CHAPTER 1I
A DUALITY IN INTEGRAL GEOMETRY

81 Homogeneous Spaces in Duality

The inversion formulas in Theorems 3.1, 3.7, 3.8 and 6.2, Ch. I suggest
the general problem of determining a function on a manifold by means
of its integrals over certain submanifolds. This is essentially the title of
Radon’s paper. In order to provide a natural framework for such problems
we consider the Radon transform f — f on R™ and its dual ¢ — ¢ from
a group-theoretic point of view, motivated by the fact that the isometry
group M(n) acts transitively both on R™ and on the hyperplane space P".
Thus

(1) R" = M(n)/O(n), P"=M(n)/Zs x M(n —1),

where O(n) is the orthogonal group fixing the origin 0 € R™ and
Zo x M(n — 1) is the subgroup of M(n) leaving a certain hyperplane &
through 0 stable. (Zo consists of the identity and the reflection in this
hyperplane.)

We observe now that a point g3O(n) in the first coset space above lies
on a plane g2(Zy x M(n — 1)) in the second if and only if these cosets,
considered as subsets of M(n), have a point in common. In fact

g1:0Cg2-&% < g1-0=goh-0 for some h € Zs x M(n—1)
< g1k = goh for somek € O(n).

This leads to the following general setup.
Let G be a locally compact group, X and = two left coset spaces of G,

(2) X=G/K, Z=G/H,

where K and H are closed subgroups of G. Let L = K N H. We assume
that the subset KH C G is closed. This is automatic if one of the groups
K or H is compact.

Two elements x € X, £ € = are said to be incident if as cosets in G they
intersect. We put (see Fig. I1.1)

= {€£€E :zand ¢ incident}
= {z € X : zand ¢ incident} .

My B

Let o = {K} and { = {H} denote the origins in X and =, respectively.
If I : G — G/H denotes the natural mapping then since £y = K - £ we
have

N ' (=-d)={9cG:gH¢ KH} =G - KH.
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In particular II(G — K H) = Z — @ so since II is an open mapping, & is a
closed subset of =. This proves the following:

Lemma 1.1. Each T and each E is closed.

Using the notation A9 = gAg~! (g € G, A C G) we have the following
lemma.

Lemma 1.2. Let g,v € G, x = gK, { =~vH. Then
T is an orbit of K9, gis an orbit of H” |

and R
r=KI/L9, &€=H"/L".

Proof. By definition
(3) T={6H : SHNgK # 0} ={gkH : k€ K},

which is the orbit of the point gH under gKg~'. The subgroup fixing gH
is gKg~ ' NgHg™! = L9. Also (3) implies

'C\E/:g'i{()a é-:’)/'é-()v

where the dot - denotes the action of G on X and Z.
We often write 7(g) for the maps z — g-x, £ — ¢g- & and

1

1) = fg~t-2), STO(f) =507 )

for f a function, S a distribution.

Lemma 1.3. Consider the subgroups

Ky = {k€eK:kHUK 'HC HK},
Hxy = {h€eH:hKUh'KCKH}.

The following properties are equivalent:



81 Homogeneous Spaces in Duality 65

(a) KNH=Ky=Hg.
(b) The mapsxz — % (x € X) and § — 2(5 € E) are injective.
We think of property (a) as a kind of transversality of K and H.

Proof. Suppose x1 = g1K, 19 = g2 K and & = &3. Then by (3) g1 - 9 =
g1-Fo 50 g-Fo = o if g = g7 *go. In particular g-& C ¥ s0 g-& = k-& for
some k € K. Hence k~'g =h € H so h-Tg = T¢, that is hK -§g = K -&. As
a relation in G, this means hKH = K H. In particular hK C KH. Since
h-%y = &g implies h~!- %y = ¥y we have also h 'K C KH soby (a) h € K
which gives 1 = x».

On the other hand, suppose the map x — & is injective and suppose
h € H satisfies h 'K UhRK C KH. Then

hiK &g CK - éand h 1K & C K - &.

By Lemma 1.2, h- %y C %y and h™! - ¥y C %y. Thus h - &y = &y whence by
the assumption, h - xg = zg so h € K.
Thus we see that under the transversality assumption a) the elements &

can be viewed as the subsets E of X and the elements = as the subsets &
of Z. We say X and = are homogeneous spaces in duality.

The maps are also conveniently described by means of the following dou-
ble fibration

(4) G/L
G/K G/H

where p(gL) = gK, w(yL) = vH. In fact, by (3) we have
F=r(p'(z)) E=pr(9).

We now prove some group-theoretic properties of the incidence, supple-
menting Lemma 1.3.

Theorem 1.4. (i) We have the identification
G/L ={(z,§) € X xE : x and & incident}
via the bijection 7 : gL — (gK,gH).

(ii) The property
KHK =G
is equivalent to the property:

Any two x1,x2 € X are incident to some & € E. A similar statement
holds for HKH = G.
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(i) The property
HKNKH=KUH

is equivalent to the property:

For any two x1 # o in X there is at most one £ € = incident to both.
By symmetry, this is equivalent to the property:

For any & # & in = there is at most one © € X incident to both.

Proof. (i) The map is well-defined and injective. The surjectivity is clear
because if gK NvH # () then gk = vh and 7(gkL) = (¢K,~vH).

(ii) We can take zo = x¢. Writing x1 = gK, { = vH we have

x0,€ incident < ~yh = k (some h € H, k€ K)
x1,& incident < vhy = ¢1k1 (some hy € H, k1 € K).

Thus if xg,x; are incident to £ we have g1 = kh_lhlkfl. Conversely if
g1 = k'W'E" we put v = k'h’ and then zg, z; are incident to £ = vH.

(iii) Suppose first KHNHK = KUH. Let 1 # x2 in X. Suppose & # &2
in = are both incident to x; and xs. Let z; = ¢, K, & = v;H. Since z; is
incident to §; there exist k;; € K, h;; € H such that

(5) gikij = vihij =125 j=1,2.

Eliminating g; and 7; we obtain

(6) kyako1hythiy = hyahiokyskis .

This being in KH N HK it lies in K U H. If the left hand side is in K then
h2_11 hi1 € K, so

92K = y1ho1 K = v1hi1 K = g1 K,

contradicting xo # x1. Similarly if expression (6) is in H, then k:l_21k:1 1€ H,
so by (5) we get the contradiction

v2H = gik12H = g1ki 1 H =1 H .
Conversely, suppose KH N HK # K U H. Then there exist h1, ho, k1, ko

such that hllﬁ = k’ghg and hlkl ¢ KUH. Put Tr1 = th, 52 = kQH Then
1 # xg, &0 # &2, yet both & and & are incident to both zy and x;.
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Examples

(i) Points outside hyperplanes. We saw before that if in the coset
space representation (1) O(n) is viewed as the isotropy group of 0 and
Z>M(n—1) is viewed as the isotropy group of a hyperplane through 0 then
the abstract incidence notion is equivalent to the naive one: x € R"™ is
incident to £ € P if and only if x € £.

On the other hand we can also view ZoM(n — 1) as the isotropy group
of a hyperplane &5 at a distance § > 0 from 0. (This amounts to a different
embedding of the group ZoM(n—1) into M(n).) Then we have the following
generalization.

Proposition 1.5. The point x € R" and the hyperplane £ € P"™ are
incident if and only if distance (x,&) = 9.

Proof. Let © = gK , £ = vH where K = O(n), H = ZoM(n — 1). Then if
gK N~yH # (), we have gk = ~vh for some k € K,h € H. Now the orbit H -0
consists of the two planes &5 and &§ parallel to &s at a distance § from &;.
The relation

g-0=7h-0e~-(§UE)

together with the fact that g and ~ are isometries shows that x has distance
0 from v - & = &.

On the other hand if distance (x,§) = ¢, we have g-0 € v-(§5U&}) = vH-0,
which means gK N~vH # (.

(ii) Unit spheres. Let og be a sphere in R™ of radius one passing through
the origin. Denoting by X the set of all unit spheres in R™, we have the
dual homogeneous spaces

(7) R"=M(n)/O(n); % =M(n)/0%(n)

where O*(n) is the set of rotations around the center of oy. Here a point
x = gO(n) is incident to oy = yO*(n) if and only if x € o.

82 The Radon Transform for the Double Fibration

With K, H and L as in §1 we assume now that K/L and H/L have positive
measures dug = dky, and dmg = dhp invariant under K and H, respectively.
This is for example guaranteed if L is compact.

Lemma 2.1. Assume the transversality condition (a). Then there exists a
measure on each & coinciding with dug on K/L = 2o such that whenever
g+ &1 = Iy the measures on Z1 and Ty correspond under g. A similar
statement holds for dm on &.
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Proof. If £ = g - £y we transfer the measure dug = dkr over on & by the
map & — g-&. If g-To = g1 - & then (g-x0)Y = (g1 -20)" so by Lemma 1.3,
g-To=g1-Tosog=gik with k € K. Since dug is K-invariant the lemma
follows.

The measures defined on each & and Z under condition (a) are denoted
by du and dm, respectively.

Definition. The Radon transform f — ]?and its dual ¢ — ¢ are defined
by

(8) fle) = / f@ydm(z), ) = / P(€) dpu(©).
3

T

whenever the integrals converge. Because of Lemma 1.1, this will always
happen for f € C.(X), ¢ € C.(E).

-~

In the setup of Proposition 1.5, f(&) is the integral of f over the two
hyperplanes at distance ¢ from ¢ and @(x) is the average of ¢ over the set

of hyperplanes at distance § from x. For 6 = 0 we recover the transforms
of Ch. I, §1.
Formula (8) can also be written in the group-theoretic terms,

0  FiuH) = / FORK) dhy . F(gK) = / gk H) dky, .
H/L K/L

Note that (9) serves as a definition even if condition (a) in Lemma 1.3 is
not satisfied. In this abstract setup the spaces X and = have equal status.
The theory in Ch. I, in particular Lemma 2.1, Theorems 2.4, 2.10, 3.1 thus
raises the following problems:

Principal Problems:

—_

A. Relate function spaces on X and on = by means of the transforms
f — f, ¢ — ¢. In particular, determine their ranges and kernels.

