
homogeneous spaces.

The variety of the results for these examples make it doubtful that the
individual results could be captured by a general theory. Our abstract setup
in terms of homogeneous spaces in duality is therefore to be regarded as a
framework for examples rather than as axioms for a general theory.



72 Chapter II. A Duality in Integral Geometry

Nevertheless, certain general features emerge from the study of these
examples. If dimX = dimΞ and f → ̂f is injective the range consists of
functions which are either arbitrary or at least subjected to rather weak
conditions. As the difference dimΞ− dimX increases more conditions are
imposed on the functions in the range. (See the example of the d-plane
transform in Rn.)

In case G is a Lie group there is a group-theoretic explanation for this.
Let X be a manifold and Ξ a manifold whose points ξ are submanifolds
of X . We assume each ξ ∈ Ξ to have a measure dm and that the set
{ξ ∈ Ξ : ξ � x} has a measure dμ. We can then consider the transforms

(17) ̂f(ξ) =

∫

ξ

f(x) dm(x) , ϕ̌(x) =

∫

ξ�x

ϕ(ξ) dμ(ξ) .

If G is a Lie transformation group of X permuting the members of Ξ
including the measures dm and dμ, the transforms f → ̂f , ϕ→ ϕ̌ commute
with the G-actions on X and Ξ

(18) ( ̂f)τ(g) = (f τ(g))b (ϕτ(g))∨ = (ϕ̌)τ(g) .

Let λ and Λ be the homomorphisms

λ : D(G)→ E(X)

Λ : D(G)→ E(Ξ)

in Ch. VIII, §2. Using (13) in Ch. VIII we derive

(19) (λ(D)f )̂ = Λ(D) ̂f , (Λ(D)ϕ)∨ = λ(D)ϕ̌ .

Therefore Λ(D) annihilates the range of f → ̂f if λ(D) = 0. In some cases,
including the case of the d-plane transform in Rn, the range is character-
ized as the null space of these operators Λ(D) (with λ(D) = 0). This is
illustrated by Theorems 6.5 and 6.8 in Ch. I and even more by theorems
of Richter, Gonzalez which characterized the range as the null space of
certain explicit invariant operators ([GSS, I, §3]). Much further work in
this direction has been done by Gonzalez and Kakehi (see Part I in Ch. II,
§4). Examples of (17)–(18) would occur with G a group of isometries of
a Riemannian manifold, Ξ a suitable family of geodesics. The framework
(8) above fits here too but goes further in that Ξ does not have to consist
of subsets of X . We shall see already in the next Theorem 4.1 that this
feature is significant.

The Inversion Problem. General Remarks

In Theorem 3.1 and 6.2 in Chapter I as well as in several later results the
Radon transform f → ̂f is inverted by a formula

(20) f = D(( ̂f )∨) ,
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where D is a specific operator on X , often a differential operator. Rouvière
has in [2001] outlined an effective strategy for producing such a D.

Consider the setup X = G/K, Ξ = G/H from §1 and assume G, K and
H are unimodular Lie groups and K compact. On G we have a convolution
(in the style of Ch. VII),

(u ∗ v)(h) =

∫

G

u(hg−1)v(g) dg =

∫

G

u(g)v(g−1h) dg ,

provided one of the functions u, v has compact support. Here dg is Haar
measure. More generally, if s, t are two distributions on G at least one of
compact support the tensor product s⊗ t is a distribution on G×G given
by

(s⊗ t)(u(x, y)) =

∫

G×G

u(x, y) ds(x) dt(y) u ∈ D(G ×G) .

Note that s⊗t = t⊗s because they agree on the space spanned by functions
of the type ϕ(x)ψ(y) which is dense in D(G×G). The convolution s ∗ t is
defined by

(s ∗ t)(v) =

∫

G

∫

G

v(xy) ds(x) dt(y) .

Lifting a function f on X to G by ˜f = f ◦ π where π : G → G/K is the

natural map we lift a distribution S on X to a ˜S ∈ D′(G) by ˜S(u) = S(
�

u)
where

u̇(gK) =

∫

K

u(gk) dk .

Thus ˜S( ˜f) = S(f) for f ∈ D(X). If S, T ∈ D′(X), one of compact support
the convolution × on X is defined by

(21) (S × T )(f) = (˜S ∗ ˜T )( ˜f) .

If one of these is a function f , we have

(f × S)(g · x0) =

∫

G

f(gh−1 · x0) d˜S(h) ,(22)

(S × f)(g · x0) =

∫

G

f(h−1g · x0) d˜S(h) .(23)

The first formula can also be written

(24) f × S =

∫

G

f(g · x0)S
τ(g) dg
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as distributions. In fact, let ϕ ∈ D(X). Then

(f × S)(ϕ) =

∫

G

(f × S)(g · x0)ϕ(g · x0) dg

=

∫

G

(

∫

G

f(gh−1 · x0) d˜S(h)
)

ϕ(g · x0) dg

=

∫

G

(

∫

G

f(g · x0)ϕ̃(gh) dg
)

d˜S(h)

=

∫

G

∫

G

f(g · x0)(ϕ
τ(g−1))∼(h) dg d˜S(h)

=

∫

G

f(g · x0)S(ϕτ(g
−1)) dg =

∫

G

f(g · x0)S
τ(g)(ϕ) dg .

Now let D be a G-invariant differential operator on X and D∗ its adjoint.
It is also G-invariant. If ϕ = D(X) then the invariance of D∗ and (24)
imply

(D(f × S))(ϕ) = (f × S)(D∗ϕ) =

∫

G

f(g · x0)S
τ(g)(D∗ϕ) dg

=

∫

G

f(g · x0)S(D∗(ϕ ◦ τ(g))) dg =

∫

G

f(g · x0)(DS)τ(g)(ϕ) dg,

so

(25) D(f × S) = f ×DS .
Let εD denote the distribution f → (D∗f)(x0). Then

Df = f × εD ,
because by (24)

(f × εD)(ϕ) =

∫

G

f(g · x0)ε
τ(g)
D (ϕ)

=

∫

G

f(g · x0)D
∗(ϕτ(g

−1))(x0) dg =

∫

G

f(g · x0)(D
∗ϕ)(g · x0) dg

=

∫

X

f(x)(D∗ϕ)(x) dx =

∫

X

(Df)(x)ϕ(x) dx .

We consider now the situation where the elements ξ of Ξ are subsets of
X (cf. Lemma 1.3).
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Theorem 2.7 (Rouvière). Under the assumptions above (K compact)
there exists a distribution S on X such that

(26) ( ̂f)∨ = f × S , f ∈ D(X) .

Proof. Define a functional S on Cc(X) by

S(f) = ( ̂f)∨(x0) =

∫

K

(∫

H

f(kh · x0) dh

)

dk .

Then S is a measure because if f has compact support C the set of h ∈ H
for which kh ·x0 ∈ C for some k is compact. The restriction of S to D(X) is
a distribution which is clearly K-invariant. By (24) we have for ϕ ∈ D(X)

(f × S)(ϕ) =

∫

G

f(g · x0)S(ϕτ(g
−1)) dg ,

which, since the operations ̂ and ∨ commute with the G action, becomes

∫

G

f(g · x0)(ϕ̂)∨(g · x0) dg =

∫

X

( ̂f)∨(x)ϕ(x) dx ,

because of Proposition 2.2. This proves the theorem.

Corollary 2.8. If D is a G-invariant differential operator on X such that
DS = δ (delta function at x0) then we have the inversion formula

(27) f = D(( ̂f)∨) , f ∈ D(X) .

This follows from (26) and f × δ = f .

§3 Orbital Integrals

As before let X = G/K be a homogeneous space with origin o = (K).
Given x0 ∈ X let Gx0 denote the subgroup of G leaving x0 fixed, i.e., the
isotropy subgroup of G at x0.

Definition. A generalized sphere is an orbit Gx0 ·x in X of some point
x ∈ X under the isotropy subgroup at some point x0 ∈ X .

Examples. (i) If X = Rn, G = M(n) then the generalized spheres are
just the spheres.
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(ii) LetX be a locally compact subgroup L andG the product group L×L
acting on L on the right and left, the element (�1, �2) ∈ L × L inducing
action � → �1� �

−1
2 on L. Let ΔL denote the diagonal in L × L. If �0 ∈ L

then the isotropy subgroup of �0 is given by

(28) (L× L)�0 = (�0, e)ΔL(�−1
0 , e)

and the orbit of � under it by

(L× L)�0 · � = �0(�
−1
0 �)L ,

which is the left translate by �0 of the conjugacy class of the element �−1
0 �.

Thus the generalized spheres in the group L are the left (or right) translates
of its conjugacy classes .

Coming back to the general case X = G/K = G/G0 we assume that G0,
and therefore each Gx0 , is unimodular. But Gx0 ·x = Gx0/(Gx0)x so (Gx0)x
unimodular implies the orbit Gx0 · x has an invariant measure determined
up to a constant factor. We can now consider the following general problem
(following Problems A, B, C, D above).

E. Determine a function f on X in terms of its integrals over generalized
spheres.

Remark 3.1. In this problem it is of course significant how the invariant
measures on the various orbits are normalized.

(a) If G0 is compact the problem above is rather trivial because each orbit
Gx0 ·x has finite invariant measure so f(x0) is given as the limit as x→ x0

of the average of f over Gx0 · x.

