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Electrical Fundamentals 

In order to understand electrochemical impedance spectroscopy (EIS), we first 
need to learn and understand the principles of electronics. In this chapter, we will 
introduce the basic electric circuit theories, including the behaviours of circuit 
elements in direct current (DC) and alternating current (AC) circuits, complex 
algebra, electrical impedance, as well as network analysis. These electric circuit 
theories lay a solid foundation for understanding and practising EIS measurements 
and data analysis. 

2.1 Introduction 

An electric circuit or electric network is an integration of electrical elements (also 
known as circuit elements). Each element can be expressed as a general two-
terminal element, as shown in Figure 2.1. The terminals “a” and “b” are accessible 
for connections with other elements. These circuit elements can be interconnected 
in a specified way, forming an electric circuit. Figure 2.2 demonstrates an example 
of an electric circuit. 

Circuit elements can be classified into two categories, passive elements and 
active elements. The former consumes energy and the latter generates energy. 
Examples of passive elements are resistors (measured in ohms), capacitors 
(measured in farads), and inductors (measured in henries). The two typical active 
elements are the current source (measured in amperes), such as generators, and the 
voltage source (measured in volts), such as batteries. 

Two major parameters used to describe and measure the circuits and elements 
are current (I) and voltage (V). Current is the flow, through a circuit or an element, 
of electric charge whose direction is defined from high potential to low potential. 
The current may be a movement of positive charges or of negative charges, or of 
both moving in opposite directions. For example, in a metallic resistor the current 
is the movement of electrons, whereas in an electrolyte solution the current is the 
movement of ions, and in a proton exchange polymer it is the movement of 
protons. Voltage is the difference in electrical potential between two points of an 
electric circuit or an element, expressed in volts. As shown in Figure 2.1, the 
potential difference between terminal “a” and terminal “b” is the voltage, which 
drives current through the element [1, 2]. 
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Figure 2.1. A general two-terminal electrical element 

Figure 2.2. An example of an electric circuit 

2.2 Direct Current Circuits 

If the independent sources in a circuit are constant sources, such as batteries, all the 
currents and voltages remain constant and the circuit reaches its steady state. In this 
case, we say that the circuit is in a DC steady state. 

2.2.1 Ohm’s Law 

The relationship between voltage and current in the circuit can be described by 
Ohm’s law, which states that the current passing through a conductor between two 
points is directly proportional to the voltage across the two points, and inversely 
proportional to the resistance between them. The mathematical equation that 
describes this relationship is 

 V = IR    (2.1) 
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where V is the driving voltage in volts (V), R is the resistance in ohms (Ω), and I is 
the current in amperes (A). 

Two common concepts are relevant to resistance. One is the short circuit, 
which is the direct connection externally between two nodes using an electrically 
conductive wire that has a theoretical resistance of zero. The opposite of a short 
circuit is an open circuit, in which the two nodes have no external connection or an 
infinite resistance connection [3]. Note that a point of connection of two or more 
circuit elements is called a node, as seen in Figure 2.3b. 

Another important quantity, known as conductance, is defined by 

 G = 1/R    (2.2) 

where G is the conductance in siemens (S). Obviously, in this case Ohm’s law can 
also be expressed as 

 I = GV      (2.3) 

2.2.2 Series and Parallel Circuits 

There are two basic circuit connections: series circuit and parallel circuit. If two or 
more circuit components are connected end to end, as shown in Figure 2.3a, they 
are connected in series. A series circuit has only one path for the electric current to 
run through all of its components. If two or more circuit components are connected 
like the rungs of a ladder, as shown in Figure 2.3b, they are connected in parallel. 
A parallel circuit has different paths for the electric current through each of its 
components, with the same voltage across. 

a     b 

Figure 2.3. a Series and b parallel circuits 
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2.2.3 Kirchhoff’s Laws 

Electric circuits can be very complicated. For example, they may include series-
connected sections, parallel-connected sections, or both. No matter how complex 
they are, the behaviours of these sections are governed by fundamental laws, which 
provide basic tools for the analysis of all the circuits. 

The fundamental laws for circuit analysis are Ohm’s law and Kirchhoff’s laws. 
Ohm’s law, described above, can be used to find the current, voltage, and power 
associated with a resistor. However, in some cases Ohm’s law by itself cannot 
analyze the circuit. Analytical solutions for most electric networks need to combine 
Ohm’s law and Kirchhoff’s laws, the latter being also known as Kirchhoff’s 
current law (KCL) and Kirchhoff’s voltage law (KVL). 

Figure 2.4. Principle schematic of Kirchhoff’s current law 

Kirchhoff’s current law states that the algebraic sum of the currents entering a node 
is equal to the algebraic sum of the currents leaving the node. The principle 
schematic of KCL is shown in Figure 2.4, and the mathematical equation that 
describes KCL in Figure 2.4 is 

 I1 + I 4 = I 2 + I 3     (2.4) 

More commonly, the current has a reference direction indicating entrance to or exit 
from the node. If the current enters the node, the arrow points to the node and a 
positive value is denoted for this current. Conversely, if the current leaves the 
node, the arrow points away from the node and a negative value is assigned to this 
current. So, KCL can also be expressed as 

 I∑ = 0    (2.5) 

Applying KCL to the circuit in Figure 2.3b, we have 
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 I − I1 − I 2 − I 3 = 0     (2.6) 

Kirchhoff’s voltage law states that the algebraic sum of the voltage over the circuit 
elements around any closed circuit loop must be zero. The principle schematic of 
KVL is shown in Figure 2.5. The mathematical equation that describes KVL in 
Figure 2.5 can be expressed as 

 V1 + V2 + V3 + V4 = 0  (2.7) 

Figure 2.5. Principle schematic of Kirchhoff’s voltage law  

More commonly, KVL can be expressed as 

 V = 0∑      (2.8) 

According to KVL, in a closed circuit loop, the sum of the voltage drops caused by 
the current across the elements, such as the resistor, capacitor, or inductor, is equal 
to the sum of the driving voltages produced by a voltage source such as a battery or 
a generator: 

 Driving voltages = Voltage drops∑∑    (2.9) 

2.2.4 Resistors in DC Circuits 

Electric circuits or networks can be analyzed using both Ohm’s law and 
Kirchhoff’s laws. For a circuit of resistors in series, as shown in Figure 2.6, the 
current flow in each resistor is the same ( IR ). 
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Figure 2.6. Resistors in series 

Applying KVL to the circuit in Figure 2.6, we have 

 VT = V1 + V2 + V3 + ...+ Vn     (2.10) 

Applying Ohm’s law to Equation 2.10, we can obtain 

 VT = IRR1+ IRR2 + IRR3 +…+ IRRn    (2.11) 

Equation 2.10 can be rearranged as Equation 2.12: 

 VT = IR (R1 + R2 + R3 + ...+ Rn )    (2.12) 

Thus, the equivalent resistance R of n resistors connected in series can be 
expressed as 

 R = VT

IR

= R1 + R2 + R3 + ...+ Rn   (2.13) 

For a circuit of resistors in parallel, as shown in Figure 2.7, the voltage across each 
resistor is the same ( VT ). Applying KCL to the circuit in Figure 2.7, we have 

 IT = I1 + I 2 + I3 + ...+ In     (2.14) 

Then, 

 IT = (
VT

R1

+ VT

R2

+ VT

R3

+ ...+ Vt

Rn

)   (2.15) 
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Figure 2.7. Resistors in parallel 

Therefore, the equivalent resistance of the parallel combination of n resistors is 

 R = VT

IT

= 1
R1

+ 1
R2

+ 1
R3

+ ...+ 1
Rn

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

    (2.16) 

The equivalent conductance of n resistors in parallel, G, can be expressed as 

 G = IT

VT

= G1 + G2 + G3 + ...+ Gn = 1
R1

+ 1
R2

+ 1
R3

+ ...+ 1
Rn

   (2.17) 

2.2.5 Capacitors in DC Circuits 

Capacitance represents the energy-storing capability of a capacitor. The most 
common form of charge storage device is a two-plate capacitor, as shown in Figure 
2.8. A parallel-plate capacitor is a circuit element with two conducting plates at the 
terminals and a nonconductive material, known as the dielectric material, to 
separate them. When a charge source, such as a battery, transfers charges to a 
capacitor, the voltage builds up across the two conductive terminals. The charges 
accumulate at the two plates of the capacitor, and can be expressed as 

 q = CV       (2.18) 

where C is the capacitance in farads (F), q is the accumulated charge in coulombs 
(C), and V is the voltage measured between the two conducting plates in volts (V). 
The capacitance value (C) of a parallel-plate capacitor is related to the geometry of 
the capacitor and to the dielectric constant of the nonconductive material in the 
capacitor by the following equation: 

 C = KA(8.854 ×10−12)
d

     (2.19) 

where C is the capacitance in farads (F), K is the dielectric constant of the 
insulating material, A is the surface area in square metres (m2), and d is the 
thickness of the dielectric material in metres (m). 
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Figure 2.8. A parallel-plate capacitor 

Some representative dielectric constants are 1.0 for air, 5 for mica, 6 for glass, and 
7500 for ceramic. 

