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Exercises for
Elementary Differential Geometry

Chapter 1

Is 4(t) = (t?,t*) a parametrization of the parabola y = 2%?
Find parametrizations of the following level curves:
(i) y?> — 2% =1.
.o wz y2
(ll) vy + 9 = ]_
Find the Cartesian equations of the following parametrized curves:
(1) y(t) = (cos®t,sin?t).
(i) () = (e", £%).
Calculate the tangent vectors of the curves in Exercise 1.1.3.

Sketch the astroid in Example 1.1.4. Calculate its tangent vector at each point.
At which points is the tangent vector zero ?

Consider the ellipse

where p > ¢ > 0. The eccentricity of the ellipse is e = /1 — Z—z and the points

(ep,0) on the z-axis are called the foci of the ellipse, which we denote by f; and
f,. Verify that 4(t) = (pcost, gsint) is a parametrization of the ellipse. Prove
that:

(i) The sum of the distances from f; and fs to any point p on the ellipse does
not depend on p.

(ii) The product of the distances from f; and f; to the tangent line at any point
p of the ellipse does not depend on p.

(iii) If p is any point on the ellipse, the line joining f; and p and that joining f;
and p make equal angles with the tangent line to the ellipse at p.

A cycloid is the plane curve traced out by a point on the circumference of a circle
as it rolls without slipping along a straight line. Show that, if the straight line
is the z-axis and the circle has radius a > 0, the cycloid can be parametrized as

~(t) = a(t —sint, 1 — cost).

Show that 4(t) = (cos®t — 1,sintcost,sint) is a parametrization of the curve

of intersection of the circular cylinder of radius i and axis the z-axis with the
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sphere of radius 1 and centre (—%,0,0). This is called Viviani’s Curve - see
below.

1.1.9 The normal line to a curve at a point p is the straight line passing through p
perpendicular to the tangent line at p. Find the tangent and normal lines to
the curve y(t) = (2cost — cos2t,2sint — sin2t) at the point corresponding to
t=m/4.

1.1.10 Find parametrizations of the following level curves:
(i) y2 = o2(a2 - ).
(i) 23 + y3 = 3xy (the folium of Descartes).

1.1.11 Find the Cartesian equations of the following parametrized curves:
(i) y(t) = (1 4 cost,sint(1 + cost)).
(i) y(t) = (2 + 2, 8% + t4).

1.1.12 Calculate the tangent vectors of the curves in Exercise 1.1.11. For each curve,
determine at which point(s) the tangent vector vanishes.

1.1.13 If P is any point on the circle C in the zy-plane of radius a > 0 and centre (0, a),
let the straight line through the origin and P intersect the line y = 2a at @), and
let the line through P parallel to the x-axis intersect the line through () parallel
to the y-axis at R. As P moves around C, R traces out a curve called the witch
of Agnesi. For this curve, find
(i) a parametrization;

(ii) its Cartesian equation.

@)

1.1.14 Generalize Exercise 1.1.7 by finding parametrizations of an epicycloid (resp.
hypocycloid), the curve traced out by a point on the circumference of a circle



1.1.15

1.1.16

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

as it rolls without slipping around the outside (resp. inside) of a fixed circle.

For the logarithmic spiral y(t) = (e’ cost, e’ sint), show that the angle between
~(t) and the tangent vector at 7(t¢) is independent of ¢. (There is a picture of
the logarithmic spiral in Example 1.2.2.)

Show that all the normal lines to the curve
~(t) = (cost + tsint,sint — t cost)
are the same distance from the origin.

Calculate the arc-length of the catenary y(t) = (t,cosht) starting at the point
(0,1). This curve has the shape of a heavy chain suspended at its ends - see
Exercise 2.2.4.

Show that the following curves are unit-speed:

() v = (30 +0%2, 501 -2, &),

(i) ¥(t) = (3 cost,1 —sint, —2 cost).

A plane curve is given by

¥(0) = (rcosf,rsinb),

where r is a smooth function of 6 (so that (r,0) are the polar coordinates of
~(0)). Under what conditions is v regular? Find all functions (@) for which 7
is unit-speed. Show that, if 4 is unit-speed, the image of 7y is a circle; what is its
radius?

This exercise shows that a straight line is the shortest curve joining two given
points. Let p and q be the two points, and let 7 be a curve passing through
both, say y(a) = p, ¥(b) = q, where a < b. Show that, if u is any unit vector,

yu <[4

and deduce that )

(@—p)u S/ |4 || dt.

By takingu = (q—p)/ || q—p ||, show that the length of the part of 4 between
p and q is at least the straight line distance || q —p ||

Find the arc-length of the curve
y(t) = (3t%,t — 3t°)

starting at ¢ = 0.



1.2.6

1.2.7

1.2.8

1.2.9

1.3.1

1.3.2

Find, for 0 < z < 7, the arc-length of the segment of the curve
~(t) = (2cost — cos2t,2sint — sin 2t)

corresponding to 0 <t < .

Calculate the arc-length along the cycloid in Exercise 1.1.7 corresponding to one
complete revolution of the circle.

Calculate the length of the part of the curve
~(t) = (sinht —¢,3 — cosh )

cut off by the z-axis.

Show that a curve 7 such that 4 = 0 everywhere is contained in a plane.

Which of the following curves are regular ?

(i) y(t) = (cos®t,sint) for t € R.

(ii) the same curve as in (i), but with 0 <t < 7/2.

(iii) y(t) = (¢, cosht) for t € R.

Find unit-speed reparametrizations of the regular curve(s).

The cissoid of Diocles (see below) is the curve whose equation in terms of polar
coordinates (r,#) is

r=sinftanf, —7w/2<0<m/2.

Write down a parametrization of the cissoid using 6 as a parameter and show
that

t3
N(t) = (tQ,ﬁ) L —l<t<l,

is a reparametrization of it.
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1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.4.1

The simplest type of singular point of a curve 7 is an ordinary cusp: a point p
of 7y, corresponding to a parameter value ¢y, say, is an ordinary cusp if §(tgp) = 0
and the vectors 4(tg) and % (tg) are linearly independent (in particular, these
vectors must both be non-zero). Show that:

(i) the curve y(t) = (t™,t"), where m and n are positive integers, has an ordinary
cusp at the origin if and only if (m,n) = (2,3) or (3,2);

(ii) the cissoid in Exercise 1.3.2 has an ordinary cusp at the origin;

(iii) if 4 has an ordinary cusp at a point p, so does any reparametrization of 4.

Show that:

(i) if 4 is a reparametrization of a curve 4, then 4 is a reparametrization of ¥;
(ii) if 4 is a reparametrization of 4, and 4 is a reparametrization of 4, then 4 is
a reparametrization of 4.

Repeat Exercise 1.3.1 for the following curves:
(i) v(t) = (*,1°), t € R.
(ii) 4(t) = ((1 4 cost) cost, (1 + cost)sint), —m < t < 7.

Show that the curve
) = (2t, 2 >0
’y - ) 1 + t2 ) )
is regular and that it is a reparametrization of the curve
0 2cost 1+ sint 7r<t<7r
=(—F— in —— —.
v Ltsint ™ 00) 2 2
The curve

v(t) = (asinwt, bsint),
where a,b and w are non-zero constants, is called a Lissajous figure. Show that
v is regular if and only if w is not the quotient of two odd integers.

Let v be a curve in R™ and let 4 be a reparametrization of 7y with reparametriza-
tion map ¢ (so that () = y(¢(t))). Let o be a fixed value of £ and let to = ¢(to).
Let s and § be the arc-lengths of 4 and 4 starting at the point 4(to) = (o).
Prove that § = s if d¢/dt > 0 for all £, and 5§ = —s if d¢/dt < 0 for all .

Suppose that all the tangent lines of a regular plane curve pass through some
fixed point. Prove that the curve is part of a straight line. Prove the same result
if all the normal lines are parallel.

Show that the Cayley sextic

4(t) = (cos® t cos 3t,cos® tsin3t), ¢ <€ R,



1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.5.1

is a closed curve which has exactly one self-intersection. What is its period? (The
name of this curve derives from the fact that its Cartesian equation involves a
polynomial of degree six.)

Give an example to show that a reparametrization of a closed curve need not be
closed.

Show that if a curve 4 is T3-periodic and Ty-periodic, it is (k173 + koT5)-periodic
for any integers k1, ko.

Let v : R — R™ be a curve and suppose that Tj is the smallest positive number
such that v is Tp-periodic. Prove that v is T-periodic if and only if T' = k7| for
some integer k.

Suppose that a non-constant function v : R — R is T-periodic for some T # 0.
This exercise shows that there is a smallest positive Ty such that v is Ty-periodic.
The proof uses a little real analysis. Suppose for a contradiction that there is no
such Tj.

(i) Show that there is a sequence 17,75, T3, ... such that T} > T5 > T3 > --- >0
and that v is T;.-periodic for all r > 1.

(ii) Show that the sequence {7} in (i) can be chosen so that 7. — 0 as r — oc.
(iii) Show that the existence of a sequence {7} as in (i) such that 7, — 0 as
r — oo implies that v is constant.

Let 4 : R — R”™ be a non-constant curve that is T-periodic for some 7" > 0.
Show that 7 is closed.

Show that the following curve is not closed and that it has exactly one self-
intersection: ) )
t*—3 t(t -3
1) = (2 A=),
t?+1" t?+1
Show that the curve

~y(t) = ((2 4 cost) coswt, (2 + cost) sinwt, sint),
where w is a constant, is closed if and only if w is a rational number. Show that,
if w = m/n where m and n are integers with no common factor, the period of vy
is 2mn.
Show that the curve C with Cartesian equation
y? = (1 —2?)

is not connected. For what range of values of ¢ is

V() =, Vi =1%)



1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

2.1.1

2.1.2

2.1.3

a parametrization of C?7 What is the image of this parametrization?
State an analogue of Theorem 1.5.1 for level curves in R3 given by f(z,y,z2) =
g(z,y,2) =0.
State and prove an analogue of Theorem 1.5.2 for curves in R3 (or even R™).
(This is easy.)
Show that the conchoid

(= 1)*(2” +y°) = 2°

is not connected, but is the union of two disjoint connected curves (consider the
line x = 1). How do you reconcile this with its (single) parametrization

~¥(t) = (14 cost,sint + tant) ?

Show that the condition on f and g in Exercise 1.5.2 is satisfied for the level
curve given by

1 2., .2, .2 _3
1 "ty +z7+ax= 1
except at the point (1/2,0,0). Note that Exercise 1.1.15 gives a parametrization
~ of this level curve; is (1/2,0,0) a singular point of 7 ?

22 42 =

Sketch the level curve C given by f(z,y) = 0 when f(x,y) = y — |z|. Note
that f does not satisfy the conditions in Theorem 1.5.1 because 0f/0z does
not exist at the point (0,0) on the curve. Show nevertheless that there is a
smooth parametrized curve v whose image is the whole of C. Is there a reqular
parametrized curve with this property ?

Chapter 2

Compute the curvature of the following curves:

() 7(t) = (20 + 62, 50— %2, &),

(ii) ¥(¢) = (2 cost,1 —sint, —2 cost).

(iii) y(¢) = (¢, cosht).

(iv) y(t) = (cos®t,sin® t).

For the astroid in (iv), show that the curvature tends to co as we approach one
of the points (+1,0), (0,+1). Compare with the sketch found in Exercise 1.1.5.
Show that, if the curvature x(t) of a regular curve 7(t) is > 0 everywhere, then
k(t) is a smooth function of ¢. Give an example to show that this may not be
the case without the assumption that x > 0.

Show that the curvature of the curve

~(t) = (t — sinht cosht,2cosht), ¢t>0,



2.14

2.2.1

2.2.2

2.2.3

224

2.2.5

is never zero, but that it tends to zero as t — oc.

Show that the curvature of the curve
~(t) = (sect,secttant), —m/2<t< w2,
vanishes at exactly two points on the curve.
Show that, if 7y is a unit-speed plane curve,
n, = —k,t.

Show that the signed curvature of any regular plane curve () is a smooth
function of ¢t. (Compare with Exercise 2.1.2.)

Let v and 4 be two plane curves. Show that, if 4 is obtained from 4 by applying
an isometry M of R?, the signed curvatures x, and &, of 4 and 4 are equal if M
is direct but that £; = —k if M is opposite (in particular, 4 and 4 have the same
curvature). Show, conversely, that if 4 and 4 have the same nowhere-vanishing
curvature, then 4 can be obtained from % by applying an isometry of R2.

Let k be the signed curvature of a plane curve C expressed in terms of its arc-
length. Show that, if C, is the image of C under the dilation v +— av of the
plane (where a is a non-zero constant), the signed curvature of C, in terms of its
arc-length s is 1k(2).

A heavy chain suspended at its ends hanging loosely takes the form of a plane
curve C. Show that, if s is the arc-length of C measured from its lowest point, ¢
the angle between the tangent of C and the horizontal, and 7" the tension in the
chain, then

Tcosp=A Tsinp = pus,

where A,y are non-zero constants (we assume that the chain has constant mass
per unit length). Show that the signed curvature of C is

1 2\
/<;S:—<1—|—S—2) ,
a a

where a = A/u, and deduce that C can be obtained from the catenary in Example
2.2.4 by applying a dilation and an isometry of the plane.

