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Electrical Fundamentals

In order to understand electrochemical impedance spectroscopy (EIS), we first
need to learn and understand the principles of electronics. In this chapter, we will
introduce the basic electric circuit theories, including the behaviours of circuit
elements in direct current (DC) and alternating current (AC) circuits, complex
algebra, electrical impedance, as well as network analysis. These electric circuit
theories lay a solid foundation for understanding and practising EIS measurements
and data analysis.

2.1 Introduction

An €electric circuit or electric network is an integration of electrical elements (also
known as circuit elements). Each element can be expressed as a genera two-
terminal element, as shown in Figure 2.1. The terminals “a’ and “b” are accessible
for connections with other elements. These circuit elements can be interconnected
in a specified way, forming an electric circuit. Figure 2.2 demonstrates an example
of an electric circuit.

Circuit elements can be classified into two categories, passive elements and
active elements. The former consumes energy and the latter generates energy.
Examples of passive elements are resistors (measured in ohms), capacitors
(measured in farads), and inductors (measured in henries). The two typical active
elements are the current source (measured in amperes), such as generators, and the
voltage source (measured in volts), such as batteries.

Two major parameters used to describe and measure the circuits and elements
are current (1) and voltage (V). Current is the flow, through a circuit or an element,
of electric charge whose direction is defined from high potential to low potential.
The current may be a movement of positive charges or of negative charges, or of
both moving in opposite directions. For example, in a metallic resistor the current
is the movement of electrons, whereas in an electrolyte solution the current is the
movement of ions, and in a proton exchange polymer it is the movement of
protons. Voltage is the difference in electrical potential between two points of an
electric circuit or an element, expressed in volts. As shown in Figure 2.1, the
potential difference between terminal “a’ and termina “b” is the voltage, which
drives current through the element [1, 2].
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Figure 2.1. A genera two-terminal electrical element

Figure 2.2. An example of an electric circuit

2.2 Direct Current Circuits

If the independent sourcesin acircuit are constant sources, such as batteries, al the
currents and voltages remain constant and the circuit reaches its steady state. In this
case, we say that the circuit isin aDC steady state.

2.2.1 0hm’'sLaw

The relationship between voltage and current in the circuit can be described by
Ohm’s law, which states that the current passing through a conductor between two
points is directly proportional to the voltage across the two points, and inversely
proportional to the resistance between them. The mathematical equation that
describesthis relationship is

V=IR (2.1)
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where V isthe driving voltage in volts (V), Ris the resistance in ohms (Q), and | is
the current in amperes (A).

Two common concepts are relevant to resistance. One is the short circuit,
which is the direct connection externally between two nodes using an electrically
conductive wire that has a theoretical resistance of zero. The opposite of a short
circuit is an open circuit, in which the two nodes have no external connection or an
infinite resistance connection [3]. Note that a point of connection of two or more
circuit elementsis called anode, as seen in Figure 2.3b.

Another important quantity, known as conductance, is defined by

G=1/R (2.2)

where G is the conductance in siemens (S). Obviously, in this case Ohm’s law can
also be expressed as

[=GV (2.3)
2.2.2 Seriesand Parallel Circuits

There are two basic circuit connections: series circuit and paralldl circuit. If two or
more circuit components are connected end to end, as shown in Figure 2.3a, they
are connected in series. A series circuit has only one path for the electric current to
run through al of its components. If two or more circuit components are connected
like the rungs of aladder, as shown in Figure 2.3b, they are connected in parallel.
A paralle circuit has different paths for the electric current through each of its
components, with the same voltage across.

a b
Figure 2.3. a Series and b parall€l circuits
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2.2.3 Kirchhoff’'sLaws

Electric circuits can be very complicated. For example, they may include series-
connected sections, parallel-connected sections, or both. No matter how complex
they are, the behaviours of these sections are governed by fundamental laws, which
provide basic tools for the analysis of all the circuits.

The fundamental laws for circuit analysis are Ohm'’s law and Kirchhoff’s laws.
Ohm'’s law, described above, can be used to find the current, voltage, and power
associated with a resistor. However, in some cases Ohm's law by itself cannot
analyze the circuit. Analytical solutions for most electric networks need to combine
Ohm’s law and Kirchhoff's laws, the latter being aso known as Kirchhoff's
current law (KCL) and Kirchhoff’ s voltage law (KVL).

Figure 2.4. Principle schematic of Kirchhoff’s current law

Kirchhoff’s current law states that the algebraic sum of the currents entering a node
is equal to the algebraic sum of the currents leaving the node. The principle
schematic of KCL is shown in Figure 2.4, and the mathematical equation that
describesKCL in Figure2.4 is

L+1,=1,+I, (249
More commonly, the current has a reference direction indicating entrance to or exit
from the node. If the current enters the node, the arrow points to the node and a
positive value is denoted for this current. Conversely, if the current leaves the

node, the arrow points away from the node and a negative value is assigned to this
current. So, KCL can aso be expressed as

zl =0 (2.5)

Applying KCL to the circuit in Figure 2.3b, we have
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1-1,-1,-1,=0 (2.6)
Kirchhoff’s voltage law states that the algebraic sum of the voltage over the circuit
elements around any closed circuit loop must be zero. The principle schematic of
KVL is shown in Figure 2.5. The mathematical equation that describes KVL in
Figure 2.5 can be expressed as

Vi+V,+V,;+V, =0 27

Figure 2.5. Principle schematic of Kirchhoff’s voltage law

More commonly, KVL can be expressed as
DV=0 (2.8)

According to KVL, in aclosed circuit loop, the sum of the voltage drops caused by
the current across the elements, such as the resistor, capacitor, or inductor, is equa
to the sum of the driving voltages produced by a voltage source such as a battery or
agenerator:

z Driving voltages = z Voltage drops (2.9)

2.2.4 Resistorsin DC Circuits

Electric circuits or networks can be analyzed using both Ohm's law and
Kirchhoff’s laws. For a circuit of resistors in series, as shown in Figure 2.6, the
current flow in each resistor isthe same (7).
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Figure 2.6. Resistorsin series
Applying KVL to the circuit in Figure 2.6, we have
Vi=V+V,+V+..+V, (2.10)
Applying Ohm’s law to Equation 2.10, we can obtain
Vp =I,R+I,R,+IR,+...+I R, (2.11)
Equation 2.10 can be rearranged as Equation 2.12:
Ve =I,(R+R,+R;+..+R)) (2.12)

Thus, the equivalent resistance R of n resistors connected in series can be
expressed as

R=‘I/—T=R1+R2+R3+...+Rn (2.13)

R

For acircuit of resistors in parallel, as shown in Figure 2.7, the voltage across each
resistor isthe same (V). Applying KCL to the circuit in Figure 2.7, we have

L= +L,+1,+..+1, (2.14)
Then,
L=V Ve LV (2.15)
Rl R R3 Rn
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Figure 2.7. Resistorsin parallel

Therefore, the equivalent resistance of the parallel combination of n resistorsis

-1
&4@;;._,;} (2.16)
I, \R, R, R, R

n

The equivalent conductance of n resistorsin parallel, G, can be expressed as

G=-"L=G+G,+G,+.+G, =—+—+—+..+— (2.17)
b R R

2.2.5 Capacitorsin DC Circuits

Capacitance represents the energy-storing capability of a capacitor. The most
common form of charge storage device is atwo-plate capacitor, as shown in Figure
2.8. A parallel-plate capacitor is a circuit element with two conducting plates at the
terminals and a nonconductive material, known as the dielectric material, to
separate them. When a charge source, such as a battery, transfers charges to a
capacitor, the voltage builds up across the two conductive terminals. The charges
accumulate at the two plates of the capacitor, and can be expressed as

q=CV (2.18)

where C is the capacitance in farads (F), g is the accumulated charge in coulombs
(C), and V is the voltage measured between the two conducting plates in volts (V).
The capacitance value (C) of a parallel-plate capacitor is related to the geometry of
the capacitor and to the dielectric constant of the nonconductive material in the
capacitor by the following equation:;

_ KA(8.854x10™7)
d

C

(2.19)

where C is the capacitance in farads (F), K is the dielectric constant of the
insulating material, A is the surface area in square metres (m?), and d is the
thickness of the dielectric material in metres (m).
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Figure 2.8. A parallel-plate capacitor

Some representative dielectric constants are 1.0 for air, 5 for mica, 6 for glass, and
7500 for ceramic.