In a DC circuit, a capacitor behaves like an open circuit. In other words, the 
current through it is zero when the circuit reaches its steady state. However, if a 
current or voltage source is impressed on or switched out of the circuit with a 
capacitor (or capacitors), as shown in Figure 2.9, there will be a transitory change 
in the current and voltage. Between the moment of switching and the steady state, 
the current passing through the capacitor is not zero. The time dependence of the 
voltage across the capacitor during the transient state in a DC circuit like Figure 
2.9 can be obtained using Laplace transforms (for these, please refer to Appendix 
B). 

Figure 2.9. A DC circuit containing a capacitor and a switch 

Since the current is defined as the change rate of the charge, by differentiating 
Equation 2.18 we can obtain 

 I (t) = C
dV (t)

dt
   (2.20) 
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Equation 2.20 is the current–voltage relation for a capacitor. 
Figure 2.10 shows the transient process of a capacitor when charging. In the 

charging process, the electric field in the nonconductive material changes due to 
the charge increase in the conductive terminals of the capacitor. The charging 
process stops when the voltage V across the capacitor is equal to the DC charge 
source. 

Figure 2.10. Voltage build-up versus charging time in a capacitor 

2.2.5.1 Equivalent Capacitance of Capacitors in Series 
Applying KVL to the circuit in Figure 2.11, we have 

 VT = V1 + V2 + V3 + ...+ Vn     (2.21) 

Figure 2.11. Capacitors in series 

Substituting voltages according to Equation 2.18, we obtain 

 VT = q1

C1

+ q2

C2

+ q3

C3

+…+ qn

Cn

   (2.22) 

Since the current to all the elements in a series circuit is the same, the accumulation 
of charge in every capacitor must be the same. Thus, 
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 q1 = q2 = q3 = qn = q      (2.23) 

Equation 2.22 becomes 

 VT = q(
1

C1

+ 1
C2

+ 1
C3

+…+ 1
Cn

)    (2.24) 

Then, the equivalent capacitance of n capacitors in series, Cs , is determined by 

 1
Cs

= VT

q
= 1

C1

+ 1
C2

+ 1
C3

+…+ 1
Cn

   (2.25) 

In other words, the total capacitance of capacitors in series is equal to the 
reciprocal of the sum of the reciprocals of the individual capacitances. 

2.2.5.2 Equivalent Capacitance of Capacitors in Parallel 
Applying KCL to the circuit in Figure 2.12, we have 

 IT = I1 + I 2 + I3 + ...+ In     (2.26) 

As the voltage across each element in a parallel circuit is the same, by substituting 
currents using Equation 2.20 we can obtain 

 IT = C1

dV
dt

+ C2

dV
dt

+ C3

dV
dt

+…+ Cn

dV
dt

    (2.27) 

Therefore, 

 IT = (C1 + C2 + C3 + ...+ Cn )
dV
dt

  (2.28) 

Thus, the equivalent capacitance of n parallel capacitors, C p , is simply the sum of 
the individual capacitances: 

 C p = C1 + C2 + C3 + ...+ Cn   (2.29) 

Figure 2.12. Capacitors in parallel 
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2.2.6 Inductors in DC Circuits 

An inductor is commonly a coiled conducting wire wrapped around a core (e.g., 
ferromagnetic material) with two terminals. When current passes through the 
inductor, magnetic flux is produced, resulting in inductance. The number of loops, 
the size of each loop, and the core material all affect the inductance value. 

In a DC circuit, an inductor is like a short circuit, which means the voltage 
across it is zero when the circuit reaches its steady state. However, if a current or 
voltage source is impressed on or switched out of the circuit with an inductor, as 
shown in Figure 2.13, there will be a transitory change in the current and voltage. 
During the time period from the moment of switching to the steady state, the 
voltage across the inductor is not zero. 

Figure 2.13. A DC circuit containing an inductor and a switch 

While a capacitor delays changes in voltage, an inductor delays changes in current. 
Generally, the relationship between the time-varying voltage V(t) across an 
inductor with an inductance of L and the time-varying current I(t) passing through 
it can be written as the differential equation: 

 V (t) = L
dI (t)

dt
     (2.30) 

where L is the inductance (measured in henries). 
Inductors in series and in parallel are shown in Figures 2.14 and 2.15, 

respectively. While the voltage across each inductor may be different, the current 
through inductors in series stays the same. Since the sum of the voltages is equal to 
the total voltage, the total inductance of inductors in series, Ls, can be expressed as 

 Ls = L1 + L2 + L3 + ...+ Ln   (2.31) 
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Figure 2.14. Inductors in series 

Figure 2.15. Inductors in parallel 

In a parallel configuration of inductors, as shown in Figure 2.15, each inductor has 
the same voltage. Therefore, the total equivalent inductance of inductors in 
parallel, Lp, can be obtained: 

 1
Lp

= 1
L1

+ 1
L2

+ 1
L3

+…+ 1
Ln

   (2.32)   

2.3 Alternating Current Circuits 

2.3.1 Sinusoidal Systems 

Alternating current or voltage (AC) refers to current or voltage that varies with 
time in a periodic manner. Figure 2.16 shows three examples of periodic voltage 
waves. As shown there, one cycle is a complete set of the periodic wave, the 
frequency of which, f (Hz), is the number of cycles completed in one second (one 
cycle per second is one hertz). The period of the periodic wave, T (s), is the time 
required to complete one cycle. Thus, the relation between the frequency and the 
period is as follows: 

 T = 1
f

    (2.33) 
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Among the periodic waves, the sinusoidal wave is extremely important, being the 
easiest to work with mathematically. The general mathematical expression for the 
sinusoidal wave (voltage) is given by 

 V (t) = Vm sin(ωt +θ )     (2.34) 

where V(t) is the instantaneous voltage value at the instant of time t, Vm is the peak 
amplitude of the sinusoidal voltage wave (V), θ  is the phase angle, ω is the angular 
frequency (rad/s), and T is the time (s). 

a 

b 

c 

Figure 2.16. Periodic voltage waves: a rectangular, b triangular, c sinusoidal 
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Since the angle spun in one cycle is 2π  radians, we have 

 ω = 2πf     (2.35) 

Thus, 

 T = 2π
ω

     (2.36) 

Substituting for ω  using Equation 2.35, we obtain 

 V (t) = Vm sin(2πft +θ )     (2.37) 

Similarly, the equation for a sinusoidal current wave is 

 I (t) = Im sin(2πft +φ)     (2.38) 

where I(t) is the instantaneous current value at the instant of time t; Im is the 
amplitude or the maximum value of the sinusoidal current wave (A); φ is the phase 
angle; f is the  frequency (Hz); and T is the time (s). 

Direct current or voltage can be considered a special type of sinusoidal current 
wave or sinusoidal voltage wave whose frequency is at the lower limit of zero 
hertz. 

2.3.2 Resistors in AC Circuits 

In an AC circuit, assuming the voltage across the resistor is described by a 
sinusoidal wave (as shown in Equation 2.37), the current through the resistor, 
based on Ohm’s law, is 

 IR (t) = VR (t)
R

= Vm sin(2πft +θ )
R

= Vm

R
sin(2πft +θ )   (2.39) 

As can be seen in Equation 2.39, both IR (t)  (the current through the resistor) and 
VR (t)  (the voltage across the resistor) have the same frequency and phase. 

According to Equation 2.38, we have 

 IR (t) = Im sin(2πft +φ)    (2.40) 

Comparing Equations 2.39 and 2.40, we can obtain 

 Im = Vm

R
    (2.41) 
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Since there is no angular difference between the current in a resistor and the 
voltage across it, we have 

 φ = θ     (2.42) 

2.3.3 Capacitors in AC Circuits 

In a sinusoidal AC circuit, the current through a pure capacitor leads the voltage 
drop across this capacitor by 90°. The 90° phase relationship between IC (t)  (the 
current through the capacitor) and VC (t)  (the voltage across the capacitor) can be 
written as 

 IC (t) = C
dVC (t)

dt
     (2.43) 

For example, if the voltage across the capacitor, VC (t) , is 

 VC (t) = Vm sin 2πft      (2.44) 

then substituting VC (t)  in Equation 2.43 with Equation 2.44, we have 

 IC (t) = C
d (Vm sin 2πft)

dt
= CVm (2πf ) cos 2πft = ωCVm sin(2πft + 90°)  

(2.45) 

The current through the capacitor, IC (t) , will be 

 IC (t) = Im sin(2πft + 90°)    (2.46) 

where 

 Im = ωCVm      (2.47) 

2.3.4 Inductors in AC Circuits 

In a sinusoidal AC circuit, the voltage drop across a pure inductor advances the 
current through it by 90°. The 90° phase relationship between IL (t)  (the current 
through the inductor) and VL (t)  (the voltage across the inductor) is expressed by 

 VL (t) = L
dIL (t)

dt
    (2.48) 

For example, if the current through the inductor, IL (t) , is 
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 IL (t) = Im sin 2πft     (2.49) 

then substituting IL (t)  from Equation 2.49 into Equation 2.48, we have 

 VL (t) = L
d (Im sin 2πft)

dt
= LIm (2πf ) cos 2πft = ωLI m sin(2πft + 90°)   

(2.50) 

The voltage across the inductor, VL (t) , will be 

 VL (t) = Vm sin(2πft + 90°)     (2.51) 

where 

 Vm = ωLIm      (2.52) 

2.4 Complex Algebra and Impedance 

Complex algebra is a powerful tool for solving problems in AC electric circuits, 
including sinusoidal systems. The complex number Z can be written in the 
rectangular form 

 Z = Zre + iZim      (2.53) 

where Zre  (or Z ') and Zim (or Z ' ' ) are the real and imaginary parts of Z, 
respectively, and i = −1 . 