Let 4(t) be a regular plane curve and let A be a constant. The parallel curve
of v is defined by
Y (£) = ¥(t) + Any(2).

Show that, if Ak,(t) # 1 for all values of ¢, then 4” is a regular curve and that
its signed curvature is ks/|1 — A\ks|.
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Another approach to the curvature of a unit-speed plane curve 4 at a point y(sg)
is to look for the ‘best approximating circle’ at this point. We can then define
the curvature of 4 to be the reciprocal of the radius of this circle.

Carry out this programme by showing that the centre of the circle which passes
through three nearby points 7(sg) and 7(sg £ ds) on 4 approaches the point

€(s0) = ¥(s0) + 7)115(80)

Ks(So

as ds tends to zero. The circle C with centre €(sp) passing through v(sg) is called
the osculating circle to 7 at the point v(sg), and €(sg) is called the centre of
curvature of 7y at (sg). The radius of C is 1/|ks(s0)| = 1/k(so), where & is the
curvature of 4 - this is called the radius of curvature of C at y(sp).

With the notation in the preceding exercise, we regard € as the parametrization
of a new curve, called the evolute of 4y (if 4 is any regular plane curve, its evolute
is defined to be that of a unit-speed reparametrization of 7). Assume that
ks(s) # 0 for all values of s (a dot denoting d/ds), say ks > 0 for all s (this can
be achieved by replacing s by —s if necessary). Show that the arc-length of € is
—ﬁ(s) (up to adding a constant), and calculate the signed curvature of €. Show
also that all the normal lines to 4 are tangent to € (for this reason, the evolute
of 7 is sometimes described as the ‘envelope’ of the normal lines to 7).

Show that the evolute of the cycloid
¥(t) = a(t —sint,1 —cost), 0<t<2m,
where a > 0 is a constant, is
€(t) = a(t +sint,—1 + cost)

(see Exercise 1.1.7) and that, after a suitable reparametrization, € can be ob-
tained from 7 by a translation of the plane.

A string of length ¢ is attached to the point 4(0) of a unit-speed plane curve 7(s).
Show that when the string is wound onto the curve while being kept taught, its
endpoint traces out the curve

Us) =(s) + (€ = s)7(s),

where 0 < s < ¢ and a dot denotes d/ds. The curve ¢ is called the involute of 7y
(if 7 is any regular plane curve, we define its involute to be that of a unit-speed
reparametrization of ). Suppose that the signed curvature k4 of 4 is never zero,
say ks(s) > 0 for all s. Show that the signed curvature of ¢ is 1/(¢ — s).
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2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

2.2.14

Show that the involute of the catenary
~(t) = (t,cosht)

with [ = 0 (see the preceding exercise) is the tractriz

1
x = cosh™? (g) — /1 —y2

See §8.3 for a simple geometric characterization of this curve.

A unit-speed plane curve 4(s) rolls without slipping along a straight line ¢ parallel
to a unit vector a, and initially touches ¢ at a point p = 4(0). Let q be a point
fixed relative to 7. Let I'(s) be the point to which q has moved when 4 has rolled
a distance s along ¢ (note that I' will not usually be unit-speed). Let 6(s) be the
angle between a and the tangent vector 4. Show that

['(s) =p+sa+p_ge(a—(s)),

where p,, is the rotation about the origin through an angle ¢. Show further that

P(s).p0(s) (@ — ¥(s)) = 0.

Geometrically, this means that a point on I' moves as if it is rotating about the
instantaneous point of contact of the rolling curve with ¢. See Exercise 1.1.7 for
a special case.

Show that, if two plane curves 7(t) and 4(t) have the same non-zero curvature
for all values of ¢, then 4 can be obtained from 4 by applying an isometry of R?.

Show that if all the normal lines to a plane curve pass through some fixed point,
the curve is part of a circle.

Let 4(t) = (e¥ cost, e*t sint), where —oo < t < oo and k is a non-zero constant
(a logarithmic spiral — see Example 1.2.2). Show that there is a unique unit-
speed parameter s on 7y such that s > 0 for all t and s — 0 as t — Foo if £k > 0,
and express s as a function of t.
Show that the signed curvature of 7 is 1/ks. Conversely, describe every curve
whose signed curvature, as a function of arc-length s, is 1/ks for some non-zero
constant k.
If o is a plane curve, its pedal curve with respect to a fixed point p is the curve
traced out by the foot of the perpendicular from p to the tangent line at a variable
point of the curve. If 4 is unit-speed, show that the pedal curve is parametrized
by

6= p+ ((’Y - p)-ns)ns7



2.2.15

2.2.16

2.2.17

2.2.18

2.2.19

2.2.20

2.2.21

11

where n; is the signed unit normal of 4. Show that é is regular if and only if 7
has nowhere vanishing curvature and does not pass through p.

Show that the pedal curve of the circle 4(t) = (cost,sint) with respect to the
point (—2,0) is obtained by applying a translation to the limagon in Example
1.1.7.

A unit-speed plane curve 4 has the property that its tangent vector t(s) makes
a fixed angle 6 with «(s) for all s. Show that:

(i) If # = 0, then 4 is part of a straight line.

(ii) If @ = 7/2, then 7 is a circle.

(iii) If 0 < @ < /2, then = is a logarithmic spiral.

Let 4 be a parallel curve of the parabola y(t) = (t,t?). Show that:

(i) 4 is regular if and only if A < 1/2.

(i) If A > 1/2, ¥* has exactly two singular points.

What happens if A =1/27

This exercise gives another approach to the definition of the ‘best approximating
circle’ to a curve 7 at a point y(to) of 7 - see Exercise 2.2.6. We assume that y
is unit-speed for simplicity.

Let C be the circle with centre ¢ and radius R, and consider the smooth function

P(t)=|v(t) —c|* R

Show that F(ty) = F(to) = 0 if and only if C is tangent to 7y at y(¢p). This sug-
gests that the ‘best’ approximating circle can be defined by the three conditions

F(tg) = F(ty) = F(tp) = 0. Show that, if 4(ty) # 0, the unique circle C for
which F satisfies these conditions is the osculating circle to 7 at the point y(%o).
Show that the evolute of the parabola 4(t) = (,t?) is the semi-cubical parabola
€(t) = (—4t3, 32 + 1).

Show that the evolute of the ellipse 4(t) = (acost,bsint), where a > b > 0 are
constants, is the astroid

2 _ 2 2 _ 2
a“—b b —a
€(t) = < cos® t, sin® t) .

a b

(Compare Example 1.1.4.)

Show that all the parallel curves (Exercise 2.2.5) of a given curve have the same
evolute.

Let 4 be a regular plane curve. Show that:

(i) The involute of the evolute of v is a parallel curve of 4.

(ii) The evolute of the involute of 4 is 4.

(These statements might be compared to the fact that the integral of the deriv-
ative of a smooth function f is equal to f plus a constant, while the derivative
of the integral of f is f.)
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2.2.22

2.2.23

2.2.24

2.3.1

2.3.2

2.3.3

A closed plane curve 7 is parametrized by the direction of its normal lines, i.e.
~(0) is a 2w-periodic curve such that 6 is the angle between the normal line at
~(0) and the positive z-axis. Let p(f) be the distance from the origin to the
tangent line at y(6). Show that:

(i) v(0) = (p cos) — F& sinf, psin 0 + d9 cos 0)

(ii) 4 is regular if and only if p+ 395 > 0 for all  (we assume that this condition

holds in the remainder of this exercise).
—1
(iii) The signed curvature of y is kg = (p + %) .

(iv) The length of 4 is f027r 0)do.

(v) The tangent lines at the pomts ~(0) and (0 + ) are parallel and a distance
w(f) = p(f) + p(6 + m) apart (w(#) is called the width of 4 in the direction #).
(vi) 4 has a circumscribed square, i.e. a square all of whose sides are tangent to
-

(vii) If 4 has constant width D, its length is 7 D;

(viii) Taking p(6) = a cos®(k#/2) + b, where k is an odd integer and a and b are
constants with b > 0, a + b > 0, gives a curve of constant width a + 2b.

(ix) The curve in (viii) is a circle if |k| = 1 but not if |k| > 1.

Show that if the parabola y = %xz rolls without slipping on the z-axis, the
curved traced out by the point fixed relative to the parabola and initially at
(0,1) can be parametrized by

1
y(t) = E(t + tanht, cosht + secht).

Show that, if 4(t) is a closed curve of period Ty, and t, ng and k4 are its unit
tangent vector, signed unit normal and signed curvature, respectively, then

t(t+ To) = t(t), ng(t+Tp) =n,(t), kst +Tp) = kslt).

Compute k,7,t,n and b for each of the following curves, and verify that the
Frenet—Serret equations are satisfied:

0 90 = (50 +°7%, 50 =02 7).

(ii) ¥(t) = (2 cost,1 —sint, —2 cost).

Show that the curve in (ii) is a circle, and find its centre, radius and the plane
in which it lies.

Describe all curves in R3 which have constant curvature x > 0 and constant
torsion 7.

A regular curve 7 in R? with curvature > 0 is called a generalized heliz if its
tangent vector makes a fixed angle # with a fixed unit vector a. Show that the
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2.3.6

2.3.7

2.3.8
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torsion 7 and curvature k of 4 are related by 7 = £k cotf. Show conversely
that, if the torsion and curvature of a regular curve are related by 7 = Ax where
A is a constant, then the curve is a generalized helix.

In view of this result, Examples 2.1.3 and 2.3.2 show that a circular helix is a
generalized helix. Verify this directly.

Let «(t) be a unit-speed curve with x(t) > 0 and 7(¢) # 0 for all t. Show that,
if 7y is spherical, i.e. if it lies on the surface of a sphere, then

T d K

Conversely, show that if Eq. 2.22 holds, then

p* + (po)? =r°

for some (positive) constant r, where p = 1/k and o = 1/7, and deduce that
v lies on a sphere of radius r. Verify that Eq. 2.22 holds for Viviani’s curve
(Exercise 1.1.8).

Let P be an n x n orthogonal matrix and let a € R"™, so that M (v) = Pv+a
is an isometry of R (see Appendix 1). Show that, if 4 is a unit-speed curve in
R™, the curve I' = M () is also unit-speed. Show also that, if t,n,b and T,N,B
are the tangent vector, principal normal and binormal of 4 and T', respectively,
then T = Pt, N = Pn and B = Pb.

Let (a;;) be a skew-symmetric 3 x 3 matrix (i.e. a;; = —aj; for all ¢, j). Let vi, vy
and v3 be smooth functions of a parameter s satisfying the differential equations

3
V; = E CLZ'jVj,
=1

for ¢« = 1,2 and 3, and suppose that for some parameter value sg the vectors
v1(s0),Va(so) and vs3(sg) are orthonormal. Show that the vectors vi(s),va(s)
and vs(s) are orthonormal for all values of s.

Repeat Exercise 2.3.1 for the following unit-speed curves:
(i) v(t) = (sin2 %, 1sinty/2, %)
(i) y(t) = (% cost + % sin t, % cost, % cost — % sint).

Repeat Exercise 2.3.1 for the curve

(cosht,sinht,t)

0=

(which is not unit-speed).
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2.3.9

2.3.10

2.3.11

2.3.12

2.3.13

Show that the curve )
1+t 1—1¢
t) = R p—
w0 = (L)
is planar.
Show that the curvature of the curve

~(t) = (tcos(Int), tsin(Int), t), t>0

is proportional to 1/t.

Show that the torsion of a regular curve 4(t) is a smooth function of ¢t whenever
it is defined.

Let 4(t) be a unit-speed curve in R3 and assume that its curvature x(t) is
non-zero for all ¢. Define a new curve § by

_ dy(t)
dt
Show that 4 is regular and that, if s is an arc-length parameter for 8, then

ds

5=

1
7_2 2
(1 + ?) ;

and find a formula for the torsion of é in terms of x, 7 and their derivatives with
respect to t.

8(t)

K.

Prove that the curvature of 4 is

Show that the curve (shown below) on the cone

o(u,v) = (ucosv,usinv, u)

At

given by u = e**, v = t, where A is a constant, is a generalized helix.
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2.3.14 Show that the twisted cubic

2.3.15

2.3.16
2.3.17

2.3.18

2.3.19

¥(t) = (at, bt*, ct?),
where a,b and c are constants, is a generalized helix if and only if

3ac = +2b°.

A space curve 4 is called a Bertrand mate of a space curve 4 if, for each point
P of «, there is a point P of 4 such that the line PP is parallel both to the
principal normal of 4 at P and to the principal normal of 4 at P. If v has a
Bertrand mate it is called a Bertrand curve.

Assume that 4 and 4 are unit-speed and let 4(5) be the point of 4 corresponding
to the point 4(s) of 7, where § is a smooth function of s. Show that:

(i) 4(8) = v(s) + an(s), where n is the principal normal of 7y and «a is a constant.
(ii) There is a constant a such that the tangent vector, principal normal and
binormal of 4 and 4 at corresponding points are related by

t = cosat —sinab, f=4n, b= 4(sinat + cosab),

where the signs in the last two equations are the same.
(iii) The curvature and torsion of 4 and 4 at corresponding points are related by

ds . ds

cosa— =1—ak, sina— = —arT,
ds ds

ds . . ds .