In a DC circuit, a capacitor behaves like an open circuit. In other words, the
current through it is zero when the circuit reaches its steady state. However, if a
current or voltage source is impressed on or switched out of the circuit with a
capacitor (or capacitors), as shown in Figure 2.9, there will be a transitory change
in the current and voltage. Between the moment of switching and the steady state,
the current passing through the capacitor is not zero. The time dependence of the
voltage across the capacitor during the transient state in a DC circuit like Figure
2.9 can be obtained using Laplace transforms (for these, please refer to Appendix
B).

Figure 2.9. A DC circuit containing a capacitor and a switch

Since the current is defined as the change rate of the charge, by differentiating
Equation 2.18 we can obtain

10 =c YD (2.20)
dt
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Equation 2.20 is the current—voltage relation for a capacitor.

Figure 2.10 shows the transient process of a capacitor when charging. In the
charging process, the electric field in the nonconductive material changes due to
the charge increase in the conductive terminals of the capacitor. The charging
process stops when the voltage V across the capacitor is equal to the DC charge
source.

Figure 2.10. Voltage build-up versus charging time in a capacitor

2.2.5.1 Equivalent Capacitance of Capacitorsin Series
Applying KVL to the circuit in Figure 2.11, we have

V=V +V,+V,+..+V, (2.21)

Figure 2.11. Capacitorsin series

Substituting voltages according to Equation 2.18, we obtain

oo Gy 4 2.22)
¢ C, C C

n

Since the current to all the elementsin a series circuit is the same, the accumulation
of chargein every capacitor must be the same. Thus,
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Gq=9=9:=49,=49 (2.23)
Equation 2.22 becomes
1 1 1 1
V = —t—+—+,  +— 2'24
T q(C1 ¢, C, C ) ( )

Then, the equivalent capacitance of n capacitorsin series, C., isdetermined by

1

e

s

= o+ (2.25)

< |.$

1 1 1 1
[ S T _
Cl C2 C3 Cn

In other words, the total capacitance of capacitors in series is equa to the

reciprocal of the sum of the reciprocals of the individual capacitances.

2.2.5.2 Equivalent Capacitance of Capacitorsin Parallel
Applying KCL to thecircuit in Figure 2.12, we have

L=0L+1,+1,+..+1, (2.26)

As the voltage across each element in a paralld circuit is the same, by substituting
currents using Equation 2.20 we can obtain

dv av dv dv

l.=C,—+C,—+C,—+...+C, — 2.27
T 1 d[ 2 dt 3 d[ n dl ( )
Therefore,

I, =(C1+C2+C3+...+Cn)‘2—‘t/ (2.28)

Thus, the equivalent capacitance of n parallel capacitors, C,, is simply the sum of
the individual capacitances:

C,=C+C,+Cy+..+C, (2.29)

Figure 2.12. Capacitorsin parallel
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2.2.6 Inductorsin DC Circuits

An inductor is commonly a coiled conducting wire wrapped around a core (e.g.,
ferromagnetic material) with two terminals. When current passes through the
inductor, magnetic flux is produced, resulting in inductance. The number of loops,
the size of each loop, and the core material all affect the inductance value.

In a DC circuit, an inductor is like a short circuit, which means the voltage
across it is zero when the circuit reaches its steady state. However, if a current or
voltage source is impressed on or switched out of the circuit with an inductor, as
shown in Figure 2.13, there will be a transitory change in the current and voltage.
During the time period from the moment of switching to the steady state, the
voltage across the inductor is not zero.

Figure 2.13. A DC circuit containing an inductor and a switch

While a capacitor delays changes in voltage, an inductor delays changesin current.
Generally, the relationship between the time-varying voltage V(t) across an
inductor with an inductance of L and the time-varying current I(t) passing through
it can be written as the differential equation:

v =140 (2.30)
dt

where L isthe inductance (measured in henries).

Inductors in series and in parale are shown in Figures 2.14 and 2.15,
respectively. While the voltage across each inductor may be different, the current
through inductors in series stays the same. Since the sum of the voltagesis equal to
thetotal voltage, the total inductance of inductorsin series, Ls, can be expressed as

L=L+L,+L,+..+L, (2.31)
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Figure 2.14. Inductorsin series

Figure 2.15. Inductorsin parallel

In aparallel configuration of inductors, as shown in Figure 2.15, each inductor has
the same voltage. Therefore, the total equivalent inductance of inductors in
parallel, Ly, can be obtained:

tr_r vt 1 (2.32)

2.3 Alternating Current Circuits
2.3.1 Sinusoidal Systems

Alternating current or voltage (AC) refers to current or voltage that varies with
time in a periodic manner. Figure 2.16 shows three examples of periodic voltage
waves. As shown there, one cycle is a complete set of the periodic wave, the
frequency of which, f(Hz), isthe number of cycles completed in one second (one
cycle per second is one hertz). The period of the periodic wave, T (), is the time
required to complete one cycle. Thus, the relation between the frequency and the
period isasfollows:

T (2.33)

L
f
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Among the periodic waves, the sinusoidal wave is extremely important, being the
easiest to work with mathematically. The general mathematical expression for the
sinusoidal wave (voltage) is given by

V)=V, sin(wt+6) (2.34)
where V(1) is the instantaneous voltage value at the instant of timet, Vy, is the peak

amplitude of the sinusoidal voltage wave (V), @ isthe phase angle, wisthe angular
frequency (rad/s), and T isthetime (s).

Figure 2.16. Periodic voltage waves:. a rectangular, b triangular, ¢ sinusoidal
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Since the angle spun in one cycleis 2z radians, we have

w=2nf (2.35)
Thus,
=27 (2.36)
w

Substituting for @ using Equation 2.35, we obtain

V(1) =V, sinQ27ft +6) (2.37)
Similarly, the equation for a sinusoidal current waveis

1(1) =1, sin2 7t + @) (2.38)

where I(t) is the instantaneous current value at the instant of time t; 1, is the
amplitude or the maximum value of the sinusoidal current wave (A); ¢ is the phase
angle; fisthe frequency (Hz); and T isthe time (s).

Direct current or voltage can be considered a specia type of sinusoidal current
wave or sinusoidal voltage wave whose frequency is at the lower limit of zero
hertz.

2.3.2 Resistorsin AC Circuits
In an AC circuit, assuming the voltage across the resistor is described by a
sinusoidal wave (as shown in Equation 2.37), the current through the resistor,

based on Ohm'slaw, is

V() _V,sinQAfi+6) V, .
R 2 =2 sin(27ft + 0) (2.39)

IR(I):

As can be seen in Equation 2.39, both 7, (r) (the current through the resistor) and
V. (#) (the voltage across the resistor) have the same frequency and phase.
According to Equation 2.38, we have

1,(t) =1, sinQ27ft + ) (2.40)

Comparing Equations 2.39 and 2.40, we can obtain

m

|4
I,=-2 2.41
R (2.41)
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Since there is no angular difference between the current in a resistor and the
voltage across it, we have

p=0 (2.42)
2.3.3 Capacitorsin AC Circuits
In a sinusoidal AC circuit, the current through a pure capacitor leads the voltage
drop across this capacitor by 90°. The 90° phase relationship between I.(r) (the

current through the capacitor) and V. (¢) (the voltage across the capacitor) can be
written as

av,
1) = c#(’) (2.43)

For example, if the voltage across the capacitor, V. (¢), is
V() =V, sin27ft (2.44)

then substituting V,.(¢) in Equation 2.43 with Equation 2.44, we have

I.(t)= CM =CV (27f)cos2aft = wCV, sin(27ft +90°)
(2.45)
The current through the capacitor, 1..(z), will be
1.(t) =1, sin(27ft +90°) (2.46)
where
1,=awCV, (2.47)

2.3.4 Inductorsin AC Circuits
In a sinusoidal AC circuit, the voltage drop across a pure inductor advances the

current through it by 90°. The 90° phase relationship between I, () (the current
through the inductor) and V, () (the voltage across the inductor) is expressed by

dI
V, (1) = L% (2.48)

For example, if the current through the inductor, I, (¢), is
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I, (t)=1,sin2nft (2.49)

then substituting 7, () from Equation 2.49 into Equation 2.48, we have

V. ()= LW =LI, (27af)cos 27t = wLl , sin(27ft + 90°)
(2.50)
The voltage across the inductor, V, (), will be
V, (1) =V, sin(27ft +90°) (2.51)
where
V. =wll, (2.52)

2.4 Complex Algebra and Impedance

Complex algebra is a powerful tool for solving problems in AC electric circuits,
including sinusoidal systems. The complex number Z can be written in the
rectangular form

Z=7, +iZ, (2.53)
where Z_ (or Z') and Z,, (or Z') are the real and imaginary parts of Z,

respectively, and i = N-1.
The complex number Z can also be expressed in the polar form

Z=|Zle" (2.54)
or

Z =|Z|(cos ¢ +ising) (2.55)
where |Z] is the magnitude of Z:

2=z, +(Z,) (2.56)

and ¢is called the argument or the angle of Z:

p=tant Zim (2.57)
Zre
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Complex agebra is associated with a two-dimensional plane, called the
complex plane. The complex plane of the complex number Z is presented in Figure
2.17. As can be seen there, the horizontal and vertical axes are called the real and
imaginary axes, respectively. Complex algebra applications will be employed in
the following sections and in Chapter 4.