The complex number Z can also be expressed in the polar form 

 Z = Z eiφ    (2.54) 

or 

 Z = Z cosφ + i sinφ( )     (2.55) 

where Z  is the magnitude of Z: 

 Z = (Zre)2 + (Zim)2    (2.56) 

and φ is called the argument or the angle of Z: 

 1tan im

re

Z
Z

φ −=    (2.57) 
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Complex algebra is associated with a two-dimensional plane, called the 
complex plane. The complex plane of the complex number Z is presented in Figure 
2.17. As can be seen there, the horizontal and vertical axes are called the real and 
imaginary axes, respectively. Complex algebra applications will be employed in 
the following sections and in Chapter 4. 

 

Figure 2.17. Complex plane of the complex number Z 

Let us recall the general sinusoidal voltage and current: 

 V (t) = Vm sin(2πft +θ )     (2.58) 

 I (t) = Im sin(2πft +φ)      (2.59) 

These can be displayed in related complex numbers: 

 V = Vmeiθ = Vm∠θ      (2.60) 

 I = Imeiφ = Im∠φ    (2.61) 

which are defined as phasors, or phasor representations. To distinguish them from 
other complex numbers, phasors are printed in bold.  

Having introduced complex algebra, we are now able to go further, to the 
concept of electrical impedance or simply impedance. Electrical impedance 
extends the concept of resistance to AC circuits and therefore is also called AC 
impedance. As impedance is a complex quantity, the term complex impedance may 
also be used. Based on the definition of resistance described by Ohm’s law, the 
current–voltage relationship in impedance can be expressed as 

  Z = V (t)
I (t)

    (2.62) 

where V (t)  and I (t)  are measurements of voltage and current in an AC system. 
For a sinusoidal system, the AC impedance of a resistor, ZR , in the complex 

plane can be expressed as 
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 ZR = R    (2.63) 

The AC impedance of a capacitor, ZC , in the complex plane can be expressed as 

 ZC = 1
iωC

    (2.64) 

because 

   ZC = Vmei00

Imei900 = Vmei00

ωCVmei900 = ei(−900 )

ωC
   (2.65) 

Applying Euler’s formula, we have 

 ei(−90°) = cos(−90°) + i sin(−90°)    (2.66) 

Therefore, 

 ZC = ei(−900 )

ωC
= −i

ωC
= 1

iωC
   (2.67) 

The AC impedance of an inductor, ZL , in the complex plane can be expressed as 

 ZL = iωL      (2.68) 

because 

 ZL = Vmei900

Imei00 = ωLI mei900

Imei00 = ωLei900

   (2.69) 

Again, applying Euler’s formula, we obtain 

  ZL = ωLei900

= iωL      (2.70) 

2.4.1 AC Impedance of a Resistor–Capacitor Circuit 

In a parallel resistor–capacitor (RC) circuit (R/C), the overall AC impedance of the 
circuit is denoted as ZR/C. Since 

 1
ZR /C

= 1
ZR

+ 1
Zc

     (2.71) 

ZR/C can be expressed as 
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 ZR /C = 1
R

+ 1
(iωC)−1

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

−1

= (
1
R

+ iωC)−1    (2.72) 

Then we have 

 ZR /C = R
1+ iωRC

   (2.73) 

Ultimately, Equation 2.73 can be transferred to the standard form of a complex 
number: 

 ZR /C = R

1+ ωRC( )2 − i
ωR2C

1+ ωRC( )2    (2.74) 

Therefore, the real and imaginary components, Zre  and Zim, in the AC impedance 
of the parallel RC circuit are given by 

 Zre = R

1+ ωRC( )2    (2.75) 

 Zim = − ωR2C

1+ ωRC( )2    (2.76) 

while the phase angle φ is given by 

 tan RCφ ω= −      (2.77) 

At low frequency ( ωRC << 1, Zre ≈ R  and Zim ≈ 0 ), this RC circuit acts as a 

resistor, and at high frequency ( ωRC >> 1, Zre ≈ 0  and Zim ≈ 1
ωC

), as a capacitor. 

The time constant τ of this circuit is equal to RC. 
Combining Equation 2.77 with Equations 2.75 and 2.76 yields 

 Zre − R
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+ Zim
2 = R

2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

     (2.78) 

Equation 2.78 represents a half-circle in the fourth quadrant of the complex plane, 
with a radius of R/2 and circle centre of (R/2, 0), as shown in Figure 2.18. Note that 
the frequency range in Figure 2.18 is from 1 MHz to 0.001 Hz. The same 
frequency range is kept for the following figures in this chapter, unless otherwise 
stated. 
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It can be seen from Figure 2.18 that at ω → 0, the plot crosses the real axis at 

(R, 0). At ω → ∞ , the plot crosses the origin. The frequency at ∂(Zim)
∂ω

= 0  is 

designated the characteristic frequency, ωC . At the characteristic frequency, ωCτ C  
is equal to one. 

Figure 2.18. Graphical representation of the AC impedance of a parallel RC circuit 

In a series RC circuit (R-C), according to the primary rules, the overall impedance, 
ZR−C , is expressed as 

 ZR−C = R + (iωC)−1     (2.79) 

Then we have 

 ZR−C = R − i(ωC)−1     (2.80) 

The real and imaginary components Zre , Zim in the AC impedance of the series 
RC circuit are given by 

 Zre = R    (2.81) 

 Zim = −(ωC)−1    (2.82) 

The phase angle φ is given by 

 
1( )tan C

R
ωφ

−

= −      (2.83) 

According to the above calculations, a graphical representation of the AC 
impedance of a series RC circuit is presented in Figure 2.19. As shown in the 
complex plane of Figure 2.19, the AC impedance of a series RC circuit is a straight 
vertical line in the fourth quadrant with a constant Z '  value of R . 
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Figure 2.19. Graphical representation of the AC impedance of a series RC circuit 

2.4.2 AC Impedance of a Resistor–Inductor Circuit 

In a parallel resistor–inductor (RL) circuit (R/L), the overall AC impedance, ZR / L , 
can be expressed as 

 ZR / L = [(R−1 + (iωL)−1 ]−1    (2.84) 

Then, we have 

 ZR / L = ω 2RL2

R 2 + ω 2L2 + i
ωR 2L

R 2 + ω 2L2   (2.85) 

So, the real and imaginary components in the AC impedance of a parallel RL 
circuit are given by 

 Zre = ω 2RL2

R2 + ω 2L2    (2.86) 

 Zim = ωR2L
R2 + ω 2L2    (2.87) 

and the impedance phase angle is given by 

 tan R
L

φ
ω

=     (2.88) 

In the complex plane, the AC impedance of a parallel RL circuit is represented by a 
semicircle in the first quadrant with a radius of R/2 and the centre at (R/2, 0), as 
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shown in Figure 2.20. The curve crosses the real axis at R and 0 at the frequencies 
of ω → ∞  and ω = 0 , respectively. 

Figure 2.20. Graphical representation of the AC impedance of a parallel RL circuit 

In a series RL circuit (R-L), the overall impedance of the RL circuit in series, 
ZR−L , is written as 

 ZR−L = R + iωL     (2.89) 

The real and imaginary components, Zre  and Zim, in the AC impedance can be 
obtained: 

 Zre = R    (2.90) 

 Zim = ωL     (2.91) 

The phase angle φ is as follows 

 tan L
R

ωφ =     (2.92) 

A graphical representation of the AC impedance of a series RL circuit, according 
to the above calculations, is shown in Figure 2.21. In the complex plane of this 
figure, the AC impedance of a series RL circuit is a straight vertical line in the first 
quadrant with a constant Z '  value of R . 
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Figure 2.21. Graphical representation of the AC impedance of a series RL circuit 

2.4.3 AC Impedance of a Capacitor–Inductor Circuit 

In a parallel capacitor–inductor (CL) circuit (C/L), the overall AC impedance, 
ZC / L , can be expressed as 

 ZC / L = [(iωL)−1 + iωC ]−1      (2.93) 

Then 

 ZC / L = (
1

1
ωL

− ωC
)i      (2.94) 

So, the real and imaginary components of the AC impedance of the parallel CL 
circuit are given by 

 Zre = 0     (2.95) 

 Zim = 1
1

ωL
− ωC

   (2.96) 

and the phase angle is 90°. 
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Figure 2.22. Graphical representation of the AC impedance of a simple parallel CL circuit 
(L = 0.04 H, C = 0.00001 F) 

According to the above calculations, a graphical representation of the AC 
impedance of a parallel CL circuit is depicted in Figure 2.22. In the complex plane, 
the AC impedance of the parallel CL circuit is represented by a straight vertical 
line on the Z ' '-axis with a constant Z '  value of zero. 

In a series CL circuit (C-L), according to the primary rules, the overall AC 
impedance of a CL circuit in series, ZC−L , is expressed as 

 ZC−L = (iωC)−1 + iωL      (2.97) 

Therefore, 

 ZC−L = (ωL − 1
ωC

)i    (2.98) 

The real and imaginary components, Zre  and Zim, in the AC impedance can then 
be obtained: 

 Zre = 0     (2.99) 

 Zim = ωL − 1
ωC

   (2.100) 

and the phase angle is again 90°. 
According to the above calculations, a graphical representation of the AC 

impedance of a series CL circuit is given in Figure 2.23. As shown in the complex 
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plane, the AC impedances of a series CL circuit are also located on the Z''-axis 
with a constant Z' value of zero. 