Cos a? =1+4ak, sin a? = —arT.
S S

(iv) ak —atcot v = 1.
(v) a®17 =sin o, (1 — ar)(1 + ak) = cos? a.
Show that every plane curve is a Bertrand curve.

Show that a space curve 4 with nowhere vanishing curvature x and nowhere
vanishing torsion 7 is a Bertrand curve if and only if there exist constants a,b
such that

ak + bt = 1.

Show that a Bertrand curve C with nowhere vanishing curvature and torsion has
more than one Bertrand mate if and only if it is a circular helix, in which case
it has infinitely-many Bertrand mates, all of which are circular helices with the
same axis and pitch as C.

Show that a spherical curve of constant curvature is a circle.
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2.3.20

2.3.21

2.3.22

2.3.23

2.3.24

2.3.25

The normal plane at a point P of a space curve C is the plane passing through P
perpendicular to the tangent line of C at P. Show that, if all the normal planes
of a curve pass through some fixed point, the curve is spherical.

Let 4 be a curve in R? and let II be a plane
v.N=d,
where N and d are constants with N # 0, and v = (x,y, z). Let
F(t) =~(t).N—d.

Show that:
) F(tg) = 0 if and only if 4 intersects IT at the point y(to).
(ii) F(to) = F(to) = 0 if and only if 4 touches TI at y(to) (i.e. ¥(to) is parallel
to II).
(iii) If the curvature of 4 at 4(tp) is non-zero, there is a unique plane II such
that _ )

F(to) = F(to) = F(to) =0,
and that this plane IT is the plane passing through v(¢¢) parallel to 4(tg) and
(to) (II is called the osculating plane of vy at 4(to); intuitively, it is the plane
which most closely approaches 7 near the point v(tg)).
(iv) If 4y is contained in a plane II’, then IT’ is the osculating plane of 7 at each
of its points.
(v) If the torsion of v is non-zero at 7(ty), then <y crosses its osculating plane
there.
Compare Exercise 2.2.17.

Find the osculating plane at a general point of the circular helix

~(t) = (acost,asint, bt).

Show that the osculating planes at any three distinct points P;, P», P3 of the
twisted cubic

7(t) = (tv t27 tB)
meet at a single point ), and that the four points Py, P, Ps, @ all lie in a plane.

Suppose that a curve 4 has nowhere vanishing curvature and that each of its
osculating planes pass through some fixed point. Prove that the curve lies in a
plane.

Show that the orthogonal projection of a curve C onto its normal plane at a
point P of C is a plane curve which has an ordinary cusp at P provided that
C has non-zero curvature and torsion at P (see Exercise 1.3.3). Show, on the



2.3.26

2.3.27

3.1.1

3.1.2
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other hand, that P is a regular point of the orthogonal projection of C onto its
osculating plane at P.

Let S be the sphere with centre ¢ and radius R. Let 7y be a unit-speed curve in
R3 and let
F(t) =) —c|* —R*.

Let ty € R. Show that:

(i) F(to) = 0 if and only if v intersects S at the point y(to).

(ii) F(to) = F(to) = 0 if and only if + is tangent to S at y(to).

Compute F and ' and show that there is a unique sphere S (called the osculating
sphere of 7 at y(tp)) such that

F(to) = F(to) = F(to) = F(to) = 0.

Show that the centre of S is

1 .

c:7+—n—%;b

K K2T
in the usual notation, all quantities being evaluated at ¢t = t5. What is its radius?
The point ¢(tg) is called the centre of spherical curvature of v at y(tp). Show
that ¢(tp) is independent of ¢y if and only if 4 is spherical, in which case the
sphere on which 4 lies is its osculating sphere.
The osculating circle of a curve 7 at a point 7(tg) is the intersection of the

osculating plane and the osculating sphere of 4 at (¢y). Show that the centre
of the osculating circle is the centre of curvature

1
’y+_n7
K

and that its radius is 1/k, all quantities being evaluated at ¢t = t;. (Compare
Exercise 2.2.17.)

Chapter 3

Show that
¥(t) = ((1 + acost) cost, (1 + acost)sint),

where a is a constant, is a simple closed curve if |a| < 1, but that if |a| > 1 its
complement is the disjoint union of three connected subsets of R?, two of which
are bounded and one is unbounded. What happens if a = +17

Show that, if 7y is as in Exercise 3.1.1, its turning angle ¢ satisfies

dop 14 a(cost + a)

dt 1+ 2acost+a?’
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Deduce that

2 .
g t 0 fla] <1,
/ a(cost + a) dt—{ if |al
0

1+2acost+a2 | 2n if |a| > 1.

3.2.1 Show that the length /() and the area A(«) are unchanged by applying an
isometry to 4.

3.2.2 By applying the isoperimetric inequality to the ellipse

2 2

8
<

(where p and ¢ are positive constants), prove that

27
/ \/p2 sin?t + ¢2 cos2 tdt > 2m\/pq,
0

with equality holding if and only if p = q.
3.2.3 What is the area of the interior of the ellipse

y(t) = (peost, gsint),

where p and ¢ are positive constants?

3.3.1 Show that the ellipse in Example 3.1.2 is convex.

3.3.2 Show that the limacgn in Example 1.1.7 has only two vertices (cf. Example
3.1.3).

3.3.3 Show that a plane curve 7 has a vertex at t = ¢y if and only if the evolute € of
v (Exercise 2.2.7) has a singular point at t = .

3.3.4 Show that the vertices of the curve y = f(x) satisfy

d 2 3 2 2
(Y P (P
dx dx3 dr \ dx?
3.3.5 Show that the curve

~(t) = (at — bsint,a — beost),

where a and b are non-zero constants, has vertices at the points v(nm) for all
integers n. Show that these are all the vertices of 4 unless

a—b<2b<a—|—b

b ~—a ~ b’
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in which case there are infinitely-many other vertices.

Chapter 4

4.1.1 Show that any open disc in the zy-plane is a surface.
4.1.2 Define surface patches 6% : U — R3 for S? by solving the equation z?+y?+22 = 1

for x in terms of y and z:
o’ (u,v) = (£V1—u? — 02 u,v),

defined on the open set U = {(u,v) € R? | u? +v? < 1}. Define 6% and o3
similarly (with the same U) by solving for y and z, respectively. Show that these

six patches give S? the structure of a surface.

v
2
Z
iz,
Z
Z=

D
1\

W\

4.1.3 The hyperboloid of one sheet is
S={(z,y,2) €ER? | 2% +¢y* — 22 =1}.
Show that, for every 6, the straight line
(r —2)cosf = (1 —y)sinf, (x+ z)sinf = (1+ y)cosd

is contained in &, and that every point of the hyperboloid lies on one of these
lines. Deduce that S can be covered by a single surface patch, and hence is a
surface. (Compare the case of the cylinder in Example 4.1.3.)
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4.1.4

4.1.5
4.1.6

4.1.7

4.1.8

4.2.1

Find a second family of straight lines on S, and show that no two lines of the
same family intersect, while every line of the first family intersects every line
of the second family with one exception. One says that the surface S is doubly
ruled.

Show that the unit cylinder can be covered by a single surface patch, but that
the unit sphere cannot. (The second part requires some point set topology.)

Show that every open subset of a surface is a surface.

Show that a curve on the unit cylinder that intersects the straight lines on the
cylinder parallel to the z-axis at a constant angle must be a straight line, a circle
or a circular helix.

Find a surface patch for the ellipsoid

N

2

[\

+5+5 =1,

’Bw| S
IS
ﬁw| N

where p, ¢ and r are non-zero constants. (A picture of an ellipsoid can be found
in Theorem 5.2.2.)

Show that
o(u,v) = (sinw,sinv,sin(u +v)), —7/2<u,v<m/2
is a surface patch for the surface with Cartesian equation

(x2 o y2 + 22)2 — 4x222(1 o y2).

Show that, if f(z,y) is a smooth function, its graph

{(xaya Z) € R’ | z = f(xay)}
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is a smooth surface with atlas consisting of the single regular surface patch

o(u,v) = (u,v, f(u,v)).
In fact, every surface is “locally” of this type - see Exercise 5.6.4.

4.2.2 Verify that the six surface patches for S? in Exercise 4.1.2 are regular. Calculate
the transition maps between them and verify that these maps are smooth.

4.2.3 Which of the following are regular surface patches (in each case, u,v € R):
(i) o(u,v) = (u,v, w).
(ii) o(u,v) = (u,v?, v3).
(iii) o(u,v) = (u + u?,v,v?)?
4.2.4 Show that the ellipsoid
22
p2 g2 2
where p, ¢ and r are non-zero constants, is a smooth surface.

4.2.5 A torus (see above) is obtained by rotating a circle C in a plane II around a
straight line [ in II that does not intersect C. Take II to be the zz-plane, [ to be
the z-axis, a > 0 the distance of the centre of C from [, and b < a the radius of
C. Show that the torus is a smooth surface with parametrization

0(0,0) = ((a+bcosb) cosy, (a+ bcosh) sing, bsinb).
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4.2.6

4.2.7

4.2.8

4.2.9
4.2.10

A helicoid is the surface swept out by an aeroplane propeller, when both the
aeroplane and its propeller move at constant speed (see the picture above). If the
aeroplane is flying along the z-axis, show that the helicoid can be parametrized
as

o(u,v) = (vcosu,vsinu, \u),

where \ is a constant. Show that the cotangent of the angle that the standard
unit normal of o at a point p makes with the z-axis is proportional to the distance
of p from the z-axis.

Let 4 be a unit-speed curve in R? with nowhere vanishing curvature. The tube
of radius a > 0 around 4 is the surface parametrized by

o(s,0) =v(s) + a(n(s) cosf + b(s) sinb),

where n is the principal normal of 4 and b is its binormal. Give a geometrical
description of this surface. Prove that o is regular if the curvature x of 7 is less
than a~! everywhere.

Note that, even if ¢ is regular, the surface o will have self-intersections if the curve
4 comes within a distance 2a of itself. This illustrates the fact that regularity
is a local property: if (s, 0) is restricted to lie in a sufficiently small open subset
Uof R? o : U — R?® will be smooth and injective (so there will be no self-
intersections) - see Exercise 5.6.3. We shall see other instances of this later (e.g.
Example 12.2.5).

»

The tube around a circular helix
Show that translations and invertible linear transformations of R3 take smooth
surfaces to smooth surfaces.
Show that every open subset of a smooth surface is a smooth surface.

Show that the graph in Exercise 4.2.1 is diffeomorphic to an open subset of a
plane.



4.2.11
4.2.12

4.2.13

4.2.14

4.2.15

4.2.16

4.2.17

4.3.1

4.3.2

4.4.1

4.4.2
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Show that the surface patch in Exercise 4.1.8 is regular.

Show that the torus in Exercise 4.2.5 can be covered by three patches (0, ¢),
with (6, ¢) lying in an open rectangle in R?, but not by two.

For which values of the constant ¢ is
2(z+4) =3xy+c

a smooth surface?

Show that
x>+ 3(y2 + 22)2 =2

is a smooth surface.

Let S be the astroidal sphere
22/3 4 yz/s 123 .

Show that, if we exclude from § its intersections with the coordinate planes, we
obtain a smooth surface S.

Show that the surface
ryz =1

is not connected, but that it is the disjoint union of four connected surfaces.
Find a parametrization of each connected piece.

Show that the set of mid-points of the chords of a circular helix is a subset of a
helicoid.

If S is a smooth surface, define the notion of a smooth function § — R. Show
that, if S is a smooth surface, each component of the inclusion map S — R? is
a smooth function & — R.

Let S be the half-cone 22 + y? = 22, z > 0 (see Example 4.1.5). Define a map
f from the half-plane {(0,y,2)|y > 0} to S by f(0,y,2) = (ycosz,ysinz,y).
Show that f is a local diffeomorphism but not a diffeomorphism.

Find the equation of the tangent plane of each of the following surface patches
at the indicated points:

(i) o(u,v) = (u,v,u? —v?), (1,1,0).

(ii) o(r,0) = (rcosh @, rsinh 0,72), (1,0,1).

Show that, if o(u, v) is a surface patch, the set of linear combinations of ¢, and
o, is unchanged when o is reparametrized.
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4.4.3

4.4.4

4.4.5

4.5.1

4.5.2

4.5.3

4.5.4

4.5.5

Let S be a surface, let p € S and let F : R®> — R be a smooth function. Let
VsF be the perpendicular projection of the gradient VF = (F,, F,, F,) of F
onto TpS. Show that, if 4 is any curve on § passing through p when ¢ = o, say,

(VsF)Aq(to) = —|  F(v().

Deduce that VsF = 0 if the restriction of F to S has a local maximum or a
local minimum at p.

Let f: S — 83 be a local diffeomorphism and let 4 be a regular curve on 8.
Show that f o+ is a regular curve on Ss.

Find the equation of the tangent plane of the torus in Exercise 4.2.5 at the point
corresponding to 0 = ¢ = 7 /4.