Figure 2.17. Complex plane of the complex number Z
Let usrecall the general sinusoidal voltage and current:

V)=V, sinQ7ft +6) (2.58)

I(t)=1,, sinQ27ft +9) (2.59)
These can be displayed in related complex numbers:

V=Vel=V /0 (2.60)

| =1,e"=1,2¢ (2.61)

which are defined as phasors, or phasor representations. To distinguish them from
other complex numbers, phasors are printed in bold.

Having introduced complex algebra, we are now able to go further, to the
concept of electrical impedance or simply impedance. Electrical impedance
extends the concept of resistance to AC circuits and therefore is also called AC
impedance. Asimpedance is a complex quantity, the term complex impedance may
also be used. Based on the definition of resistance described by Ohm's law, the
current—voltage relationship in impedance can be expressed as

L)

0 (2.62)

where V (¢) and 1(¢) are measurements of voltage and current in an AC system.
For a sinusoidal system, the AC impedance of aresistor, Z,, in the complex
plane can be expressed as
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Z, =R (2.63)

The AC impedance of a capacitor, Z., in the complex plane can be expressed as

Z. =— 2.64
¢ jwC ( )
because
i0° i0° i(=90")
Zo=tuf Ve __¢ (2.65)

I e - a)CVmeigO0 wC

m

Applying Euler’s formula, we have

") = c0s(=90°) +i sin(—90°) (2.66)
Therefore,
i(-90%) _
7= —-L-_L (2.67)

The AC impedance of an inductor, Z, , in the complex plane can be expressed as
Z, =ioL (2.68)
because

i90° i90°
_ V.e _ oLl e

z .0 = awLe™ (2.69)
L Imezo ImetO

Again, applying Euler’ sformula, we obtain
Z, =wLe™ =iwl (2.70)
2.4.1 AC Impedance of a Resistor—Capacitor Circuit

In aparald resistor—capacitor (RC) circuit (R/C), the overall AC impedance of the
circuit is denoted as Zgc. Since

L_t,1 @2.71)
ZR/C ZR Z

c

Zryc can be expressed as
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~1
1 1 | 0
A = (= +ioC 2.72
RIC (R i j)'lj (R iwC) ( )
Then we have
R
= 2.73
RIC ™ 1+iwRC 273

Ultimately, Equation 2.73 can be transferred to the standard form of a complex
number:

___ R . oRC
1+(@RCY 1+ (wRC)’

(2.74)

RIC

Therefore, the real and imaginary components, Z,, and Z
of the parallel RC circuit are given by

in the AC impedance

im?

re = Lz (2.75)
1+ (@RC)
2
= _LCZ (2.76)
1+ (wRC)
while the phase angle ¢is given by
tang = ~wRC (2.717)

At low frequency (wRC <<1, Z, =R and Z, =0), this RC circuit acts as a
resistor, and at high frequency (wRC >>1, Z,, =0 and Z,, z%), as a capacitor.
4]

Thetime constant 7 of thiscircuit isequal to RC.
Combining Equation 2.77 with Equations 2.75 and 2.76 yields

(zm - BJZ 1z,2= (ﬁjz 2.78)
2 2

Equation 2.78 represents a haf-circle in the fourth quadrant of the complex plane,
with aradius of R/2 and circle centre of (R/2, 0), as shown in Figure 2.18. Note that
the frequency range in Figure 2.18 is from 1 MHz to 0.001 Hz. The same
frequency range is kept for the following figures in this chapter, unless otherwise
stated.
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It can be seen from Figure 2.18 that at w — 0, the plot crosses the real axis at
(R, 0). At w— oo, the plot crosses the origin. The frequency at @:0 is
w

designated the characteristic frequency, .. At the characteristic frequency, w7,
isequal to one.

Figure 2.18. Graphical representation of the AC impedance of aparallel RC circuit

In aseries RC circuit (R-C), according to the primary rules, the overall impedance,
Z .. isexpressed as

Zy o =R+ ({wC)”! (2.79)
Then we have
Zeo=R-i(wC)" (2.80)

The real and imaginary components Z
RC circuit are given by

Z. in the AC impedance of the series

re? im

Z,=R (2.81)
Z,, =—(@C)™" (2.82)
The phase angle ¢is given by

_(@O)!
R

tang = (2.83)

According to the above calculations, a graphical representation of the AC
impedance of a series RC circuit is presented in Figure 2.19. As shown in the
complex plane of Figure 2.19, the AC impedance of a series RC circuit is a straight
vertical linein the fourth quadrant with a constant Z' value of R.
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Figure 2.19. Graphical representation of the AC impedance of a series RC circuit
2.4.2 AC Impedance of a Resistor—Inductor Circuit

In aparallel resistor—inductor (RL) circuit (R/L), the overall AC impedance, Z,,, ,
can be expressed as

Zp =[R + (L)' T (2.84)
Then, we have

®*RI? . wRL
+1

7 =
R/L R2+w2L2 R2+w2L2

(2.85)

So, the real and imaginary components in the AC impedance of a parallel RL
circuit are given by

®°RL?
= 2.86
" R+’ (2.86)
__wR’L (2.87)
" R+’ '
and the impedance phase angle is given by
tang = (2.88)

wl

In the complex plane, the AC impedance of aparallel RL circuit is represented by a
semicircle in the first quadrant with a radius of R/2 and the centre at (R/2, 0), as
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shown in Figure 2.20. The curve crosses the real axis at R and O at the frequencies
of w— o and w=0, respectively.

Figure 2.20. Graphical representation of the AC impedance of aparallel RL circuit

In a series RL circuit (R-L), the overall impedance of the RL circuit in series,
Z,_,,iswritten as

Zy, =R+iaL (2.89)

The real and imaginary components, Z,, and Z,,, in the AC impedance can be
obtained:

Z, =R (2.90)
Z, =aL (2.91)

The phase angle ¢ is asfollows
tang = "’—RL (2.92)

A graphical representation of the AC impedance of a series RL circuit, according
to the above calculations, is shown in Figure 2.21. In the complex plane of this
figure, the AC impedance of a series RL circuit is a straight vertical line in the first
quadrant with aconstant Z' value of R.



Electrochemical Impedance Spectroscopy 61

Figure 2.21. Graphical representation of the AC impedance of a series RL circuit

2.4.3 AC Impedance of a Capacitor— nductor Circuit

In a parallel capacitor—inductor (CL) circuit (C/L), the overal AC impedance,
Z.,,, can be expressed as

Z.,, =lGol) " +iwCT" (2.93)
Then
1 :
Zey = (l—)l (2.94)
——aC
wL

So, the real and imaginary components of the AC impedance of the parallel CL
circuit are given by

Z.=0 (2.95)

zZ = (2.96)

——aC
ol

and the phase angleis 90°.
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Zim (Q)

Zre (Q)

Figure 2.22. Graphical representation of the AC impedance of a simple parallel CL circuit
(L =0.04 H, C=0.00001 F)

According to the above calculations, a graphical representation of the AC
impedance of aparale CL circuit isdepicted in Figure 2.22. In the complex plane,
the AC impedance of the parallel CL circuit is represented by a straight vertical
line on the Z''-axis with a constant Z' value of zero.