Figure 2.23. Graphical representation of the AC impedance of a series CL circuit (L = 0.04 
H, C = 0.01 F) 

2.4.4 AC Impedance of a Resistor–Capacitor–Inductor Circuit  

2.4.4.1 R-(C/L) Circuit 
If a circuit of parallel CL is in series with R (R-(C/L)), the overall AC impedance, 
ZR−(C / L ) , can be expressed as 

 ZR−(C / L ) = R +[(iωL)−1 + iωC ]−1    (2.101) 

Then, we have 

 ZR−(C / L ) = R + (
1

1
ωL

− ωC
)i      (2.102) 

So, the real and imaginary components of the AC impedance of the R-(C/L) circuit 
are given by 

 Zre = R    (2.103) 

 Zim = 1
1

ωL
− ωC

     (2.104) 

and the phase angle φ is given by 
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 1tan
1( )
L

R C
φ

ω
ω

=
−

   (2.105) 

Based on these equations, Figure 2.24 gives a graphical representation of the AC 
impedance of the R-(C/L) circuit. In the complex plane, the AC impedance of the 
circuit is represented by a straight vertical line with a constant Z '  value of R. 

Figure 2.24. Graphical representation of the AC impedance of the R-(C/L) circuit (L = 0.04 
H, C = 0.00001 F, R = 100 Ω) 

2.4.4.2 R-C-L Circuit 
In a series RCL circuit (R-C-L), the overall impedance, ZR−C−L , is expressed as 

 ZR−C−L = R + (iωC)−1 + iωL      (2.106) 

Then we obtain 

 ZR−C−L = R + (ωL − 1
ωC

)i    (2.107) 

The real and imaginary components, Zre  and Zim, in the AC impedance of the R-
C-L circuit in series are given by 

 Zre = R     (2.108) 

 Zim = ωL − 1
ωC

   (2.109) 

The phase angle φ is then described by 
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1

tan
L

C
R

ω
ωφ

−
=     (2.110) 

Based on these equations, a graphical representation of the AC impedance of the 
(R-C-L) circuit is given in Figure 2.25. As shown in the complex plane of this 
figure, the AC impedance of the series RCL circuit is a straight line with a constant 
Z '  value of R. 

Figure 2.25. Graphical representation of the AC impedance of a series RCL circuit (L = 
0.04 H, C = 0.00001 F, R = 100 Ω) 

2.4.4.3 R/C/L Circuit 
In a circuit of parallel RCL (R/C/L), the overall AC impedance, ZR /C / L , can be 
expressed as 

 ZR /C / L = [R−1 + (iωL)−1 + iωC ]−1  (2.111) 

After a series of transformations, the standard form of the impedance is obtained: 

 ZR /C / L =

1
R

(
1
R

)2 + (ωC − 1
ωL

)2
−

ωC − 1
ωL

(
1
R

)2 + (ωC − 1
ωL

)2
i     (2.112) 

Thus, the real and imaginary components of the AC impedance of the parallel RCL 
circuit are given by 

 Zre =

1
R

(
1
R

)2 + (ωC − 1
ωL

)2
     (2.113) 



66 X-Z. Yuan, C. Song, H. Wang and J. Zhang 

-80
-60
-40
-20

0
20
40
60
80

0 20 40 60 80 100 120 140

Zre (Ω )

Zi
m

 ( Ω
)

 Zim = −
ωC − 1

ωL

(
1
R

)2 + (ωC − 1
ωL

)2
     (2.114) 

and the phase angle φ is given by 

 1tan ( )R C
L

φ ω
ω

= −      (2.115) 

Based on these equations, Figure 2.26 gives a graphical representation of the AC 
impedance of the (R/C/L) circuit. 

Figure 2.26. Graphical representation of the AC impedance of a simple parallel RCL circuit 
(L = 0.04 H, C = 0.00001 F, R = 100 Ω) 

2.4.4.4 R/(C-L) Circuit 
If a series CL is in parallel with R (R/C-L) in a circuit, the overall impedance, 
ZR /(C−L ) , is expressed as 

 ZR /(C−L ) = [R−1 + ((iωC)−1 + iωL)−1 ]−1     (2.116) 

Then, we have 

 ZR /(C−L ) =

1
R

(
1
R

)2 + (
ωC

ω 2CL −1
)2

+

ωC
ω 2CL −1

(
1
R

)2 + (
ωC

ω 2CL −1
)2

i    (2.117) 

Thus, the real and imaginary components, Zre  and Zim, in the AC impedance of 
the R/C-L circuit are: 
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 Zre =

1
R

(
1
R

)2 + (
ωC

ω 2CL −1
)2

    (2.118) 

 =imZ
ωC

ω 2CL −1

(
1
R

)2 + (
ωC

ω 2CL −1
)2

    (2.119) 

The phase angle φ is then given by 

 1
2

1tan ( )
1

CR R L
CCL

ωφ ω
ωω

−= = −
−

   (2.120) 

Based on these, a graphical representation of the AC impedance of the R/C-L 
circuit can be calculated and is depicted in Figure 2.27. 

Figure 2.27. Graphical representation of the AC impedance of the R/(C-L) circuit (L = 0.04 
H, C = 0.00001 F, R = 100 Ω) 

2.4.4.5 C-(R/L) Circuit 
In a circuit of a parallel RL in series with C (C-R/L), the overall AC impedance, 
ZC−(R / L ) , can be expressed as 

 ZC−( R / L ) = (iωC)−1 +[(R−1 + (iωL)−1 ]−1     (2.121) 

Based on the previous calculation in Equation 2.85, we have 

 ZC−( R / L ) = (iωC)−1 + ω 2RL2

R 2 + ω 2L2 + i
ωR2L

R2 + ω 2L2    (2.122) 
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Then 

 ZC−( R / L ) = ω 2RL2

R 2 + ω 2L2 + i (
ωR 2L

R 2 + ω 2L2 − 1
ωC

)   (2.123) 

So, the real and imaginary components of the AC impedance of the C-R/L circuit 
are given by 

 Zre = ω 2RL2

R2 + ω 2L2     (2.124) 

 Zim = ωR2L
R2 + ω 2L2 − 1

ωC
     (2.125) 

and the phase angle is written as 

 
2 2 2 2 2

3 2tan R LC R L
RL C

ω ωφ
ω

− −=      (2.126) 

In the complex plane, an example of the AC impedance of the C-(R/L) circuit is 
shown in Figure 2.28. 

Figure 2.28. Graphical representation of the AC impedance of the C-(R/L) circuit (L = 0.04 
H, C = 0.00001 F, R = 100 Ω) 

2.4.4.6 C/(R-L) Circuit 
In a circuit of a series RL in parallel with C (C/(R-L)), the overall impedance, 
ZC /(R−L ) , is expressed as 

 ZC /(R−L ) = [(iωC) + (R + iωL)−1 ]−1  (2.127) 

Then, we have 
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 ZC /(R−L ) = R
(1− ω 2LC)2 + (RωC)2 + ωL(1− ω 2LC) − R 2ωC

(1− ω 2LC)2 + (RωC)2 i     (2.128) 

The real and imaginary components, Zre  and Zim, of the AC impedance of the 
C/(R-L) circuit are then written as 

 Zre = R
(1− ω 2LC)2 + (RωC)2    (2.129) 

 Zim = ωL(1− ω 2LC) − R2ωC
(1− ω 2LC)2 + (RωC)2    (2.130) 

The phase angle φ is given by 

 
2 2(1 )tan L LC R C

R
ω ω ωφ − −=     (2.131) 

An example, in the complex plane, of the AC impedance of the C/(R-L) circuit is 
presented in Figure 2.29. 

Figure 2.29. Graphical representation of the AC impedance of the C/(R-L) circuit (L = 0.04 
H, C = 0.00001 F, R = 100 Ω) 

2.4.4.7 L-(R/C) Circuit 
In a circuit of a parallel RC in series with L (L-R/C), the overall AC impedance, 
ZL−(R /C ) , can be expressed as 

 ( ) 11
L-(R/C)Z i L R i Cω ω

−−= + +      (2.132) 

Based on Equation 2.74, we have 
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 ZL−( R /C ) = iωL + R

1+ ωRC( )2 − i
ωR 2C

1+ ωRC( )2   (2.133) 

Then 

 ZL−( R /C ) = R

1+ ωRC( )2 + i (ωL − ωR2C

1+ ωRC( )2 )    (2.134) 

The real and imaginary components, Zre  and Zim, of the AC impedance of the L-
R/C circuit are written as 

 Zre = R

1+ ωRC( )2    (2.135) 

 Zim = ωL − ωR2C

1+ ωRC( )2    (2.136) 

The phase angle φ is given by 

 
3 2 2 2

tan L R LC R C
R

ω ω ωφ + −=    (2.137) 

In the complex plane, an example of the AC impedance of the L-(R/C) circuit is 
depicted in Figure 2.30. 