Calculate the transition map ¢ between the two surface patches for the M6bius
band in Example 4.5.3. Show that it is defined on the union of two disjoint
rectangles in R?, and that the determinant of the Jacobian matrix of ® is equal
to +1 on one of the rectangles and to —1 on the other.

Suppose that two smooth surfaces S and S are diffeomorphic and that S is
orientable. Prove that S is orientable.

Show that for the latitude-longitude parametrization of S? (Example 4.1.4) the
standard unit normal points inwards. What about the parametrizations given
in Exercise 4.1.27

Let ¥ be a curve on a surface patch o, and let v be a unit vector field along =,
i.e. v(t) is a unit tangent vector to o for all values of the curve parameter ¢, and
v is a smooth function of ¢. Let v be the result of applying a positive rotation
through 7/2 to v. Suppose that, for some fixed parameter value to,

’y(to) — COS (90V(t0> + sin 90\7(150).
Show that there is a smooth function é(t) such that 6(¢y) = 6y and
Y(t) = cosO(t)v(t) + sin@(t)v(t) for all ¢.

The map F : R3\{(0,0,0)} — R3\{(0,0,0)} given by

v

F(v) = —

v) V.V
is called inversion with respect to S? (compare the discussion of inversion in
circles in Appendix 2). Geometrically, F'(v) is the point on the radius from the
origin passing through v such that the product of the distances of v and F(v)
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from the origin is equal to 1. Let § be a surface that does not pass through the
origin, and let §* = F(S). Show that, if S is orientable, then so is S*. Show, in
fact, that if N is the unit normal of S at a point p, that of S* at F(p) is

« _ 2(p.N)

= —N.
I'p [

Chapter 5

5.1.1 Show that the following are smooth surfaces:
(i) 22 +y? + 2* = 1;
(i) (22 + 9% + 22 + a? — b?)? = 4a®(2? + y?), where a > b > 0 are constants.
Show that the surface in (ii) is, in fact, the torus of Exercise 4.2.5.

5.1.2 Consider the surface S defined by f(z,y,z) = 0, where f is a smooth function
such that Vf does not vanish at any point of S. Show that V f is perpendicular
to the tangent plane at every point of S, and deduce that S is orientable.
Suppose now that F : R? — R is a smooth function. Show that, if the restriction
of F' to § has a local maximum or a local minimum at p then, at p, VF = AV f for
some scalar A. (This is called Lagrange’s Method of Undetermined Multipliers.)

5.1.3 Show that the smallest value of 22 + 32 + 22 subject to the condition zyz = 1 is
3, and that the points (x,y, z) that give this minimum value lie at the vertices
of a regular tetrahedron in R3.

5.2.1 Write down parametrizations of each of the quadrics in parts (i)—(xi) of Theorem
5.2.2 (in case (vi) one must remove the origin).

5.2.2 Show that the quadric
2 2 2 2
r° 4y — 2z ——3xy+4z—c

is a hyperboloid of one sheet if ¢ > 2, and a hyperboloid of two sheets if ¢ < 2.
What if ¢ = 27 (This exercise requires a knowledge of eigenvalues and eigenvec-
tors.)

5.2.3 Show that, if a quadric contains three points on a straight line, it contains the
whole line. Deduce that, if L1, L, and L3 are non-intersecting straight lines in
R3, there is a quadric containing all three lines.

5.2.4 Use the preceding exercise to show that any doubly ruled surface is (part of)
a quadric surface. (A surface is doubly ruled if it is the union of each of two
families of straight lines such that no two lines of the same family intersect, but
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5.2.5

5.2.6

5.2.7

5.3.1

5.3.2

every line of the first family intersects every line of the second family, with at
most a finite number of exceptions.) Which quadric surfaces are doubly ruled ?

By setting

Deduce that the hyperbolic paraboloid is doubly ruled.

A conic is a level curve of the form
az?® 4+ by? + 2cay + dz + ey + f =0,

where the coefficients a, b, c,d,e and f are constants, not all of which are zero.
By imitating the proof of Theorem 5.2.2, show that any non-empty conic that
is not a straight line or a single point can be transformed by applying a direct
isometry of R? into one of the following:

(i) An ellipse Z—z + Z—i =1.

(ii) A parabola y? = 2pz.

(iii) A hyperbola }f—z - Z—; =1

(iv) A pair of intersecting straight lines y? = p?a2.

Here, p and ¢ are non-zero constants.

Show that:

(i) Any connected quadric surface is diffeomorphic to a sphere, a circular cylinder
or a plane.

(ii) Each connected piece of a non-connected quadric surface is diffeomorphic to
a plane.

The surface obtained by rotating the curve x = cosh z in the xz-plane around the
z-axis is called a catenoid (illustrated below). Describe an atlas for this surface.

Show that

o(u,v) = (sech u cos v, sech usin v, tanh u)

is a regular surface patch for S? (it is called Mercator’s projection). Show that
meridians and parallels on S? correspond under o to perpendicular straight lines
in the plane. (This patch is ’derived’ in Exercise 6.3.3.)
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5.3.4

5.3.5
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Show that, if o(u,v) is the (generalized) cylinder in Example 5.3.1:

(i) The curve 4(u) = y(u) — (y(u).a)a is contained in a plane perpendicular to a.
(ii) o(u,v) = 4(u) + va, where ¥ = v + y(u).a.

(iii) o(u,v) = 4(u) + va is a reparametrization of o(u,v).

This exercise shows that, when considering a generalized cylinder o(u,v) =
~v(u) + va, we can always assume that the curve 4 is contained in a plane per-
pendicular to the vector a.

Consider the ruled surface
(5.5) o(u,v) =v(u) +vé(u),

where || 8(u) || = 1 and &(u) # 0 for all values of u (a dot denotes d/du). Show
that there is a unique point I'(u), say, on the ruling through (u) at which &(u)
is perpendicular to the surface. The curve I is called the line of striction of the
ruled surface & (of course, it need not be a straight line). Show that I'.§ = 0.

Let v = v+ 7—‘6, and let o(u,?) be the corresponding reparametrization of o.

1162

Then, 6(u, ) = I'(u) + 06(u). This means that, when considering ruled surfaces
as in (5.5), we can always assume that 4.6 = 0. We shall make use of this in
Chapter 12.

A loxodrome is a curve on a sphere that intersects the meridians at a fixed angle,
say o. Show that, in the Mercator surface patch o of S? in Exercise 5.3.2, a
unit-speed loxodrome satisfies

= cosacoshu, © = Z+sinacoshu
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5.3.6

5.3.7

5.3.8

5.3.9

(a dot denoting differentiation with respect to the parameter of the loxodrome).
Deduce that loxodromes correspond under o to straight lines in the uv-plane.

A conoid is a ruled surface whose rulings are parallel to a given plane II and pass
through a given straight line £ perpendicular to II. If II is the zy-plane and £
is the z-axis, show that

o(u,0) = (ucosf,usind, f(0)), u#0

is a regular surface patch for the conoid, where 6 is the angle between a ruling and
the positive z-axis and f(0) is the height above IT at which the ruling intersects
L (f is assumed to be smooth).

The normal line at a point P of a surface o is the straight line passing through
P parallel to the normal N of a at P. Prove that:

(i) If the normal lines are all parallel, then & is an open subset of a plane.

(ii) If all the normal lines pass through some fixed point, then ¢ is an open subset
of a sphere.

(iii) If all the normal lines intersect a given straight line, then o is an open subset
of a surface of revolution.

Show that the line of striction of the hyperboloid of one sheet
2242 — 2 =1

is the circle in which the surface intersects the zy-plane (recall from Exercise
4.1.3 that this surface is ruled.)

Which quadric surfaces are:
(a) Generalized cylinders.
(b) Generalized cones.

(¢) Ruled surfaces.
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5.4.1

0.4.2

5.5.1

5.5.2

9.5.3

5.5.4
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(d) Surfaces of revolution ?

Let S be a ruled surface. Show that the union of the normal lines (Exercise
5.3.7) at the points of a ruling of S is a plane or a hyperbolic paraboloid.

One of the following surfaces is compact and one is not:

(i) 22 —y? + 22 =1.

(i) 22 + 92+ 24 = 1.

Which is which, and why ? Sketch the compact surface.

Explain, without giving a detailed proof, why the tube (Exercise 4.2.7) around a
closed curve in R? with no self-intersections is a compact surface diffeomorphic
to a torus (provided the tube has sufficiently small radius).

Show that the following are triply orthogonal systems:

(i) The spheres with centre the origin, the planes containing the z-axis, and the
circular cones with axis the z-axis.

(ii) The planes parallel to the xy-plane, the planes containing the z-axis and the
circular cylinders with axis the z-axis.

By considering the quadric surface Fy(z,y, z) = 0, where

F; s I = —2 t7
H(x,y,2) p2—t+q2—t z+

construct a triply orthogonal system (illustrated above) consisting of two fam-
ilies of elliptic paraboloids and one family of hyperbolic paraboloids. Find a
parametrization of these surfaces analogous to (5.12).

Show that the following are triply orthogonal systems:

() vy = uz?, 22 + 2 + 22 = v, 22 + y? + 22 = w(z? — y?).

(ii) yz = uz, Va2 + 92 + Va2 + 22 = v, /22 + 42 — Va2 + 22 = w.

What should be the definition of a (doubly) orthogonal system of curves in R??
Give examples of such systems such that:




30

9.5.5

2.5.6

5.6.1

5.6.2
5.6.3

5.6.4

5.6.5

6.1.1

(i) Each of the two families of curves consists of parallel straight lines.
(ii) One family consists of straight lines and the other consists of circles.

By considering the function

Ft(xay) - +

where p and ¢ are constants with 0 < p? < ¢?, construct an orthogonal sys-
tem of curves in which one family consists of ellipses and the other consists of
hyperbolas.

By imitating Exercise 5.5.2, construct in a similar way an orthogonal system of
curves in which both families consist of parabolas.

Starting with an orthogonal system of curves in the zy-plane, construct two
families of generalized cylinders with axis parallel to the z-axis which intersect
the zy-plane in the two given families of curves. Show that these two families
of cylinders, together with the planes parallel to the xy-plane, form a triply-
orthogonal system.

Show that, if v : (o, 8) — R? is a curve whose image is contained in a surface
patch o : U — R3, then 4(t) = o(u(t),v(t)) for some smooth map (a, 3) — U,
b= (u(t), v(t)).

Prove Theorem 1.5.1 and its analogue for level curves in R? (Exercise 1.5.1).

Let 0 : U — R3 be a smooth map such that ¢, x o, # 0 at some point
(ug,vg) € U. Show that there is an open subset W of U containing (ug, vg) such
that the restriction of  to W is injective. Note that, in the text, surface patches
are injective by definition, but this exercise shows that injectivity near a given
point is a consequence of regularity.

Let 0 : U — R3 be a regular surface patch, let (ug,vo) € U and let a(ug,vo) =
(20, Yo, 20). Suppose that the unit normal N(ug,vg) is not parallel to the xy-
plane. Show that there is an open set V in R? containing (zo,0), an open
subset W of U containing (ug,vg) and a smooth function ¢ : V' — R such that
o(z,y) = (z,y,o(x,y)) is a reparametrization of ¢ : W — R3. Thus, ‘near’ p,
the surface is part of the graph z = p(z, y).

What happens if N(ug, vo) is parallel to the zy-plane?

Let v : (a, ) — R™ be a regular curve and let ¢y € («, 3). Show that, for some
€ > 0, the restriction of 4 to the subinterval (to — €,tg + €) of (a, 3) is injective.

Chapter 6

Calculate the first fundamental forms of the following surfaces:
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6.1.5
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(i) o(u,v) = (sinh u sinh v, sinh u cosh v, sinh u).
(ii) o (u,v) = (u — v,u+ v, u? + v?).

(iii) o(u,v) = (cosh u, sinh u, v).

(iv) o(u,v) = (u,v,u? + v?).

What kinds of surfaces are these ?

Show that applying an isometry of R® to a surface does not change its first
fundamental form. What is the effect of a dilation (i.e. a map R?® — R3 of the
form v — av for some constant a # 0)7

Let Edu?+2Fdudv+Gdv? be the first fundamental form of a surface patch o (u, v)
of a surface S. Show that, if p is a point in the image of o and v,w € TpS, then

(v,w) = Edu(v)du(w) + F(du(v)dv(w) + du(w)dv(v)) + Gdu(w)dv(w).

Suppose that a surface patch (@, ) is a reparametrization of a surface patch
o(u,v), and let

Edi? + 2Fdudy + Gdi? and Edu? + 2Fdudv + Gdv?

be their first fundamental forms. Show that:
(i) du = 2¢du + Pedv, dv= 2¢du+ SLdo.