(b) Suppose that for each x0 ∈ X there is a Gx0-invariant open set Cx0 ⊂
X containing x0 in its closure such that for each x ∈ Cx0 the isotropy group
(Gx0)x is compact. The invariant measure on the orbit Gx0 ·x (x0 ∈ X,x ∈
Cx0) can then be consistently normalized as follows: Fix a Haar measure
dg0 on G0. If x0 = g · o we have Gx0 = gG0g

−1 and can carry dg0 over to a
measure dgx0 on Gx0 by means of the conjugation z → gzg−1 (z ∈ G0).
Since dg0 is bi-invariant, dgx0 is independent of the choice of g satisfying
x0 = g ·o, and is bi-invariant. Since (Gx0)x is compact it has a unique Haar
measure dgx0,x with total measure 1 and now dgx0 and dgx0,x determine
canonically an invariant measure μ on the orbit Gx0 · x = Gx0/(Gx0)x. We
can therefore state Problem E in a more specific form.

E′. Express f(x0) in terms of integrals

(29)

∫

Gx0 ·x

f(p) dμ(p) , x ∈ Cx0 .
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For the case whenX is an isotropic Lorentz manifold the assumptions
above are satisfied (with Cx0 consisting of the “timelike” rays from x0) and
we shall obtain in Ch. V an explicit solution to Problem E′ (Theorem 4.1,
Ch. V).

(c) If in Example (ii) above L is a semisimple Lie group Problem E is a ba-
sic step (Gelfand–Graev [1955], Harish-Chandra [1954], [1957]) in proving
the Plancherel formula for the Fourier transform on L.

§4 Examples of Radon Transforms for Homogeneous

Spaces in Duality

In this section we discuss some examples of the abstract formalism and
problems set forth in the preceding sections §1–§2.

A. The Funk Transform

This case goes back to Funk [1913], [1916] (preceding Radon’s paper [1917])
where he proved, inspired by Minkowski [1911], that a symmetric function
on S2 is determined by its great circle integrals. This is carried out in
more detail and in greater generality in Chapter III, §1. Here we state the
solution of Problem B for X = S2, Ξ the set of all great circles, both
as homogeneous spaces of O(3). Given p ≥ 0 let ξp ∈ Ξ have distance p
from the North Pole o, Hp ⊂ O(3) the subgroup leaving ξp invariant and
K ⊂ O(3) the subgroup fixing o. Then in the double fibration

O(3)/(K ∩Hp)

���������������

���������������

X = O(3)/K Ξ = O(3)/Hp

x ∈ X and ξ ∈ Ξ are incident if and only if d(x, ξ) = p. The proof is

the same as that of Proposition 1.5. We denote by ̂fp and ϕ̌p the Radon

transforms (9) for the double fibration. Then ̂fp(ξ) the integral of f over
two circles at distance p from ξ and ϕ̌p is the average of ϕ̌(x) over the great

circles ξ that have distance p from x. (See Fig. II.2.) We need ̂fp only for

p = 0 and put ̂f = ̂f0. Note that ( ̂f)∨p (x) is the average of the integrals of f
over the great circles ξ at distance p from x (see Figure II.2). As a special
case of Theorem 1.22, Chapter III, we have the following inversion.

Theorem 4.1. The Funk transform f → ̂f is (for f even) inverted by

(30) f(x) =
1

2π

{

d

du

u
∫

0

( ̂f)∨cos−1(v)(x)v(u
2 − v2)−

1
2 dv

}

u=1

.
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o

x

FIGURE II.2.

C

C ′

FIGURE II.3.

We shall see later that this formula can also be written

(31) f(x) =

∫

Ex

f(w) dw − 1

2π

π
2

∫

0

d

dp

(

( ̂f)∨p (x)
) dp

sin p
,

where dw is the normalized measure on the equator Ex corresponding to
x. In this form the formula holds in all dimensions.

Also Theorem 1.26, Ch. III shows that if f is even and if all its derivatives
vanish on the equator then f vanishes outside the “arctic zones” C and C′ if
and only if ̂f(ξ) = 0 for all great circles ξ disjoint from C and C′ (Fig. II.3).

The Hyperbolic Plane H2

We now introduce the hyperbolic plane. This formulation fits well into
Klein’s Erlanger Program under which geometric properties of a space
should be understood in terms of a suitable transformation group of the
space.

Theorem 4.2. On the unit disk D : |z| < 1 there exists a Riemannian
metric g which is invariant under all conformal transformations of D. Also
g is unique up to a constant factor.

For this consider a point a ∈ D. The mapping ϕ : z → a−z
1−āz is a conformal

transformation of D and ϕ(a) = 0. The invariance of g requires

ga(u, u) = g0(dϕ(u), dϕ(u))

for each u ∈ Da (the tangent space to D at a) dϕ denoting the differential
of ϕ. Since g0 is invariant under rotations around 0, g0(z, z) = c|z|2, where
c is a constant. Here z ∈ D0 (= C). Let t→ z(t) be a curve with z(0) = a,
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z′(0) = u ∈ C. Then dϕ(u) is the tangent vector

{

d

dt
ϕ(z(t))

}

t=0

=

(

dϕ

dz

)

a

(

dz

dt

)

0

=

{ |a|2 − 1

(1− āz)2
}

z=a

u,

so

ga(u, u) = c
1

(1− |a|2)2 |u|
2 ,

and the proof shows that g is indeed invariant.
Thus we take the hyperbolic plane H2 as the diskD with the Riemannian

structure

(32) ds2 =
|dz|2

(1 − |z|2)2 .

This remarkable object enters into several fields in mathematics. In par-
ticular, it offers at least two interesting cases of Radon transforms. The
Laplace-Beltrami operator for (32) is given by

L = (1− x2 − y2)2
(

∂2

∂x2
+

∂2

∂y2

)

.

The group G = SU(1, 1) of matrices

{(

a

b

b

a

)

: |a|2 − |b|2 = 1

}

acts transitively on the unit disk by

(33)

(

a

b

b

a

)

· z =
az + b

bz + a

and leaves the metric (32) invariant. The length of a curve γ(t) (α ≤ t≤ β)
is defined by

(34) L(γ) =

β
∫

α

(〈γ′(t), γ′(t)〉γ(t))
1/2 dt .

In particular take γ(t) = (x(t), y(t)) such that γ(α) = 0, γ(β) = x (0 < x <
1), and let γ0(τ) = τx, 0 ≤ τ ≤ 1, so γ and γ0 have the same endpoints.
Then

L(γ) ≥
β

∫

α

|x′(t)|
1− x(t)2 dt ≥

β
∫

α

x′(t)

1− x(t)2 dt ,
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which by τ = x(t)/x, dτ/dt = x′(t)/x becomes

1
∫

0

x

1− τ2x2
dτ = L(γ0) .

Thus L(γ) ≥ L(γ0) so γ0 is a geodesic and the distance d satisfies

(35) d(o, x) =

1
∫

0

|x|
1− t2x2

dt = 1
2 log

1 + |x|
1− |x| .

Since G acts conformally on D the geodesics in H2 are the circular arcs in
|z| < 1 perpendicular to the boundary |z| = 1.

We consider now the following subgroups of G where sh t = sinh t etc.:

K = {kθ =

(

eiθ 0
0 e−iθ

)

: 0 ≤ θ < 2π}

M = {k0, kπ} , M ′ = {k0, kπ , k−π
2
, kπ

2
}

A = {at =

(

ch t sh t
sh t ch t

)

: t ∈ R},

N = {nx =

(

1 + ix, −ix
ix, 1− ix

)

: x ∈ R}

Γ = CSL(2,Z)C−1 ,

where C is the transformation w → (w − i)/(w + i) mapping the upper
half-plane onto the unit disk.

The orbits of K are the circles around 0. To identify the orbit A · z we
use this simple argument by Reid Barton:

at · z =
cht z + sh t

sh t z + cht
=

z + th t

th t z + 1
.

Under the map w → z+w
zw+1 (w ∈ C) lines go into circles and lines. Taking

w = th t we see that A · z is the circular arc through −1, z and 1. Barton’s
argument also gives the orbit nx · t (x ∈ R) as the image of iR under the
map

w → w(t− 1) + t

w(t− 1) + 1
.

They are circles tangential to |z| = 1 at z = 1. Clearly NA · 0 is the whole
disk D so G = NAK (and also G = KAN).

B. The X-ray Transform in H2

The (unoriented) geodesics for the metric (32) were mentioned above.
Clearly the group G permutes these geodesics transitively (Fig. II.4). Let
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Ξ be the set of all these geodesics. Let o denote the origin in H2 and ξo the
horizontal geodesic through o. Then

(36)
X = G/K , Ξ = G/M ′A .

We can also fix a geodesic
ξp at distance p from o and
write
(37)
X = G/K , Ξ = G/Hp ,

where Hp is the subgroup
of G leaving ξp stable.
Then for the homogeneous
spaces (37), x and ξ are
incident if and only if
d(x, ξ) = p. The transform

geodesics
in D

FIGURE II.4.

f → ̂f is inverted by means of the dual transform ϕ → ϕ̌p for (37). The
inversion below is a special case of Theorem 1.11, Chapter III, and is the
analog of (30). Observe also that the metric ds is renormalized by the factor
2 (so curvature is −1).

Theorem 4.3. The X-ray transform in H2 with the metric

ds2 =
4|dz|2

(1− |z|2)2
is inverted by

(38) f(z) = −
⎧

⎨

⎩

d

dr

∞
∫

r

(t2 − r2)− 1
2 t( ̂f)∨s(t)(z) dt

⎫

⎬

⎭

r=1

,

where s(t) = cosh−1(t).