Figure 2.30. Graphical representation of the AC impedance of the L-(R/C) circuit (L = 0.04 
H, C = 0.00001 F, R = 100 Ω) 

2.4.4.8 L/(R-C) Circuit 
In a circuit of a series RC in parallel with L (L/(R-C)), the overall impedance, 
ZL /(R−C ) , is expressed as 
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 ZL /(R−C ) = [(iωL)−1 + (R + (iωC)−1)−1 ]−1   (2.138) 

Then we have 

 ZL /(R−C ) = R

(1− 1
ω 2LC

)2 + (
R

ωL
)2

+

R 2

ωL
− 1

ωC
(1− 1

ω 2LC
)

(1− 1
ω 2LC

)2 + (
R

ωL
)2

i     (2.139) 

The real and imaginary components, Zre  and Zim, of the AC impedance of the 
L/(R-C) circuit are given by 

  Zre = R

(1− 1
ω 2LC

)2 + (
R

ωL
)2

    (2.140) 

 Zim =

R 2

ωL
− 1

ωC
(1− 1

ω 2LC
)

(1− 1
ω 2LC

)2 + (
R

ωL
)2

    (2.141) 

The phase angle φ is given by 

 

2
2 2
1

tan

LR
C C
R L

ωφ
ω

− +
=     (2.142) 

In the complex plane, an example of the AC impedance of the L/(R-C) circuit is 
shown in Figure 2.31. 

Figure 2.31. Graphical representation of the impedance of the L/(R-C) circuit (L = 0.04 H, 
C = 0.00001 F, R = 100 Ω) 
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2.5 Network Circuit Analysis 

To construct an equivalent circuit of a complicated electrode process (e.g., a 
porous electrode) and calculate its impedance, more knowledge about the network 
circuit may be necessary. In this section, we will spend some time discussing 
network circuit analysis. 

2.5.1 Topological Features of a Network 

Two major factors shape an electric network: the type of elements it contains and 
the manner in which the elements are connected. The latter is called the network 
topology. To analyze an electric network, one needs to know the number of 
independent voltage and current variables. To facilitate the following discussion of 
a network topology, we keep the nodes and replace the elements with lines in the 
network circuit, thus simplifying the network topology, as depicted in Figure 2.32. 
Figure 2.32a shows a regular network circuit while the configuration in Figure 
2.32b is called the line graph of a network. 

 a b 

Figure 2.32. A regular circuit and its network line graph: a circuit diagram; b line graph of 
circuit 

2.5.1.1 Some Terms Used in Network Topology 
Several terms are frequently used in network analysis: node, branch, tree, link, 
loop, and mesh. 

A node is a terminal or junction at which two or more circuit elements are 
connected. 

A branch is a portion of a network which contains either a single element or a 
certain connection of elements between two nodes. 

A tree is a connected portion or sub-graph of the entire graph that contains all 
the nodes but no loops. For example, the solid lines in Figure 2.32b form a tree, 
which consists of all the four nodes in the graph; there are no loops within the tree. 

In Figure 2.32b, the dashed lines are called links, i.e., the branches which are 
not in the chosen tree. A graph usually has more than one tree, and the entire graph 
is the sum of the links and tree branches. Assuming that there are N nodes in a 
network, the number of tree branches is N–1. 
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A loop comprises a set of branches that form a closed path in a network. This 
set of branches passes through no node or element more than once. 

A mesh is a loop which contains no other loops within the contour of its closed 
path. Basically, the term “loop” is applicable to a closed path in both planar and 
non-planar circuits, whereas “mesh” is only applicable to planar circuits. The 
meshes in a planar circuit are in fact the contours of the “windows” seen in the 
circuit diagram. For example, Figure 2.32a has three windows, and thus the circuit 
is a three-mesh circuit. 

A planar network or circuit is one that can be drawn on a plane surface without 
any of the branches crossing each other. Conversely, a non-planar network or 
circuit cannot be drawn on a plane surface without the crossing of branches. 

2.5.1.2 Independent Voltages 
Assuming that there are N nodes and B branches in a network, if all the branch 
voltages of any tree are made zero by short-circuiting the branches, all the nodes of 
the circuit are at the same potential, and thus all the voltages of the links are zero. 
In other words, the link voltages depend on the tree branch voltages. Assuming that 
there is one link voltage independent of the tree branch voltages, it could not be 
forced to zero by short-circuiting the tree branches. Consequently at least one node 
voltage is different from the voltage of the rest of the nodes. Therefore, we 
conclude that the (N–1) tree branch voltages are independent and can be used to 
obtain the link voltages. For example, there are four nodes and three independent 
voltages, namely V1, V3, and V4 in Figure 2.32b. The link voltages V2, V5, and 
V6 can be calculated from the three independent voltages. 

2.5.1.3 Independent Currents 
Since a tree in a graph contains no loops, all the tree branch currents depend on the 
link currents. In other words, all the tree branch currents can be expressed in terms 
of the link currents. Assuming the number of branches in a circuit is B, there will 
be B–(N–1) link currents, which are independent. Therefore, B–(N–1) independent 
equations are needed to analyze the circuit. For example, Figure 2.32b needs three 
independent current equations. 

2.5.2 Network Theorems [4] 

Although the application of Kirchhoff’s laws offers basic tools to analyze a 
network, knowledge of certain network theorems, use of network equivalence, and 
use of reduction procedures simplify the process of network analysis. Basically, 
these theorems are applicable for linear networks. 

2.5.2.1 Network Reduction 
One of the most important strategies to simplify or reduce a linear circuit is 
superposition. The superposition theorem states that the response of a linear 
network to a number of simultaneously applied sources is equal to the sum of the 
individual responses due to each source acting alone. 

By analyzing separately a single-input circuit, superposition allows us to 
analyze linear circuits with more than one independent source. For example, Figure 
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2.33a shows one voltage source and one current source. According to the 
superposition theorem, the current flowing through resistor R1 is the sum of the 
individual response to the voltage source and current source. By replacing the 
voltage source with a short circuit, as depicted in Figure 2.33b, the current through 
resistor R1 is the response of R1 to the current source. To find the response of R1 to 
the voltage source, we can replace the current source with an open circuit, as 
depicted in Figure 2.33c. Then the current flowing through resistor R1 with a 
voltage source and a current source can be obtained. Compared with the straight 
analysis of the current through resistor R1, superposition simplifies the circuit. 

 a b c 

Figure 2.33. Superposition of a linear circuit 

Other methods to simplify the circuit are Thevenin’s and Norton’s theorems. These 
two theorems can be used to replace the entire circuit by employing equivalent 
circuits. For example, Figure 2.34 shows a circuit separated into two parts. Circuit 
A is linear. Circuit B contains non-linear elements. The essence of Thevenin’s and 
Norton’s theorems is that no dependent source in circuit A can be controlled by a 
voltage or current associated with an element in circuit B, and vice versa. 

Thevenin’s theorem states that a section of a linear circuit containing one or 
more sources and impedances can be replaced with an equivalent circuit model 
containing only one voltage source and one series-connected impedance, as shown 
in Figure 2.35. 

Figure 2.34. Partitioned circuit 
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Figure 2.35. Graphical presentation of Thevenin’s theorem 

To determine Vo, we can remove circuit B and calculate the voltage drop across the 
terminals n and n'. This voltage drop is the Thevenin voltage. To determine the 
impedance Zo, we can kill all the sources in circuit A, as we did in Figure 2.33, and 
then calculate the impedance from n-n' terminals by looking back into circuit A. 
This impedance Zo is the Thevenin impedance, which is also called the output 
impedance of circuit A. 

Figure 2.36. Graphical presentation of Norton’s theorem 

Similar to Thevenin’s theorem, Norton’s theorem states that a section of a linear 
circuit containing one or more sources and impedances can be replaced with an 
equivalent circuit model containing only one constant current source and one 
parallel-connected impedance, as shown in Figure 2.36. 

To determine the Norton equivalent impedance Zo in Figure 2.36, we can kill 
all the sources in circuit A and then calculate the impedance from n-n' terminals by 
looking back into circuit A. Thus, the Norton impedance Zo is equal to the 
Thevenin impedance. The Norton current Io is a constant current that remains the 
same regardless of the impedance of circuit B. It can be determined by 

 Io = Vo

Zo

   (2.143) 

Note that only at the output terminals n-n' are the Thevenin and Norton equivalents 
the same. In other words, at the output terminals n-n' the voltage and current of the 
Thevenin equivalent circuit and the Norton equivalent circuit are identical. 
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2.5.2.2 Loop and Mesh Analysis 
A commonly used network analysis method is loop and mesh analysis, which is 
generally based on KVL. As defined previously, loop analysis refers to the general 
method of current analysis for both planar and non-planar networks, whereas mesh 
analysis is reserved for the analysis of planar networks. In loop or mesh analysis, 
the circulating currents are selected as the unknowns, and a circulating current is 
assigned to each independent loop or mesh of the network. Then a series of 
equations can be formed according to KVL. 

The series of equations in the form of Z[ ] I[ ]= [V ]  can be established by 
equating the sum of the externally applied voltage sources acting in each loop to 
the sum of the voltage drops across the branches forming the loop. The number of 
equations is equal to the number of independent loops in the network. The general 
equation in loop or mesh analysis is given by 

 

Z11 Z12 Z13 ... Z1 N
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  (2.144) 

where the impedance matrix [Z] is an N × N  matrix, as described in Equation 
2.144. The following rules describe how to determine the values of the voltages, 
currents, and impedances in Equation 2.144. 