B. Invert the transforms f — f, © — ¢ on suitable function spaces.

C. In the case when G is a Lie group so X and E are manifolds let D(X)
and D(Z) denote the algebras of G-invariant differential operators on X
and Z, respectively. Is there a map D — D of D(X) into D(Z) and a map
E —FE of D(E) into D(X) such that

-~

(Dfy=Df, (Bp) =E@?

D. Support Property: Does ]?of compact support imply that f has com-
pact support?
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Although weaker assumptions would be sufficient, we assume now that
the groups G, K, H and L all have bi-invariant Haar measures dg, dk, dh
and df. These will then generate invariant measures dgy, dgg, dgr, dky,
dhy, on G/K,G/H, G/L, K/L, H/L, respectively. This means that

(10) [Fds= [ ( / F(gk)dk) do
G

G/K K
and similarly dg and dh determine dgg, etc. Then
(1) [ Qubyds=c [ s [ agryan,
G/L G/K K/L

for @ € C.(G/L) where cis a constant. In fact, the integrals on both sides of
(11) constitute invariant measures on G/L and thus must be proportional.
However,

(12) [P | ( [ Fan dé) dg.
G

G/L L
and
(13) /F(k) dk = / (/F(ké) dé) dky, .
K K/L L

We use (13) on (10) and combine with (11) taking Q(gL) = [ F(g¢)dl.
Then we see that from (12) the constant ¢ equals 1.

We shall now prove that f — f and ¢ — ¢ are adjoint operators. We
write dx for dgx and d§ for dgpg.

Proposition 2.2. Let f € C.(X), ¢ € C.(E). Then f and @ are continu-
ous and

[ f@i@ ds - / Fle)o(€) de.

Proof. The continuity statement is immediate from (9). We consider the
function

P = (fop)(pom)
on G/L. We integrate it over G/L in two ways using the double fibration
(4). This amounts to using (11) and its analog with G/K replaced by G/H
with @ = P. Since P(gk L) = f(9K)p(gkH), the right hand side of (11)
becomes
| #ar03K) dgic.
G/K

If we treat G/H similarly, the lemma follows.
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The result shows how to define the Radon transform and its dual for
measures and, in case G is a Lie group, for distributions.

Definition. Let s be a measure on X of compact support. Its Radon
transform is the functional § on C.(Z) defined by

(14) 5(p) = s(9) -
Similarly & is defined by
(15) F(f)=of).  feluX),

if o is a compactly supported measure on =.
Lemma 2.3. (i) If s is a compactly supported measure on X, § is a
measure on =.

(1) If s is a bounded measure on X and if Ty has finite measure then s
as defined by (14) is a bounded measure.

Proof. (i) The measure s can be written as a difference s = s — s~ of
two positive measures, each of compact support. Then § = s7 — 5~ is a
difference of two positive functionals on C,(Z).

Since a positive functional is necessarily a measure, 5 is a measure.
(ii) We have
sup |(z)] < Slgplw(é“)I pio(Zo),
xr

so for a constant K,

15(0)| = |s(@)| < Ksup || < Kpo(To)sup |l

and the boundedness of s follows.

If G is a Lie group then (14), (15) with f € D(X), ¢ € D(E) serve
to define the Radon transform s — § and the dual ¢ — & for distri-
butions s and o of compact support. We consider the spaces D(X) and
E(X) (= C*(X)) with their customary topologies (Chapter VII, §1). The
duals D'(X) and &'(X) then consist of the distributions on X and the
distributions on X of compact support, respectively.

Proposition 2.4. The mappings
feDX) — fe&@E)
peDE) — ¢e&(X)
are continuous. In particular,

se&(X) = 5eD(8)
cel(E) = deD(X).
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Proof. We have

(16) Flo-&) = [ g+ ) dmofa).
€
Let g run through a local cross section through e in G over a neighbor-

hood of & in =. If (¢1,...,t,) are coordinates of g and (x1,...,x,,) the
coordinates of x € &, then (16) can be written in the form

~

F(tl,...,tn):/F(tl,...,tn;ml,...,xm)dajl...da:m.

Now it is clear that f € £(E) and that f — f is continuous, proving the
proposition.

The result has the following refinement.

Proposition 2.5. Assume K compact. Then

(i) f— f is a continuous mapping of D(X) into D(E).
(ii) @ — @ is a continuous mapping of E(Z) into £(X).

A self-contained proof is given in the author’s book [1994b], Ch. I, § 3.
The result has the following consequence.

Corollary 2.6. Assume K compact. Then &'(X) C&'(2), D' (E)Y D' (X).

Ranges and Kernels. General Features

It is clear from Proposition 2.2 that the range R of f — fis orthogonal to
the kernel A/ of ¢ — . When R is closed one can often conclude R = N+,
also when ~ is extended to distributions (Helgason [1994b], Chapter IV,
§2, Chapter I, §2). Under fairly general conditions one can also deduce
that the range of ¢ — ¢ equals the annihilator of the kernel of T' — T for
distributions (loc. cit., Ch. I, §3).

In Chapter I we have given solutions to Problems A, B, C, D in some
cases. Further examples will be given in § 4 of this chapter and Chapter 111
will include their solution for the antipodal manifolds for compact two-point
homogeneous spaces.

The variety of the results for these examples make it doubtful that the
individual results could be captured by a general theory. Our abstract setup
in terms of homogeneous spaces in duality is therefore to be regarded as a
framework for examples rather than as axioms for a general theory.
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Nevertheless, certain general features emerge from the study of these
examples. If dim X = dim= and f — f is injective the range consists of
functions which are either arbitrary or at least subjected to rather weak
conditions. As the difference dim = — dim X increases more conditions are
imposed on the functions in the range. (See the example of the d-plane
transform in R™.)

In case G is a Lie group there is a group-theoretic explanation for this.
Let X be a manifold and = a manifold whose points £ are submanifolds
of X. We assume each £ € = to have a measure dm and that the set
{{ € E:¢ > x} has a measure du. We can then consider the transforms

(1) fo) = [f@am). #@) = [ o©du(o).
3 &3z
If G is a Lie transformation group of X permuting the members of =

including the measures dm and du, the transforms f — f, ¢ — ¢ commute
with the G-actions on X and =

(18) DO =) (@)Y = @)
Let A and A be the homomorphisms

A:D(G) — E(X)

A:D(G) — E(5)
in Ch. VIII, §2. Using (13) in Ch. VIII we derive

(19) (\D)fT=AD)f, (A(D)p)" = \ND).

Therefore A(D) annihilates the range of f — Fif A(D) = 0. In some cases,
including the case of the d-plane transform in R"™, the range is character-
ized as the null space of these operators A(D) (with A(D) = 0). This is
illustrated by Theorems 6.5 and 6.8 in Ch. I and even more by theorems
of Richter, Gonzalez which characterized the range as the null space of
certain explicit invariant operators ([GSS, I, §3]). Much further work in
this direction has been done by Gonzalez and Kakehi (see Part I in Ch. II,
§4). Examples of (17)—(18) would occur with G a group of isometries of
a Riemannian manifold, = a suitable family of geodesics. The framework
(8) above fits here too but goes further in that = does not have to consist
of subsets of X. We shall see already in the next Theorem 4.1 that this
feature is significant.

The Inversion Problem. General Remarks

In Theorem 3.1 and 6.2 in Chapter I as well as in several later results the
Radon transform f — f is inverted by a formula

~

(20) f=D((£)"),
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where D is a specific operator on X, often a differential operator. Rouviere
has in [2001] outlined an effective strategy for producing such a D.

Consider the setup X = G/K, 2= = G/H from §1 and assume G, K and
H are unimodular Lie groups and K compact. On G we have a convolution
(in the style of Ch. VII),

(uxv)(h) = / u(hg~yo(g) dg = / u(g)o(g"h) dg,

G G

provided one of the functions w,v has compact support. Here dg is Haar
measure. More generally, if s,t are two distributions on G at least one of

compact support the tensor product s ® t is a distribution on G x G given
by

(s @ ) (u(@, ) = / (o, y) ds(z) di(y) ue DG xG).
GxG

Note that s®t = t®s because they agree on the space spanned by functions
of the type ¢(x)1(y) which is dense in D(G x G). The convolution s * ¢ is
defined by

(5 + 1) (v) = / / o(zy) ds(z) dt(y)
G G

Lifting a function f on X to G by f = f om where 7 : G — G/K is the

natural map we lift a distribution $ on X to a S € D'(G) by S(u) = S(%)
where

u(gK) :/u(gk) dk .

K

Thus S(f) = S(f) for f € D(X).If S,T € D'(X), one of compact support
the convolution x on X is defined by

(21) (S T)(f) = (S*T)(f).

If one of these is a function f, we have

(22) (f x §)(g - 20) = / Flgh™" - x0) dS(h),
G

(23) (S % f)(g - 70) = / (g - 20) dS(h) .
G

The first formula can also be written

(24) fx5= / f(g - 20)S™® dg
G
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as distributions. In fact, let ¢ € D(X). Then

(f xS)(p) = [ (f x5)(g-z0)p(g - w0) dg

I
A O Q% O O

Now let D be a G-invariant differential operator on X and D* its adjoint.
It is also G-invariant. If ¢ = D(X) then the invariance of D* and (24)
imply

(D(f % 8))(@) = (f x S)(D*p /fg £0)§79) (D" ) dg

- / f(g-70)S(D*(p o 7(g))) dg = / f(g - 70)(DS)™@ () dg,
G G

SO

(25) D(f xS)=fxDS.