Another version of this formula is

(39) f(z) = − 1

π

∞
∫

0

d

dp

(

( ̂f)∨p (z)
) dp

sinh p

and in this form it is valid in all dimensions (Theorem 1.12, Ch. III).
One more inversion formula is

(40) f = − 1

4π
LS(( ̂f)∨ ) ,

where S is the operator of convolution on H 2 with the function
x→ coth(d(x, o)) − 1, (Theorem 1.16, Chapter III).
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C. The Horocycles in H2

Consider a family of geodesics with the same limit point on the boundary
B. The horocycles in H2 are by definition the orthogonal trajectories of
such families of geodesics. Thus the horocycles are the circles tangential to
|z| = 1 from the inside (Fig. II.5).

One such horocycle is
ξ0 = N · o, the orbit of
the origin o under the
action of N . Now we
take H2 with the metric
(32). Since at · ξ is the
horocycle with diameter
(tanh t, 1) G acts tran-
sitively on the set Ξ of
horocycles. Since G =
KAN it is easy to see
that MN is the sub-
group leaving ξo invari-
ant. Thus we have here
(41)
X = G/K , Ξ = G/MN .

geodesics
and horocycles
in D

FIGURE II.5.

Furthermore each horocycle has the form ξ = kat · ξ0 where kM ∈ K/M
and t ∈ R are unique. Thus Ξ ∼ K/M ×A, which is also evident from the
figure.

We observe now that the maps

ψ : t→ at · o , ϕ : x→ nx · o
of R onto γ0 and ξ0, respectively, are isometries. The first statement follows
from (35) because

d(o, at · o) = d(o, tanh t) = t .

For the second we note that

ϕ(x) = x(x + i)−1 , ϕ′(x) = i(x+ i)−2

so
〈ϕ′(x), ϕ′(x)〉ϕ(x) = (x2 + 1)−2(1− |x(x + i)−1|2)−2 = 1 .

Thus we give A and N the Haar measures d(at) = dt and d(nx) = dx.
Geometrically, the Radon transform on X relative to the horocycles is

defined by

(42) ̂f(ξ) =

∫

ξ

f(x) dm(x) ,
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where dm is the measure on ξ induced by (32). Because of our remarks
about ϕ, (42) becomes

(43) ̂f(g · ξ0) =

∫

N

f(gn · o) dn ,

so the geometric definition (42) coincides with the group-theoretic one in
(9). The dual transform is given by

(44) ϕ̌(g · o) =

∫

K

ϕ(gk · ξo) dk , (dk = dθ/2π) .

In order to invert the transform f → ̂f we introduce the non-Euclidean
analog of the operator Λ in Chapter I, §3. Let T be the distribution on R
given by

(45) Tϕ = 1
2

∫

R

(sh t)−1ϕ(t) dt , ϕ ∈ D(R) ,

considered as the Cauchy principal value, and put T ′ = dT/dt. Let Λ be
the operator on D(Ξ) given by

(46) (Λϕ)(kat · ξ0) =

∫

R

ϕ(kat−s · ξ0)e−s dT ′(s) .

Theorem 4.4. The Radon transform f → ̂f for horocycles in H2 is in-
verted by

(47) f =
1

π
(Λ ̂f)∨ , f ∈ D(H2) .

We begin with a simple lemma.

Lemma 4.5. Let τ be a distribution on R. Then the operator τ̃ on D(Ξ)
given by the convolution

(τ̃ϕ)(kat · ξ0) =

∫

R

ϕ(kat−s · ξ0) dτ(s)

is invariant under the action of G.

Proof. To understand the action of g ∈ G on Ξ ∼ (K/M) × A we write
gk = k′at′n

′. Since each a ∈ A normalizes N we have

gkat · ξ0 = gkatN · o = k′at′n
′atN · o = k′at+t′ · ξ0 .

Thus the action of g on Ξ � (K/M) × A induces this fixed translation
at → at+t′ on A. This translation commutes with the convolution by τ , so
the lemma follows.
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Since the operators Λ, ̂, ∨ in (47) are all G-invariant, it suffices to prove
the formula at the origin o. We first consider the case when f isK-invariant,
i.e., f(k · z) ≡ f(z). Then by (43),

(48) ̂f(at · ξ0) =

∫

R

f(atnx · o) dx .

Because of (35) we have

(49) |z| = tanh d(o, z) , cosh2 d(o, z) = (1 − |z|2)−1 .

Since

atnx · o = (sh t− ix et)/(ch t− ix et)
(49) shows that the distance s = d(o, atnx · o) satisfies

(50) ch2s = ch2t+ x2e2t .

Thus defining F on [1,∞) by

(51) F (ch2s) = f(tanh s) ,

we have

F ′(ch2s) = f ′(tanh s)(2sh s ch3s)−1

so, since f ′(0) = 0, limu→1 F
′(u) exists. The transform (48) now becomes

(with xet = y)

(52) et ̂f(at · ξ0) =

∫

R

F (ch2t+ y2) dy .

We put

ϕ(u) =

∫

R

F (u+ y2) dy

and invert this as follows:
∫

R

ϕ′(u+ z2) dz =

∫

R2

F ′(u + y2 + z2) dy dz

= 2π

∞
∫

0

F ′(u+ r2)r dr = π

∞
∫

0

F ′(u+ ρ) dρ ,

so

−πF (u) =

∫

R

ϕ′(u+ z2) dz .
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In particular,

f(o) = − 1

π

∫

R

ϕ′(1 + z2) dz = − 1

π

∫

R

ϕ′(ch2τ)chτ dτ ,

= − 1

π

∫

R

∫

R

F ′(ch2t+ y2) dy ch t dt ,

so

f(o) = − 1

2π

∫

R

d

dt
(et ̂f(at · ξ0)) dt

sh t
.

Since (et ̂f)(at · ξ0) is even (cf. (52)), its derivative vanishes at t = 0, so the
integral is well defined. With T as in (45), the last formula can be written

(53) f(o) =
1

π
T ′
t(e

t
̂f(at · ξ0)) ,

the prime indicating derivative. If f is not necessarily K-invariant we use
(53) on the average

f �(z) =

∫

K

f(k · z) dk =
1

2π

2π
∫

0

f(kθ · z) dθ .

Since f �(o) = f(o), (53) implies

(54) f(o) =
1

π

∫

R

[et(f �)b(at · ξ0)] dT ′(t) .

This can be written as the convolution at t = 0 of (f �)b(at · ξ0) with the
image of the distribution etT ′

t under t→ −t. Since T ′ is even the right hand

side of (54) is the convolution at t = 0 of ̂f � with e−tT ′
t . Thus by (46),

f(o) =
1

π
(Λ ̂f �)(ξ0) .

Since Λ and ̂ commute with the K action this implies

f(o) =
1

π

∫

K

(Λ ̂f)(k · ξ0) =
1

π
(Λ ̂f)∨(o)

and this proves the theorem.
Theorem 4.4 is of course the exact analog to Theorem 3.6 in Chapter I,

although we have not specified the decay conditions for f needed in gener-
alizing Theorem 4.4.
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D. The Poisson Integral as a Radon Transform

Here we preserve the notation introduced for the hyperbolic plane H2. Now
we consider the homogeneous spaces

(55) X = G/MAN , Ξ = G/K .

Then Ξ is the disk D : |z| < 1. On the other hand, X is identified with the
boundary B : |z| = 1, because when G acts on B, MAN is the subgroup
fixing the point z = 1. Since G = KAN , each coset gMAN intersects eK.
Thus each x ∈ X is incident to each ξ ∈ Ξ. Our abstract Radon transform
(9) now takes the form

̂f(gK) =

∫

K/M

f(gkMAN) dkM =

∫

B

f(g · b) db ,(56)

=

∫

B

f(b)
d(g−1 · b)

db
db .

Writing g−1 in the form

g−1 : ζ → ζ − z
−zζ + 1

, g−1 · eiθ = eiϕ ,

we have

eiϕ =
eiθ − z
−zeiθ + 1

,
dϕ

dθ
=

1− |z|2
|z − eiθ| ,

and this last expression is the classical Poisson kernel. Since gK = z, (56)
becomes the classical Poisson integral

(57) ̂f(z) =

∫

B

f(b)
1− |z|2
|z − b|2 db .

Theorem 4.6. The Radon transform f → ̂f for the homogeneous spaces
(55) is the classical Poisson integral (57). The inversion is given by the
classical Schwarz theorem

(58) f(b) = lim
z→b

̂f(z) , f ∈ C(B) ,

solving the Dirichlet problem for the disk.

We repeat the geometric proof of (58) from our booklet [1981] since it
seems little known and is considerably shorter than the customary solution
in textbooks of the Dirichlet problem for the disk. In (58) it suffices to
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consider the case b = 1. Because of (56),

̂f(tanh t) = ̂f(at · 0) =
1

2π

2π
∫

0

f(at · eiθ) dθ

=
1

2π

2π
∫

0

f

(

eiθ + tanh t

tanh t eiθ + 1

)

dθ .

Letting t→ +∞, (58) follows by the dominated convergence theorem.

The range question A for f → ̂f is also answered by classical results
for the Poisson integral; for example, the classical characterization of the
Poisson integrals of bounded functions now takes the form

(59) L∞(B)b= {ϕ ∈ L∞(Ξ) : Lϕ = 0} .

The range characterization (59) is of course quite analogous to the range
characterization for the X-ray transform described in Theorem 6.9, Chap-
ter I. Both are realizations of the general expectations at the end of §2 that
when dimX < dim Ξ the range of the transform f → ̂f should be given
as the kernel of some differential operators. The analogy between (59) and
Theorem 6.9 is even closer if we recall Gonzalez’ theorem [1990b] that if we
view the X-ray transform as a Radon transform between two homogeneous
spaces of M(3) (see next example) then the range (91) in Theorem 6.9,
Ch. I, can be described as the null space of a differential operator which is
invariant under M(3). Furthermore, the dual transform ϕ→ ϕ̌ maps E(Ξ)
onto E(X). (See Corollary 4.8 below.)