1. The voltages in Equation 2.144 are equal to the voltage sources in a given 
loop. If the direction of the current caused by the voltage is the same as that 
of the assigned current, the voltage is positive. Otherwise, the voltage is 
negative. 

2. The series of mesh impedances, known as the self-mesh impedances, Z11, 
Z22, Z33, …, ZNN, are given by the sum of all impedances through the loop in 
which the circulating current flows. 

3. Each mesh mutual impedance, denoted by Zik ( i ≠ k ), is given by the sum 
of the impedances through which both mesh currents I i  and I k  flow. In 
other words, the mesh mutual impedances are equal to the sum of the 
impedances shared by meshes i and k. If the direction of the current I i  in 
loop i is opposite to that of the current I k  in the adjacent loop k, the mutual 
impedance equals the negative sum of the impedances, whereas if the 
direction of the current I i  is the same as that of the current I k , then the 
mutual impedance equals the positive sum. In a linear network, the 
following can be obtained: 

 =ik kiZ Z     (2.145) 
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A linear matrix equation can be solved by the application of Cramer’s rule. 
Assuming the determinant Δ of the matrix Z is non-zero, the solution of the current 
can be expressed as 

 I[ ]= Z[ ]−1
V[ ]    (2.146) 

where Z[ ]−1  is the inverse of [Z], which can be expressed as 

 [Z ]−1 = 1
Δ

(Δ ik )T = 1
Δ

Δ ki    (2.147) 

where Δik is the matrix cofactor and (Δ ik )T = Δ ki  represents the matrix transpose. Δ 
and Δki can be expressed as follows: 

 Δ = [Z ] =

Z11 Z12 ... Z1i ... Z1 N

Z21 Z22 ... Z2i ... Z2 N

... ... ... ... ... ...

Z N1 Z N 2 ... Z Ni ... Z NN

  (2.148) 
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Δ13 Δ 23 Δ 33 ... Δ N 3
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⎥ 
⎥ 
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⎥ 
⎥ 

   (2.149) 

where |[Z]| is the determinant of [Z]. 

2.5.2.3 Nodal Analysis 
In nodal analysis, the voltages between adjacent nodes of the network are chosen 
as the unknowns. This can commonly be achieved by selecting a reference node 
from the graph of the network. Equations are then formed if KCL is employed. By 
equating the sum of the currents flowing through admittances associated with one 
node to the sum of the currents flowing out of the current sources associated with 
the same node, a set of equations can be established with the form of Y[ ] V[ ]= [I ]: 

 

Y11 Y12 Y13 ... Y1,N−1

Y21 Y22 Y23 ... Y2,N−1

Y31 Y32 Y33 ... Y3,N−1

... ... ... ... ...

YN−1,1 YN−1,2 YN−1,3 ... YN−1,N−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

V1

V2

V3

...

VN−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

=

I1

I 2

I 3

...

I N−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

  (2.150) 
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where the admittance matrix [Y] is an (N −1) × (N −1)  matrix given in Equation 
2.150. The following rules describe how to determine the values in Equation 2.150. 

1. The currents in Equation 2.150 are equal to the sum of the source currents 
associated with one given node. The currents are positive if they go into the 
nodes. Otherwise, the currents are negative. 

2. Y11, Y22, Y33, …, YN-1,N-1, known as the self node admittances, are given by 
the sum of all admittances directed to a given node with all other nodes 
shorted to the reference node. 

3. Each node mutual admittance Yik ( i ≠ k ) is the sum of the admittances 
between two given nodes i and k. The current YikVi  in the mutual 
admittances between nodes i and k is negative if the voltages of nodes i and 
k have the same assumed polarity relative to the reference node. The 
current YikVi  is positive if the voltages of nodes i and k have the opposite 
assumed polarity relative to the reference node. In a linear network, we 
have 

 Yik = Yki     (2.151) 

2.5.3 Transient Network Analysis 

If a generator is imposed on a network or switched out of the circuit with 
capacitors and/or inductors, there will be a transitory change in the currents and 
voltages until a new equilibrium state is established. These changing currents and 
voltages are defined as transients. The time period from the moment of switching 
to the time equilibrium established is called the transient state. In transient analysis, 
we always come across linear differential, integral, or integro-differential equations 
of either the first or the second order when Kirchhoff’s laws are applied. In this 
section, we will solve these equations using a classical method.  

The first order circuit with one storage element is described by 

 dx
dt

+ a0 x = f t( )    (2.152) 

The second order circuit with two storage elements can be described by 

 d 2 x
dt 2 + a1

dx
dt

+ a0 = f t( )     (2.153) 

In Equations 2.152 and 2.153, a1 and a0 are the constant coefficients; x may be 
either voltage, current, or charge; ( )f t  is the driving voltage or current; and t is 
time. The solution of these equations consists of two parts: 

 x = xn + x f    (2.154) 
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where xn is the natural response and xf is the forced response. The natural response 
is the general solution of the differential equation with the driving function ƒ(t) set 
to zero. The forced response is a particular solution of the differential equation for 
a given driving function. For example, the complete solution of Equation 2.152 can 
be derived as follows. 

The characteristic equation of Equation 2.153 can be expressed as 

 s2 + a1s + a0 = 0     (2.155) 

Providing s1 and s2 are the two eigenvalues of Equation 2.155, the two natural 
responses can be obtained: 

 xn1 = A1e
s1t     (2.156) 

 xn 2 = A2e
s2 t    (2.157) 

where A1 and A2 are arbitrary constants. 
As this is a linear equation, the natural response xn can simply be summed up as 

 xn = A1e
s1t + A2e

s2t     (2.158) 

The eigenvalues are also known as the natural frequencies of the circuit, which are 
the reciprocals of the circuit response time constant. The eigenvalues of Equation 
2.155 could be real or complex numbers. If the natural frequencies are complex, 
we have 

 1,2 α β= ±s i     (2.159) 

The natural response is given by 

 xn = A1e
α+iβ( )t + A2e

α− iβ( )t     (2.160) 

Based on Euler’s formula, the above equation can be rewritten as 

 [ ]1 2cos sin αβ β= + t
nx B t iB t e      (2.161) 

where 

 B1 = A1 + A2      (2.162) 

 B2 = A1 − A2      (2.163) 
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In a circuit, if the real part in the eigenvalues is negative, then the response 
decays with time. The imaginary part in the eigenvalues implies that this decayed 
response is accompanied by oscillation. 

If there are two real and equal roots for Equation 2.155, the natural response is 
given by 

 ( )1 2= + st
nx A A t e     (2.164) 

This demonstrates that the response is the superposition of two parts: the linear 
response and the exponential decayed response. 

One solution of the forced response xf is the undetermined coefficient method. 
Assuming the forced response has the same form of source function ƒ(t) but a 
different coefficient, putting this trial forced response into the differential equation 
yields the coefficients in the forced response xf. 

For a higher order equation, the general form is given by 

 an

d n x
dt n + an−1

d n−1 x
dt n−1 + ...+ ar

d r x
dt r + ...+ a1

dx
dt

+ a0 x = f (t)    (2.165) 

The characteristic equation of the above equation is given by 

 an sn + an−1sn−1 + ...+ ar s
r + ...+ a1s + a0 = 0     (2.166) 

The eigenvalues of s1, …, sn are the natural frequencies of this circuit, otherwise 
known as the poles of the circuit network. If the poles are all different, the natural 
response is given by 

 xn = A1e
s1t + A2e

s2t + ...+ Are
srt + ...+ Anesnt   (2.167) 

If r poles are equal, then we have 

 ( ) 11
1 2 1... ...+−

+= + + + + + + nr r s ts t s tr
n r r nx A A t A t e A e A e     (2.168) 

where A1 ... An are arbitrary constants. 
In general, xn satisfies 

 an

d n (xn )
dt n + an−1

d n−1 (xn )
dt n−1 + ...+ ar

d r (xn )
dt r + ...+ a1

d (xn )
dt

+ a0 xn = 0  

(2.169) 

and xf is a solution of 

 an

d n (x f )

dt n + an−1

d n−1 (x f )

dt n−1 + ...+ ar

d r (x f )

dt r + ...+ a1

d (x f )

dt
+ a0x f = f (t)  

(2.170) 
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Summing the above two equations, we have 

 
an

d n (xn + x f )

dt n + an−1

d n−1 (xn + x f )

dt n−1 + ...

+ar

d r (xn + x f )

dt r + ...+ a1

d (xn + x f )

dt
+ a0 (xn + x f ) = f (t)

 (2.171) 

Thus, x = xn + x f  is the complete solution of Equation 2.165. 

2.6 Basic Knowledge for Understanding EIS 

2.6.1 Introduction 

Ohm’s law defines the resistance, R , in terms of the ratio between voltage V and 
current I. Its use is limited to the ideal resistor for a DC system, which is 
independent of frequency. The relationship between the resistance, current, and 
voltage can be expressed as 

 R = V
I

   (2.172) 

However, real electrochemical systems exhibit much more complex behaviours. 
They are not simply resistive. The electrochemical double layer adds a capacitive 
term. Other electrode processes, such as diffusion, are time and/or frequency 
dependent. Therefore, for an actual electrochemical system, impedance is used 
instead of resistance. The impedance of an electrochemical system (defined as 
Z (ω)) is the AC response of the system being studied to the application of an AC 
signal (e.g., sinusoidal wave) imposed upon the system. The form of the current–
voltage relationship of the impedance in an electrochemical system can also be 
expressed as 

  Z (ω) = V (t)
I (t)

   (2.173) 

where V (t)  and I (t)  are the measurements of voltage and current in an AC 
system. 