Let ep denote the distribution f — (D* f)(x¢). Then
Df=fxep,

because by (24)

(f x en)( /fg 20)e? (o)

- / F(g- 20)D* (670 ) (o) dg = / f(g- 20)(D"0)(g - 20) dg

G

/ @D e)(e) s = [(Df) ()@ do.

X

We consider now the situation where the elements £ of = are subsets of
X (cf. Lemma 1.3).
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Theorem 2.7 (Rouviere). Under the assumptions above (K compact)
there exists a distribution S on X such that

(26) (Y =fx58, feDX).

Proof. Define a functional S on C.(X) by

() = (P (zo) = / ( / Flkh - a:o)dh> k.
K H

Then S is a measure because if f has compact support C' the set of h € H
for which kh-xo € C for some k is compact. The restriction of S to D(X) is
a distribution which is clearly K-invariant. By (24) we have for ¢ € D(X)

(f x S)(¢ /fgmo (¢ ) dg,

which, since the operations ~ and V commute with the G action, becomes

/ g+ 0)(@)" (g 0)dg = [ (F)" (@)pla) do,

X

because of Proposition 2.2. This proves the theorem.

Corollary 2.8. If D is a G-invariant differential operator on X such that
DS =§ (delta function at xo) then we have the inversion formula

~

(27) f=D((f)"), feDX).

This follows from (26) and f x 6 = f.

§3 Orbital Integrals

As before let X = G/K be a homogeneous space with origin o = (K).
Given zp € X let G, denote the subgroup of G leaving zg fixed, i.e., the
isotropy subgroup of G at zg.

Definition. A generalized sphere is an orbit G, - = in X of some point
z € X under the isotropy subgroup at some point zg € X.

Examples. (i) If X = R", G = M(n) then the generalized spheres are
just the spheres.
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(ii) Let X be alocally compact subgroup L and G the product group Lx L
acting on L on the right and left, the element (¢1,¢2) € L x L inducing
action ¢ — 014 651 on L. Let AL denote the diagonal in L x L. If £y € L
then the isotropy subgroup of £y is given by

(28) (L x L)g, = (bo,e)AL(¢5 " €)
and the orbit of ¢ under it by
(L x L)g, - £ = Loty 0)",

which is the left translate by ¢y of the conjugacy class of the element £ 1y
Thus the generalized spheres in the group L are the left (or right) translates
of its conjugacy classes.

Coming back to the general case X = G/K = G/G( we assume that Gy,
and therefore each Gy, is unimodular. But Gy, & = Gy /(Gay)z 50 (Gay )
unimodular implies the orbit G, -  has an invariant measure determined

up to a constant factor. We can now consider the following general problem
(following Problems A, B, C, D above).

E. Determine a function f on X in terms of its integrals over generalized
spheres.

Remark 3.1. In this problem it is of course significant how the invariant
measures on the various orbits are normalized.

(a) If Gy is compact the problem above is rather trivial because each orbit
Gy, - = has finite invariant measure so f(x¢) is given as the limit as x — 1z
of the average of f over G, - x.

(b) Suppose that for each zo € X there is a G, -invariant open set Cy, C
X containing z in its closure such that for each x € C,, the isotropy group
(Gyy)x is compact. The invariant measure on the orbit G, -z (xg € X,z €
Cy,) can then be consistently normalized as follows: Fix a Haar measure
dgo on Go. If 29 = g -0 we have G, = gGog~! and can carry dgo over to a
measure dg,, on G, by means of the conjugation z — gzg=! (2 € G).
Since dgop is bi-invariant, dg,, is independent of the choice of g satisfying
xo = g-0, and is bi-invariant. Since (G, ), is compact it has a unique Haar
measure dgy, . with total measure 1 and now dg,, and dg, . determine
canonically an invariant measure p on the orbit Gy, - = Gy /(Gry)e. We
can therefore state Problem E in a more specific form.

E'. Express f(xo) in terms of integrals

(20) / f@)dup),  w€Cay.

Gy
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For the case when X is an isotropic Lorentz manifold the assumptions
above are satisfied (with Cy, consisting of the “timelike” rays from z¢) and
we shall obtain in Ch. V an explicit solution to Problem E’ (Theorem 4.1,
Ch. V).

(¢) Ifin Example (ii) above L is a semisimple Lie group Problem E is a ba-
sic step (Gelfand-Graev [1955], Harish-Chandra [1954], [1957]) in proving
the Plancherel formula for the Fourier transform on L.

§4 Examples of Radon Transforms for Homogeneous
Spaces in Duality

In this section we discuss some examples of the abstract formalism and
problems set forth in the preceding sections §1-§2.

A. The Funk Transform

This case goes back to Funk [1913], [1916] (preceding Radon’s paper [1917])
where he proved, inspired by Minkowski [1911], that a symmetric function
on S? is determined by its great circle integrals. This is carried out in
more detail and in greater generality in Chapter III, §1. Here we state the
solution of Problem B for X = S?, = the set of all great circles, both
as homogeneous spaces of O(3). Given p > 0 let &, € Z have distance p
from the North Pole o, H, C O(3) the subgroup leaving &, invariant and
K C O(3) the subgroup fixing o. Then in the double fibration

O(3)/(K N Hp)

T

X = 0@3)/K — 0(3)/H,

(1]

xz € X and £ € E are incident if and only if d(z,£) = p. The proof is
the same as that of Proposition 1.5. We denote by ]?p and ¢, the Radon
transforms (9) for the double fibration. Then fp(f) the integral of f over
two circles at distance p from £ and ¢, is the average of ¢(z) over the great
circles ¢ that have distance p from z. (See Fig. 11.2.) We need ]?p only for

p = 0 and put f: ﬁ). Note that (f)g(aj) is the average of the integrals of f
over the great circles ¢ at distance p from z (see Figure I1.2). As a special
case of Theorem 1.22, Chapter III, we have the following inversion.

Theorem 4.1. The Funk transform f — f is (for f even) inverted by

(30) flx) = ;ﬂ{dci /U(J?)Xosl(v)(x)”(u2 - UQ)% dv}u_l -

0
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o

v

FIGURE II.2. FIGURE IL.3.

We shall see later that this formula can also be written

T

(31) f@) = [rwaw— [0 (yw) S
E, 0

sinp’

where dw is the normalized measure on the equator E, corresponding to
2. In this form the formula holds in all dimensions.

Also Theorem 1.26, Ch. III shows that if f is even and if all its derivatives
vanish on the equator then f vanishes outside the “arctic zones” C'and C" if
and only if f(§) = 0 for all great circles £ disjoint from C' and C’ (Fig. I1.3).

The Hyperbolic Plane H?

We now introduce the hyperbolic plane. This formulation fits well into
Klein’s Erlanger Program under which geometric properties of a space
should be understood in terms of a suitable transformation group of the
space.

Theorem 4.2. On the unit disk D : |z| < 1 there exists a Riemannian
metric g which is invariant under all conformal transformations of D. Also
g 1s unique up to a constant factor.

For this consider a point a € D. The mapping ¢ : 2 — " is a conformal

transformation of D and ¢(a) = 0. The invariance of g requires

ga(u, u) = go(de(u), do(u))

for each u € D, (the tangent space to D at a) dy denoting the differential
of (. Since gp is invariant under rotations around 0, go(2, 2) = c|z|?, where
¢ is a constant. Here z € Dy (= C). Let t — z(¢) be a curve with z(0) = a,
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2'(0) = u € C. Then dp(u) is the tangent vector
d ~(dy dz\ [ laf*—1
{dtw(z(t))}tzo - <dz>a (dt)o - {(1 —az2f "

1 2
Ja(u,u) = C(l — |al?)? |ul

SO

)

and the proof shows that g is indeed invariant.
Thus we take the hyperbolic plane H? as the disk D with the Riemannian
structure

|dz[?

(32) ds® = (1—|z2)2"

This remarkable object enters into several fields in mathematics. In par-
ticular, it offers at least two interesting cases of Radon transforms. The
Laplace-Beltrami operator for (32) is given by

02  9?
a2 2)2
L=(1—-2z"—y°) (8$2+8y2>'

The group G = SU(1,1) of matrices

(52): o0

acts transitively on the unit disk by

ab az+b
33 -z =
(33) <b a> bz +a
and leaves the metric (32) invariant. The length of a curve y(¢) (o <t< f3)
is defined by

B

(34) Liy) = / (7 (0,7 ()02 .

(%

In particular take v(t) = (z(t),y(t)) such that (o) =0, v(0) =z (0 < z <
1), and let yo(7) = 72, 0 < 7 < 1, so v and 7y have the same endpoints.
Then
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which by 7 = z(¢)/z, dr/dt = 2'(t)/x becomes

1
x
/ | 2 dr = L(vo) .
0

Thus L(y) > L(7) so 7o is a geodesic and the distance d satisfies

1
|z 1
pr— = 1 .
(35) d(o,x) / | 242 dt = 5 log 1 Jal
0

Since G acts conformally on D the geodesics in H? are the circular arcs in
|z| < 1 perpendicular to the boundary |z| = 1.
We consider now the following subgroups of G where sht = sinht etc.:

K = {k= e’ 0 :0<6 <2}
0 e -
M = {k07k7r}a M’Z{ko,kﬂ.,k,g,k’g}
chtsht
A = {at_(ShtCht> .tER},
B (1 +ix, —ix )
N = {n"”_<i:c, 1—1’:1:) :xz€R}

I = COSL(2,Z)C*,

where C' is the transformation w — (w — )/(w + ) mapping the upper
half-plane onto the unit disk.