In a series CL circuit (C-L), according to the primary rules, the overal AC
impedance of aCL circuit in series, Z.._, , isexpressed as

Z., =({aC)" +iaL (2.97)
Therefore,
1 ..
Ze, = (OL——)i (2.98)
wC

The real and imaginary components, Z,, and Z,, , in the AC impedance can then
be obtained:
Z,=0 (2.99)

re

- (2.100)

wC

Z

im

and the phase angleis again 90°.
According to the above calculations, a graphical representation of the AC
impedance of a series CL circuit is given in Figure 2.23. As shown in the complex
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plane, the AC impedances of a series CL circuit are also located on the Z"-axis
with a constant Z' value of zero.

80 +
60
40
20

O T T T
-20 20 40 60 80 100 120 140 160 130

Zim (Q)

Figure 2.23. Graphical representation of the AC impedance of a series CL circuit (L = 0.04
H,C=001F)
2.4.4 AC Impedance of a Resistor—Capacitor—I nductor Cir cuit

2.4.4.1 R-(C/L) Circuit
If acircuit of paralel CL isin serieswith R (R-(C/L)), the overall AC impedance,
Zy c11y» CaN be expressed as

Zp ey =R+ (L) +iwC]" (2.101)

Then, we have

1
ZR—(C/L) =R+ (1—

ol

)i (2.102)

So, thereal and imaginary components of the AC impedance of the R-(C/L) circuit
are given by

Z =R (2.103)

- (2.104)
1

and the phase angle ¢is given by
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1

R(w—lL—wC)

tang = (2.105)

Based on these equations, Figure 2.24 gives a graphical representation of the AC
impedance of the R-(C/L) circuit. In the complex plane, the AC impedance of the
circuit is represented by a straight vertical line with aconstant Z' value of R.
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Figure 2.24. Graphical representation of the AC impedance of the R-(C/L) circuit (L = 0.04
H, C=0.00001 F, R=100 Q)

2.4.4.2 R-C-L Circuit
Inaseries RCL circuit (R-C-L), the overall impedance, Z, ., , isexpressed as

Zy ., =R+ ({wC)" +ioL (2.106)
Then we obtain
1 ..
ZR—C—L =R+ (wL—- a)—c)l (2107)

The real and imaginary components, Z,, and Z,,, in the AC impedance of the R-
C-L circuit in series are given by

Z =R (2.108)
Z, =wlL-—— (2.109)

The phase angle ¢ isthen described by
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a)L_i

_ wC
tang=—— (2.110)

Based on these equations, a graphical representation of the AC impedance of the
(R-C-L) circuit is given in Figure 2.25. As shown in the complex plane of this
figure, the AC impedance of the series RCL circuit is a straight line with a constant
Z' value of R

1000

500 +

666666
400000

Zim (Q)
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-500 +

-1000
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Figure 2.25. Graphical representation of the AC impedance of a series RCL circuit (L =
0.04 H, C=0.00001 F, R=100 Q)

2443 RIC/L Circuit
In a circuit of parallel RCL (R/C/L), the overall AC impedance, Z,,.,,, can be

expressed as
Zpen, =R + (L) +iwCT" (2.111)
After aseries of transformations, the standard form of the impedance is obtained:

1 wC— 1
Zrien = R — le i (2.112)
4 (@C-—) () +(@C——)?
(R) ( a;L) (R) ( wL)

Thus, the real and imaginary components of the AC impedance of the parallel RCL
circuit are given by

x| =

7z (2.113)

N,’= 12 _iz
(R) +(wC a)L)
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=" ol (2.114)
)+ (@wC-—)°
(R) ( a)L)

and the phase angle ¢is given by
1
tang = R(wC -—) (2.115)
ol

Based on these equations, Figure 2.26 gives a graphical representation of the AC
impedance of the (R/C/L) circuit.
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Figure 2.26. Graphical representation of the AC impedance of a simple parallel RCL circuit
(L =0.04H,C=0.00001F, R=100 Q)
2444 R/(C-L) Circuit

If a series CL isin parald with R (R/C-L) in a circuit, the overal impedance,
Zyc-1)r 1S EXpressed as

Zyjcry =R +((C) " +iwl)' T (2.116)

Then, we have

i wC
_ R w’CL-1 .
ZR/(C—L)_(l)2+(L)2+(l)2+(L)2’ (2.117)
R w*CL-1 R w’CL-1

Thus, the real and imaginary components, Z,, and Z, , in the AC impedance of
the R/C-L circuit are:
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1
_ R
Z”_(i)z+( e ; (2.118)
R w*CL-1
wC
_ w’CL-1
Zim - (1)2_1_( C()C )2 (2119)
R w’CL-1

The phase angle ¢ isthen given by

oCR

tang=————
= o1

_ N
=R@L-—0) (2.120)

Based on these, a graphical representation of the AC impedance of the R/C-L
circuit can be calculated and is depicted in Figure 2.27.

80
60 -
40 +
20 -

Zim (Q)

Zre (g)

Figure 2.27. Graphical representation of the AC impedance of the R/(C-L) circuit (L = 0.04
H, C=0.00001 F, R=100 Q)

2.4.45 C-(RIL) Circuit

In acircuit of a paralel RL in series with C (C-R/L), the overall AC impedance,
Zc_(r/1)» CaN be expressed as

Ze gy = (@C)" +[R™ + (L)™' (2.121)
Based on the previous calculation in Equation 2.85, we have

’RL> . wR’L

R+l R+a'l (2.122)

Ze gy = (@C)" +
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Then

®’RI> . wRL

1
7 _ + __ 2.123
CRD TRy @1 l(R2 +w*L? a)C) ( )

So, the real and imaginary components of the AC impedance of the C-R/L circuit
are given by

W*RIL?
= 2124
" R+’ ( )
2
oR7L 1 (2.125)

"R+’ wC
and the phase angle is written as

_W’RLC-R* -1

e (2.126)

tang

In the complex plane, an example of the AC impedance of the C-(R/L) circuit is
shown in Figure 2.28.
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Figure 2.28. Graphical representation of the AC impedance of the C-(R/L) circuit (L = 0.04
H, C=0.00001 F, R=100 Q)

2.4.4.6 C/(R-L) Circuit
In a circuit of a series RL in parallel with C (C/(R-L)), the overall impedance,
Zcyr1)» ISEXpressed as

Zewory =l(@C)+ R+iwl)' T (2.127)

Then, we have
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R wL(1-a*LC)-R*aC |

Z = 2.128
CRD (1= 0’ LC)? + (RwC)? (l—szC)2+(Ra)C)zl ( )

The real and imaginary components, Z, and Z, , of the AC impedance of the
C/(R-L) circuit are then written as

R
Z = 2.129
" (1-@&’LC)* + (RwC)* ( )

_wL(l-®’LC)-R’oC (2.130)
" (1- 0*LC)* + (RaxC)? '

The phase angle ¢ is given by

_ 2 _ 2
wL(1-w?’LC) - RaC (2.131)

tang =
¢ R

An example, in the complex plane, of the AC impedance of the C/(R-L) circuit is
presented in Figure 2.29.
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Figure 2.29. Graphical representation of the AC impedance of the C/(R-L) circuit (L = 0.04
H, C=0.00001 F, R=100 Q)

2.4.4.7 L-(R/C) Circuit
In acircuit of a paralel RC in series with L (L-R/C), the overall AC impedance,

Z,_(ric)» Can be expressed as
. . -1
Z, oy =il + ( R+ |a)C) (2132)

Based on Equation 2.74, we have
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WR*C

Z, o =iol+ - 2133
e 1+ («RCY P (wRC)’ (2133)
Then
wR*C
Z, = il -—2 2134
T 14 (wreY 1+ («RCY (2134)

The real and imaginary components, Z , and Z, , of the AC impedance of the L-

R/C circuit are written as

im?

RS - (2.135)
1+ (wRC)
2
im = WL~ oRC 5 (2.136)
1+ (@wRC)
The phase angle ¢is given by
3p2| 2 _ 2
tan¢=wL+a)RLC wRC (2.137)

R

In the complex plane, an example of the AC impedance of the L-(R/C) circuit is
depicted in Figure 2.30.
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Figure 2.30. Graphical representation of the AC impedance of the L-(R/C) circuit (L = 0.04
H, C=0.00001 F, R=100 Q)

2.4.4.8 L/(R-C) Circuit
In a circuit of a series RC in paralel with L (L/(R-C)), the overall impedance,
Z, irc)» IS EXpressed as
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Z, o =lGol) ™ + R+ (wC)™ )T (2.138)
Then we have
R
Zir-cy = 1 R R + wL al)C szC i (2.139)
1- Tr()? - ) 4+ (—
( aﬂLc) (wL) d szc (a)L)

The real and imaginary components, Z, and Z, , of the AC impedance of the
L/(R-C) circuit are given by

7. = R (2.140)
a- 2LC) +(—)
Bl 1
z,, =0L_0C ZLC (2.141)
+7
a- 2LC) ( )
The phase angle ¢is given by
R -6t e
tang=— =Y 2.142
¢ Bl ( )

In the complex plane, an example of the AC impedance of the L/(R-C) circuit is
shown in Figure 2.31.
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Figure 2.31. Graphical representation of the impedance of the L/(R-C) circuit (L = 0.04 H,
C=0.00001 F, R=1009Q)
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2.5 Network Circuit Analysis

To construct an equivalent circuit of a complicated electrode process (e.g., a
porous electrode) and calculate its impedance, more knowledge about the network
circuit may be necessary. In this section, we will spend some time discussing
network circuit analysis.