Furthermore, John’s mean value theorem for the X-ray transform (Corol-
lary 6.12, Chapter I) now becomes the exact analog of Gauss’ mean-value
theorem for harmonic functions.

From a non-Euclidean point of view, Godement’s mean-value theorem
(Ch. VI, §1) is even closer analog to John’s theorem. Because of the spe-
cial form of the Laplace–Beltrami operator in H2 non-Euclidean harmonic
functions are the same as the usual ones (this fails for Hn n > 2). Also
non-Euclidean circles are Euclidean circles (because the map (33) sends
circles into circles). However, the mean-value theorem is different, namely,

u(z) =

∫

S

u(ζ) dμ(ζ)

for a harmonic function u, z being the non-Euclidean center of the circle
S and μ being the normalized non-Euclidean arc length measure on X ,
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according to (32). However, this follows readily from the Gauss’ mean-value
theorem using a conformal map of D.

What is the dual transform ϕ → ϕ̌ for the pair (55)? The invariant
measure on MAN/M = AN is the functional

(60) ϕ→
∫

AN

ϕ(an · o) da dn .

The right hand side is just ϕ̌(b0) where b0 = eMAN . If g = a′n′ the
measure (58) is seen to be invariant under g. Thus it is a constant multiple
of the surface element dz = (1−x2− y2)−2 dx dy defined by (32). Since the
maps t → at · o and x → nx · o were seen to be isometries, this constant
factor is 1. Thus the measure (60) is invariant under each g ∈ G. Writing
ϕg(z) = ϕ(g · z) we know (ϕg)

∨ = ϕ̌g so

ϕ̌(g · b0) =

∫

AN

ϕg(an) da dn = ϕ̌(b0) .

Thus the dual transform ϕ→ ϕ̌ assigns to each ϕ ∈ D(Ξ) its integral over
the disk.

Table II.1 summarizes the various results mentioned above about the
Poisson integral and the X-ray transform. The inversion formulas and the
ranges show subtle analogies as well as strong differences. The last item in
the table comes from Corollary 4.8 below for the case n = 3, d = 1.

E. The d-plane Transform

We now review briefly the d-plane transform from a group theoretic stand-
point. As in (1) we write

(61) X = Rn = M(n)/O(n) , Ξ = G(d, n) = M(n)/(M(d)×O(n−d)) ,
where M(d)×O(n−d) is the subgroup of M(n) preserving a certain d-plane
ξ0 through the origin. Since the homogeneous spaces

O(n)/O(n) ∩ (M(d)×O(n− d)) = O(n)/(O(d)×O(n− d))

and

(M(d)×O(n− d))/O(n) ∩ (M(d)×O(n− d)) = M(d)/O(d)

have unique invariant measures the group-theoretic transforms (9) reduce
to the transforms (57), (58) in Chapter I. The range of the d-plane trans-
form is described by Theorem 6.3 and the equivalent Theorem 6.5 in Chap-
ter I. It was shown by Richter [1986a] that the differential operators in
Theorem 6.5 could be replaced by M(n)-induced second order differential
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Poisson Integral X-ray Transform

Coset X = SU(1, 1)/MAN X = M(3)/O(3)
spaces Ξ = SU(1, 1)/K Ξ = M(3)/(M(1)×O(2))

f → ̂f ̂f(z) =
∫

B f(b)1−|z|2

|z−b|2 db
̂f(�) =

∫

� f(p) dm(p)

ϕ→ ϕ̌ ϕ̌(x) =
∫

Ξ ϕ(ξ) dξ ϕ̌(x) = average of ϕ
over set of � through x

Inversion f(b) = limz→b
̂f(z) f = 1

π (−L)1/2(( ̂f)∨)

Range of L∞(X)b= D(X)b=

f → ̂f {ϕ ∈ L∞(Ξ) : Lϕ = 0} {ϕ ∈ D(Ξ) : Λ(|ξ − η|−1ϕ) = 0}

Range Gauss’ mean Mean value property for
characteri- value theorem hyperboloids of revolution
zation

Range of E(Ξ)∨ = C E(Ξ)∨ = E(X)

ϕ→ ϕ̌

TABLE II.1. Analogies between the Poisson Integral and the X-ray Transform.

operators and then Gonzalez [1990b] showed that the whole system could
be replaced by a single fourth order M(n)-invariant differential operator
on Ξ.

Writing (61) for simplicity in the form

(62) X = G/K , Ξ = G/H

we shall now discuss the range question for the dual transform ϕ → ϕ̌ by
invoking the d-plane transform on E ′(X).

Theorem 4.7. Let N denote the kernel of the dual transform on E(Ξ).

Then the range of S → ̂S on E ′(X) is given by

E ′(X)b= {Σ ∈ E ′(Ξ) : Σ(N ) = 0} .

The inclusion ⊂ is clear from the definitions (14),(15) and Proposi-
tion 2.5. The converse is proved by the author in [1983a] and [1994b],
Ch. I, §2 for d = n− 1; the proof is also valid for general d.

For Fréchet spaces E and F one has the following classical result. A
continuous mapping α : E → F is surjective if the transpose tα : F ′ → E′

is injective and has a closed image. Taking E = E(Ξ), F = E(X), α as
the dual transform ϕ → ϕ̌, the transpose tα is the Radon transform on
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E ′(X). By Theorem 4.7, tα does have a closed image and by Theorem 5.5,
Ch. I (extended to any d) tα is injective. Thus we have the following result
(Hertle [1984] for d = n− 1) expressing the surjectivity of α.

Corollary 4.8. Every f ∈ E(Rn) is the dual transform f = ϕ̌ of a smooth
d-plane function ϕ.

F. Grassmann Manifolds

We consider now the (affine) Grassmann manifolds G(p, n) and G(q, n)
where p + q = n − 1. If p = 0 we have the original case of points and
hyperplanes. Both are homogeneous spaces of the group M(n) and we
represent them accordingly as coset spaces

(63) X = M(n)/Hp , Ξ = M(n)/Hq .

Here we take Hp as the isotropy group of a p-plane x0 through the origin
0 ∈ Rn, Hq as the isotropy group of a q-plane ξ0 through 0, perpendicular
to x0. Then

Hp = M(p)×O(n− p) , Hq = M(q)×O(n− q) .
Also

Hq · x0 = {x ∈ X : x ⊥ ξ0, x ∩ ξ0 �= ∅} ,
the set of p-planes intersecting ξ0 orthogonally. It is then easy to see that

x is incident to ξ ⇔ x ⊥ ξ , x ∩ ξ �= ∅ .
Consider as in Chapter I, §6 the mapping

π : G(p, n)→ Gp,n

given by parallel translating a p-plane to one such through the origin. If
σ ∈ Gp,n, the fiber F = π−1(σ) is naturally identified with the Euclidean
space σ⊥. Consider the linear operator �p on E(G(p, n)) given by

(64) (�pf)|F = LF (f |F ) .

Here LF is the Laplacian on F and bar denotes restriction. Then one can
prove that �p is a differential operator on G(p, n) which is invariant under

the action of M(n). Let f → ̂f , ϕ → ϕ̌ be the Radon transform and its

dual corresponding to the pair (61). Then ̂f(ξ) represents the integral of
f over all p-planes x intersecting ξ under a right angle. For n odd this is
inverted as follows (Gonzalez [1984, 1987]).

Theorem 4.9. Let p, q ∈ Z+ such that p + q + 1 = n is odd. Then the
transform f → ̂f from G(p, n) to G(q, n) is inverted by the formula

Cp,qf = ((�q)
(n−1)/2

̂f)∨ , f ∈ D(G(p, n))

where Cp,q is a constant.

If p = 0 this reduces to Theorem 3.6, Ch. I.
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G. Half-lines in a Half-plane

In this example X denotes the half-plane {(a, b) ∈ R2 : a > 0} viewed as
a subset of the plane {(a, b, 1) ∈ R3}. The group G of matrices

(α, β, γ) =

⎛

⎝

α 0 0
β 1 γ
0 0 1

⎞

⎠ ∈ GL(3,R) , α > 0

acts transitively on X with the action

(α, β, γ) � (a, b) = (αa, βa + b+ γ) .

This is the restriction of the action of GL(3,R) on R3. The isotropy group
of the point x0 = (1, 0) is the group

K = {(1, β,−β) : β ∈ R} .

Let Ξ denote the set of half-lines in X which end on the boundary ∂X =
0×R. These lines are given by

ξv,w = {(t, v + tw) : t > 0}

for arbitrary v, w ∈ R. Thus Ξ can be identified with R ×R. The action
of G on X induces a transitive action of G on Ξ which is given by

(α, β, γ)♦(v, w) = (v + γ,
w + β

α
) .

(Here we have for simplicity written (v, w) instead of ξv,w .) The isotropy
group of the point ξ(0,0) (the x-axis) is

H = {(α, 0, 0) : α > 0} = R×
+ ,

the multiplicative group of the positive real numbers. Thus we have the
identifications

(65) X = G/K , Ξ = G/H .

The group K ∩H is now trivial so the Radon transform and its dual for
the double fibration in (63) are defined by

̂f(gH) =

∫

H

f(ghK) dh ,(66)

ϕ̌(gK) = χ(g)

∫

K

ϕ(gkH) dk ,(67)
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where χ is the homomorphism (α, β , γ)→ α−1 of G onto R×
+. The reason

for the presence of χ is that we wish Proposition 2.2 to remain valid even
if G is not unimodular. In ( 66) and (67) we have the Haar measures

(68) dk(1,β−β) = dβ , dh(α,0,0) = dα/α .