The orbits of K are the circles around 0. To identify the orbit A - z we
use this simple argument by Reid Barton:

cht z +sht _ z+tht

e 2= shtz+cht thtz+1"

Under the map w — ZZJfl (w € C) lines go into circles and lines. Taking
w = tht we see that A -z is the circular arc through —1, z and 1. Barton’s
argument also gives the orbit n, -t (z € R) as the image of iR under the
map

w(t—1)+t

— .

w(t—1)+1
They are circles tangential to |z| =1 at z = 1. Clearly NA - 0 is the whole
disk D so G = NAK (and also G = KAN).

B. The X-ray Transform in H?

The (unoriented) geodesics for the metric (32) were mentioned above.
Clearly the group G permutes these geodesics transitively (Fig. 11.4). Let



§4 Examples of Radon Transforms for Homogeneous Spaces in Duality 81

= be the set of all these geodesics. Let o denote the origin in H? and &, the
horizontal geodesic through o. Then

(36)

X=G/K, Z=G/M'A.

We can also fix a geodesic igrf(giesws
&p at distance p from o and

write

(37)

X=G/K, 2=G/H,,

where H,, is the subgroup

of G leaving &, stable.

Then for the homogeneous

spaces (37), x and £ are

incident if and only if

d(z,€&) = p. The transform FIGURE I1.4.

f— fA is inverted by means of the dual transform ¢ — ¢, for (37). The
inversion below is a special case of Theorem 1.11, Chapter III, and is the
analog of (30). Observe also that the metric ds is renormalized by the factor
2 (so curvature is —1).

Theorem 4.3. The X-ray transform in H? with the metric

4|dz|?
2 _
T ey
is inverted by
d [ 2 2\— 34 F\V
(39) CEE S (GRS VMO S
T r=1
where s(t) = cosh™*(t).
Another version of this formula is
1 d ey dp
(39) e =1 [ o (@) o

0
and in this form it is valid in all dimensions (Theorem 1.12, Ch. III).
One more inversion formula is

(40) f = L LS(DY),

where S is the operator of convolution on H? with the function
x — coth(d(z,0)) — 1, (Theorem 1.16, Chapter III).
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C. The Horocycles in H?

Consider a family of geodesics with the same limit point on the boundary
B. The horocycles in H? are by definition the orthogonal trajectories of
such families of geodesics. Thus the horocycles are the circles tangential to
|z| =1 from the inside (Fig. I1.5).

One such horocycle is
& = N - o, the orbit of
the origin o under the fﬁg‘fgfiziyms
action of N. Now we inD
take H? with the metric
(32). Since a; - & is the
horocycle with diameter
(tanh ¢,1) G acts tran-
sitively on the set = of
horocycles. Since G =
KAN it is easy to see
that M N is the sub-
group leaving &, invari-
ant. Thus we have here
(41)
X=G/K, ==G/MN. FIGURE II5.

Furthermore each horocycle has the form & = ka; - & where kM € K/M
and t € R are unique. Thus Z ~ K/M x A, which is also evident from the
figure.

We observe now that the maps

Pit—ar-0, p:xr—mng-0

of R onto g and &y, respectively, are isometries. The first statement follows
from (35) because
d(o,as - 0) = d(o,tanht) =t¢.

For the second we note that
o) =a(z+i)", O(x)=i(x+i)?
SO
(@' (@), ¢ (@)@ = (@® + D)2 A = |z(z +9) 7 )7 = 1.
Thus we give A and N the Haar measures d(a;) = dt and d(n,) = dx.

Geometrically, the Radon transform on X relative to the horocycles is
defined by

(42) 7e) = / f(x) dm(z),
13
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where dm is the measure on & induced by (32). Because of our remarks
about ¢, (42) becomes

o~

(43) flg-¢)= [ flgn-o)dn,
N

so the geometric definition (42) coincides with the group-theoretic one in
(9). The dual transform is given by

(44) g o) = / ook &) dk,  (dk = do/2r).
K

In order to invert the transform f — fwe introduce the non-Euclidean
analog of the operator A in Chapter I, §3. Let T" be the distribution on R
given by

(45) To=} [eht) N0, e DR).
R

considered as the Cauchy principal value, and put 77 = dT'/dt. Let A be
the operator on D(E) given by

(46) (Ag)(kay - &) = / o(kar—s - E0)e™* dT'(s).

R
Theorem 4.4. The Radon transform f — fAfor horocycles in H? is in-
verted by
1 ~
(47) f=_(ADY, feDm?).
We begin with a simple lemma.

Lemma 4.5. Let 7 be a distribution on R. Then the operator T on D(Z)
given by the convolution

(7o) (kas - &) = / o(kas_, - &) dr(s)
R

is invariant under the action of G.

Proof. To understand the action of g € G on = ~ (K/M) x A we write
gk = K'apn'. Since each a € A normalizes N we have

gkay - &9 = gkayN -0 =K apn'ayN -0 =Kay v - &.

Thus the action of g on 2 ~ (K/M) x A induces this fixed translation
at — ag+p on A. This translation commutes with the convolution by 7, so
the lemma follows.
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Since the operators A, ™, ¥ in (47) are all G-invariant, it suffices to prove
the formula at the origin 0. We first consider the case when f is K-invariant,
ie., f(k-z)= f(z). Then by (43),

(48) ]?(at o) = /f(amw -0)dzx.
R
Because of (35) we have
(49) 2| = tanh d(o, 2), cosh® d(o,z) = (1 — |z|?)7? .
Since

aing o= (sht —ize')/(cht —ize)

(49) shows that the distance s = d(o, a;n, - 0) satisfies
(50) ch?s = ch?t + z2e?!

Thus defining F on [1,00) by

(51) F(ch®s) = f(tanh s),

we have
F'(ch?®s) = f'(tanh s)(2shsch®s)™!

so, since f'(0) = 0, lim,_,1 F’(u) exists. The transform (48) now becomes
(with xe! = y)

(52) et Flay - &) :/F(ch2t+y2)dy.
R

We put

and invert this as follows:

/g@/(u—l—zz)dz = /F/(u—l—yQ—l—ZQ)dydz
R R?
= 277/F’(u—i—rz)rdr:ﬂ'/F'(u—l—p)dp,
0 0

SO

—F(u) = /go’(u—l—zQ)dz.
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In particular,

1
f(o) /ap (14 2?) — /(p,(ChQT)CthT,
™
R R
1 //F’ (ch®t + y?)dy chtdt,
™
R R
" 1 [d dt
— p— t/\ .
f0) =~y | e Facan .
R

Since (etf) (at - &o) is even (cf. (52)), its derivative vanishes at ¢t = 0, so the
integral is well defined. With T as in (45), the last formula can be written

(53) f(0) = " Ti(et Flar - &)

™

the prime indicating derivative. If f is not necessarily K-invariant we use
(53) on the average

“z):/f(k;-z)dk:217T/f(k9-z)d6.
K 0
Since f%(0o) = f(0), (53) implies
(54) fo)= | [l ol are).

R

This can be written as the convolution at t = 0 of (f%)(as - &) with the
image of the distribution e'7T} under ¢ — —t. Since 7" is even the right hand

side of (54) is the convolution at t = 0 of % with e~ 'T}. Thus by (46),

flo) = L (AF)(E).

Since A and = commute with the K action this implies

fo) = [(ADE-&) = (4]0

K

and this proves the theorem.

Theorem 4.4 is of course the exact analog to Theorem 3.6 in Chapter I,
although we have not specified the decay conditions for f needed in gener-
alizing Theorem 4.4.
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D. The Poisson Integral as a Radon Transform

Here we preserve the notation introduced for the hyperbolic plane H?. Now
we consider the homogeneous spaces

(55) X =G/MAN, E=GJ/K.

Then Z is the disk D : |z| < 1. On the other hand, X is identified with the
boundary B : |z| = 1, because when G acts on B, M AN is the subgroup
fixing the point z = 1. Since G = K AN, each coset gM AN intersects eK.
Thus each x € X is incident to each £ € Z. Our abstract Radon transform
(9) now takes the form

66 FoK) = [ FMAN) dh = / f(g-b)d
K/M
97 .
= db.
JECIa
B
Writing ¢! in the form
—1 g -z —1 10 R 17
g7 ¢ —2(+1 c <
we have
biv _ e — dp  1—|z

o—ze® 17 df |z —et?|’

and this last expression is the classical Poisson kernel. Since gK = z, (56)
becomes the classical Poisson integral

(57) / £b _b|2 .

Theorem 4.6. The Radon transform f — ffm“ the homogeneous spaces
(55) is the classical Poisson integral (57). The inversion is given by the
classical Schwarz theorem

(58) f0)=1lim f(z), feC(B),

solving the Dirichlet problem for the disk.

We repeat the geometric proof of (58) from our booklet [1981] since it
seems little known and is considerably shorter than the customary solution
in textbooks of the Dirichlet problem for the disk. In (58) it suffices to
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consider the case b = 1. Because of (56),
2
N ~ 1 ,
f(tanh t) = f(a;-0) / flas-€*)do

:27r
0

27
1 e + tanh t
, do .
27T/f<tanhte’9+1)
0

Letting t — +o00, (58) follows by the dominated convergence theorem.

The range question A for f — ]? is also answered by classical results
for the Poisson integral; for example, the classical characterization of the
Poisson integrals of bounded functions now takes the form

(59) L®(BY ={p e L®E) : Ly =0}.

The range characterization (59) is of course quite analogous to the range
characterization for the X-ray transform described in Theorem 6.9, Chap-
ter I. Both are realizations of the general expectations at the end of §2 that
when dim X < dim Z the range of the transform f — f should be given
as the kernel of some differential operators. The analogy between (59) and
Theorem 6.9 is even closer if we recall Gonzalez’ theorem [1990b] that if we
view the X-ray transform as a Radon transform between two homogeneous
spaces of M(3) (see next example) then the range (91) in Theorem 6.9,
Ch. I, can be described as the null space of a differential operator which is
invariant under M(3). Furthermore, the dual transform ¢ — @ maps £(=)
onto £(X). (See Corollary 4.8 below.)