(i) If
on v

is the Jacobian matrix of the reparametrization map (u,?) — (u,v), and J* is

the transpose of J, then
E F\ _ L(E F
(¢ &)-r(F )

Show that the following are equivalent conditions on a surface patch o(u, v) with
first fundamental form Edu? + 2Fdudv + Gdv?:
(i) B, =Gy, =0.
(ii) o4y is parallel to the standard unit normal N.
(iii) The opposite sides of any quadrilateral formed by parameter curves of o
have the same length (see the remarks following the proof of Proposition 4.4.2).
When these conditions are satisfied, the parameter curves of o are said to form a
Chebyshev net. Show that, in that case, & has a reparametrization o(u, v) with
first fundamental form

da? + 2 cos 0 dudv + dv?,
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6.1.6

6.1.7

6.1.8

6.1.9

6.2.1

6.2.2

where 6 is a smooth function of (@, 7). Show that € is the angle between the
parameter curves of . Show further that, if we put &« = @+ v, v = @ — v, the
resulting reparametrization (@, ) of 6(u,v) has first fundamental form

cos? w di? + sin® w do?,

where w = 0/2.

Repeat Exercise 6.1.1 for the following surfaces:
(i) o(u,v) = (ucosv,usinv,Inu).

(ii) o(u,v) = (ucosv,usinv, v).

(iii) o(u,v) = (coshu cos v, coshusin v, u).

Find the length of the part of the curve on the cone in Exercise 2.3.13 with
0 <t < 7. Show also that the curve intersects each of the rulings of the cone at
the same angle.

Let o be the ruled surface generated by the binormals b of a unit-speed curve 4:
o(u,v) =7v(u) + vb(u).
Show that the first fundamental form of o is
(14 v272%) du® + dv?,

where 7 is the torsion of 4.

If E, F and G are the coefficients of the first fundamental form of a surface patch
o(u,v), show that E, = 20,.04,, and find similar expressions for F,, F,, F,,
G, and G,. Deduce the following formulas:

1 1
0y Oyy = §Eua Oy Oyy = Fu - §Ev
1 1
0y.Oyy QEva Oy Oyy = QGu
1 1
0yu.Oyy Fv QGua Oy Oyy = QG’U

By thinking about how a circular cone can be ‘unwrapped’ onto the plane, write
down an isometry from

o(u,v) = (ucosv,usinv,u), wu>0,0<v<2m,

(a circular cone with a straight line removed) to an open subset of the xy-plane.

Is the map from the circular half-cone x2? 4+ y? = 22, z > 0, to the zy-plane given
by (z,y,2) — (x,y,0) a local isometry ?
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t=04
6.2.3 Consider the surface patches

o(u,v) = (coshucosv,coshusinv,u), o(u,v)= (ucosv,usinv,v),

parametrizing the catenoid (Exercise 5.3.1) and the helicoid (Exercise 4.2.6),
respectively. Show that the map from the catenoid to the helicoid that takes
o(u,v) toa(sinhu, v) is a local isometry. Which curves on the helicoid correspond
under this isometry to the parallels and meridians of the catenoid ?

In fact, there is an isometric deformation of the catenoid into a helicoid. Let
o(u,v) = (— sinh u sin v, sinh u cos v, —v).

This is the result of reflecting the helicoid ¢ in the xy-plane and then translating
it by 7/2 parallel to the z-axis. Define

o' (u,v) = costo(u,v) +sinta(u,v),

so that 6°(u,v) = a(u,v) and 6™/?(u,v) = 6(u,v). Show that, for all values of ¢,
the map o (u,v) — o'(u,v) is a local isometry. Show also that the tangent plane
of ' at the point ¢*(u, v) depends only of u, v and not on t. The surfaces o' are
shown above for several values of ¢. (The result of this exercise is ‘explained’ in
Exercises 12.5.3 and 12.5.4.)
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6.2.4

6.2.5

6.2.6

6.2.7

6.3.1

6.3.2

Show that the line of striction (Exercise 5.3.4) of the tangent developable of a
unit-speed curve 7y is 4 itself. Show also that the intersection of this surface with
the plane passing through a point 7(ug) of the curve and perpendicular to it at
that point is a curve of the form

I'(v) = vy(up) — %H(UO)UQn(uo) + %m(uO)T(uo)v?’b(uo)

if we neglect higher powers of v (we assume that the curvature x(ug) and the
torsion 7(ug) of 4 at y(up) are both non-zero). Note that this curve has an
ordinary cusp (Exercise 1.3.3) at y(ug), so the tangent developable has a sharp
‘edge’ where the two sheets v > 0 and v < 0 meet along 4. This is evident for
the tangent developable of a circular helix illustrated earlier in this section.

Show that every generalized cylinder and every generalized cone is locally iso-
metric to a plane.

Suppose that a surface patch o has first fundamental form
du® + f(u)?dv?,
where f is a smooth function of v only. Show that, if

df

du

< 1 for all values of u,

then o is locally isometric to a surface of revolution.

Suppose that a surface o has first fundamental form
U(du® + dv?),

where U is a smooth function of u only. Show that & is isometric to a surface of
revolution if

dU

2
du<U

for all values of w.

Show that every local isometry is conformal. Give an example of a conformal
map that is not a local isometry.

Show that Enneper’s surface
3 3
u v
o(u,v) = <u— 3 +uv? v — Y + vu?, u? —?JQ)

is conformally parametrized.
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Recall from Example 6.1.3 that the first fundamental form of the latitude-
longitude parametrization a(6, ) of S? is

df? 4 cos? 0 dp?.

Find a smooth function ¢ such that the reparametrization a(u,v) = o((u), v)
is conformal. Verify that ¢ is, in fact, the Mercator parametrization in Exercise
5.3.2.

Let ® : U — V be a diffeomorphism between open subsets of R%. Write

@(u,v) = (f(u,v),g(u, U))?

where f and g are smooth functions on the uv-plane. Show that ® is conformal
if and only if

(6.11) either (fy, =g, and f, = —gu) or (fu=—g, and f, = gu).

Show that, if J(®) is the Jacobian matrix of ®, then det(J(®)) > 0 in the first
case and det(J(®)) < 0 in the second case.

(This exercise requires a basic knowledge of complex analysis.) Recall that the
transition map between two surface patches in an atlas for a surface S is a
smooth map between open subsets of R?. Since R? is the ‘same’ as the complex
numbers C (via (u,v) <> u + iv), we can ask whether such a transition map
is holomorphic. One says that S is a Riemann surface if S has an atlas for
which all the transition maps are holomorphic. Deduce from Theorem 6.3.6 and
the preceding exercise that every orientable surface has an atlas making it a
Riemann surface. (You will need to recall from complex analysis that a smooth
function ® as in the preceding exercise is holomorphic if and only if the first pair
of equations in (6.11) hold - these are the Cauchy-Riemann equations. If the
second pair of equations in (6.11) hold, ® is said to be anti-holomorphic.)

Define a map II similar to IT by projecting from the south pole of S2 onto the zy-
plane. Show that this defines a second conformal surface patch 61 which covers
the whole of S? except the south pole. What is the transition map between these
two patches? Why do the two patches o1 and &, not give S? the structure of a
Riemann surface? How can 61 be modified to produce such a structure?

Show that the stereographic projection map II takes circles on S? to Circles in
Coo, and that every Circle arises in this way. (A circle on S? is the intersection
of S? with a plane; a Circle in C, is a line or a circle in C - see Appendix 2.)

Show that, if M is a Mobius transformation or a conjugate-Mobius transfor-
mation (see Appendix 2), the bijection II71 o M o IT : §2 — S? is a conformal
diffeomorphism of S2. It can be shown that every conformal diffeomorphism of
S? is of this type.
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6.3.9

6.3.10

6.3.11

6.3.12

6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

Let f be a smooth function and let
o(u,v) = (ucosv,usinwv, f(u))

be the surface obtained by rotating the curve z = f(x) in the zz-plane around
the z-axis. Find all functions f for which o is conformal.

Let o be the ruled surface
o(u,v) =v(u) + vé(u),

where 4 is a unit-speed curve in R? and &(u) is a unit vector for all u. Prove that
o is conformal if and only if § is constant and 4 lies in a plane perpendicular to
d. What kind of surface is ¢ in this case ?

With the notation in Exercise 4.5.5, show that the inversion map F': § — S* is
conformal.

Show (without using Theorem 6.3.6!) that every surface of revolution has an
atlas consisting of conformal surface patches.

Determine the area of the part of the paraboloid z = 22 + y? with z < 1 and
compare with the area of the hemisphere 22 + 42 + 22 =1, 2 < 0.

A sailor circumnavigates Australia by a route consisting of a triangle whose sides
are arcs of great circles. Prove that at least one interior angle of the triangle is
> 3+ % radians. (Take the Earth to be a sphere of radius 6500km and assume
that the area of Australia is 7.5 million square km.)

A spherical polygon on S? is the region formed by the intersection of n hemi-
spheres of S?, where n is an integer > 3. Show that, if aq, ... , o, are the interior

angles of such a polygon, its area is equal to
n
Z a; — (n —2)m.
i=1

Suppose that S? is covered by spherical polygons, and such that the intersection
of any two polygons is either empty or a common edge or vertex of each polygon.
Suppose that there are F' polygons, E edges and V vertices (a common edge or
vertex of more than one polygon being counted only once). Show that the sum
of the angles of all the polygons is 27V. By using the preceding exercise, deduce
that V' — E 4+ F = 2. (This result is due to Euler; it is generalized in Chapter
13.)

Show that:
(i) Every local isometry is an equiareal map.
(ii) A map that is both conformal and equiareal is a local isometry.
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Give an example of an equiareal map that is not a local isometry.

Prove Theorem 6.4.5.
Let o(u,v) be a surface patch with standard unit normal N. Show that
Eo, — Fo, Fe, — Go,
N><au:H Nxo, = d d

VEG — F2’ VEG — F2

Find the area of the part of the helicoid
o(u,v) = (ucosv,usinv,v)

corresponding to 0 < u < 1, 0 < v < 2.

Suppose that all the polygons in Exercise 6.4.4 have the same number n of
edges, and that the same number m of polygons meet at each vertex. Show that
nF = 2FE = mV and hence find V, E and F in terms of m and n. Show that
1/m+1/n > 1/2 and deduce that there are exactly five possibilities for the pair
(m,n).

A polyhedron is a convex subset of R?® bounded by a finite number of plane
polygons. Take a point p inside such a polyhedron and for any point q on an edge
of the polyhedron draw the straight line through p and q. This line intersects the
sphere with centre p and radius 1 in a point v, say. The collection of such points
v form the edges of a covering of the sphere with spherical polygons as in the first
part. The result of this exercise therefore gives a classification of polyhedra such
that all faces have the same number of sides and the same number of edges meet
at each vertex. (Note that it is not necessary to assume that the polyhedron is
regular, i.e. that all the edges have the same length.)

Show that, given 5 points on a sphere, it is impossible to connect each pair by
curves on the sphere that intersect only at the given points. Deduce that the
same result holds if ‘sphere’ is replaced by ‘plane’.

Let p;,p,, P53 and q;,Q5,q3 be points on a sphere. Show that it is impossible to
join each p; to each q; by nine curves on the sphere that intersect only at the
given points. (This is sometimes called the ‘Utilities Problem’; thinking of py,
p, and p; as the gas, water and electricity supplies to three homes q;, q, and
qs.)

A surface is obtained by rotating about the z-axis a unit-speed curve 4 in the
xz-plane that does not intersect the z-axis. Show that its area is

27T/p(u) du,

where p(u) is the distance of 4(u) from the z-axis. Hence find the area of
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6.4.13

6.4.14

6.4.15

6.4.16
6.4.17

6.5.1

6.5.2
6.5.3

6.5.4

(1) 8%
(ii) the torus in Exercise 4.2.5.
Prove that the area of the part of the tube of radius a around a curve y(s) given

by so < s < s1, where sg and s; are constants, is 2ma(s; — sg). (See Exercise
4.2.7.)

Show that a map between surfaces that is both conformal and equiareal is a local
isometry.

Let M : R? — R? be a linear map, and let u,v € R? be the images under M of
the vectors i = (1,0), j = (0,1). Show that:

(i) M is a diffeomorphism if and only if u and v are linearly independent.

(ii) M is an isometry if and only if u and v are perpendicular unit vectors.

(iii) M is conformal if and only if u and v are perpendicular vectors of equal
length.

(iv) M is equiareal if and only if u x v is a unit vector.

Find all functions f for which the surface patch ¢ in Exercise 6.3.9 is equiareal.
In the notation of the proof of Theorem 6.4.6, let

03(0,p) = (cosp,sinp,sind + f(p)),

where f is any 27m-periodic smooth function. Show that the map o1(0, ) —
03(0, ) from S? to the unit cylinder is equiareal.

Find the angles and the lengths of the sides of an equilateral spherical triangle
whose area is one quarter of the area of the sphere.

Show that similar spherical triangles are congruent.

The spherical circle of centre p € S? and radius R is the set of points of S? that
are a spherical distance R from p. Show that, if 0 < R < 7/2:

(i) A spherical circle of radius R is a circle of radius sin R.

(ii) The area inside a spherical circle of radius R is 27(1 — cos R).

What if R > 7 /27

This exercise describes the transformations of C,, corresponding to the isome-
tries of S? under the stereographic projection map II : S? — C,, (Example
6.3.5). If F is any isometry of S?, let F,, = IIo F o II"! be the corresponding
bijection Cyy, — C.