2.5.1 Topological Featuresof a Network

Two major factors shape an electric network: the type of elements it contains and
the manner in which the elements are connected. The latter is called the network
topology. To analyze an electric network, one needs to know the number of
independent voltage and current variables. To facilitate the following discussion of
a network topology, we keep the nodes and replace the elements with lines in the
network circuit, thus simplifying the network topology, as depicted in Figure 2.32.
Figure 2.32a shows a regular network circuit while the configuration in Figure
2.32b is called the line graph of a network.

a b

Figure 2.32. A regular circuit and its network line graph: a circuit diagram; b line graph of
circuit

2.5.1.1 Some Terms Used in Network Topology
Several terms are frequently used in network analysis: node, branch, tree, link,
loop, and mesh.

A node is a terminal or junction at which two or more circuit elements are
connected.

A branch is a portion of a network which contains either a single element or a
certain connection of elements between two nodes.

A treeis a connected portion or sub-graph of the entire graph that contains al
the nodes but no loops. For example, the solid lines in Figure 2.32b form a tree,
which consists of all the four nodes in the graph; there are no loops within the tree.

In Figure 2.32b, the dashed lines are called links, i.e., the branches which are
not in the chosen tree. A graph usually has more than one tree, and the entire graph
is the sum of the links and tree branches. Assuming that there are N nodes in a
network, the number of tree branchesis N-1.
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A loop comprises a set of branches that form a closed path in a network. This
set of branches passes through no node or element more than once.

A mesh is aloop which contains no other loops within the contour of its closed
path. Basicaly, the term “loop” is applicable to a closed path in both planar and
non-planar circuits, whereas “mesh” is only applicable to planar circuits. The
meshes in a planar circuit are in fact the contours of the “windows’ seen in the
circuit diagram. For example, Figure 2.32a has three windows, and thus the circuit
is athree-mesh circuit.

A planar network or circuit is one that can be drawn on a plane surface without
any of the branches crossing each other. Conversely, a non-planar network or
circuit cannot be drawn on a plane surface without the crossing of branches.

2.5.1.2 Independent Voltages

Assuming that there are N nodes and B branches in a network, if al the branch
voltages of any tree are made zero by short-circuiting the branches, all the nodes of
the circuit are at the same potential, and thus all the voltages of the links are zero.
In other words, the link voltages depend on the tree branch voltages. Assuming that
there is one link voltage independent of the tree branch voltages, it could not be
forced to zero by short-circuiting the tree branches. Consequently at least one node
voltage is different from the voltage of the rest of the nodes. Therefore, we
conclude that the (N-1) tree branch voltages are independent and can be used to
obtain the link voltages. For example, there are four nodes and three independent
voltages, namely V1, V3, and V4 in Figure 2.32b. The link voltages V2, V5, and
V6 can be calculated from the three independent voltages.

2.5.1.3 Independent Currents

Since atree in a graph contains no loops, all the tree branch currents depend on the
link currents. In other words, al the tree branch currents can be expressed in terms
of the link currents. Assuming the number of branches in a circuit is B, there will
be B—(N-1) link currents, which are independent. Therefore, B—(N-1) independent
equations are needed to analyze the circuit. For example, Figure 2.32b needs three
independent current equations.

2.5.2 Network Theorems|[4]

Although the application of Kirchhoff’s laws offers basic tools to analyze a
network, knowledge of certain network theorems, use of network equivalence, and
use of reduction procedures simplify the process of network analysis. Basicaly,
these theorems are applicable for linear networks.

2.5.2.1 Network Reduction
One of the most important strategies to simplify or reduce a linear circuit is
superposition. The superposition theorem states that the response of a linear
network to a number of simultaneously applied sources is equal to the sum of the
individual responses due to each source acting alone.

By andyzing separately a single-input circuit, superposition alows us to
analyze linear circuits with more than one independent source. For example, Figure
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2.33a shows one voltage source and one current source. According to the
superposition theorem, the current flowing through resistor R; is the sum of the
individual response to the voltage source and current source. By replacing the
voltage source with a short circuit, as depicted in Figure 2.33b, the current through
resistor R; isthe response of R, to the current source. To find the response of R; to
the voltage source, we can replace the current source with an open circuit, as
depicted in Figure 2.33c. Then the current flowing through resistor R; with a
voltage source and a current source can be obtained. Compared with the straight
analysis of the current through resistor Ry, superposition simplifies the circuit.

a b c

Figure 2.33. Superposition of alinear circuit

Other methods to simplify the circuit are Thevenin’s and Norton's theorems. These
two theorems can be used to replace the entire circuit by employing equivalent
circuits. For example, Figure 2.34 shows a circuit separated into two parts. Circuit
A islinear. Circuit B contains non-linear elements. The essence of Thevenin's and
Norton's theorems is that no dependent source in circuit A can be controlled by a
voltage or current associated with an element in circuit B, and vice versa.

Thevenin's theorem states that a section of a linear circuit containing one or
more sources and impedances can be replaced with an equivalent circuit model
containing only one voltage source and one series-connected impedance, as shown
in Figure 2.35.

Figure 2.34. Partitioned circuit
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Figure 2.35. Graphical presentation of Thevenin’'s theorem

To determine V,,, we can remove circuit B and calculate the voltage drop across the
terminals n and n'. This voltage drop is the Thevenin voltage. To determine the
impedance Z,, we can kill all the sourcesin circuit A, aswe did in Figure 2.33, and
then calculate the impedance from n-n' terminals by looking back into circuit A.
This impedance Z, is the Thevenin impedance, which is also called the output
impedance of circuit A.

Figure 2.36. Graphical presentation of Norton’s theorem

Similar to Thevenin's theorem, Norton's theorem states that a section of a linear
circuit containing one or more sources and impedances can be replaced with an
equivalent circuit model containing only one constant current source and one
parallel-connected impedance, as shown in Figure 2.36.

To determine the Norton equivalent impedance Z, in Figure 2.36, we can Kill
all the sourcesin circuit A and then cal culate the impedance from n-n' terminals by
looking back into circuit A. Thus, the Norton impedance Z, is equa to the
Thevenin impedance. The Norton current |, is a constant current that remains the
same regardless of the impedance of circuit B. It can be determined by

I[,=—2 (2.143)

Note that only at the output terminals n-n' are the Thevenin and Norton equivalents
the same. In other words, at the output terminals n-n' the voltage and current of the
Thevenin equivalent circuit and the Norton equivalent circuit are identical.



76  X-Z.Yuan, C. Song, H. Wang and J. Zhang

2.5.2.2 Loop and Mesh Analysis
A commonly used network analysis method is loop and mesh analysis, which is
generally based on KVL. As defined previously, loop analysis refers to the general
method of current analysis for both planar and non-planar networks, whereas mesh
analysis is reserved for the analysis of planar networks. In loop or mesh analysis,
the circulating currents are selected as the unknowns, and a circulating current is
assigned to each independent loop or mesh of the network. Then a series of
equations can be formed according to KVL.

The series of equations in the form of [Z][Z]=[V] can be established by

equating the sum of the externally applied voltage sources acting in each loop to
the sum of the voltage drops across the branches forming the loop. The number of
equations is equal to the number of independent loops in the network. The general
equation in loop or mesh analysisis given by

Zy Ly Ly o Zy 1 Y
Zy Ly Zy o Ly I, v,
Zy Zy, Zy .. Zyy eI |=| (2.144)
Zyi Zyy Zys o Zyy) \y Vy

where the impedance matrix [Z] is an N xN matrix, as described in Equation
2.144. The following rules describe how to determine the values of the voltages,
currents, and impedances in Equation 2.144.