Furthermore, John’s mean value theorem for the X-ray transform (Corol-
lary 6.12, Chapter I) now becomes the exact analog of Gauss’ mean-value
theorem for harmonic functions.

From a non-Euclidean point of view, Godement’s mean-value theorem
(Ch. VI, §1) is even closer analog to John’s theorem. Because of the spe-
cial form of the Laplace-Beltrami operator in H? non-Euclidean harmonic
functions are the same as the usual ones (this fails for H" n > 2). Also
non-Euclidean circles are Euclidean circles (because the map (33) sends
circles into circles). However, the mean-value theorem is different, namely,

u(z) = / ul(€) du(C)
S

for a harmonic function u, z being the non-Euclidean center of the circle
S and p being the normalized non-Euclidean arc length measure on X,
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according to (32). However, this follows readily from the Gauss’ mean-value
theorem using a conformal map of D.

What is the dual transform ¢ — ¢ for the pair (55)? The invariant
measure on M AN/M = AN is the functional

(60) o — | plan-o)dadn.
/

The right hand side is just @(by) where by = eMAN. If ¢ = a'n’ the
measure (58) is seen to be invariant under g. Thus it is a constant multiple
of the surface element dz = (1 — 22 — y?)~2 dx dy defined by (32). Since the
maps t — a; -0 and x — n, - 0 were seen to be isometries, this constant
factor is 1. Thus the measure (60) is invariant under each g € G. Writing

©qg(2) = @(g - 2) we know (pg)" = @, s0

(g -bo) = / oy(an) dadn = @(bo).
AN

Thus the dual transform ¢ — ¢ assigns to each ¢ € D(Z) its integral over
the disk.

Table II.1 summarizes the various results mentioned above about the
Poisson integral and the X-ray transform. The inversion formulas and the
ranges show subtle analogies as well as strong differences. The last item in
the table comes from Corollary 4.8 below for the case n =3, d = 1.

E. The d-plane Transform

We now review briefly the d-plane transform from a group theoretic stand-
point. As in (1) we write

(61) X = R" = M(n)/O(n), E=G(d,n)=M(n)/(M(d)xO(n—d)),

where M(d) x O(n—d) is the subgroup of M(n) preserving a certain d-plane
&o through the origin. Since the homogeneous spaces

O(n)/O(n) N (M(d) x O(n —d)) = O(n)/(O0(d) x O(n — d))
and
(M(d) x O(n — d))/O(n) N (M(d) x O(n — d)) = M(d)/O(d)

have unique invariant measures the group-theoretic transforms (9) reduce
to the transforms (57), (58) in Chapter I. The range of the d-plane trans-
form is described by Theorem 6.3 and the equivalent Theorem 6.5 in Chap-
ter I. It was shown by Richter [1986a] that the differential operators in
Theorem 6.5 could be replaced by M(n)-induced second order differential
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Poisson Integral X-ray Transform
Coset X =SU(1,1)/ MAN X =M(3)/0(3)
Spaces ==8U(1,1)/K = = M(3)/(M(1) x O(2))

=T e = fa @)k Fo) = [, () dm(p)

« S(r) — [ d P(z) = average of
L Al) f: w(e)de over set of £ through z
Inversion  f(b) = lim,_ f(2) f=L=L)"2((f)¥)
Range of  L®(X) = D(X) =
f—=1 {peL=(E): Lp=0} {peD(E):A(f—nl""¢) =0}
Range Gauss’ mean Mean value property for
characteri- value theorem hyperboloids of revolution
zation
Range of  &(E)V =C EE)Y =E(X)
p— @

TABLE II.1. Analogies between the Poisson Integral and the X-ray Transform.

operators and then Gonzalez [1990b] showed that the whole system could
be replaced by a single fourth order M(n)-invariant differential operator
on =.

Writing (61) for simplicity in the form

(62) X=G/K, ==G/H

we shall now discuss the range question for the dual transform ¢ — @ by
invoking the d-plane transform on &£'(X).

Theorem 4.7. Let N denote the kernel of the dual transform on E(Z).
Then the range of S — S on E'(X) is given by

EX)={Zef&E) :2WN)=0}.

The inclusion C is clear from the definitions (14),(15) and Proposi-
tion 2.5. The converse is proved by the author in [1983a] and [1994b],
Ch. I, §2 for d = n — 1; the proof is also valid for general d.

For Fréchet spaces F and F' one has the following classical result. A
continuous mapping o : £ — F is surjective if the transpose o : F/ — E'
is injective and has a closed image. Taking E = £(E), F = £(X), « as
the dual transform ¢ — @, the transpose ‘« is the Radon transform on
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E'(X). By Theorem 4.7, ta does have a closed image and by Theorem 5.5,
Ch. I (extended to any d) ‘« is injective. Thus we have the following result
(Hertle [1984] for d = n — 1) expressing the surjectivity of .

Corollary 4.8. Every f € E(R™) is the dual transform f = ¢ of a smooth
d-plane function .

F. Grassmann Manifolds

We consider now the (affine) Grassmann manifolds G(p,n) and G(g,n)
where p4+ g = n — 1. If p = 0 we have the original case of points and
hyperplanes. Both are homogeneous spaces of the group M(n) and we
represent them accordingly as coset spaces

(63) X =M(n)/H,, E=M(n)/H,.

Here we take H, as the isotropy group of a p-plane z( through the origin
0 € R", H, as the isotropy group of a g-plane & through 0, perpendicular
to xg. Then

H, = M(p) x O(n—p), H, =M(q) x O(n—q).
Also
Hy - zo={xeX :xL&,xzn&#0},
the set of p-planes intersecting £y orthogonally. It is then easy to see that
zisincidentto E & L&, xzNEAD.
Consider as in Chapter I, §6 the mapping
m: G(p,n) = Gy,

given by parallel translating a p-plane to one such through the origin. If
0 € Gy, the fiber F = 771(0) is naturally identified with the Euclidean
space o+. Consider the linear operator [J, on £(G(p,n)) given by

(64) OpHIF = Lr(f|F).

Here Ly is the Laplacian on F and bar denotes restriction. Then one can

prove that [J, is a differential operator on G(p,n) which is invariant under
the action of M(n). Let f — f, ¢ — @ be the Radon transform and its
dual corresponding to the pair (61). Then f(é‘) represents the integral of
f over all p-planes x intersecting £ under a right angle. For n odd this is

inverted as follows (Gonzalez [1984, 1987]).

Theorem 4.9. Let p,q € Z* such that p+ q+ 1 = n is odd. Then the
transform f — f from G(p,n) to G(q,n) is inverted by the formula

Cpof = ()" "V2F)Y | feD(G(p,n))

where Cp 4 15 a constant.

If p = 0 this reduces to Theorem 3.6, Ch. I.
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G. Half-lines in a Half-plane

In this example X denotes the half-plane {(a,b) € R? : a > 0} viewed as
a subset of the plane {(a,b,1) € R3}. The group G of matrices

0 0
(Oé,ﬂv’y): 1 Yy EGL(g,R), a>0
0 1

[=lee)

acts transitively on X with the action

(o, B,7) © (a,b) = (aa, Ba +b+7).

This is the restriction of the action of GL(3,R) on R3. The isotropy group
of the point xo = (1,0) is the group

K ={(1,8,-0) : BeR]}.

Let = denote the set of half-lines in X which end on the boundary 0X =
0 x R. These lines are given by

Eow = {(t,v+tw) : t >0}

for arbitrary v,w € R. Thus = can be identified with R x R. The action
of G on X induces a transitive action of G on = which is given by

w+ 3

(@, ,7)0(v, w) = (v+7, )

(Here we have for simplicity written (v,w) instead of &, .,.) The isotropy
group of the point g ¢y (the z-axis) is

H = {(x,0,0) : « >0} =R},

the multiplicative group of the positive real numbers. Thus we have the
identifications

(65) X=G/K, ==G/H.

The group K N H is now trivial so the Radon transform and its dual for
the double fibration in (63) are defined by

-~

(66) o) = / F(ghK) dh,

(67) BgK) = xlo) / gk H) dk,
K
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where y is the homomorphism (a,3,7) — a™! of G onto R’. The reason
for the presence of x is that we wish Proposition 2.2 to remain valid even
if G is not unimodular. In ( 66) and (67) we have the Haar measures

(68) dk‘(lﬁ_g) = dﬂ, dh(%o,o) = da/a .
Also, if g = (o, 8,7), h = (a,0,0), k = (1,b,—b) then
gH = (v,B/a),  ghK = (aa,Ba+7)

9K = (o, 8 +7),  gkH = (=b+,"t")

o (66)—(67) become

n da
Fr.B/a) = / f(a, o +)™
Rt
Pla,B+7) = a‘l/w(berfy, PO db.
R

Changing variables these can be written

(69) f (v, w)

/ fla,v+ aw)daa ,
Rt

(70) P(a,b) = /gp(bfas,s) ds a>0.
R

Note that in (69) the integration takes place over all points on the line &,
and in (70) the integration takes place over the set of lines &,_gs s all of
which pass through the point (a,b). This is an a posteriori verification of
the fact that our incidence for the pair (65) amounts to x € &.

From (69)-(70) we see that f — f,o — ¢ are adjoint relative to the
measures “* db and dv dw:

(71) / / f(a,b)cﬁ(a,b)cia db = / / Flo, w)(v, w) dv duw .

R Rpx R R
RY

The proof is a routine computation.
We recall (Chapter VII) that (—L)/? is defined on the space of rapidly
decreasing functions on R by

(72) (L))~ (7) = |7 (7)

and we define A on S(Z)(= S(R?)) by having (—L)/? only act on the
second variable:

(73) (Ap) (v, w) = ((=L) (v, ) (w).
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Viewing (—L)'/? as the Riesz potential I-! on R (Chapter VII, §6) it is
easy to see that if p.(v,w) = ¢(v, ") then

(74) Ape = || (Ap)e .
The Radon transform (66) is now inverted by the following theorem.