(i) A Mobius transformation

aw + b

Mw)= v a

where a, b, c,d € C and ad — bc # 0, is said to be unitary if d = @ and ¢ = —b (see
Appendix 2). Show that the composite of two unitary M&bius transformations
is unitary and that the inverse of a unitary Mobius transformation is unitary.
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(ii) Show that if F' is the reflection in the plane passing through the origin and
perpendicular to the unit vector (a,b) (where a € C, b € R - see Example 5.3.4),
then )
—aw +
F = —.

() b + a
(iii) Deduce that if F is any isometry of S? there is a unitary Mobius transfor-
mation M such that either F,, = M or F, = M o C where J(w) = —w.
(iv) Show conversely that if M is any unitary Mobius transformation, the bi-
jections C,, — C, given by M and M o J are both of the form F,, for some
isometry F' of S2.

What does the cosine rule become for a triangle on a sphere of radius R? Explain
how and why this becomes the cosine rule for the plane when R — oo.

Find the distance between Athens (latitude 38°, longitude 24°) and Bombay
(latitude 19°, longitude 73°) measured along the short great circle arc joining
them. (Take the radius of the Earth to be 6500km.)

A spherical square on S? has each side of length A and each angle equal to «
(each side being an arc of a great circle). Show that

1
cos A = cot? 504.

In the notation of Proposition 6.5.3, let A\ = sin a/ sin A.

(i) Show that sina +sin 8 = A(sin A + sin B), sina — sin § = A(sin A — sin B).
(ii) Show that cos a + cos fcosy = Asin~ysin B cos A, and obtain a similar for-
mula for cos 3 + cos acosy.

(iii) Deduce from (ii) that

(cosa + cos 3)(1 + cosvy) = Asinysin(A + B).
(iv) Deduce from (i) and (iii) that

cos 3(A — B) cot Ly

1
tan = =2
an g la+f) cos 3(A+ B) 2

2
and prove similarly that

1 sin 1(A — B) 1
tan = (a — B) = —2——— " cot =.
an 3 (a = F) sni(A+B) 2

(v) Find two formulas similar to those in (iv) for tan (A + B).
The formulas in (iv) and (v) are called Napier’s Analogies (after the same Napier

who invented logarithms).
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6.5.9

7.1.1

7.1.2

7.1.3

7.1.4

7.1.5

7.1.6

7.2.1

Suppose that two spherical triangles with vertices a,b,c and a’,b’, ¢’ are such
that

(i) the angle of the triangles at a and a’ are equal, and

(ii) the two sides of the first triangle meeting at a have the same length as the
two sides of the second triangle meeting at a’.

Prove that the triangles are congruent.

Chapter 7

Compute the second fundamental form of the elliptic paraboloid
o(u,v) = (u,v,u?® +v?).

Suppose that the second fundamental form of a surface patch o is zero every-
where. Prove that ¢ is an open subset of a plane. This is the analogue for
surfaces of the theorem that a curve with zero curvature everywhere is part of a
straight line.

Let a surface patch (@, ) be a reparametrization of a surface patch o(u, v) with
reparametrization map (u,v) = ®(a, 0). Prove that

L M\ _ ,.(L M
(i w) == (3 K

where J is the Jacobian matrix of ® and we take the plus sign if det(J) > 0
and the minus sign if det(J) < 0. Deduce from Exercise 6.1.4 that the second
fundamental form of a surface patch is unchanged by a reparametrization of the
patch which preserves its orientation.

What is the effect on the second fundamental form of a surface of applying an
isometry of R3? Or a dilation?

Repeat Exercise 7.1.1 for the helicoid

o(u,v) = (ucosv,usinv,v).

Find the second fundamental form of the tangent developable of a unit-speed
curve 4 with nowhere vanishing curvature (see §6.2). Show that the second
fundamental form is zero everywhere if and only if 7 is planar. How is this result
related to Exercise 7.1.27

Calculate the Gauss map G of the paraboloid S with equation z = 2?4+ y?. What
is the image of G7
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Show that the Weingarten map changes sign when the orientation of the surface
changes.

Repeat Exercise 7.2.1 for the hyperboloid of one sheet z? + y? — 22 = 1 and the
hyperboloid of two sheets 22 — 3% — 22 = 1.

Let 4 be a regular, but not necessarily unit-speed, curve on a surface. Prove
that (with the usual notation) the normal and geodesic curvatures of 7 are
. 5 (N x A
R o o /B iy — ¥-( ><3/Z)
(¥:9) (.7)

Show that the normal curvature of any curve on a sphere of radius r is £1/r.

Compute the geodesic curvature of any circle on a sphere (not necessarily a great
circle).

Show that, if y(t) = a(u(t),v(t)) is a unit-speed curve on a surface patch a with
first fundamental form Edu? + 2Fdudv + Gdv?, the geodesic curvature of 4 is

Ky = (31 — i)V EG — F2? + A4® + Bu*0 + Cuo® + Di®,
where A, B, C' and D can be expressed in terms of E, F', G and their derivatives.

Find A, B, C, D explicitly when F' = 0.

Suppose that a unit-speed curve 7 with curvature x > 0 and principal normal n
is a parametrization of the intersection of two oriented surfaces &7 and Ss with
unit normals Ny and No. Show that, if k1 and ko are the normal curvatures of
v when viewed as a curve in &7 and Ss, respectively, then

KlNg — KZQNl = K(Nl X NQ) X 1.
Deduce that, if « is the angle between the two surfaces,
k?sin? o = k2 + K2 — 2K1k9o COS Q.

A curve 4 on a surface S is called asymptotic if its normal curvature is everywhere
zero. Show that any straight line on a surface is an asymptotic curve. Show also
that a curve v with positive curvature is asymptotic if and only if its binormal
b is parallel to the unit normal of S at all points of 4.

Prove that the asymptotic curves on the surface
o(u,v) = (ucosv,usinv, Inu)

are given by
Inu=+(v+e¢),



42

7.3.8

7.3.9

7.3.10

7.3.11

7.3.12

7.3.13

where c is an arbitrary constant.

Show that if a curve on a surface has zero normal and geodesic curvature every-
where, it is part of a straight line.

Calculate the normal curvature at the point (1,0,1) of the curve 7 on the hy-
perbolic paraboloid
1 1
o) = 5+ o), 50~ w0

corresponding to the straight line w = v = ¢ in the uv-plane (note that v is not
unit-speed).

Consider the surface of revolution

o(u,v) = (f(u) cosv, f(u)sinv, g(u)),
where u — (f(u),0, g(u)) is a unit-speed curve in R3. Compute the geodesic and
normal curvatures of

(i) a meridian v = constant;
(ii) a parallel u = constant.

Find the geodesic and normal curvatures of a circle z = constant on the parab-
oloid z2 + y? = 2.

Consider the ruled surface
o(u,v) =v(u) + vé(u),

where 7 is a unit-speed curve and § is a unit vector. Show that the geodesic
curvature of the curve 4 on o is

t.
Kg = —0 — —
g sin 6’
where t is the tangent vector of 4 and 6 is the oriented angle ) (note that t(u)
and 8(u) are tangent vectors to o at the point y(u)). Recall from Example 5.3.1
that, for o to be regular, t and é must not be parallel, so sin 6§ # 0.

Suppose that a surface patch o(u,v) has first fundamental form
du? + 2 cos 0 dudv + dv?,

where 6 is a smooth function of (u, v) (cf. Exercise 6.1.5). Show that the geodesic

curvatures ng and /ig of the parameter curves v = constant and u = constant,

respectively, are given by
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In the notation of Exercise 7.3.4, suppose that F' = 0. Show that

kg = VEG(ub — i) + % {—\/g(Euu + Ey0) + \/g(Guu + Gw)} W

1
+ ——(Gyv — E,4).
Witeh Vi)
Continuing to assume that F' = 0, deduce from the preceding exercise that the

geodesic curvatures /{’g and /{’g’ of the parameter curves v = constant and u =
constant on o are
/ E'U 1 G

K, = — KR, =

9 2BVG Y 2GVE’

respectively. Hence prove Liouville’s formula: if 8 (which may depend on (u,v))

is the oriented angle 4o, between 4 and the curves v = constant, the geodesic
curvature of 7 is

kg =0+ m; cos + /{gsinﬁ.
An analogue of Liouville’s formula for the normal curvature is given in Theorem
8.2.4.

Let p be a point on a curve C on a surface S, and let Il be the tangent plane to
S at p. Let C be the curve obtained by projecting C orthogonally onto IT. Show
that the curvature of the plane curve C at p is equal, up to sign, to the geodesic
curvature of C at p.

Show that the asymptotic curves on the surface

are straight lines.

Let v be a unit-speed curve and consider the ruled surface
o(u,v) =y(u) + vn(u),

where n is the principal normal of 7. Prove that 4 is an asymptotic curve on o.

A surface is obtained by rotating the parabola 2 = 4z in the xz-plane around
the z-axis (this is not a paraboloid). Show that the orthogonal projections of
the asymptotic curves on the surface onto the zy-plane are logarithmic spirals
(when suitably parametrized). (See Example 1.2.2.)

Let «v be a curve on a surface S, and assume that C has nowhere vanishing
curvature. Show that 4 is asymptotic if and only if the osculating plane at every
point p of 4 is parallel to the tangent plane of S at p.
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7.3.21

7.3.22

7.3.23

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

Show that, if every curve on a surface is asymptotic, the surface is an open subset
of a plane.

Let 4 be a unit-speed curve on an oriented surface with curvature x > 0. Let v
be the angle between 4 and N, and let B =1t x N (in the usual notation). Show
that

N =ncos®y + bsiny, B =Dbcosy —nsin.

Deduce that
t =r,N— kgB, N = —k,t+ 74B, B= kgt — 14N,

where 7, = 7 4 1) (7, is called the geodesic torsion of ¥).

Show that an asymptotic curve with nowhere vanishing curvature has torsion
equal to its geodesic torsion (see the preceding exercise).

Let 4 be a reparametrization of 4, so that 4(¢t) = 4(p(t)) for some smooth
function ¢ with dp/dt # 0 for all values of t. If v is a tangent vector field along
v, show that v(t) = v(p(t)) is one along 4. Prove that

. dyp
v;),V = EV'}IV,

and deduce that v is parallel along 4 if and only if v is parallel along 4.

Show that the parallel transport map ng : TpS — TqS is invertible. What is

its inverse 7

Suppose that a triangle on the unit sphere whose sides are arcs of great circles
has vertices p,q,r. Let vy be a non-zero tangent vector to the arc pq through p
and q at p. Show that, if we parallel transport vy along pq, then along qr and
then along rp, the result is to rotate vy through an angle 27 — A, where A is the
area of the triangle. For an analogous result see Theorem 13.6.4.

Calculate the Christoffel symbols when the first fundamental form is
du? 4 2 cos 0 dudv + dv?

for some smooth function 0(u,v) (Exercise 6.1.5).

Let o(u,v) be a surface patch. Show that the following are equivalent:

(i) The parameter curves of o(u,v) form a Chebyshev net (see Exercise 6.1.5).
(ii) The tangent vectors to the parameter curves u = constant are parallel along
each parameter curve v = constant.

(iii) The tangent vectors to the parameter curves v = constant are parallel along
each parameter curve u = constant.
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Let # = 6,0, be the oriented angle between the parameter curves of a surface
patch o with first fundamental form Edu® + 2Fdudv + Gdv?. Show that

I? I I? Iri
0,=—-A=L 412 0, = — A 22 -22
<E+G ’ EG)

where A = VEG — F2.

With the notation in the preceding exercise, show that

Ay A,
- Iy +T7, 0 I3, + T,

Chapter 8

Show that the Gaussian and mean curvatures of the surface z = f(x,y), where
f is a smooth function, are

K — fxacfyy_ $2y H (1+fy2>fxm_Qfmfyfmy+(1+f$>fyy.

I+ 24722 21+ f24 f2)3/?

Calculate the Gaussian curvature of the helicoid and catenoid (Exercises 4.2.6
and 5.3.1).

Show that the Gaussian and mean curvatures of a surface S are smooth functions
on S.

In the notation of Example 8.1.5, show that if § is the principal normal n of 5
or its binormal b, then K = 0 if and only if 4 is planar.

What is the effect on the Gaussian and mean curvatures of a surface S if we
apply a dilation of R? to S?

Show that the Weingarten map W of a surface satisfies the quadratic equation
W? —2HW+ K =0,

in the usual notation.

Show that the image of the Gauss map of a generalized cone is a curve on S?,
and deduce that the cone has zero Gaussian curvature.

Let o : U — R3 be a patch of a surface S. Show that the image under the Gauss
map of the part o(R) of S corresponding to a region R C U has area

/ / K|d Ao,
R
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where K is the Gaussian curvature of S.

8.1.9 Let S be the torus in Exercise 4.2.5. Describe the parts ST and S~ of S where
the Gaussian curvature K of § is positive and negative, respectively. Show,
without calculation, that

/ KdA:—/ KdA = 4.
S+ S-

It follows that ffS K dA =0, a result that will be ‘explained’ in §13.4.