The technique that measures the AC impedance of a circuit element or an 
electric circuit is called AC impedance spectroscopy. As described in Section 2.4, 
the impedances of a resistor ( ZR ), a capacitor ( ZC ), and an inductor ( ZL ) for a 
sinusoidal system can be expressed, respectively, as follows: 

  ZR (ω) = V (t)
I (t)

= R    (2.174) 
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 ZC (ω) = V (t)
I (t)

= 1
iωC

    (2.175) 

 ZL (ω) = V (t)
I (t)

= iωL    (2.176) 

If AC impedance spectroscopy is used in an electrochemical system, this technique 
is generally called electrochemical impedance spectroscopy, known as EIS. The 
impedance of an electrochemical system can also be expressed typically in 
Cartesian coordinates: 

 Z (ω) = Zre + iZim    (2.177) 

where Zre (or Z ') and Zim (or Z ' ' ) are the real and imaginary parts of the 
impedance, respectively. In polar coordinates, this becomes 

 Z (ω) = Z eiθ     (2.178) 

where Z = (Zre
2 + Zim

2 )  is the modulus and θ  is the phase corresponding to a 
given frequency. 

2.6.2 Nyquist and Bode Plots 

Generally, the impedance spectrum of an electrochemical system can be presented 
in Nyquist and Bode plots, which are representations of the impedance as a 
function of frequency. A Nyquist plot is displayed for the experimental data set 
Z (Zre ,i ,Zim ,i ,ω i ) , (i = 1, 2, …, n) of n points measured at different frequencies, with 
each point representing the real and imaginary parts of the impedance (Zre ,i ∼ Zim,i )  
at a particular frequency ω i . 

A Bode plot is an alternative representation of the impedance. There are two 
types of Bode diagram, log Z  ∼ logω  (or  Z  ∼ logω ) and θ  ∼ logω , describing 
the frequency dependencies of the modulus and phase, respectively. A Bode plot is 
normally depicted logarithmically over the measured frequency range because the 
same number of points is collected at each decade. Both plots usually start at a high 
frequency and end at a low frequency, which enables the initial resistor to be found 
more quickly. 

Figure 2.37 shows an example impedance spectrum of an electrochemical 
system with two time constants. Figure 2.37a, b, and c are the equivalent circuit, 
simulated Nyquist diagram, and Bode plot, respectively. 
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 a 

b 

c 
Figure 2.37. a The equivalent circuit of an electrochemical system with two time constants; 
b Nyquist diagram of a two time constants model simulated over the frequency range 100 
kHz–0.0 1Hz (R0 = 10 Ω, R1 = 20 Ω, C1 = 0.0001 F, R2 = 10 Ω, C2 = 0.1 F); c Bode plot of a 
two time constants model simulated over the frequency range 100 kHz–0.01 Hz (R0 = 10 Ω, 
R1 = 20 Ω, C1 = 0.0001 F, R2 = 10 Ω, C2 = 0.1 F) (◆) log Z  ∼ logω , (▲)θ  ∼ logω . 
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The most common graphical representation of experimental impedance is a 
Nyquist plot (complex-plane diagram), which is more illustrative than a Bode plot. 
However, a Bode plot sometimes can provide additional information. 

Some typical Nyquist plots for an electrochemical system are shown in Figure 
2.38. The usual result is a semicircle, with the high-frequency part giving the 
solution resistance (for a fuel cell, mainly the membrane resistance) and the width 
of the semicircle giving the charge-transfer resistance. 

 
Figure 2.38. Typical Nyquist plots for electrochemical systems 

2.6.3 Equivalent Circuit Models 

EIS data analysis is commonly carried out by fitting it to an equivalent electric 
circuit model. An equivalent circuit model is a combination of resistances, 
capacitances, and/or inductances, as well as a few specialized electrochemical 
elements (such as Warburg diffusion elements and constant phase elements), which 
produces the same response as the electrochemical system does when the same 
excitation signal is imposed. Equivalent circuit models can be partially or 
completely empirical. In the model, each circuit component comes from a physical 
process in the electrochemical cell and has a characteristic impedance behaviour. 
The shape of the model’s impedance spectrum is controlled by the style of 
electrical elements in the model and the interconnections between them (series or 
parallel combinations). The size of each feature in the spectrum is controlled by the 
circuit elements’ parameters. 

However, although powerful numerical analysis software, e.g., Zview, is 
available to fit the spectra and give the best values for equivalent circuit 
parameters, analysis of the impedance data can still be troublesome, because 
specialized electrochemical processes such as Warburg diffusion or adsorption also 
contribute to the impedance, further complicating the situation. To set up a suitable 
model, one requires a basic knowledge of the cell being studied and a fundamental 
understanding of the behaviour of cell elements. 
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The equivalent circuit should be as simple as possible to represent the 
electrochemical system and it should give the best possible match between the 
model’s impedance and the measured impedance of the system, whose equivalent 
circuit contains at least an electrolyte resistance, a double-layer capacity, and the 
impedance of the Faradaic or non-Faradaic process. Some common equivalent 
circuit elements for an electrochemical system are listed in Table 2.1. A detailed 
description of these elements will be introduced in Section 4.1. 

Table 2.1. Common circuit elements used in equivalent circuit models 

Equivalent element Name 
R Resistance 
C Capacitance 
L Inductance 
W Infinite Warburg 
BW Finite Warburg (Bounded Warburg) 
CPE Constant phase element 
BCPE Bounded CPE 

The following are two examples of the standard equivalent circuits used in 
electrochemical systems. 

2.6.3.1 The Randles Cell 
The simplest and most common model of an electrochemical interface is a Randles 
circuit. The equivalent circuit and Nyquist and Bode plots for a Randles cell are all 
shown in Figure 2.39. The circuit includes an electrolyte resistance (sometimes 
solution resistance), a double-layer capacitance, and a charge-transfer resistance. 
As seen in Figure 2.39a, Rct is the charge-transfer resistance of the electrode 
process, Cdl is the capacitance of the double layer, and Rel is the resistance of the 
electrolyte. The double-layer capacitance is in parallel with the charge-transfer 
resistance. 

 

a 

Figure 2.39. Graphic presentations of the Randles cell: a equivalent circuit, b Nyquist plot, 
c Bode magnitude plot, d Bode phase plot (Rel = 20 Ω, Rct = 80 Ω, Cdl = 0.001 F) 
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b 

c 

d 

Figure 2.39. (continued) 
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The Nyquist plot of a Randles cell is always a semicircle. At high frequencies the 
impedance of Cdl is very low, so the measured impedance tends to Rel. At very low 
frequencies the impedance of Cdl becomes extremely high, and thus, the measured 
impedance tends to Rct + Rel. Accordingly, at intermediate frequencies, the 
impedance falls between Rel and Rct + Rel. Therefore, the high-frequency intercept 
is associated with the electrolyte resistance, while the low-frequency intercept 
corresponds to the sum of the charge-transfer resistance and the electrolyte 
resistance. The diameter of the semicircle is equal to the charge-transfer resistance. 

The Bode plot contains a magnitude plot and a phase angle plot. For a Randles 
cell, the values of the electrolyte resistance and the sum of the electrolyte 
resistance and the polarization resistance can easily be identified from the 
horizontal line in the magnitude plot. At high or low frequencies, the phase angles 
are close to 0°. Otherwise, at intermediate frequencies, the phase angles fall 
between 0° and 90°. 

The Randles cell model is not only useful but also serves as a starting point for 
more complex models, created by adding more components. 

2.6.3.2 Mixed Kinetic and Diffusion Control 
In a situation where a charge transfer is also influenced by diffusion to and from 
the electrode, the Warburg impedance will be seen in the impedance plot. This 
circuit model presents a cell in which polarization is controlled by the combination 
of kinetic and diffusion processes. The equivalent circuit and the Nyquist and Bode 
plots for the system are all shown in Figure 2.40. It can be seen that the Warburg 
element is easily recognizable by a line at an angle of 45° in the lower frequency 
region. 

When investigating an electrochemical system using EIS, the equivalent circuit 
model that has been constructed must be verified. An effective way to do so is to 
alter a single cell component and see if the expected changes in the impedance 
spectrum occur, or to keep adding components to the circuit to see if a suitable 
circuit can be achieved, until reaching a perfect fit. Nevertheless, empirical models 
should use as few components as possible. 

 

a 

Figure 2.40. Graphic presentations of a mixed kinetic and diffusion control circuit: a 
equivalent circuit, b Nyquist plot, c Bode magnitude plot, d Bode phase plot (Rel = 100 Ω, 
Rct = 100 Ω, Cdl = 0.001 F, σ = 20 Ωs-1/2) 
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b 

c 

d 

Figure 2.40. (continued) 
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It should also be pointed out that an equivalent circuit is not unique. In describing 
the same AC impedance spectrum, several circuits may exhibit the same result. For 
example, a model that includes elements without any chemical basis and practical 
meaning can demonstrate a perfect fit. Various equivalent circuit models used in 
PEM fuel cells will be discussed in detail in Chapter 4. 