Also, if g = (α, β, γ), h = (a, 0, 0), k = (1, b,−b) then

gH = (γ, β/α) , ghK = (αa, βa+ γ)

gK = (α, β + γ) , gkH = (−b+ γ, b+βα )

so (66)–(67) become

̂f(γ, β/α) =

∫

R+

f(αa, βa+ γ)
da

a

ϕ̌(α, β + γ) = α−1

∫

R

ϕ(−b+ γ, b+βα ) db .

Changing variables these can be written

̂f(v, w) =

∫

R+

f(a, v + aw)
da

a
,(69)

ϕ̌(a, b) =

∫

R

ϕ(b− as, s) ds a > 0 .(70)

Note that in (69) the integration takes place over all points on the line ξv,w
and in (70) the integration takes place over the set of lines ξb−as,s all of
which pass through the point (a, b). This is an a posteriori verification of
the fact that our incidence for the pair (65) amounts to x ∈ ξ.

From (69)–(70) we see that f → ̂f, ϕ → ϕ̌ are adjoint relative to the
measures da

a db and dv dw:

(71)

∫

R

∫

R
×
+

f(a, b)ϕ̌(a, b)
da

a
db =

∫

R

∫

R

̂f(v, w)ϕ(v, w) dv dw .

The proof is a routine computation.
We recall (Chapter VII) that (−L)1/2 is defined on the space of rapidly

decreasing functions on R by

(72) ((−L)1/2ψ)∼ (τ) = |τ | ˜ψ(τ)

and we define Λ on S(Ξ)(= S(R2)) by having (−L)1/2 only act on the
second variable:

(73) (Λϕ)(v, w) = ((−L)1/2ϕ(v, ·))(w) .
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Viewing (−L)1/2 as the Riesz potential I−1 on R (Chapter VII, §6) it is
easy to see that if ϕc(v, w) = ϕ(v, wc ) then

(74) Λϕc = |c|−1(Λϕ)c .

The Radon transform (66) is now inverted by the following theorem.

Theorem 4.10. Let f ∈ D(X). Then

f =
1

2π
(Λ ̂f)∨ .

Proof. In order to use the Fourier transform F → ˜F on R2 and on R we
need functions defined on all of R2. Thus we define

f∗(a, b) =

{

1
af( 1

a ,
−b
a ) a > 0 ,

0 a ≤ 0 .

Then

f(a, b) =
1

a
f∗

(

1

a
, − b

a

)

= a−1(2π)−2

∫∫

˜f∗(ξ, η)ei(
ξ
a− bη

a ) dξ dη

= (2π)−2

∫∫

˜f∗(aξ + bη, η)eiξ dξ dη

= a(2π)−2

∫∫

|ξ|˜f∗((a+ abη)ξ, aηξ)eiξ dξ dη .

Next we express the Fourier transform in terms of the Radon transform.
We have

˜f∗((a+ abη)ξ, aηξ) =

∫∫

f∗(x, y)e−ix(a+abη)ξe−iyaηξ dx dy

=

∫

R

∫

x≥0

1

x
f

(

1

x
, − y

x

)

e−ix(a+abη)ξe−iyaηξ dx dy

=

∫

R

∫

x≥0

f

(

1

x
, b+

1

η
+
z

x

)

eizaηξ
dx

x
dz .

This last expression is
∫

R

̂f(b+ η−1, z)eizaηξ dz = ( ̂f)∼(b+ η−1,−aηξ) ,

where ∼ denotes the 1-dimensional Fourier transform (in the second vari-
able). Thus

f(a, b) = a(2π)−2

∫∫

|ξ|( ̂f)∼(b+ η−1,−aηξ)eiξ dξ dη .
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However ˜F (cξ) = |c|−1(Fc)
∼(ξ), so by (74)

f(a, b) = a(2π)−2

∫∫

|ξ|(( ̂f )aη)
∼(b+ η−1,−ξ)eiξ dξ|aη|−1 dη

= (2π)−1

∫

Λ(( ̂f)aη)(b+ η−1,−1)|η|−1 dη

= (2π)−1

∫

|aη|−1(Λ ̂f)aη(b+ η−1,−1)|η|−1 dη

= a−1(2π)−1

∫

(Λ ̂f)(b+ η−1,−(aη)−1)η−2 dη ,

so

f(a, b) = (2π)−1

∫

R

(Λ ̂f)(b− av, v) dv

= (2π)−1(Λ ̂f)∨(a, b) .

proving the theorem.

Remark 4.11. It is of interest to compare this theorem with Theorem 3.8,
Ch. I. If f ∈ D(X) is extended to all of R2 by defining it 0 in the left
half plane then Theorem 3.8 does give a formula expressing f in terms of
its integrals over half-lines in a strikingly similar fashion. Note however
that while the operators f → ̂f, ϕ → ϕ̌ are in the two cases defined by
integration over the same sets (points on a half-line, half-lines through a
point) the measures in the two cases are different. Thus it is remarkable
that the inversion formulas look exactly the same.

H. Theta Series and Cusp Forms

Let G denote the group SL(2,R) of 2× 2 matrices of determinant one and

Γ the modular group SL(2,Z). Let N denote the unipotent group (
1 n
0 1

)

where n ∈ R and consider the homogeneous spaces

(75) X = G/N , Ξ = G/Γ .

Under the usual action of G on R2, N is the isotropy subgroup of (1, 0) so
X can be identified with R2 − (0), whereas Ξ is of course 3-dimensional.

In number theory one is interested in decomposing the space L2(G/Γ)
into G-invariant irreducible subspaces. We now give a rough description of
this by means of the transforms f → ̂f and ϕ→ ϕ̌.

As customary we put Γ∞ = Γ∩N ; our transforms (9) then take the form

̂f(gΓ) =
∑

Γ/Γ∞

f(gγN) , ϕ̌(gN) =

∫

N/Γ∞

ϕ(gnΓ) dnΓ∞ .
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Since N/Γ∞ is the circle group, ϕ̌(gN) is just the constant term in the
Fourier expansion of the function nΓ∞ → ϕ(gnΓ). The null space L2

d(G/Γ)
in L2(G/Γ) of the operator ϕ → ϕ̌ is called the space of cusp forms

and the series for ̂f is called theta series. According to Prop. 2.2 they
constitute the orthogonal complement of the image Cc(X)b.

We have now the G-invariant decomposition

(76) L2(G/Γ) = L2
c(G/Γ)⊕ L2

d(G/Γ) ,

where (− denoting closure)

(77) L2
c(G/Γ) = (Cc(X)b)−

and as mentioned above,

(78) L2
d(G/Γ) = (Cc(X)b)⊥ .

It is known (cf. Selberg [1962], Godement [1966]) that the representation
of G on L2

c(G/Γ) is the continuous direct sum of the irreducible repre-
sentations of G from the principal series whereas the representation of G
on L2

d(G/Γ) is the discrete direct sum of irreducible representations each
occurring with finite multiplicity.

I. The Plane-to-Line Transform in R3. The Range

Now we consider the set G(2, 3) of planes in R3 and the set G(1, 3) of
lines. The group G = M+(3) of orientation preserving isometries of R3

acts transitively on both G(2, 3) and G(1, 3). The group M+(3) can be
viewed as the group of 4× 4 matrices

⎛

⎜

⎜

⎝

x1

SO(3) x2

x3

1

⎞

⎟

⎟

⎠

,

whose Lie algebra g has basis

Ei = Ei4 (1 ≤ i ≤ 3) , Xij = Eij − Eji , 1 ≤ i ≤ j ≤ 3 .

We have bracket relations

[Ei, Xjk] = 0 if i �= j, k , [Ei, Xij ] = Ej − Ei ,(79)

[Xij , Xk�] = −δikXj� + δjkXi� + δi�Xjk − δj�Xik .(80)

We represent G(2, 3) and G(1, 3) as coset spaces

(81) G(2, 3) = G/H , G(1, 3) = G/K ,
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where

H = stability of group of τ0 (x1, x2-plane),

K = stability group of σ0 (x1-axis).

We have G = SO(3)R3, H = SO3(2)R2, K = SO1(2) ×R the first two
being semi-direct products. The subscripts indicate fixing of the x3-axis and
x1-axis, respectively. The intersection L = H ∩ K = R (the translations
along the x1-axis).

The elements τ0 = eH and σ0 = eK are incident for the pair G/H , G/K
and σ0 ⊂ τ0. Since the inclusion notion is preserved by G we see that

τ = γH and σ = gK are incident ⇔ σ ⊂ τ .
In the double fibration

G/L = {(σ, τ)|σ ⊂ τ}

�����������������

�����������������

G(2, 3) = G/H G/K = G(1, 3)

(82)

we see that the transform ϕ→ ϕ̌ in (9) (Chapter II,§2) is the plane-to-line
transform which sends a function on G(2, 3) into a function on lines:

(83) ϕ̌(σ) =

∫

τ�σ

ϕ(τ) dμ(τ) ,

the measure dμ being the normalized measure on the circle.
For the study of the range of (83) it turns out to be simpler to replace

G/L by another homogeneous space of G, namely the space of unit vectors
ω ∈ S2 with an initial point x ∈ R3. We denote this pair by ωx. The action
of G on this space S2 × R3 is the obvious geometric action of (u, y) ∈
SO(3)R3 on ωx:

(84) (u, y) · ωx = (u · ω)(u·x+y) .

The subgroup fixing the North Pole ω0 on S2 equals SO3(2) so S2 ×R3 =
G/SO(2). Instead of (82) we consider

S2 ×R3

π′′

������
������

π′

		
						

				

G(2, 3) G(1, 3)

the maps π′ and π′′ being given by

π′(ωx) = Rω + x (line through x in direction ω),

π′′(ωx) = ω⊥ + x (plane through x ⊥ ω).
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The geometric nature of the action (84) shows that π′ and π′′ commute
with the action of G.