8.1.10 Let w(u,v) be a smooth tangent vector field on a surface patch o(u,v). This
means that
w(u,v) = a(u,v)o, + B(u,v)o,

where o and [ are smooth functions of (u,v). Then, if y(t) = a(u(t),v(t)) is
any curve on g, w gives rise to the tangent vector field w|y(t) = w(u(t),v(t))
along 4. Let V,w be the covariant derivative of w|y along a parameter curve
v = constant, and define V,w similarly. (Note that if ¢ is the uv-plane, then V,,
and V, become 0/0u and 9/0v). Show that

Vo(Vuw) — Vyu(V,w) = (w,.N)N, — (w,.N)N,,

where N is the unit normal of . Deduce that, if A(u,v) is a smooth function of
(u,v), then

Vo(Vu(AW)) = Vi (Vo (AW)) = A (V4 (VW) — Vi (VW)
Use Proposition 8.1.2 to show that
Vo(Vyo,) — Vu(Vyo,) = K(—Fo, + Eo,),
where
LN — M?
~ EG - F?’
and find a similar expression for V,(V,0,) — V4 (V0,). Deduce that

K

Vo (Vuw) =V, (V,w)

for all tangent vector fields w if and only if K = 0 everywhere on the surface.
(Note that this holds for the plane: w,, = W,,.) We shall see the significance of
the condition K = 0 in §8.4.

8.1.11 Calculate the Gaussian and mean curvatures of the surface

o(u,v) = (u+v,u —v,uv)
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at the point (2,0, 1).
Consider the quadric surface
2 2 2
x z
a b c
where we can assume that the non-zero constants a, b, ¢ satisfy a > 0, a > b > c.
Thus, if ¢ > 0 we have an ellipsoid; if b > 0 > ¢ a hyperboloid of one sheet; and
if b < 0 a hyperboloid of two sheets. Show that the Gaussian curvature at a
point p of the quadric is
d4
~ abe’
where d is the distance from p to TpS.

Obtain a similar result for the paraboloid

22 g2
I |
a * b =
where a > b and a > 0 (an elliptic paraboloid if b > 0, a hyperbolic paraboloid
if b < 0).
Show that the Gaussian curvature of the surface § with Cartesian equation
zyz =118

K=3@x+y?+2%)72

and calculate its mean curvature. Show that the maximum value of K is attained
at exactly four points which form the vertices of a regular tetrahedron.

A circle initially in the xz-plane tangent to the z-axis is rotated at constant an-
gular velocity around the z-axis at the same time as its centre moves at constant
speed parallel to the z-axis. Show that the surface generated has a parametriza-
tion

o(u,v) = (a(1l + cosu) cosv,a(l + cosu)sinv, asinu + bv + ¢),

where a, b and ¢ are constants. (Compare Exercise 4.2.6.)

Assume that ¢ = b and ¢ = 0. Show that the Gaussian curvature of o at a point
a distance d from the z-axis is

3d — 4a
4a3

Show that, if the Gaussian curvature K of a ruled surface is constant, then
K = 0. A complete description of such surfaces is given in §8.4.

Show that the Gaussian curvature of the tube of radius a around a unit-speed
curve vy (see Exercise 4.2.7) is

K —Kkcosf

a(l — kacosf)’
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8.1.17

8.1.18

8.1.19

8.2.1

8.2.2

8.2.3

where k is the curvature of 4 (we assume that x < a™! at every point of %).
Note that K does not depend on the torsion of 7.
Suppose now that 4 is a closed curve of length ¢. Show that:

(i) f(f 027T K dA = 0, where dA is the element of area on the tube.
(1;) )foz 027r |K|dA = 4f(f k(s)ds, where k(s) is the curvature of 7 at the point
~(s).

The explanation for (i) appears in §13.4 and the geometrical meaning of (ii) in
Theorem 8.1.6.

Show that the Gaussian and mean curvatures are unchanged by applying a direct
isometry of R3. What about an opposite isometry?

Show that an asymptotic curve on a surface S is perpendicular to its image under
the Gauss map at the corresponding point.

Let 7y be a curve on an oriented surface S with unit normal N. Show that
N.N + 2HN.A + K4.4 = 0.

Deduce that, if 4 is an asymptotic curve on §, its torsion 7 is related to the
Gaussian curvature K of S by 72 = — K.

Calculate the principal curvatures of the helicoid and the catenoid, defined in
Exercises 4.2.6 and 5.3.1, respectively.

A curve 7 on a surface S is called a line of curvature if the tangent vector of 7
is a principal vector of S at all points of 4 (a ‘line’ of curvature need not be a
straight line!). Show that 4 is a line of curvature if and only if

N = —>\’Y,

for some scalar A, where N is the standard unit normal of o, and that in this case
the corresponding principal curvature is A. (This is called Rodrigues’s formula.)

Show that a curve (t) = o(u(t), v(t)) on a surface patch & is a line of curvature
if and only if (in the usual notation)

(EM — FLYi?> + (EN — GL)uv + (FN — GM)v* = 0.

Deduce that all parameter curves are lines of curvature if and only if either

(i) the second fundamental form of ¢ is proportional to its first fundamental
form, or

(ii) F = M =0.

For which surfaces does (i) hold? Show that the meridians and parallels of a
surface of revolution are lines of curvature.
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In the notation of Example 8.1.5, show that if 4 is a curve on a surface S and §
is the unit normal of S, then K = 0 if and only if 7 is a line of curvature of S.

Suppose that two surfaces &7 and Sy intersect in a curve C that is a line of
curvature of §1. Show that C is a line of curvature of Ss if and only if the angle
between the tangent planes of &7 and S; is constant along C.

Let ¥ : W — R? be a smooth function defined on an open subset W of R? such
that, for each fixed value of u (resp. v, w), ¥(u, v, w) is a (regular) surface patch.
Assume also that

(5) 2.5, =5,.8, =5,.5, =0.

This means that the three families of surfaces formed by fixing the values of wu,
v or w constitute a triply orthogonal system (see §5.5).

(i) Show that ¥,.X,, = £,.8,, = £,.2,, =0.

(ii) Show that, for each of the surfaces in the triply orthogonal system, the
matrices F; and Fj; are diagonal.

(iii) Deduce that the intersection of any surface from one family of the triply
orthogonal system with any surface from another family is a line of curvature on
both surfaces. (This is called Dupin’s Theorem.)

Show that, if p, ¢ and r are distinct positive numbers, there are exactly four
umbilics on the ellipsoid
2 2 2
x Yy z
p—2 + q—2 + ﬁ =1.

What happens if p, ¢ and r are not distinct?

Show that the principal curvatures of a surface patch o : U — R3 are smooth
functions on U provided that ¢ has no umbilics. Show also that the principal
curvatures either stay the same or both change sign when o is reparametrized.

Show that the principal curvatures of the surface

z .z
ycos — = xsin —,
a a

where a is a non-zero constant, are

a
x2+y2_|_a2'

In particular, the mean curvature of the surface is zero.

Show that a point of a surface is an umbilic if and only if H? = K at that point
(in the notation of Definition 8.1.1). Deduce that a surface with K < 0 has no
umbilics.
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8.2.11

8.2.12

8.2.13

8.2.14

8.2.15

8.2.16
8.2.17

8.2.18

8.2.19

8.2.20

8.2.21

8.2.22

Show that the umbilics of the surface in Exercise 8.1.13 coincide with the points
at which the Gaussian curvature of the surface attains its maximum value.

Suppose that a surface S has positive Gaussian curvature everywhere. Show
that every curve on S has positive curvature everywhere (in particular, there are
no straight line segments on S).

Show that the principal curvatures of a surface S change sign when the orien-
tation of S changes (i.e. when the unit normal of S changes sign), but that the
principal vectors are unchanged.

Show that applying a direct isometry of R? to a surface leaves the principal
curvatures unchanged, but that an opposite isometry changes their sign.

Suppose that m curves on a surface S all pass through a point p of S and that
adjacent curves make equal angles m/m with one another at p. Show that the
sum of the normal curvatures of the curves at p is equal to mH, where H is the
mean curvature of S at p.

Find the lines of curvature on a tangent developable (§6.2).

In the notation of Exercise 8.2.4, assume that 4 is a line of curvature of S. Show
that the ruled surface is

(i) a generalized cone if and only if the corresponding principal curvature is a
non-zero constant along 4;

(ii) a generalized cylinder if and only if the corresponding principal curvature is
zero at all points of 4.

Let 4 be a curve on a surface §. Show that 4 is a line of curvature on S if and
only if, at each point of 4, the tangent vector of  is parallel to that of the image
of 4 under the Gauss map of S at the corresponding point. Deduce that, if p is
a point of a surface § that is not an umbilic, the Gauss map of S takes the two
lines of curvature of S passing through p to orthogonal curves on S2.

Show that if every curve on a (connected) surface S is a line of curvature, then
S is an open subset of a plane or a sphere.

Show that a curve on a surface is a line of curvature if and only if its geodesic
torsion vanishes everywhere (see Exercise 7.3.22).

Let 4 be a line of curvature of a surface S, and suppose that at each point of
v the osculating plane of ¥ makes the same angle with the tangent plane of S.
Show that 7 is a plane curve.

Show conversely that, if a plane cuts a surface everywhere at the same angle,
the intersection is a line of curvature on the surface.

Let 4 be a curve on a surface with principal curvatures ki and ko, and let 6
be the angle between the tangent vector of 4 and a non-zero principal vector
corresponding to k1. Prove that the geodesic torsion (Exercise 7.3.22) of 7 is
given by

Ty = (K2 — K1) sinf cos 6.
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Show that, if there is an asymptotic curve passing through a point p of a surface
S, the principal curvatures k; and ko of S at p satisfy k1Ko < 0. Hence give
another proof that the Gaussian curvature of a ruled surface is < 0 everywhere.
Show, conversely, that if k1Ko < 0 everywhere there are exactly two asymptotic
curves passing through each point of & and that the angle between them is

_ K1
2tan~ !, /——.
R2

(This result will be generalized in Exercise 8.2.27.)
What if § is flat?

If t and t are tangent vectors at a point of a surface S, one says that t is conjugate
to t if

(t,) =0,
where ((, )) is the second fundamental form of S. Show that:
(i) If t is conjugate to t then t is conjugate to t.
(ii) If t; and ty are conjugate to t, so is A1ty + Aoty for all A1, Ay € R.

Show that a curve on a surface is asymptotic if and only if its tangent vector is
self-conjugate at every point of the curve.

Show that, if t; and t5 are principal vectors corresponding to distinct principal
curvatures, then t; is conjugate to to.

Let t; and t5 be unit principal vectors at a point p of a surface S corresponding
to principal curvatures x; and k5. Let t and t be unit tangent vectors to S at p

and let 0 and 6 be the oriented angles t/l\t and tt, respectively. Show that t is
conjugate to t if and only if
K1

tanftanf = — .
)

Let v and 4 be curves on a surface S that intersect at a point p, and assume
that the tangent vectors of 4 and 7 at p are conjugate. Show that, if x,, and &,
are the normal curvatures of 4 and 4 at p,

1 1 1 1
—+~—:—+—,
Kn Rn K1 K2

where 11 and k4 are the principal curvatures of S at p (assumed to be non-zero).

Let v be a tangent vector field along a curve 4 on a surface. Show that, if
v(t) = 0 for some value of t, then v(t) is conjugate to 4(t).
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8.2.30

8.2.31

8.2.32

8.2.33

8.2.34

8.2.35

With the notation in Exercise 4.5.5, show that the first and second fundamental
forms of S at a point p and of S* at F(p) are related by (in an obvious notation)
FY R YR PO
L E(p.N M F(p.N N G(p.N
=ty (p 4>7M*:_ - (p 4),N*:_ . (p 4)
Ip |l Ip |l Ip |l Ip |l Ip |l Ip |l

where N is the unit normal of §. Deduce that:
(i) F' takes lines of curvature on S to lines of curvature on S*.
(ii) If k is a principal curvature of S at p, then

k' = — | p[*~—2(p.N)

is one of §* at F(p).
(iii) F takes umbilics on S to umbilics on S*.

The third fundamental form of an oriented surface S is defined by

(v, w)) = W(v), W(v)).

It is obvious that ((v,w))) is a symmetric bilinear form. Show that, if a(u,v) is
a surface patch of S, the matrix of ((, ))) with respect to the basis {6,0,} of
the tangent plane is (in the usual notation) Fr;; = fnfl_lfn.

Suppose that every point on the surface of revolution

o(u,v) = (f(u)coswv, f(u)sinv, g(u))

is parabolic. Show that:

(i) The zeros of ¢ = dg/du are isolated (i.e. if g(up) = 0 there is an € > 0 such
that g(t) # 0if 0 < |u — ug| < €).

(ii) If g is never zero, @ is an open subset of a circular cylinder or a circular cone.

Show that the umbilics on a graph surface z = f(z,y) satisfy
Zew = M1+ zi), Zay = Mgy, Zyy = M1+ 25)

for some A\ (possibly depending on z and y).

Show that applying an isometry of R? to a surface takes umbilics, elliptic, hy-
perbolic, parabolic and planar points of a surface to points of the same type.

Show that there are

(i) exactly four umbilics on a hyperboloid of two sheets;

(ii) exactly two umbilics on an elliptic paraboloid;

(iii) no umbilics on a hyperboloid of one sheet or a hyperbolic paraboloid.
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Show that, for the surface § in Exercise 8.1.13, the four points at which the
Gaussian curvature attains its maximum value are exactly the umbilics of S.