Theorem 4.10. Let f € D(X). Then
f= ( nY.

Proof. In order to use the Fourier transform F — F on R? and on R we
need functions defined on all of R?. Thus we define

oo e a0,
f(a,b)—{ 0 a<0.

Then

a

rlan) = L (h-))

= a'(2m)? / Fr&meaD de dy
— (2n) / / F(at + by, m)e€ de di
— a(2m)? / €17 ((a + abn)é, ane)e’ de dn.

Next we express the Fourier transform in terms of the Radon transform.
We have

F((a + abn)€, ang)

// f*(l‘, y)e—ix(a+abn)§e—iyan§ dx dy

/ / 1 f <1 , _y) e ix(atabn)§ ,—iyang g, dy
T T T

R 2>0

// ( b+ + )eizangdxdz.
T

R >0

This last expression is
/f(b +072)e M dz = ()~ (b4t —ang),

where ~ denotes the 1-dimensional Fourier transform (in the second vari-
able). Thus

f(a,b) = a(2m)~ / 1E1(F)~ (b + 0", —ané)e' de dn .
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However F(c€) = |¢[*(F.)™ (&), so by (74)
far) = an) [[16Pan) 0+~ dan~ dn
= 0 [ MDDl dy
= 0" [lanl AP+ 7 =Dl d

- alen / AFb+ 17, —(an) )2 dn,

fla,b) = (ZW)’I/(Af)(b—av,v)dv
R
= (2m) 7 (Af)Y(a,b).

proving the theorem.

Remark 4.11. It is of interest to compare this theorem with Theorem 3.8,
Ch. I. If f € D(X) is extended to all of R? by defining it 0 in the left
half plane then Theorem 3.8 does give a formula expressing f in terms of
its integrals over half-lines in a strikingly similar fashion. Note however
that while the operators f — f, — ¢ are in the two cases defined by
integration over the same sets (points on a half-line, half-lines through a
point) the measures in the two cases are different. Thus it is remarkable
that the inversion formulas look exactly the same.

H. Theta Series and Cusp Forms
Let G denote the group SL(2, R) of 2 x 2 matrices of determinant one and

I the modular group SL(2,Z). Let N denote the unipotent group ( (1) le )

where n € R and consider the homogeneous spaces
(75) X =G/N, =2=G/T.

Under the usual action of G on R?, N is the isotropy subgroup of (1,0) so
X can be identified with R? — (0), whereas Z is of course 3-dimensional.
In number theory one is interested in decomposing the space L?(G/T)
into G-invariant irreducible subspaces. We now give a rough description of
this by means of the transforms f — f and ¢ — @.
As customary we put I'ec = I'NVN; our transforms (9) then take the form

for) = X fern), #aN) = [ elgnr)dor. .

I'/Tos N/Too
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Since N/T' is the circle group, ¢(gN) is just the constant term in the
Fourier expansion of the function nI'os — ¢(gnI"). The null space L3(G/T")
in L2(G/T') of the operator ¢ — @ is called the space of cusp forms
and the series for f is called theta series. According to Prop. 2.2 they
constitute the orthogonal complement of the image C.(X).

We have now the G-invariant decomposition

(76) L*(G/T) = LA(G/T) ® LF(G/T),
where (— denoting closure)

(77) L2(G/T) = (Ce(X))™

and as mentioned above,

(78) L3(G/T) = (Ce(X) )"

It is known (cf. Selberg [1962], Godement [1966]) that the representation
of G on L%(G/T) is the continuous direct sum of the irreducible repre-
sentations of G from the principal series whereas the representation of G
on L2(G/T) is the discrete direct sum of irreducible representations each
occurring with finite multiplicity.

I. The Plane-to-Line Transform in R3. The Range

Now we consider the set G(2,3) of planes in R?® and the set G(1,3) of
lines. The group G = M™(3) of orientation preserving isometries of R3
acts transitively on both G(2,3) and G(1,3). The group M™(3) can be
viewed as the group of 4 x 4 matrices

T
SO(3) Hi)
z3
1
whose Lie algebra g has basis
E1:E14(1SZ§3), Xij:Eij—Eji, 1§’LS]§3

‘We have bracket relations

(80) (Xij, Xie) = —0inXjo + 06 Xie + 056X — 050 X -

We represent G(2,3) and G(1,3) as coset spaces

(81) G(2,3)=G/H, G(1,3)=G/K,
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where

H = stability of group of 79 (21, z2-plane),

K = stability group of og (z1-axis).
We have G = SO(3)R3, H = SO3(2) R?, K = SO;(2) x R the first two
being semi-direct products. The subscripts indicate fixing of the z3-axis and
x1-axis, respectively. The intersection L = H N K = R (the translations
along the x;-axis).

The elements 1) = eH and 0y = eK are incident for the pair G/H, G/K

and og C 79. Since the inclusion notion is preserved by G we see that

7 =~H and 0 = gK are incident <o C 7.
In the double fibration

(82) G/L ={(o,7)|c C 7}

T

G(2,3)=G/H G/K = G(1,3)

we see that the transform ¢ — ¢ in (9) (Chapter I1,§2) is the plane-to-line
transform which sends a function on G(2, 3) into a function on lines:

(83) o) = / o(7) (),

TS0

the measure du being the normalized measure on the circle.

For the study of the range of (83) it turns out to be simpler to replace
G/ L by another homogeneous space of G, namely the space of unit vectors
w € S? with an initial point z € R3. We denote this pair by w,. The action
of G on this space S? x R? is the obvious geometric action of (u,y) €
SO(3)R? on w,:

(84) (ua y) CWy = (U ’ w)(u~:c+y) :
The subgroup fixing the North Pole wy on S? equals SO3(2) so S? x R? =
G/SO(2). Instead of (82) we consider

S?2 x R?
G(2,3) G(1,3)
the maps 7’ and 7" being given by

' (wz) = Rw+ 2 (line through z in direction w),

7"(wy) =w® +x (plane through = 1 w).
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The geometric nature of the action (84) shows that n’ and 7 commute
with the action of G.

For analysis on S? x R3 it will be convenient to write w, as the pair
(w, z). Note that

(85) (7") ' (Rw + 2) = {(w,y) 1 y — = € Rw}
or equivalently, the set of translates of w along the line z + Rw. Also
(86) (")t +a) ={(w,2) :z -z €W},

the set of translates of w with initial point on the plane through x perpen-
dicular to w.

Let vV, denote the gradient (9/dz1,0/0x2,0/0x3). Let F € £(S? x R?).
Then if 0 is a unit vector and (, ) the standard inner product on R3,

d
@@+ 10) = (Vo F(w,x + 16)),6).

Thus for ¥ € £(S? x R3),

(87)

(88) U(w,z +tw) =¥(w,z) (teER)e (Vu0)(w,z) Lw.

Lemma 4.12. A function ¥ € £(S? x R3) has the form ¥ = ) o 7’ with
v € E(G(1,3)) if and only if

(89) V(w,z) =V(-w,z), V,¥(w,z)lw.

Proof. Clearly, if ¥ € £(G(1,3)) then ¥ has the property stated. Con-
versely, if U satisfies the conditions (89) it is constant on each set (85).
Lemma 4.13. A function ® € £(S? x R?) has the form ® = p o " with
v € E(G(2,3)) if and only if

(90) P(w,z) =P(—w,z), V,P(w,z)€ Rw.

Proof. If ¢ € £(G(2,3)) then (87) for F' = ® implies

d
dt@(w,x +10) = 0 for each € w*

so (90) holds. Conversely, if ® satisfies (90) then by (87) for F' = @, @ is
constant on each set (86).

We consider now the action of G on S? x R3. The Lie algebra g is
50(3) + R3, where s0(3) consists of the 3 x 3 real skew-symmetric matrices.
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For X € s0(3) and ¥ € £(S2 x R?) we have by Ch. VIII, (12),

AX)T)(w, ) = {jtqf(exp(t)() w0, exp(—tX) .w)}t_o

_ {jtlll(exp(—tX) : w,x)}

t=0

+ {jt\Il(w,eXp(—tX) : x)}tzo
SO

(91) AX)V(w,z) = X,V (w,z) + X, ¥ (w,x),

where X, and X, are tangent vectors to the circles exp(—tX) - w and

exp(—tX) -z in S? and R3, respectively.
For v € R? acting on S? x R? we have

(92) A)¥)(w,z) = {jt\Il(w,:L‘ — tv)} B = —(Vo¥(w,x),v).

For X12 = E12 — E21 we have

cost sint 0
exptXis = —sint cost 0 etc.
0 0 1

so if f € E(R?)

(93) (MX)f)(z) = {;ltf(exp(—tXij) m)} =z, gg{; — T gi .

Given ¢ € G(1,3) let ¢ denote the set of 2-planes in R3 containing it. If
{ = 7'(0,z) then ¢ = {n"(w,z) : w € $*,w L o}, which is identified with
the great circle A(o) = o+ N S2. We give £ the measure p, corresponding
to the arc-length measure on A(o). In this framework, the plane-to-line
transform (83) becomes

(94) B = [ ol dute)

cel
for p € £(G(2,3)), £ € G(1,3). Expressing this on S? x R? we have with
®=pon”

yr | 22)da(w),

A(o)

(95) (Rpon')(o,x) =

where d,, represents the arc-length measure on A(o).
We consider now the basis E;, X;; of the Lie algebra g. For simplicity

we drop the tilde in E,— and X.
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Lemma 4.14. (Richter.) The operator
D = E1 X3 — B2 X13 + E3X10
belongs to the center Z(G) of D(G).

Proof. First note by the above commutation relation that the factors in
each summand commute. Thus D commutes with F;. The commutation
with each X;; follows from the above commutation relations (79)—(80).