For analysis on S2 × R3 it will be convenient to write ωx as the pair
(ω, x). Note that

(85) (π′)−1(Rω + x) = {(ω, y) : y − x ∈ Rω}

or equivalently, the set of translates of ω along the line x+ Rω. Also

(86) (π′′)−1(ω⊥ + x) = {(ω, z) : x− z ∈ ω⊥} ,

the set of translates of ω with initial point on the plane through x perpen-
dicular to ω.

Let �x denote the gradient (∂/∂x1, ∂/∂x2, ∂/∂x3). Let F ∈ E(S2 ×R3).
Then if θ is a unit vector and 〈 , 〉 the standard inner product on R3,

(87)
d

dt
F (ω, x+ tθ) = 〈(�xF (ω, x+ tθ)), θ〉 .

Thus for Ψ ∈ E(S2 ×R3),

(88) Ψ(ω, x+ tω) = Ψ(ω, x) (t ∈ R)⇔ (�xΨ)(ω, x) ⊥ ω .

Lemma 4.12. A function Ψ ∈ E(S2 ×R3) has the form Ψ = ψ ◦ π′ with
ψ ∈ E(G(1, 3)) if and only if

(89) Ψ(ω, x) = Ψ(−ω, x) , �xΨ(ω, x) ⊥ ω .

Proof. Clearly, if ψ ∈ E(G(1, 3)) then Ψ has the property stated. Con-
versely, if Ψ satisfies the conditions (89) it is constant on each set (85).

Lemma 4.13. A function Φ ∈ E(S2 ×R3) has the form Φ = ϕ ◦ π′′ with
ϕ ∈ E(G(2, 3)) if and only if

(90) Φ(ω, x) = Φ(−ω, x) , �xΦ(ω, x) ∈ Rω .

Proof. If ϕ ∈ E(G(2, 3)) then (87) for F = Φ implies

d

dt
Φ(ω, x+ tθ) = 0 for each θ ∈ ω⊥

so (90) holds. Conversely, if Φ satisfies (90) then by (87) for F = Φ, Φ is
constant on each set (86).

We consider now the action of G on S2 × R3. The Lie algebra g is
so(3)+R3, where so(3) consists of the 3×3 real skew-symmetric matrices.
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For X ∈ so(3) and Ψ ∈ E(S2 ×R3) we have by Ch. VIII, (12),

(λ(X)Ψ)(ω, x) =

{

d

dt
Ψ(exp(−tX) · ω, exp(−tX) · ω)

}

t=0

=

{

d

dt
Ψ(exp(−tX) · ω, x)

}

t=0

+

{

d

dt
Ψ(ω, exp(−tX) · x)

}

t=0

so

(91) λ(X)Ψ(ω, x) = XωΨ(ω, x) +XxΨ(ω, x) ,

where Xω and Xx are tangent vectors to the circles exp(−tX) · ω and
exp(−tX) · x in S2 and R3, respectively.

For v ∈ R3 acting on S2 ×R3 we have

(92) (λ(v)Ψ)(ω, x) =

{

d

dt
Ψ(ω, x− tv)

}

t=0

= −〈�xΨ(ω, x), v〉 .

For X12 = E12 − E21 we have

exp tX12 =

⎛

⎝

cos t sin t 0
− sin t cos t 0

0 0 1

⎞

⎠ etc.

so if f ∈ E(R3)

(93) (λ(Xij)f)(x) =

{

d

dt
f(exp(−tXij) · x)

}

= xi
∂f

∂xj
− xj ∂f

∂xi
.

Given � ∈ G(1, 3) let �̌ denote the set of 2-planes in R3 containing it. If
� = π′(σ, x) then �̌ = {π′′(ω, x) : ω ∈ S2, ω ⊥ σ}, which is identified with
the great circle A(σ) = σ⊥ ∩ S2. We give �̌ the measure μ� corresponding
to the arc-length measure on A(σ). In this framework, the plane-to-line
transform (83) becomes

(94) (Rϕ)(�) =

∫

ξ∈̌�

ϕ(ξ) dμ�(ξ)

for ϕ ∈ E(G(2, 3)), � ∈ G(1, 3). Expressing this on S2 ×R3 we have with
Φ = ϕ ◦ π′′

(95) (Rϕ ◦ π′)(σ, x) =
1

2π

∫

A(σ)

Φ(ω, x) dσ(ω) ,

where dσ represents the arc-length measure on A(σ).
We consider now the basis Ei, Xjk of the Lie algebra g. For simplicity

we drop the tilde in ˜Ei and ˜Xjk.
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Lemma 4.14. (Richter.) The operator

D = E1X23 − E2X13 + E3X12

belongs to the center Z(G) of D(G).

Proof. First note by the above commutation relation that the factors in
each summand commute. Thus D commutes with Ei. The commutation
with each Xij follows from the above commutation relations (79)–(80).

Because of Propositions 1.7 and 2.3 in Ch. VIII, D induces G-invariant
operators λ(D), λ′(D) and λ′′(D) on S2×R3, G(1, 3) and G(2, 3), respec-
tively.

Lemma 4.15. (i) λ(D) = 0 on E(R3).

(ii) λ′′(D) = 0 on E(G(2, 3)).

Proof. Part (i) follows from (λ(Ei)f)(x) = −∂f/∂xi and the formula (93).
For (ii) we take ϕ ∈ E(G(2, 3)) and put Φ = ϕ ◦ π′′. Since π′′ commutes
with the G-action, we have

Φ(g · (ω, x)) = ϕ(g · π′′(ω, x))

so by (13) in Ch.VIII,

(96) λ(D)Φ = λ′′(D)ϕ ◦ π′′ .

By (91)–(92) we have

λ(D)Φ(ω, x) = (λ(E1X23 − E2X13 + E3X12))xΦ(ω, x)(97)

+
[

λ(E1)xλ(X23)ω − λ(E2)xλ(X13)ω + λ(E3)xλ(X12)ω
]

Φ(ω, x) .

By Part (i) the first of the two terms vanishes. In the second term we
exchangeEi andXjk. Recalling that �xΦ(ω, x) equals h(ω, x)ω (h a scalar)
we have

λ(Ei)xΦ(ω, x) = h(ω, x)ωi , 1 ≤ i ≤ 3 .

Since exp tX23 fixes ω1 we have λ(X23)ω1 = 0 etc. Putting this together
we deduce

λ(D)Φ(ω, x) = −ω1λ(X23)ω h(ω, x) + ω2λ(X13)ω h(ω, x)(98)

− ω3λ(X12)ω h(ω, x) .

Part (ii) will now follow from the following.
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Lemma 4.16. Let u ∈ E(S2). Let μ(Xij) denote the restriction of the
vector field λ(Xij) to the sphere. Then

(ω1 μ(X23)− ω2 μ(X13) + ω3 μ(X12))u = 0 .

Proof. For a fixed ε > 0 extend u to a smooth function ũ on the shell
S2
ε : 1 − ε < ‖x‖ < 1 + ε in R3. The group SO(3) acts on S2

ε by rotation
so by (12), Ch. VIII, the vector fields μ(Xij) extend to vector fields μ̃(Xij)
on S2

ε . But these are just the restrictions of the vector fields xi
∂
∂xj
− xj ∂

∂xi

to S2
ε . These vector fields satisfy

x1

(

x2
∂

∂x3
− x3

∂

∂x2

)

−x2

(

x1
∂

∂x3
− x3

∂

∂x1

)

+x3

(

x1
∂

∂x2
− x2

∂

∂x1

)

= 0,

so the lemma holds.

We can now state Gonzalez’s main theorem describing the range of R.

Theorem 4.17. The plane-to-line transform R maps E(G(2, 3)) onto the
kernel of D:

R
(E(G(2, 3))

)

=
{

ψ ∈ E(G(1, 3)) : λ′(D)ψ = 0
}

.

Proof. The operator R obviously commutes with the action of G. Thus by
(13) in Ch. VIII, we have for each E ⊂ D(G),

(99) R(λ′′(E)ϕ) = 0 = λ′(E)Rϕ ϕ ∈ E(G(2, 3)) .

In particular, Lemma 4.15 implies

λ′(D)(Rϕ) = 0 for ϕ ∈ E(G(2, 3)) .

For the converse assume ψ ∈ E(G(1, 3)) satisfies

λ′(D)ψ = 0 .

Put Ψ = ψ ◦ π′. Then by the analog of (96) λ(D)Ψ = 0. In analogy with
the formula (97) for λ(D)Φ (where the first term vanished) we get for each
(σ, x) ∈ S2 ×R3,
(100)
0 = λ(D)Ψ =

[

λ(E1)xλ(X23)σ−λ(E2)xλ(X13)σ+λ(E3)xλ(X12)σ
]

Ψ(σ, x) .

Now Ψ(σ, x) = Ψ(−σ, x) so by the surjectivity of the great circle trans-
form (which is contained in Theorem 2.2 in Ch. III) there exists a unique
even smooth function ω → Φx(ω) on S2 such that

(101) Ψ(σ, x) =
1

2π

∫

A(σ)

Φx(ω) dσ(ω) .
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We put Φ(ω, x) = Φx(ω). The task is now to prove that �xΦ(ω, x) is a
multiple of ω, because then by Lemma 4.13, Φ = ϕ ◦ π′′ for some ϕ ∈
E(G(1, 3)). Then we would in fact have by (95), Rϕ ◦ π′ = Ψ = ψ ◦ π′ so
Rϕ = ψ.