1. The voltagesin Equation 2.144 are equal to the voltage sourcesin a given
loop. If the direction of the current caused by the voltage is the same as that
of the assigned current, the voltage is positive. Otherwise, the voltage is
negative.

2. The series of mesh impedances, known as the self-mesh impedances, Zi;,
Zo, Z3s, ..., Znn, @€ given by the sum of all impedances through the loop in
which the circulating current flows.

3. Each mesh mutual impedance, denoted by Z (i # k), is given by the sum
of the impedances through which both mesh currents 7, and 7, flow. In
other words, the mesh mutual impedances are equal to the sum of the
impedances shared by meshesi and k. If the direction of the current 7, in
loop i is opposite to that of the current 7, in the adjacent loop k, the mutual
impedance equals the negative sum of the impedances, whereas if the
direction of the current I, is the same as that of the current 1,, then the
mutual impedance equals the positive sum. In a linear network, the
following can be obtained:

Z =7

ik

(2.145)

ki
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A linear matrix equation can be solved by the application of Cramer’'s rule.
Assuming the determinant A of the matrix Z is non-zero, the solution of the current
can be expressed as

[1]=[z]"[V] (2.146)
where [Z]" istheinverse of [Z], which can be expressed as

1 1
(zr' :Z(A”‘)T = A (2.147)

where Ay is the matrix cofactor and (A,)" = A,, represents the matrix transpose. A
and Ay can be expressed asfollows:

Zy Zy o Zy o Zy
Zy Zy o Zy .. Z
A=|[Z]|= 21 22 2i 2N (2148)
ZNI ZN2 ZNi ZNN
A11 A2I A3I ANl
AIZ AZZ A32 AN2
Ap=| Ay Ay Ay . Ay, (2.149)
_AIN AZN A3N ANN_

where |[Z]] is the determinant of [Z].

2.5.2.3 Nodal Analysis

In nodal analysis, the voltages between adjacent nodes of the network are chosen
as the unknowns. This can commonly be achieved by selecting a reference node
from the graph of the network. Equations are then formed if KCL is employed. By
equating the sum of the currents flowing through admittances associated with one
node to the sum of the currents flowing out of the current sources associated with
the same node, a set of equations can be established with theform of [Y][V]=[I]:

Y, Y, Y, Yiva | i

Y, Yy Yy Yona | V2 I,

Y Y, Y3 Yiya | V5 |=| I (2.150)
Yy Yeao Yyas o oo Yyun AV Uy
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where the admittance matrix [Y] isan (N —1)x (N —1) matrix given in Equation
2.150. The following rules describe how to determine the values in Equation 2.150.

1. Thecurrentsin Equation 2.150 are equal to the sum of the source currents
associated with one given node. The currents are positive if they go into the
nodes. Otherwise, the currents are negative.

2. Y11, Y2, Yas, ..., Ynan1, Known as the self node admittances, are given by
the sum of all admittances directed to a given node with al other nodes
shorted to the reference node.

3. Each node mutual admittance Yi (i # k) is the sum of the admittances
between two given nodes i and k. The current Y,V, in the mutua
admittances between nodesi and k is negative if the voltages of nodesi and
k have the same assumed polarity relative to the reference node. The
current Y, V, is positive if the voltages of nodesi and k have the opposite
assumed polarity relative to the reference node. In a linear network, we
have

Yy =Yy (2.151)
2.5.3 Transient Network Analysis

If a generator is imposed on a network or switched out of the circuit with
capacitors and/or inductors, there will be a transitory change in the currents and
voltages until a new equilibrium state is established. These changing currents and
voltages are defined as transients. The time period from the moment of switching
to the time equilibrium established is called the transient state. In transient analysis,
we always come across linear differential, integral, or integro-differential equations
of ether the first or the second order when Kirchhoff’'s laws are applied. In this
section, we will solve these equations using a classical method.
Thefirst order circuit with one storage element is described by

d
d—); +agx=f(1) (2152)

The second order circuit with two storage elements can be described by

d’x dx
?+a, Z'FCZO =f(l) (2153)

In Equations 2.152 and 2.153, a; and a, are the constant coefficients; x may be
either voltage, current, or charge; f (t) is the driving voltage or current; and t is

time. The solution of these equations consists of two parts:

x=x,+x, (2.154)
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where X, is the natural response and x; is the forced response. The natural response
is the general solution of the differential equation with the driving function f(t) set
to zero. The forced response is a particular solution of the differential equation for
agiven driving function. For example, the complete solution of Equation 2.152 can
be derived asfollows.
The characteristic equation of Equation 2.153 can be expressed as
s’+as+a,=0 (2.155)

Providing s; and s, are the two eigenvalues of Equation 2.155, the two natural
responses can be obtained:

x, =Ae" (2.156)
X, =Ae” (2.157)

where A; and A, are arbitrary constants.
Asthisisalinear equation, the natural response x, can simply be summed up as

x,=Ae" +Ae” (2.158)

The eigenvalues are also known as the natural frequencies of the circuit, which are
the reciprocals of the circuit response time constant. The eigenvalues of Equation
2.155 could be real or complex numbers. If the natural frequencies are complex,
we have

S.=atif (2.159)
The natural responseis given by

x, = AP 4 A (2.160)
Based on Euler’' s formula, the above equation can be rewritten as

x, =[B,cosft +iB,sin fit] & (2.161)
where

B =A+A, (2.162)

B,=A -A (2.163)
2 1 2
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In a circuit, if the real part in the eigenvalues is negative, then the response
decays with time. The imaginary part in the eigenvalues implies that this decayed
response is accompanied by oscillation.

If there are two real and equal roots for Equation 2.155, the natural response is
given by

x,=(A+At) € (2.164)

This demonstrates that the response is the superposition of two parts: the linear
response and the exponential decayed response.

One solution of the forced response X is the undetermined coefficient method.
Assuming the forced response has the same form of source function f(t) but a
different coefficient, putting this trial forced response into the differential equation
yields the coefficients in the forced response x;.

For a higher order equation, the general formis given by

d"x d"™'x d'x
a, " +a,, _dtnfl +..t+a,

. +...+al?+a0x=f(t) (2.165)
t
The characteristic equation of the above equation is given by

a;s"+a, s"+. . tas . tasta,=0 (2.166)

The eigenvalues of s, ..., S, are the natura frequencies of this circuit, otherwise
known as the poles of the circuit network. If the poles are all different, the natural
response is given by

x,=Ae" +Ae” +. . +Ae"+. . .+Ae" (2.167)
If r poles are equal, then we have

X, =(A+At+. + At e + A e +.+ A (2.168)

where A; ... A, are arbitrary constants.
In general, x, satisfies

d"(x,) d(x,) d’(x,) d(x,)
a +a

n . = +..ta, —"=+..+aq +ayx, =0
dt" dr" dr’ dt
(2.169)
and x; is a solution of
d"(x,) d""(xf) d’(x;) d(x,)
a "~ +ta +..+a ——+.+a,——+ax,=f(t
"o g Todr "ar oty =S O

(2.170)
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Summing the above two equations, we have

d"(x,+x,) d"" (x, +x,)
n n + n—1 n—1
dt dt (2.171)
d'"(xn+xf) d(x,+x;,)
. - +..+4q :
dt

+ay(x, +x,)=f(@)

Thus, x=x, +x, isthe complete solution of Equation 2.165.

2.6 Basic Knowledge for Understanding EIS
2.6.1 Introduction

Ohm’s law defines the resistance, R, in terms of the ratio between voltage V and
current |. Its use is limited to the idea resistor for a DC system, which is
independent of frequency. The relationship between the resistance, current, and
voltage can be expressed as

R= (2.172)

\%4
1
However, real electrochemical systems exhibit much more complex behaviours.
They are not simply resistive. The electrochemical double layer adds a capacitive
term. Other electrode processes, such as diffusion, are time and/or frequency
dependent. Therefore, for an actual electrochemical system, impedance is used
instead of resistance. The impedance of an electrochemical system (defined as
Z(w)) isthe AC response of the system being studied to the application of an AC
signal (e.g., sinusoidal wave) imposed upon the system. The form of the current—
voltage relationship of the impedance in an electrochemical system can also be
expressed as

40
Z(w)= o (2.173)

where V() and I(z) are the measurements of voltage and current in an AC
system.