Because of Propositions 1.7 and 2.3 in Ch. VIII, D induces G-invariant
operators A(D), X' (D) and \”(D) on S? x R?, G(1, 3) and G(2, 3), respec-
tively.

Lemma 4.15. (i) A(D) =0 on E(R?).
(i) N'(D) =0 on £(G(2,3)).

Proof. Part (i) follows from (A(E;)f)(x) = —0f/0x; and the formula (93).
For (ii) we take ¢ € £(G(2,3)) and put ® = ¢ o 7”. Since 7" commutes
with the G-action, we have

(g (w,2)) = ¢(g - 7" (w, 7))
so by (13) in Ch.VIII,
(96) A(D)® = X'(D)por".
By (91)-(92) we have
(97) MD)®(w,z) = (M(E1 X935 — By X153 + E3X12))2®(w, )
+[AE1)2 A (X23)w — A(F2)2A(X13)w + A(E3) o A(X12)w | P(w, ) .

By Part (i) the first of the two terms vanishes. In the second term we
exchange E; and X ;. Recalling that V,®(w, z) equals h(w, z) w (h a scalar)
we have

ME:):®(w,z) = hw,z2)w;, 1<i<3.

Since exptXs3 fixes wy; we have A(Xa3)wy = 0 etc. Putting this together
we deduce

(98) AD)P(w,z) = —wiA(X23)w h(w, ) + wa A (X13)w h(w, )
— w3/\(X12)w h(w, l‘) .

Part (ii) will now follow from the following.
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Lemma 4.16. Let u € E(S?). Let u(X;;) denote the restriction of the
vector field \(X;;) to the sphere. Then

(w1 p(X23) — w2 p(X13) + ws p(X12))u = 0.

Proof. For a fixed ¢ > 0 extend u to a smooth function % on the shell
S2:1—¢€< |jz|]| <1+ ¢€in R3. The group SO(3) acts on S? by rotation
so by (12), Ch. VIII, the vector fields p(X;;) extend to vector fields f1(X;;)
on S2. But these are just the restrictions of the vector fields z; agj — T aii

to S2. These vector fields satisfy

o 9\ o L, 0N, o 9N _,
o x281‘3 xgal‘z 2 xl@xg x?’&xl e mlamg x2a’L‘1 -

so the lemma holds.

We can now state Gonzalez’s main theorem describing the range of R.
Theorem 4.17. The plane-to-line transform R maps £(G(2,3)) onto the
kernel of D:

R(£(G(2,3))) = {¢ € £(G(1,3)) : X(D)y = 0}.

Proof. The operator R obviously commutes with the action of GG. Thus by
(13) in Ch. VIII, we have for each E C D(G),

(99) R\'(E)p) =0=XN(E)Rp ¢ €&(G(2,3)).
In particular, Lemma 4.15 implies

N(D)(Rp) =0  for p € E(G(2,3)).

For the converse assume ¢ € £(G(1,3)) satisfies
N(D)y=0.

Put ¥ = ¢ o n’. Then by the analog of (96) A(D)¥ = 0. In analogy with
the formula (97) for A(D)® (where the first term vanished) we get for each
(o,7) € S? x R3,

(100)

0= )\(D)\I’ = [)\(E1>x)\(X23)g — )\(Eg)m)\(Xlg)g +>\(E3)m)\(X12)U] \IJ(O', l’) .

Now ¥(o,z) = U(—0,2) so by the surjectivity of the great circle trans-
form (which is contained in Theorem 2.2 in Ch. III) there exists a unique
even smooth function w — ®,(w) on S? such that

1

(101) U(o,x) = 9
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We put ®(w,z) = ®,(w). The task is now to prove that V,P(w,z) is a
multiple of w, because then by Lemma 4.13, ® = ¢ o «” for some ¢ €
E(G(1,3)). Then we would in fact have by (95), Rpon’ =¥ = ¢ on’ so
Ry = 1.

Applying the formula (100) above and differentiating (101) under the
integral sign, we deduce

(102)
0 :/ [)\(X23)w)\(E1)x —AMX13)wA(E2) s +)\(X12)w(E3)x} P(w,z)do(w) -
A(o)

For x fixed the integrand is even in w, so by injectivity of the great circle
transform, the integrand vanishes. Consider the R3-valued vector field on
S? given by

G(w) = = 720w, ) = (A\(E1)a@(w, 2), A(E2)o®(w, 2), (s, 0w, 2))
= (G1(w), G2(w), G3(w)),

where each G;(w) is even. By the vanishing of the integrand in (102) we
have

(103) AMX23)G1 — AM(X13)G2 + AM(X12)G3 = 0.

We decompose G (w) into tangential and normal components, respectively,
G(w) = T(w)+ N (w), with components T}(w), Ni(w), 1 < i < 3. We wish to
show that G (w) proportional to w, or equivalently, f(w) = (0. We substitute
G; =T; + N; into (103) and observe that

(104) A(X23)(N1) — A(X13)(N2) + A(X12)(N3) =0,
because writing N (w) = n(w)w, n is an odd function on S2 and (104) equals
wiA(Xa3)n(w) — weA(X13)n(w) + wsA(X12)n(w)
+n(w)(A(Xa3)(w1) — M X13)wa + A(X12)(ws)) =0
by Lemma 4.16 and A(Xjx)w; = 0, (i # j, k). Thus we have the equation
(105) A X23)Th — M X13)To + A(X12)T3 =0.
From Lemma 4.12 (0, V,¥(0,2)) = 0 and by (101) we get

0= /(a,vzq)(w,w)dg(w):— /(a,é(w))d(,w

A(o) A(o)
— [ @I - [ 0 Fw)dw
A(o) A(o)
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since ¢ L N(w) on A(c). Thus T'(w) is an even vector field on S? satisfying
(105) and

(106) / (0, T(w)) dyw = 0.

A(o)

We claim that T'(w) = gradg. t(w), where gradg: denotes the gradient on
S? and t is an odd function on S2. To see this, we extend T'(w) to a smooth
vector field T on a shell S$2:1—e<|z|| <1+ein R® by T(rw) = T(w)
for r € (1 —¢,1+ €). Again the SO(3) action on S? induces vector fields
f(X;;) on S, which are just z; a?cj — 821_. Thus (105) becomes

(curl T(z),z) = 0 on S2.

By the classical Stokes’ theorem for S? this implies that the line integral

/Tld.fbl +T2d33'2+T3d.%’3:0

Y

for each simple closed curve 7 on S2. Let 7 be the pull back of the form
> Tidx; to S2. By the Stokes’ theorem for 7 on S? we deduce dr = 0 on
S?, i.e., T is closed. Since S? is simply connected, 7 is exact, i.e., T = dt,
t € £(S?). (This is an elementary case of deRham’s theorem; ¢ can be
constructed as in complex variable theory.) For any vector field Z on S?
dt(Z) = (gradget, Z) so T(w) = gradg2t(w). Decomposing t(w) into odd
and even components we see that the even component is constant so we
can take t(w) odd.

Let H(o) denote the hemisphere on the side of A(c) away from o. Note
that o located at points of A(c) form the outward pointing normals of the
boundary A(c) of H(c). With T(w) = gradgt(w) the integral (106) equals

/ (Lg2t)(w)dw, o€ S?,
H(o)

by the divergence theorem on S2. Since Lgat is odd the next lemma implies
that Lg2t = 0 so ¢ is a constant, hence ¢ = 0 (because t is odd).

Lemma 4.18. Let 7 denote the hemisphere transform on S?, 7(h) =
fH(U) h(w)dw for h € E£(S?). If 7(h) = 0 then h is an even function.

Proof. Let H,, denote the space of degree m spherical harmonics on S?2
(m=0,1,2,...). Then SO(3) acts irreducibly on H,,. Since 7 commutes
with the action of SO(3) it must (by Schur’s lemma) be a scalar operator
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¢m on Hy,. The value can be obtained by integrating a zonal harmonic P,
over the hemisphere

3 1
Cm = 27r/Pm(COSG) sinfdf = 27T/Pm(x) dzx .
0 0

According to Erdelyi et al. [1953], I p. 312, this equals

1 F(l + m) 1 mm

107 m = 412 2 i ,

( ) & v F(mgl) m(m+1)sm 9

which equals 27 for m = 0, is 0 for m even, and is # 0 for m odd. Since
each h € £(S?) has an expansion h = Y " hy, with hy, € Hy,, 7(h) = 0
implies ¢,, = 0 (so m is even) if h,, # 0. Thus h is even as claimed.

Remark. The value of ¢, in (107) appears in an exercise in Whittaker—
Watson [1927], p. 306, attributed to Clare, 1902.

J. Noncompact Symmetric Space and Its Family of Horocycles

This example belongs to the realm of the theory of semisimple Lie groups
G. See Chapter IX, §2 for orientation. To such a group with finite center
is associated a coset space X = G/K (a Riemannian symmetric space)
where K is a maximal compact subgroup (unique up to conjugacy). The
group G has an Iwasawa decomposition G = NAK (generalizing the one
in Example C for H2.) Here N is nilpotent and A abelian. The orbits in
X of the conjugates gNg~' to N are called horocycles. These are closed
submanifolds of X and are permuted transitively by GG. The set = of those
horocycles ¢ is thus a coset space of G, in fact = = G/M N, where M is
the centralizer of A in K. To this pair

X=G/K, E==G/MN

are associated a Radon transform f — fand its dual ¢ — ¢ as in formula
(9). More explicitly,

1w08) ) = / f@)ydm(z),  F) = / o(€) dul€),
£

&Sz

where dm is the Riemannian measure on the submanifold & and du is the
average over the (compact) set of horocycles passing through x.