Applying the formula (100) above and differentiating (101) under the
integral sign, we deduce

0 =

∫

A(σ)

[

λ(X23)ωλ(E1)x −λ(X13)ωλ(E2)x +λ(X12)ω(E3)x
]

Φ(ω, x) dσ(ω) .

(102)

For x fixed the integrand is even in ω, so by injectivity of the great circle
transform, the integrand vanishes. Consider the R3-valued vector field on
S2 given by

�G(ω) = −�xΦ(ω, x) = (λ(E1)xΦ(ω, x), λ(E2)xΦ(ω, x), λ(E3)xΦ(ω, x))

= (G1(ω), G2(ω), G3(ω)) ,

where each Gi(ω) is even. By the vanishing of the integrand in (102) we
have

(103) λ(X23)G1 − λ(X13)G2 + λ(X12)G3 = 0 .

We decompose �G(ω) into tangential and normal components, respectively,
�G(ω) = �T (ω)+ �N (ω), with components Ti(ω), Ni(ω), 1 ≤ i ≤ 3. We wish to

show that �G(ω) proportional to ω, or equivalently, �T (ω) = 0. We substitute
Gi = Ti +Ni into (103) and observe that

(104) λ(X23)(N1)− λ(X13)(N2) + λ(X12)(N3) = 0 ,

because writing �N(ω) = n(ω)ω, n is an odd function on S2 and (104) equals

ω1λ(X23)n(ω)− ω2λ(X13)n(ω) + ω3λ(X12)n(ω)

+n(ω)(λ(X23)(ω1)− λ(X13)ω2 + λ(X12)(ω3)) = 0

by Lemma 4.16 and λ(Xjk)ωi = 0, (i �= j, k). Thus we have the equation

(105) λ(X23)T1 − λ(X13)T2 + λ(X12)T3 = 0 .

From Lemma 4.12 〈σ,�xΨ(σ, x)〉 = 0 and by (101) we get

0 =

∫

A(σ)

〈σ,�xΦ(ω, x) dσ(ω) = −
∫

A(σ)

〈σ, �G(ω)〉 dσω

= −
∫

A(σ)

〈σ, �T (ω)〉 dσ(ω)−
∫

A(σ)

〈σ, �N(ω)〉 dσω

= −
∫

A(σ)

〈σ, �T (ω)〉 dσω ,
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since σ ⊥ �N(ω) on A(σ). Thus �T (ω) is an even vector field on S2 satisfying
(105) and

(106)

∫

A(σ)

〈σ, �T (ω)〉 dσω = 0 .

We claim that �T (ω) = gradS2 t(ω), where grad
S2 denotes the gradient on

S2 and t is an odd function on S2. To see this, we extend T (ω) to a smooth

vector field ˜T on a shell S2
ε : 1 − ε < ‖x‖ < 1 + ε in R3 by �T (rω) = �T (ω)

for r ∈ (1 − ε, 1 + ε). Again the SO(3) action on S2
ε induces vector fields

μ̃(Xij) on S2
ε , which are just xi

∂
∂xj
− xj ∂

∂xi
. Thus (105) becomes

〈curl ˜T (x), x〉 = 0 on S2
ε .

By the classical Stokes’ theorem for S2 this implies that the line integral

∫

γ

T1 dx1 + T2 dx2 + T3 dx3 = 0

for each simple closed curve γ on S2. Let τ be the pull back of the form
∑

i Ti dxi to S2. By the Stokes’ theorem for τ on S2 we deduce dτ = 0 on
S2, i.e., τ is closed. Since S2 is simply connected, τ is exact, i.e., τ = dt,
t ∈ E(S2). (This is an elementary case of deRham’s theorem; t can be
constructed as in complex variable theory.) For any vector field Z on S2

dt(Z) = 〈grad
S2t, Z〉 so T (ω) = grad

S2t(ω). Decomposing t(ω) into odd
and even components we see that the even component is constant so we
can take t(ω) odd.

Let H(σ) denote the hemisphere on the side of A(σ) away from σ. Note
that σ located at points of A(σ) form the outward pointing normals of the

boundary A(σ) of H(σ). With �T (ω) = grad
S2t(ω) the integral (106) equals

∫

H(σ)

(LS2t)(ω) dω , σ ∈ S2 ,

by the divergence theorem on S2. Since LS2t is odd the next lemma implies
that LS2t = 0 so t is a constant, hence t ≡ 0 (because t is odd).

Lemma 4.18. Let τ denote the hemisphere transform on S2, τ(h) =
∫

H(σ)
h(ω) dω for h ∈ E(S2). If τ(h) = 0 then h is an even function.

Proof. Let Hm denote the space of degree m spherical harmonics on S2

(m = 0, 1, 2, . . .). Then SO(3) acts irreducibly on Hm. Since τ commutes
with the action of SO(3) it must (by Schur’s lemma) be a scalar operator
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cm on Hm. The value can be obtained by integrating a zonal harmonic Pm
over the hemisphere

cm = 2π

π
2

∫

0

Pm(cos θ) sin θ dθ = 2π

1
∫

0

Pm(x) dx .

According to Erdelyi et al. [1953], I p. 312, this equals

(107) cm = 4π
1
2
Γ(1 + m

2 )

Γ
(

m+1
2

)

1

m(m+ 1)
sin

mπ

2
,

which equals 2π for m = 0, is 0 for m even, and is �= 0 for m odd. Since
each h ∈ E(S2) has an expansion h =

∑∞
0 hm with hm ∈ Hm, τ(h) = 0

implies cm = 0 (so m is even) if hm �= 0. Thus h is even as claimed.

Remark. The value of cm in (107) appears in an exercise in Whittaker–
Watson [1927], p. 306, attributed to Clare, 1902.

J. Noncompact Symmetric Space and Its Family of Horocycles

This example belongs to the realm of the theory of semisimple Lie groups
G. See Chapter IX, §2 for orientation. To such a group with finite center
is associated a coset space X = G/K (a Riemannian symmetric space)
where K is a maximal compact subgroup (unique up to conjugacy). The
group G has an Iwasawa decomposition G = NAK (generalizing the one
in Example C for H2.) Here N is nilpotent and A abelian. The orbits in
X of the conjugates gNg−1 to N are called horocycles. These are closed
submanifolds of X and are permuted transitively by G. The set Ξ of those
horocycles ξ is thus a coset space of G, in fact Ξ = G/MN , where M is
the centralizer of A in K. To this pair

X = G/K , Ξ = G/MN

are associated a Radon transform f → ̂f and its dual ϕ→ ϕ̌ as in formula
(9). More explicitly,

(108) ̂f(ξ) =

∫

ξ

f(x) dm(x) , ϕ̌(x) =

∫

ξ�x

ϕ(ξ) dμ(ξ) ,

where dm is the Riemannian measure on the submanifold ξ and dμ is the
average over the (compact) set of horocycles passing through x.

Problems A, B, C, D all have solutions here (with some open questions);

there is injectivity of f → ̂f (with inversion formulas), surjectivity of ϕ→
ϕ̌, determinations of ranges and kernels of these maps, support theorems
and applications to differential equations and group representations.
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The transform f → ̂f has the following inversion

f = (Λ ̂f)∨ ,

where Λ is a G-invariant pseudo-differential operator on Ξ. In the case when
G has all Cartan subgroups conjugate one has a better formula

f = �(( ̂f)∨) ,

where � is an explicit differential operator on X .
The support theorem for f → ̂f states informally, B ⊂ X being any ball:

̂f(ξ) = 0 for ξ ∩B = ∅ ⇒ f(x) = 0 for x �∈ B .

Here f is assumed “rapidly decreasing” in a certain technical sense.
Thus the conjugacy of the Cartan subgroups corresponds to the case

of odd dimension for the Radon transform on Rn. For complete proofs of
these results, with documentation, see my book [1994b] or [2008].

Exercises and Further Results

1. The Discrete Case.

For a discrete group G, Proposition 2.2 (via diagram (4)) takes the form
(# denoting incidence):

∑

x∈X

f(x)ϕ̌(x) =
∑

(x,ξ)∈X×Ξ,x#ξ

f(x)ϕ(ξ) =
∑

ξ∈X

̂f(ξ)ϕ(ξ) .

2. Linear Codes. (Boguslavsky [2001])

Let Fq be a finite field and Fnq the n-dimensional vector space with its
natural basis. The Hamming metric is the distance d given by d(x, y) =
number of distinct coordinate positions in x and y.

A linear [n, k, d]-code C is a k-dimensional subspace of Fnk such that
d(x, y) ≥ d for all x, y ∈ C. Let PC be the projectivization of C on which
the projective group G = PGL(k − 1,Fq) acts transitively. Let � ∈ PC be
fixed and π a hyperplane containing �. Let K and H be the corresponding
isotropy groups. Then X = G/K, and Ξ = G/H satisfy Lemma 1.3 and
the transforms

̂f(ξ) =
∑

x∈ξ

f(x) , ϕ̌(x) =
∑

ξ�x

ϕ(ξ)

are well defined. They are inverted as follows. Put

s(ϕ) =
∑

ξ∈Ξ

ϕ(ξ) , σ(f) =
∑

x∈X

f(x) .
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The projective space Pm over Fq has a number of points equal to pm =
qm+1−1
q−1 . Here m = k − 1 and we consider the operators D and Δ given by

(Dϕ)(ξ) = ϕ(ξ)− qk−2 − 1

(qk−1 − 1)2
s(ϕ) , (Δf)(x) = f(x)− qk−2 − 1

(qk−1 − 1)2
σ(f) .

Then

f(x) =
1

qk−2
(D ̂f)∨(x) , ϕ(ξ) =

1

qk−2
(Δϕ̌) (̂ξ) .