2.6.4 Data Fitting of EIS 

It has been recognized that the analysis of EIS spectra is not straightforward. An 
effective approach is to fit the data using equivalent circuit models. Different 
methods for data fitting exist, such as the graphic method, the non-linear least 
square method, and the deconvolution approach. Although the graphic method is 
extremely simple and sufficiently accurate, with the rapid development of 
computer technology fewer people are using it. Here we briefly introduce the 
widely used non-linear least squares (NLLS) method and the deconvolution 
approach. 

2.6.4.1 Non-Linear Least Squares Method 
The rapid development of computer technology has yielded powerful tools that 
make it possible for modern EIS analysis software not only to optimize an 
equivalent circuit, but also to produce much more reliable system parameters. For 
most EIS data analysis software, a non-linear least squares fitting method, 
developed by Marquardt and Levenberg, is commonly used. The NLLS 
Levenberg–Marquardt algorithm has become the basic engine of several data 
analysis programs. 

The core of the NLLS Levenberg–Marquardt algorithm is the use of the chi-
squared parameter, χ 2 , which is defined as follows 

 χ 2 = (yi − f (xi )) /σ i[ ]
i=1

n

∑
2

 (2.179) 

where σ i , yi , and f (xi )  represent the standard deviation of measurement, the 
data, and the known function, respectively. By minimizing the object function, χ 2 , 
this method makes it possible to measure the “goodness of fit”. 

For the complex non-linear least squares (CNLS) method, the object function, 
S , is defined as [5, 6] 

   S = wi Zre ,i − Zre (ω i ,αk )[ ]2 + Zim ,i − Zim (ω i ,αk )[ ]2{ }
i=1

n

∑    (2.180) 

where 
Zre ,i + jZim ,i  is the measured impedance at frequency ω i  (here, j = −1  is used 

for differentiation); 
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Z (ω i ,ak ) = Zre (ω i ,ak ) + jZim (ω i ,ak )  is the model function, which can be 
altered using the adjustable parameters; the model function can often be 
presented by an equivalent circuit, involving such elements as resistance, 
capacitance, and Warburg in series and/or in parallel; 

αk (k = 1… M) is the adjustable parameters; and 
wi  is the weight factor, which is the inverse of the square of the vector length 

of the impedance. 
Other parameters, such as CNLS-fit residuals ( Δ re  and Δ im ), also indicate the 

“goodness of fit”. They are defined as 

 Δ re =
Zre ,i − Zre (ω i ,ak )

Z (ω i ,ak )
    (2.181) 

  Δ im =
Zim,i − Zim (ω i ,ak )

Z (ω i ,ak )
   (2.182) 

For an optimum fit, the residuals should distribute over the full range of 
frequencies. 

NLLS or CNLS starts with the selection of the equivalent circuit, followed by 
the initial value estimation for all the model parameters. Estimation of the initial 
values is one of the most difficult tasks in the analysis of an equivalent circuit 
model. A good initial value estimation needs a solid understanding of the element 
behaviours in the circuit. If the initial estimations are far from the “real values”, the 
optimum fit may not be found. An estimated value within a factor of ten of the true 
value is a good start for determining a model parameter [7]. 

The simplest case for estimating the initial values of the circuit parameters is 
when the semicircle arcs in the impedance spectrum are not overlapping. In this 
situation the charge-transfer resistance, Rct, can be estimated using the intercepts of 
the arc with the real axis, and the associated double-layer capacitance, Cdl, is then 
obtained from ωmax = (RctCdl )

−1 , where ωmax  is the peak value of the frequency. 
Experimental arcs in the spectrum are not always ideal semicircles, and this 

complicates parameter estimation. Nevertheless, there are still basic rules for 
estimating the initial values [8, 9]. The key is to identify the region of the spectrum 
in which one element dominates and then estimate the value of the element in this 
region. For example, the resistor’s impedance dominates the spectrum at a low 
frequency, while the impedance of a capacitor approaches zero at a high frequency 
and infinity at a low frequency; also, individual resistors can be recognized based 
on the horizontal regions in a Bode plot. 

Using the estimated initial values of the parameters, the software will adjust 
several or all of the parameters and evaluate the resulting fit. The process is 
repeated again and again until the goodness of fit is satisfactory. Generally 
speaking, the NLLS algorithm optimizes the fit over the entire frequency range 
rather than over a small section of the spectrum. Sometimes the fit looks poor due 
to an inappropriate choice of model, or poor estimates of the initial values, or 
noise. In such cases, the model should be adjusted and the procedure repeated. 
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2.6.4.2 Deconvolution  
Assuming that the Nyquist plot of the impedance does not display an ideal 
semicircle (e.g., it shows a depressed semicircle or a wide arc), it might be 
described using two or more discrete time constants or a continuous distribution of 
time constants. In the former case, the equivalent circuit may involve two or more 
parallel RCs in series. In the latter case, it may involve one or more parallel CPEs 
and Rs in series. As mentioned, one solution could be to use several CNLS fittings; 
however, a more direct method would be the deconvolution of the imaginary part 
of the impedance data. 

One of the advantages of the deconvolution method is to make it possible to 
decide whether the Nyquist plot of the impedance is describable by discrete time 
constants or by a continuous distribution of time constants, according to the width 
of the individual relaxation. Also, from the values of the peak relaxation time, τ p , 
one may calculate the approximate frequency region as well, from ω p = τ p

−1. These 
results may then be used to build an appropriate equivalent circuit and estimate the 
initial values of the parameters for subsequent CNLS fittings. 

Starting with Equation 2.183, the basic equations for attaining the distribution 
of relaxation times, gz (τ ) , can be derived: 

  Z (ω) = R0

gz (τ )dt

1+ iωτ0

∞∫      (2.183) 

where R0 is the ω → 0 value of Z (ω) . 
Assuming that ω0  is approximately the central value of all frequencies 

measured, the following transformations can be performed: 

  ω0 ≡ 2πf0   (2.184) 

 τ 0 ≡ ω0
−1     (2.185) 

 ωτ 0 ≡ exp(−z)     (2.186) 

 τ ≡ τ 0 exp(s)    (2.187) 

 Gz (s) ≡ τgz (τ )     (2.188) 

where s and z are the new logarithmic variables. Then, the relation presented in 
Equation 2.183 can be transferred into the convolution form 

 Z (z) = R0

Gz (s)ds

1+ i exp[−(z − s)]−∞

∞∫     (2.189) 

The standard convolution forms can be obtained by separating Equation 2.189 into 
real and imaginary parts, each having an expression related to Gz(s). Normally, it is 
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preferable to calculate the imaginary part of the impedance Z, denoted as Zim, 
instead of the real part denoted as Zre, since the imaginary part shows more 
structure than the real part. The imaginary part of Z is then expressed in the 
following form: 

 0( ) ( / 2) ( )sec h( )
∞

−∞
= − −∫im zZ z R G s z s ds    (2.190) 

The deconvolution process is basically complicated, but using modern computer 
techniques, calculating Gz(s) and gz (τ )  is quite easy [8]. 

2.6.5 Applications  

EIS has proven to be a useful technique for the analysis of electrochemical 
systems, such as corrosion systems and batteries. In comparison with DC 
electrochemical techniques, EIS has tremendous advantages, as it can provide a 
wealth of information about the system being studied. Also, due to the small 
perturbation in the AC signal, the electrode response is in a linear potential region, 
causing no destructive damage to the electrode. Therefore, EIS can be used to 
evaluate the time relation of interface parameters. 

EIS thus has been demonstrated to be a powerful technique for investigating the 
electrical properties of materials, including gaseous, liquid, and solid materials, and 
the interfaces of conducting electrodes in different research areas. Miscellaneous 
applications of EIS are listed below: 

• Mechanisms, such as reaction mechanisms, electrode kinetics, state of 
charge, change of active surface area 

• Processes, such as complicated corrosion, crystallization, sintering, 
transport through membranes 

• Interfaces, including blocked interfaces, liquid/liquid interfaces, 
electrode/solid electrolyte interfaces, etc. 

In recent decades, research has intensified to develop commercially viable fuel 
cells as a cleaner, more efficient source of energy, due to the global shortage of 
fossil fuels. The challenge is to achieve a cell lifetime suitable for transportation 
and stationary applications. Among the possible fuel cell types, it is generally 
believed that PEM fuel cells hold the most promise for these uses [10, 11]. In order 
to improve fuel cell performance and lifetime, a suitable technique is needed to 
examine PEM fuel cell operation. EIS has also proven to be a powerful technique 
for studying the fundamental components and processes in fuel cells [12], and is 
now widely applied to the study of PEM fuel cells as well as direct methanol fuel 
cells (DMFCs), solid oxide fuel cell (SOFCs), and molten carbonate fuel cells 
(MCFCs). 
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2.7 Chapter Summary 

This chapter has provided basic electrical fundamentals, including concepts and 
definitions for circuit elements, and their relationships within electric circuits. 
Various basic AC electric circuits were also presented. Following upon primary 
circuit theories, the concept of electrochemical impedance spectroscopy and basic 
information about EIS was introduced. This chapter lays a foundation for readers 
to expand their study of EIS and its applications in PEM fuel cell research and 
development.  
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