The technique that measures the AC impedance of a circuit element or an
electric circuit is called AC impedance spectroscopy. As described in Section 2.4,
the impedances of a resistor (Z,), a capacitor (Z,.), and an inductor (Z,) for a

sinusoidal system can be expressed, respectively, as follows:

2, (@)= % _R (2.174)



82 X-Z.Yuan, C. Song, H. Wang and J. Zhang

VYo _ 1
Zo ()= 0 " wC (2.175)

Vi) .
zZ =—2=jwL 2.176
L (@) 10 1 ( )
If AC impedance spectroscopy is used in an electrochemical system, this technique
is generally called electrochemical impedance spectroscopy, known as EIS. The
impedance of an electrochemica system can aso be expressed typically in
Cartesian coordinates:

Z(w) =2, +iZ,, (2.177)

where Z _ (or Z') and Z,, (or Z') are the red and imaginary parts of the
impedance, respectively. In polar coordinates, this becomes

Z(w) =|ZJe” (2.178)

where |Z|=4/(Z. +Z;,) is the modulus and & is the phase corresponding to a
given frequency.

2.6.2 Nyquist and Bode Plots

Generally, the impedance spectrum of an electrochemical system can be presented
in Nyquist and Bode plots, which are representations of the impedance as a
function of frequency. A Nyquist plot is displayed for the experimental data set
ZZ,..Z,,;,w,), (=12, ...,n)of npoints measured at different frequencies, with
each point representing the real and imaginary parts of theimpedance (Z,,,~ Z,,,)
at aparticular frequency w,.

A Bode plot is an aternative representation of the impedance. There are two
types of Bode diagram, log|Z| ~ logw (or |Z| ~ logw) and & ~ log e, describing
the frequency dependencies of the modulus and phase, respectively. A Bode plot is
normally depicted logarithmically over the measured frequency range because the
same number of pointsis collected at each decade. Both plots usually start at a high
frequency and end at alow frequency, which enables the initial resistor to be found
more quickly.

Figure 2.37 shows an example impedance spectrum of an electrochemical
system with two time constants. Figure 2.37a, b, and ¢ are the equivalent circuit,
simulated Nyquist diagram, and Bode plot, respectively.

rej
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C

Figure 2.37. a The equivaent circuit of an electrochemical system with two time constants;
b Nyquist diagram of a two time constants model simulated over the frequency range 100
kHz-0.01Hz(Ry=10Q,R;=20Q, C; =0.0001 F, R, =10 Q, C, = 0.1 F); c Bode plot of a
two time constants model simulated over the frequency range 100 kHz—0.01 Hz (R, = 10 Q,
R =209, C;=0.0001F, R, =100, C,=0.1F) (#)log/Z| ~ logw, (A) 6 ~ logw.
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The most common graphical representation of experimental impedance is a
Nyquist plot (complex-plane diagram), which is more illustrative than a Bode plot.
However, a Bode plot sometimes can provide additional information.

Some typical Nyquist plots for an electrochemical system are shown in Figure
2.38. The usual result is a semicircle, with the high-frequency part giving the
solution resistance (for a fuel cell, mainly the membrane resistance) and the width
of the semicircle giving the charge-transfer resistance.

Figure 2.38. Typical Nyquist plots for electrochemical systems
2.6.3 Equivalent Circuit Models

EIS data analysis is commonly carried out by fitting it to an equivaent electric
circuit model. An equivalent circuit model is a combination of resistances,
capacitances, and/or inductances, as well as a few specialized electrochemical
elements (such as Warburg diffusion elements and constant phase elements), which
produces the same response as the electrochemical system does when the same
excitation signal is imposed. Equivalent circuit models can be partially or
completely empirical. In the model, each circuit component comes from a physical
process in the electrochemical cell and has a characteristic impedance behaviour.
The shape of the model’s impedance spectrum is controlled by the style of
eectrical elements in the model and the interconnections between them (series or
paralel combinations). The size of each feature in the spectrum is controlled by the
circuit elements parameters.

However, athough powerful numerical analysis software, e.g., Zview, is
available to fit the spectra and give the best values for equivaent circuit
parameters, analysis of the impedance data can still be troublesome, because
specialized electrochemical processes such as Warburg diffusion or adsorption also
contribute to the impedance, further complicating the situation. To set up a suitable
model, one requires a basic knowledge of the cell being studied and a fundamental
understanding of the behaviour of cell elements.
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The equivalent circuit should be as simple as possible to represent the
electrochemical system and it should give the best possible match between the
model’s impedance and the measured impedance of the system, whose equivalent
circuit contains at least an electrolyte resistance, a double-layer capacity, and the
impedance of the Faradaic or non-Faradaic process. Some common egquivalent
circuit elements for an electrochemical system are listed in Table 2.1. A detailed
description of these elements will beintroduced in Section 4.1.

Table 2.1. Common circuit elements used in equivalent circuit models

Equivalent element Name

R Resistance

C Capacitance

L Inductance

W Infinite Warburg

BW Finite Warburg (Bounded Warburg)
CPE Constant phase element

BCPE Bounded CPE

The following are two examples of the standard equivalent circuits used in
electrochemical systems.

2.6.3.1 The Randles Cell

The simplest and most common model of an electrochemical interface is a Randles
circuit. The equivalent circuit and Nyquist and Bode plots for a Randles cell are all
shown in Figure 2.39. The circuit includes an electrolyte resistance (sometimes
solution resistance), a double-layer capacitance, and a charge-transfer resistance.
As seen in Figure 2.39a, Ry is the charge-transfer resistance of the electrode
process, Cqy is the capacitance of the double layer, and Ry is the resistance of the
electrolyte. The double-layer capacitance is in parallel with the charge-transfer
resistance.

a

Figure 2.39. Graphic presentations of the Randles cell: a equivalent circuit, b Nyquist plot,
¢ Bode magnitude plot, d Bode phase plot (Ry =20 Q, R =80 Q, Cy =0.001 F)
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d
Figure 2.39. (continued)
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The Nyquist plot of a Randles cell is always a semicircle. At high frequencies the
impedance of Cy is very low, so the measured impedance tends to Ry. At very low
frequencies the impedance of Cy becomes extremely high, and thus, the measured
impedance tends to R; + Ry. Accordingly, at intermediate frequencies, the
impedance falls between Ry and R.; + Ry. Therefore, the high-frequency intercept
is associated with the electrolyte resistance, while the low-frequency intercept
corresponds to the sum of the charge-transfer resistance and the electrolyte
resistance. The diameter of the semicircleis equal to the charge-transfer resistance.

The Bode plot contains a magnitude plot and a phase angle plot. For a Randles
cell, the values of the electrolyte resistance and the sum of the electrolyte
resistance and the polarization resistance can easily be identified from the
horizontal line in the magnitude plot. At high or low frequencies, the phase angles
are close to 0°. Otherwise, at intermediate frequencies, the phase angles fall
between 0° and 90°.

The Randles cell model is not only useful but also serves as a starting point for
more complex models, created by adding more components.

2.6.3.2 Mixed Kinetic and Diffusion Control

In a situation where a charge transfer is also influenced by diffusion to and from
the electrode, the Warburg impedance will be seen in the impedance plot. This
circuit model presents a cell in which polarization is controlled by the combination
of kinetic and diffusion processes. The equivalent circuit and the Nyquist and Bode
plots for the system are al shown in Figure 2.40. It can be seen that the Warburg
element is easily recognizable by a line at an angle of 45° in the lower frequency
region.

When investigating an electrochemical system using EIS, the equivalent circuit
model that has been constructed must be verified. An effective way to do so isto
ater a single cell component and see if the expected changes in the impedance
spectrum occur, or to keep adding components to the circuit to see if a suitable
circuit can be achieved, until reaching a perfect fit. Nevertheless, empirical models
should use as few components as possible.

a

Figure 2.40. Graphic presentations of a mixed kinetic and diffusion control circuit: a
equivalent circuit, b Nyquist plot, c Bode magnitude plot, d Bode phase plot (Ry = 100 Q,
Ry =100Q, Cy = 0.001F, =20 Qs'?)
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d
Figure 2.40. (continued)
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It should also be pointed out that an equivalent circuit is not unique. In describing
the same AC impedance spectrum, several circuits may exhibit the same result. For
example, a modd that includes elements without any chemical basis and practical
meaning can demonstrate a perfect fit. Various equivalent circuit models used in
PEM fuel cellswill be discussed in detail in Chapter 4.