3. Radon Transform on Loops. (Brylinski [1996])

Let M be a manifold and LM the free loop space in M . Fix a 1-form α
on M . Consider the functional Iα on LM given by Iα(γ) =

∫

γ
α.

With the standard C∞ structure on LM

(dIα, v)γ =

1
∫

0

dα(v(t),
•
γ(t)) dt

for v ∈ (LM)γ . Clearly Iα = 0 if and only if α is exact.

Inversion, support theorem and range description of this transform are
established in the cited reference. Actually Iα satisfies differential equations
reminiscent of John’s equations in Theorem 6.5, Ch. I.

4. Theta Series and Cusp Forms.

This concerns Ch. II, §4, Example H. For the following results see Gode-
ment [1966].

(i) In the identification G/N ≈ R2 − (0) (via gN → g
(

1
0

)

), let f ∈
D(G/N) satisfy f(x) = f(−x). Then, in the notation of Example H,

1
2 ( ̂f)∨(gN) = f(gN) +

∑

(γ)

∫

N

f(gnγN) dn ,

where
∑

(γ) denotes summation over the nontrivial double cosets ±Γ∞γΓ∞

(γ and −γ in Γ identified).

(ii) Let A =
{(

t 0
0 t−1

)

: t > 0
}

be the diagonal subgroup ofG and β(h) = t2

if h =
(

t 0
0 t−1

)

. Consider the Mellin transform

˜f(gN, 2s) =

∫

A

f(ghN)β(h)s dh

and (viewing G/N as R2 − 0) the twisted Fourier transform

f∗(x) =

∫

R2

f(y)e−2πiB(x,y) dy ,
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where B(x, y) = x2y1 − x1y2 for x = (x1, x2), y = (y1, y2). The Eisenstein
series is defined by

Ef (g, s) =
∑

γ∈Γ/Γ∞

˜f(gγN, 2s) , (convergent for Re s > 1) .

Theorem. Assuming f∗(0) = 0, the function s→ ζ(2s)Ef (g, s) extends
to an entire function on C and does not change under s→ (1−s), f → f∗.

5. Radon Transform on Minkowski Space. (Kumahara and Waka-
yama [1993], see Figure II,6)

Let X be an (n + 1)-dimensional real vector space with inner product
〈 , 〉 of signature (1, n). Let e0, e1, . . . , en be a basis such that 〈ei, ej〉 = −1
for i = j = 0 and 1 if i = j > 0 and 0 if i �= j. Then if x =

∑n
0 xiei , a

hyperplane in X is given by

n
∑

0

aixi = c , a ∈ Rn+1 , a �= 0

and c ∈ R. We put

ω0 = −a0/|〈a, a〉| 12 , ωj = aj/|〈a, a〉| 12 , j > 0 , p = c/|〈a, a〉| 12
if 〈a, a〉 �= 0 and if 〈a, a〉 = 0

ω0 = −a0/|a0| , ωj = aj/|a0| j > 0 , p = c/|a0| .
The hyperplane above is thus

〈x, ω〉 = −x0ω0 + x1ω1 + · · ·+ xnωn = p ,

written ξ(ω, p). The semidirect product M(1, n) of the translations of X
with the connected Lorentz group G = SO0(1, n) acts transitively on X
and M(1, n)/SO(1, n) ∼= X .

To indicate how the light cone 〈ω, ω〉 = 0 splits X we make the following
definitions (see Figure II,6).

X+
− = {ω ∈ X : 〈ω, ω〉 = −1 , ω0 > 0}

X−
− = {ω ∈ X : 〈ω, ω〉 = −1 , ω0 < 0}

X+ = {ω ∈ X : 〈ω, ω〉 = +1}
X+

0 = {ω ∈ X : 〈ω, ω〉 = 0 , ω0 > 0}
X−

0 = {ω ∈ X : 〈ω, ω〉 = 0 , ω0 < 0}
S± = {ω ∈ X : 〈ω, ω〉 = 0 , ω0 = ±1} .

The scalar multiples of the Xi fill up X . The group M(1, n) acts on X as
follows: If (g, z) ∈M(1, n), g ∈ G, z ∈ X then

(g, z) · x = z + g · x .
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The action on the space Ξ of hyperplanes ξ(ω, p) is

(g, z) · ξ(ω, p) = ξ(g · ω, p+ 〈z, g · ω〉) .

Then Ξ has the M(1, n) orbit decomposition

Ξ = M(1, n)ξ(e0, 0) ∪M(1, n)ξ(e1, 0) ∪M(1, n)ξ(e0 + e1, 0)

into three homogeneous spaces of M(1, n).

S+

S−

X+
−

X−
−

X+ X+

FIGURE II.6.

Minkowski space for dimension 3

Note that ξ(−ω,−p) = ξ(ω, p) so in the definition of the Radon transform
we assume ω0 > 0. The sets X+

− , X+ and X+
0 have natural G-invariant

measures dμ−(ω) and dμ+(ω) on X+
− ∪X−

− and X+, respectively; in fact

dμ± =
1

|ωi|
∏

j �=i

dωj where ωi �= 0 .

Viewing X+
− ∪X−

− ∪X+ ∪S+ ∪S− as a substitute for a “boundary” ∂X of
X we define

∫

∂X

ψ(ω) dμ(ω) =

∫

X+
−∪X−

−

ψ(ω) dμ−(ω) +

∫

X+

ψ(ω) dμ+(ω)
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for ψ ∈ Cc(X). (S+ and S− have lower dimension.) The Radon transform

f → ̂f and its dual ϕ→ ϕ̌ are now defined by

̂f(ξ) =

∫

ξ

f(x) dm(x) =

∫

〈x,ω〉=p

f(x) dm(x) = ̂f(ω, p) ,

ϕ̌(x) =

∫

ξ�x

ϕ(ξ) dσx(ξ) =

∫

∂X

ϕ(ω, 〈x, ω〉) dμ(ξ) .

Here dm is the Euclidean measure on the hyperplane ξ and a function ϕ
on Ξ is identified with an even function ϕ(ω, p) on ∂X ×R. The measure
dσx is defined by the last relation.

There are natural analogs S(X), S(Ξ) and SH(Ξ) of the spaces S(Rn),
S(Pn) and SH(Pn) defined in Ch. I, §2. The following analogs of the Rn

theorems hold.

Theorem. f → ̂f is a bijection of S(X) onto SH(Ξ).

Theorem. For f ∈ S(X),

f = (Λ ̂f)∨ ,

where

(Λϕ)(ω, p) =

⎧

⎨

⎩

1
2(2π)2

(

∂
i∂p

)n

ϕ(ω, p) n even

1
2(2π)nHp

(

∂
i∂p

)n

ϕ(ω, p) n odd
.

6. John’s Equation for the X-ray transform on R3.

According to Richter [1986b] the equation λ′(D)ψ = 0 in Gonzalez’ The-
orem 4.17 characterizes the range of the X-ray transform on R3. Relate
this to John’s equation Λψ = 0 in Theorem 6.9, Ch. I.

Bibliographical Notes

The Radon transform and its dual for a double fibration

Z = G/(K ∩H)
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X = G/K Ξ = G/H

(1)

was introduced in the author’s paper [1966a]. The results of §1–§2 are from
there and from [1994b]. The definition uses the concept of incidence for
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X = G/K and Ξ = G/H which goes back to Chern [1942]. Even when the
elements of Ξ can be viewed as subsets of X and vice versa (Lemma 1.3) it

can be essential for the inversion of f → ̂f not to restrict the incidence to
the naive one x ∈ ξ. (See for example the classical case X = S2,Ξ = set of
great circles where in Theorem 4.1 a more general incidence is essential.)
The double fibration in (1) was generalized in Gelfand, Graev and Shapiro
[1969], by relaxing the homogeneity assumption.

For the case of geodesics in constant curvature spaces (Examples A, B
in §4) see notes to Ch. III.

The proof of Theorem 4.4 (a special case of the author’s inversion for-
mula in [1964], [1965b]) makes use of a method by Godement [1957] in
another context. Another version of the inversion (47) for H2 (and Hn) is
given in Gelfand-Graev-Vilenkin [1966]. A further inversion of the horocy-
cle transform in H2 (and Hn), somewhat analogous to (38) for the X-ray
transform, is given by Berenstein and Tarabusi [1994].

The analogy suggested above between the X-ray transform and the horo-
cycle transform in H2 goes even further in H3. There the 2-dimensional
transform for totally geodesic submanifolds has the same inversion formula
as the horocycle transform (Helgason [1994b], p. 209).

For a treatment of the horocycle transform on a Riemannian symmetric
space see the author’s paper [1963] and monograph [1994b], Chapter II,
where Problems A, B, C, D in §2 are discussed in detail along with some
applications to differential equations and group representations. See also
Gelfand–Graev [1964] for a discussion and inversion for the case of complex
G. See also Quinto [1993a] and Gonzalez and Quinto [1994] for new proofs
of the support theorem.

Example G is from Hilgert’s paper [1994], where a related Fourier trans-
form theory is also established. It has a formal analogy to the Fourier
analysis on H2 developed by the author in [1965b] and [1972].

Example I is from Gonzalez’s beautiful paper [2001]. Higher dimensional
versions have been proved by Gonzalez and Kakehi [2004]. The relationship
between the operator D and John’s operator Λ in Ch. I, §6 was established
by Richter [1986b].

In conclusion we note that the determination of a function in Rn in terms
of its integrals over unit spheres (John [1955]) can be regarded as a solution
to the first half of Problem B in §2 for the double fibration (4) and (7). See
Exercise 5 in Ch. VI.
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