Problems A, B, C, D all have solutions here (with some open questions);
there is injectivity of f — f (with inversion formulas), surjectivity of ¢ —
¢, determinations of ranges and kernels of these maps, support theorems
and applications to differential equations and group representations.
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The transform f — fhas the following inversion
f=@hnY,

where A is a G-invariant pseudo-differential operator on =. In the case when
G has all Cartan subgroups conjugate one has a better formula

F=015H"),

where [J is an explicit differential operator on X.
The support theorem for f — f states informally, B C X being any ball:

J?(f)zo for ENB=0= f(x)=0 for z¢B.

Here f is assumed “rapidly decreasing” in a certain technical sense.

Thus the conjugacy of the Cartan subgroups corresponds to the case
of odd dimension for the Radon transform on R™. For complete proofs of
these results, with documentation, see my book [1994b] or [2008].

Exercises and Further Results

1. The Discrete Case.

For a discrete group G, Proposition 2.2 (via diagram (4)) takes the form
(# denoting incidence):

Nty = Y f@)e©) =Y FE)e().

rzeX (z,6)EX XE,x#E feX

2. Linear Codes. (Boguslavsky [2001])

Let F; be a finite field and Fy the n-dimensional vector space with its
natural basis. The Hamming metric is the distance d given by d(z,y) =
number of distinct coordinate positions in x and y.

A linear [n, k,d]-code C is a k-dimensional subspace of F} such that
d(z,y) > d for all z,y € C. Let PC' be the projectivization of C' on which
the projective group G = PGL(k — 1, F,) acts transitively. Let £ € PC be
fixed and 7 a hyperplane containing ¢. Let K and H be the corresponding
isotropy groups. Then X = G/K, and & = G/H satisfy Lemma 1.3 and

the transforms N
&= f@), @)= e

€l [EE

are well defined. They are inverted as follows. Put

s(e) =Y @), a(f)=>_ flx).

£e= reX
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The projective space P™ over F; has a number of points equal to p,, =

a" “— 1_ ! Here m = k — 1 and we consider the operators D and A given by
qk—2 -1 k—2 _ 1
Then
f@) = (D@, 9O = L8816,

3. Radon Transform on Loops. (Brylinski [1996])

Let M be a manifold and LM the free loop space in M Fix a 1-form «
on M. Consider the functional I, on LM given by I,( f Q.

With the standard C*° structure on LM
1
(dlo, ), = / da(u(), 3(0)) dt
0

for v € (LM),. Clearly I, = 0 if and only if a is exact.

Inversion, support theorem and range description of this transform are
established in the cited reference. Actually I, satisfies differential equations
reminiscent of John’s equations in Theorem 6.5, Ch. 1.

4. Theta Series and Cusp Forms.

This concerns Ch. II, §4, Example H. For the following results see Gode-

ment [1966].

(i) In the identification G/N ~ R? — (0) (via gN — g(})), let f €
D(G/N) satisty f(z) = f(—z). Then, in the notation of Example H,

VPN = feN) + Y / flgnyN) dn,
) N

where Z( ) denotes summation over the nontrivial double cosets £y
(yand —y in T identiﬁed).

(ii) Let A= {(0 -1 ) : t > 0}be the diagonal subgroup of G and 3(h) = t?
if h = (0 1 ) Consider the Mellin transform

Flgn,25) = / F(ghN)B(R)® dh
A

and (viewing G/N as R? — 0) the twisted Fourier transform

= [ 1wemren gy,



106 Chapter II. A Duality in Integral Geometry

where B(z,y) = x2y1 — x1y2 for © = (21,22), y = (y1,y2). The FEisenstein
series is defined by

E¢(g,s) = Z f(g7N,2s), (convergent for Re s> 1).
’YEF/FOO

Theorem. Assuming f*(0) = 0, the function s — ((2s)E¢(g, s) extends
to an entire function on C and does not change under s — (1—s), f — f*.

5. Radon Transform on Minkowski Space. (Kumahara and Waka-
yama [1993], see Figure I1,6)

Let X be an (n + 1)-dimensional real vector space with inner product
(, ) of signature (1,n). Let eg, €1, ..., e, be a basis such that (e;,e;) = —1
fori=j=0and 1ifi=j>0and0ifi# j Thenif z = Y jze;, a
hyperplane in X is given by

n
Zaixi:c, aeR" a#£0
0

and c € R. We put
wo = —ao/[(@,a)|*, w;=a;/|(aa)l>,j >0, p=c/|a,a)?
if (a,a) # 0 and if (a,a) =0
wo = —ao/|aol, wj = a;j/laol i >0, p=c/laol.
The hyperplane above is thus
(r,w) = —xowo + T1w1 + -+ Tpwn =D,

written &(w,p). The semidirect product M(1,n) of the translations of X
with the connected Lorentz group G = SOg(1,n) acts transitively on X
and M(1,n)/SO(1,n) = X.

To indicate how the light cone (w,w) = 0 splits X we make the following
definitions (see Figure I1,6).

Xt ={we X :{ww)=~-1,w >0}
X_={we X :{ww)=-1,wy <0}
X ={weX:(ww) =+1}

Xy ={weX:{ww) =0, wy >0}
Xy ={we X :(w,w) =0,w <0}
Si={weX:(ww) =0,wy==1}

The scalar multiples of the X; fill up X. The group M(1,n) acts on X as
follows: If (g,z) € M(1,n), g € G, z € X then

(g,2) - z=z+g-z.
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The action on the space Z of hyperplanes &(w, p) is
(9,2) - &(w,p) = &(g-w,p+ (2,9 w)).
Then = has the M(1,n) orbit decomposition
=2 =M(1,n)¢(eo,0) UM(1,n)E(e1,0) U M(1,n)é(eo + €1,0)

into three homogeneous spaces of M(1,n).

FIGURE II.6.
Minkowski space for dimension 3

Note that £(—w, —p) = &(w, p) so in the definition of the Radon transform
we assume wo > 0. The sets X, X, and XO+ have natural G-invariant
measures dy_ (w) and du (w) on X U X~ and X, respectively; in fact

dps = w |Hdwj where w; #0.
Wi J#i

Viewing XTUX~UX, US;US_ as a substitute for a “boundary” X of
X we define

/1/1 ) dp(w /¢ ) dp—( /1/; ) dpig (w

XTux—
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for ¢ € C.(X). (St and S_ have lower dimension.) The Radon transform
f — f and its dual ¢ — ¢ are now defined by

-~

7e) = / f(@) dm(z) = / f(@) dm(z) = Flw,p),
13 (z,w)=p

) = / (€ doa(€) = / (w, (2, w)) dp(€).

Edx 0X

Here dm is the Euclidean measure on the hyperplane £ and a function ¢
on = is identified with an even function ¢(w,p) on X x R. The measure
do, is defined by the last relation.

There are natural analogs S(X), S(Z) and Sy (E) of the spaces S(R™),
S(P™) and Sy (P™) defined in Ch. I, §2. The following analogs of the R"™
theorems hold.

Theorem. f — f is a bijection of S(X) onto Sy (E).
Theorem. For f e S(X),
f=@hY,
where

n
2(217r)2 (igp> o(w,p) n even

(Ap)(w,p) = (
2(21")"7-‘;” (igp) ‘P(wap) n odd

6. John’s Equation for the X-ray transform on R3.

According to Richter [1986b] the equation X' (D) = 0 in Gonzalez’ The-
orem 4.17 characterizes the range of the X-ray transform on R?>. Relate
this to John’s equation Ay = 0 in Theorem 6.9, Ch. I.

Bibliographical Notes

The Radon transform and its dual for a double fibration

(1) Z=G/(KNH)

T

X =G/K Z=G/H

was introduced in the author’s paper [1966a]. The results of §1-§2 are from
there and from [1994b]. The definition uses the concept of incidence for
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X = G/K and E = G/H which goes back to Chern [1942]. Even when the
elements of = can be viewed as subsets of X and vice versa (Lemma 1.3) it
can be essential for the inversion of f — fnot to restrict the incidence to
the naive one x € £. (See for example the classical case X = S? = = set of
great circles where in Theorem 4.1 a more general incidence is essential.)
The double fibration in (1) was generalized in Gelfand, Graev and Shapiro
[1969], by relaxing the homogeneity assumption.

For the case of geodesics in constant curvature spaces (Examples A, B
in §4) see notes to Ch. III.

The proof of Theorem 4.4 (a special case of the author’s inversion for-
mula in [1964], [1965b]) makes use of a method by Godement [1957] in
another context. Another version of the inversion (47) for H? (and H") is
given in Gelfand-Graev-Vilenkin [1966]. A further inversion of the horocy-
cle transform in H? (and H"), somewhat analogous to (38) for the X-ray
transform, is given by Berenstein and Tarabusi [1994].

The analogy suggested above between the X-ray transform and the horo-
cycle transform in H? goes even further in H3. There the 2-dimensional
transform for totally geodesic submanifolds has the same inversion formula
as the horocycle transform (Helgason [1994b], p. 209).

For a treatment of the horocycle transform on a Riemannian symmetric
space see the author’s paper [1963] and monograph [1994b], Chapter II,
where Problems A, B, C, D in §2 are discussed in detail along with some
applications to differential equations and group representations. See also
Gelfand—-Graev [1964] for a discussion and inversion for the case of complex
G. See also Quinto [1993a] and Gonzalez and Quinto [1994] for new proofs
of the support theorem.

Example G is from Hilgert’s paper [1994], where a related Fourier trans-
form theory is also established. It has a formal analogy to the Fourier
analysis on H? developed by the author in [1965b] and [1972].

Example I is from Gonzalez’s beautiful paper [2001]. Higher dimensional
versions have been proved by Gonzalez and Kakehi [2004]. The relationship
between the operator D and John’s operator A in Ch. I, §6 was established
by Richter [1986b].

In conclusion we note that the determination of a function in R™ in terms
of its integrals over unit spheres (John [1955]) can be regarded as a solution
to the first half of Problem B in §2 for the double fibration (4) and (7). See
Exercise 5 in Ch. VL.
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