2.6.4 Data Fitting of EIS

It has been recognized that the analysis of EIS spectra is not straightforward. An
effective approach is to fit the data using equivalent circuit models. Different
methods for data fitting exist, such as the graphic method, the non-linear least
square method, and the deconvolution approach. Although the graphic method is
extremely simple and sufficiently accurate, with the rapid development of
computer technology fewer people are using it. Here we briefly introduce the
widely used non-linear least squares (NLLS) method and the deconvolution
approach.

2.6.4.1 Non-Linear Least Squares Method
The rapid development of computer technology has yielded powerful tools that
make it possible for modern EIS analysis software not only to optimize an
equivalent circuit, but also to produce much more reliable system parameters. For
most EIS data anaysis software, a non-linear least squares fitting method,
developed by Marquardt and Levenberg, is commonly used. The NLLS
Levenberg—Marquardt algorithm has become the basic engine of several data
analysis programs.

The core of the NLLS Levenberg—Marquardt algorithm is the use of the chi-
squared parameter, y*, which is defined asfollows

2

ZZ=Z[(yi_f(xi))/o-i] (2.179)
=1

where o,, y,, and f(x;) represent the standard deviation of measurement, the

data, and the known function, respectively. By minimizing the object function, z?,
this method makes it possible to measure the “ goodness of fit”.

For the complex non-linear least squares (CNLS) method, the object function,
S, isdefined as [5, 6]

§=2wdZ; - 2. @) +[Z; - Zip (@) ) (2.180)
=1

where

Z.,,+jZ,,; isthe measured impedance at frequency w, (here, j=+-1 isused

for differentiation);
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Z(w;,a,) =2, (w;,a,)+ jZ,,(o;,a,) is the model function, which can be
altered using the adjustable parameters; the model function can often be
presented by an equivalent circuit, involving such elements as resistance,
capacitance, and Warburg in series and/or in paralldl;

o (k= 1... M) isthe adjustable parameters; and

w;, is the weight factor, which is the inverse of the square of the vector length
of the impedance.

Other parameters, such as CNLSHit residuals (A,, and A

“goodness of fit”. They are defined as

), dso indicate the

im

ZZre,i - zzre (‘2)" le )

A = , 2.181
e |Z(a)i,ak)| ( )

A4 — Zim,i _Zim (wi’ak) (2 182)
im |Z(wi’ak)| .

For an optimum fit, the residuals should distribute over the full range of
frequencies.

NLLS or CNLS starts with the selection of the equivalent circuit, followed by
the initial value estimation for all the model parameters. Estimation of the initial
values is one of the most difficult tasks in the anaysis of an equivalent circuit
model. A good initial value estimation needs a solid understanding of the element
behavioursin the circuit. If the initial estimations are far from the “real values’, the
optimum fit may not be found. An estimated value within a factor of ten of the true
value isagood start for determining amodel parameter [7].

The simplest case for estimating the initial values of the circuit parameters is
when the semicircle arcs in the impedance spectrum are not overlapping. In this
situation the charge-transfer resistance, Ry, can be estimated using the intercepts of
the arc with the real axis, and the associated double-layer capacitance, Cy, is then
obtained from w, , = (R,C,)", where w,,, isthe peak value of the frequency.

Experimental arcs in the spectrum are not aways idea semicircles, and this
complicates parameter estimation. Nevertheless, there are still basic rules for
estimating the initial values [8, 9]. The key isto identify the region of the spectrum
in which one element dominates and then estimate the value of the element in this
region. For example, the resistor's impedance dominates the spectrum at a low
frequency, while the impedance of a capacitor approaches zero at a high frequency
and infinity at a low frequency; aso, individual resistors can be recognized based
on the horizontal regionsin a Bode plot.

Using the estimated initial values of the parameters, the software will adjust
several or al of the parameters and evaluate the resulting fit. The process is
repeated again and again until the goodness of fit is satisfactory. Generally
speaking, the NLLS algorithm optimizes the fit over the entire frequency range
rather than over a small section of the spectrum. Sometimes the fit looks poor due
to an inappropriate choice of model, or poor estimates of the initial values, or
noise. In such cases, the model should be adjusted and the procedure repeated.
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2.6.4.2 Deconvolution

Assuming that the Nyquist plot of the impedance does not display an idea
semicircle (e.g., it shows a depressed semicircle or a wide arc), it might be
described using two or more discrete time constants or a continuous distribution of
time constants. In the former case, the equivalent circuit may involve two or more
parallel RCsin series. In the latter case, it may involve one or more parallel CPEs
and Rsin series. As mentioned, one solution could be to use several CNL Sfittings;
however, a more direct method would be the deconvolution of the imaginary part
of the impedance data.

One of the advantages of the deconvolution method is to make it possible to
decide whether the Nyquist plot of the impedance is describable by discrete time
constants or by a continuous distribution of time constants, according to the width
of the individual relaxation. Also, from the values of the peak relaxation time, 7,
one may calculate the approximate frequency region as well, from w, = r,’,‘ . These
results may then be used to build an appropriate equivalent circuit and estimate the
initial values of the parameters for subsequent CNL Sfittings.

Starting with Equation 2.183, the basic equations for attaining the distribution
of relaxation times, g_(7), can be derived:

- g.(0)dt

2.183
0 1+iwt ( )

Z@=R,|

where R, isthe w — 0 value of Z(w).
Assuming that @, is approximately the central value of al frequencies
measured, the following transformations can be performed:

w, =271, (2.184)
7,=w, (2.185)
w7, = exp(-2) (2.186)
7=17,exp(s) (2.187)
G, (s5)=18,(7) (2.188)

where s and z are the new logarithmic variables. Then, the relation presented in
Equation 2.183 can be transferred into the convolution form

7@ =R, | — GWOE (2.189)

~1+iexp[—(z—9)]

The standard convolution forms can be obtained by separating Equation 2.189 into
real and imaginary parts, each having an expression related to G,(s). Normally, it is
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preferable to calculate the imaginary part of the impedance Z, denoted as Z,
instead of the real part denoted as Z., since the imaginary part shows more
structure than the real part. The imaginary part of Z is then expressed in the
following form:

Z.(2=—-(R/ 2)j_°;Gz(s)sech(z—s)ds (2.190)

The deconvolution process is basically complicated, but using modern computer
techniques, calculating G/(s) and g, (7) isquite easy [8].

2.6.5 Applications

ElIS has proven to be a useful technique for the analysis of electrochemical
systems, such as corrosion systems and batteries. In comparison with DC
electrochemical techniques, EIS has tremendous advantages, as it can provide a
wealth of information about the system being studied. Also, due to the small
perturbation in the AC signa, the electrode response isin alinear potential region,
causing no destructive damage to the electrode. Therefore, EIS can be used to
eva uate the time relation of interface parameters.

El'S thus has been demonstrated to be a powerful technique for investigating the
electrical properties of materials, including gaseous, liquid, and solid materials, and
the interfaces of conducting electrodes in different research areas. Miscellaneous
applications of EIS are listed below:

e Mechanisms, such as reaction mechanisms, electrode kinetics, state of
charge, change of active surface area

e Processes, such as complicated corrosion, crystallization, sintering,
transport through membranes

o Interfaces, including blocked interfaces, liquid/liquid interfaces,
electrode/solid electrolyte interfaces, etc.

In recent decades, research has intensified to develop commercially viable fuel
cells as a cleaner, more efficient source of energy, due to the global shortage of
fossil fuels. The challenge is to achieve a cell lifetime suitable for transportation
and stationary applications. Among the possible fuel cell types, it is generaly
believed that PEM fuel cells hold the most promise for these uses [10, 11]. In order
to improve fuel cell performance and lifetime, a suitable technique is needed to
examine PEM fuel cell operation. EIS has also proven to be a powerful technique
for studying the fundamental components and processes in fuel cells [12], and is
now widely applied to the study of PEM fuel cells as well as direct methanol fuel
cells (DMFCs), solid oxide fuel cell (SOFCs), and molten carbonate fuel cells
(MCFCs).
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2.7 Chapter Summary

This chapter has provided basic electrical fundamentals, including concepts and
definitions for circuit elements, and their relationships within electric circuits.
Various basic AC electric circuits were also presented. Following upon primary
circuit theories, the concept of electrochemical impedance spectroscopy and basic
information about EIS was introduced. This chapter lays a foundation for readers
to expand their study of EIS and its applications in PEM fuel cell research and
development.
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