Show that p = (1, 1, 1) is a planar point of the surface S with Cartesian equation
22y +y?2? + 222? = 3.

Deduce that the eight points (£1,+1,+1) are all planar points of S. (It can be
shown that these are all the planar points of S.)

Determine the shape of S near p as follows.

(i) Show that the vector n = (1,1,1) is normal to S at p and that the vectors
t; = (1,—1,0) and t5 = (0,1, —1) are tangent to S at p.

(i) For any point (z,y, 2) € R? near p we can write

(r,y,2) =p+ Xt; + Yt + Zn

for some small quantities X,Y, Z depending on x,y, z. From the discussion at
the end of §8.2, we know that, near p, Z is equal to a cubic polynomial in X
and Y, if we neglect terms of higher order. Show that, if we neglect such terms,
then

27 =XY(X-Y)

near p.
(iii) Deduce that, near p, S has the shape of a monkey saddle.

Show tha:
(i) Setting w = e~ " gives a reparametrization o1 (v, w) of the pseudosphere with
first fundamental form
dv? + dw?
w2
(called the upper half-plane model).
(i) Setting
v? +w? -1 W —2v
v2+ (w+1)%’ 024 (wH+1)2

defines a reparametrization o2 (V, W) of the pseudosphere with first fundamental
form

4(dV? + dW?)

(1-V2—W?2)?
(called the Poincaré disc model: the region w > 0 of the vw-plane corresponds

to the disc V2 + W2 < 1 in the VW-plane).
(iii) Setting

2 - 2
V W w

- v W
VZ+W24+1 V2 W2 4+1
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8.3.2

8.3.3

8.4.1

8.4.2

8.4.3

8.5.1

defines a reparametrization oo (V, W) of the pseudosphere with first fundamental
form _ _ o _ _
(1 —W2)dV2+2VWaVdW + (1 — V?2)dW?
(1-V2—W2)2
(called the Beltrami-Klein model: the region w > 0 of the vw-plane again corre-
sponds to the disc V2 + W? < 1 in the VWW-plane).
These models are discussed in much more detail in Chapter 11.

For the pseudosphere:

(i) Calculate the length of a parallel.
(ii) Calculate its total area.

(iii) Calculate the principal curvatures.
(iv) Show that all points are hyperbolic.

Let S be a surface of revolution with axis the z-axis, and let its profile curve
be a unit-speed curve 7(u) in the xz-plane. Suppose that 7 intersects the z-
axis at right angles when v = +7/2, but does not intersect the z-axis when
—m/2 < u < w/2. Prove that, if the Gaussian curvature K of S is constant, that
constant is equal to one and S is the unit sphere.

Let p be a hyperbolic point of a surface S (see §8.2). Show that there is a patch
of § containing p whose parameter curves are asymptotic curves (see Exercise
7.3.6). Show that the second fundamental form of such a patch is of the form
2Mdudv.

Find a reparametrization of the hyperbolic paraboloid
o(u,v) = (u+v,u —v,uv)

in terms of parameters (s,t) such that the lines of curvature are the parameter
curves s = constant and ¢ = constant.

Let 4 be a curve on a surface S, and let S be the ruled surface formed by the
straight lines passing through points p of the curve that are tangent to S at p
and intersect the curve orthogonally. Show that S is flat if and only if 4 is a line
of curvature of S.

Suppose that the first fundamental form of a surface patch a(u,v) is of the form
E(du? + dv?). Prove that @, + 0, is perpendicular to o, and o,. Deduce that
the mean curvature H = 0 everywhere if and only if the Laplacian

Ouu +0,, =0.

Show that the surface patch

u? v3
o(u,v) = (u— 3 +uwv?, v — 3 + u?v, u? —vz)
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has H = 0 everywhere. (A picture of this surface can be found in §12.2.)
Prove that H = 0 for the surface

cosy
z:ln< )
CcoST

(A picture of this surface can also be found in §12.2.)

Let o(u,v) be a surface with first and second fundamental forms Edu? 4+ Gdv?
and Ldu® + Ndv?, respectively (cf. Proposition 8.4.1). Define

Y(u,v,w) =o(u,v) + wN(u,v),

where N is the standard unit normal of &. Show that the three families of surfaces
obtained by fixing the values of u, v or w in ¥ form a triply orthogonal system
(see §5.5). The surfaces w = constant are parallel surfaces of . Show that the
surfaces u = constant and v = constant are flat ruled surfaces.

Show that a ruled surface which has constant non-zero mean curvature is a
circular cylinder.

Show that the lines of curvature on a parallel surface of a surface S correspond
to those of §, and that their tangents at corresponding points are parallel.

Suppose that two surface S and S have the same normal lines. Show that S is
a parallel surface of S (cf. Exercise 2.3.15).

Chapter 9

Describe four different geodesics on the hyperboloid of one sheet
P24yt =1

passing through the point (1,0,0).

A (regular) curve 7y with nowhere vanishing curvature on a surface S is called a
pre-geodesic on S if some reparametrization of 4 is a geodesic on S (recall that
a reparametrization of a geodesic is not usually a geodesic). Show that:

(i) A curve 7 is a pre-geodesic if and only if 4.(N x 4) = 0 everywhere on v (in
the notation of the proof of Proposition 9.1.3).

(ii) Any reparametrization of a pre-geodesic is a pre-geodesic.

(iii) Any constant speed reparametrization of a pre-geodesic is a geodesic.

(iv) A pre-geodesic is a geodesic if and only if it has constant speed.

Consider the tube of radius @ > 0 around a unit-speed curve 4 in R3 defined in
Exercise 4.2.7:
o(s,0) =v(s) + a(cosOn(s) + sinfb(s)).
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9.14

9.1.5

9.1.6

9.1.7

9.1.8
9.1.9

9.1.10

9.1.11

9.1.12

9.1.13

Show that the parameter curves on the tube obtained by fixing the value of s
are circular geodesics on o.

Let () be a geodesic on an ellipsoid S (see Theorem 5.2.2(i)). Let 2R(t) be the
length of the diameter of S parallel to 4(¢), and let S(¢) be the distance from
the centre of S to the tangent plane Ty;)S. Show that the curvature of 7 is
S(t)/R(t)?, and that the product R(¢)S(t) is independent of t.

Show that a geodesic with nowhere vanishing curvature is a plane curve if and
only if it is a line of curvature.

Let §; and S5 be two surfaces that intersect in a curve C, and let 7y be a unit-speed
parametrization of C.

(i) Show that if 4 is a geodesic on both S; and Sz and if the curvature of 4 is
nowhere zero, then S; ad Sy touch along 4 (i.e. they have the same tangent
plane at each point of C). Give an example of this situation.

(ii) Show that if S; and S, intersect orthogonally at each point of C, then 7 is
a geodesic on & if and only if N, is parallel to N; at each point of C (where
N; and Nj are unit normals of S; and S3). Show also that, in this case, 7 is a
geodesic on both S; and S if and only if C is part of a straight line.

Show that the ellipsoid
2 2 2

x Y z

—+5+5=1

2 @2
always has at least three closed geodesics.
Find six geodesics on (each connected piece of) the surface in Exercise 8.2.37.

Suppose that the tangent vector to a geodesic 4y with nowhere vanishing curvature
on a surface § makes a fixed angle with a fixed non-zero vector a. Show that, at
every point of 4, the vector a is tangent to S.

Deduce from Exercise 7.3.3 that great circles are the only circles on a sphere
that are geodesics.

Let o be a unit-speed curve on a surface S. Show that 7 is a geodesic on § if
and only if, at every point p of 4, the osculating plane of 4 at p is perpendicular
to TpS. Dedcuce that, if a geodesic 4 on S is the intersection of S with a plane,
then 4 is a normal section of S (this is a converse of Proposition 9.1.6).

Show that if a curve on a surface is both a geodesic and an asymptotic curve,
then it is part of a straight line.

Show that a unit-speed curve 4 with nowhere vanishing curvature is a geodesic
on the ruled surface

o(u,v) = y(u) +vé(u),

where § is a smooth function of u, if and only if §(u) is perpendicular to the
principal normal of 7 at y(u) for all values of w.
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Let T’ be a unit-speed geodesic on a surface S. Show that the torsion of I' at a
point p is _ .
7 =I.(N xN),

where N is the standard unit normal of any surface patch containing p. Suppose
now that a curve 7y on o touches I' at a point p. Show that the torsion of I at p
is equal to the geodesic torsion of 7 at p (Exercise 7.3.22). Deduce, in particular,
that the torsion of I' is equal to its geodesic torsion.

Show that the torsion of a unit-speed asymptotic curve on a surface is given by
the same formula as the torsion of a geodesic in the preceding exercise. Deduce
that if a geodesic touches an asymptotic curve at a point p, the two curves have
the same torsion at p.

Show that, if a geodesic touches a line of curvature at a point p, the torsion of
the geodesic vanishes at p.

Show that:

(i) The torsion of a geodesic vanishes at an umbilic.

(ii) Two geodesics that intersect at right angles at a point p have torsions at p
that are equal in magnitude but opposite in sign.

(iii) The curvature s and torsion 7 of a geodesic are related by

7 = —(k = r1)(k — K2) or — (k+K1)(K + K2),

where k1 and ko are the principal curvatures.
(iv) If the surface is flat then, up to a sign, 7 = ktan @ or k cot 6, where 0 is the
angle between the geodesic and one of the lines of curvature.

Let v be a curve on a ruled surface § that intersects each of the rulings of the
surface. Show that, if 4 has any two of the following properties, it has all three:
(i) vy is a pre-geodesic on S.

(ii) 4 is the line of striction of S (see Exercise 5.3.4).

(iii) 7 cuts the rulings of S at a constant angle.

Suppose that every geodesic on a (connected) surface is a plane curve. Show
that the surface is an open subset of a plane or a sphere.

Suppose that a geodesic ¢ on a surface S lies on a sphere with centre e¢. Show that
the curvature of v at a point p is the reciprocal of the length of the perpendicular
from ¢ to the plane passing through p parallel to TpS.

Show that, if p and q are distinct points of a circular cylinder, there are either
two or infinitely-many geodesics on the cylinder with endpoints p and q (and
which do not otherwise pass through p or q). Which pairs p, q have the former
property ?

Use Corollary 9.2.8 to find all the geodesics on a circular cone.
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9.2.3
9.24

9.2.5

9.2.6

9.2.7

9.2.8

9.2.9

Find the geodesics on the unit cylinder by solving the geodesic equations.

Consider the following three properties that a curve 4 on a surface may have:
(i) o has constant speed.

(ii) =y satisfies the first of the geodesic equations (9.2).

(iii) =y satisfies the second of the geodesic equations (9.2).

Show that (ii) and (iii) together imply (i). Show also that if (i) holds and if 7 is
not a parameter curve, then (ii) and (iii) are equivalent.

Let 4(t) be a unit-speed curve on the helicoid
o(u,v) = (ucosv,usinv,v)
(Exercise 4.2.6). Show that
w? + (1 +u?)? =1

(a dot denotes d/dt). Show also that, if 4 is a geodesic on @, then

) a

V= —F
1+ u?’

where a is a constant. Find the geodesics corresponding to a = 0 and a = 1.

Suppose that a geodesic 7y on & intersects a ruling at a point p a distance D > 0

from the z-axis, and that the angle between 7 and the ruling at p is «, where

0 < a < /2. Show that the geodesic intersects the z-axis if D > cot «, but that
2

if D < cot « its smallest distance from the z-axis is \/D2 sin“ a — cos? o. Find

the equation of the geodesic if D = cot a.

Verify directly that the differential equations in Proposition 9.2.3 are equivalent
to the geodesic equations in Theorem 9.2.1.

Use Corollary 9.2.7 to show that the geodesics on a generalized cylinder are
exactly those constant-speed curves on the cylinder whose tangent vector makes
a constant angle with the rulings of the cylinder.

Show that (in the usual notation) a parameter curve v = constant is a pre-
geodesic on a surface patch o if and only if

FE,+ FE, =2FEF,.
Suppose that a surface patch o has first fundamental form
(14 u?)du? — 2uvdudv + (1 + v?)dv?.

Show that the curves on @ corresponding to the straight lines u + v = constant
in the uv-plane are pre-geodesics on o.
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Suppose that the first fundamental form of a surface o is of the form
du® + Gdv?,

and that the curves on the surface corresponding to the straight lines v/u =
constant are all pre-geodesics. Prove that

(2u? + Gv*)Gy + wvG, = 0,

and verify that this equation has a solution of the form

G(u,v) = f(u)

V2

Suppose that the coefficients E, F, G of the first fundamental form of a surface
patch a(u,v) depend only on u. Show that, along any geodesic on @, either u =

constant or
dv F . QVEG — F?

du~ G GVG -2
where € is a constant.

Let 4 be a curve and let S be the ruled surface generated by its binormals (see
Exercise 6.1.9). Suppose that I' is a geodesic on S that intersects 4. Show that:
(i) If the torsion of v is a non-zero constant, then I' is contained between two
rulings of S.

(ii) If 4 is a plane curve, then I' is contained between two rulings only if 4 and
I' intersect perpendicularly, in which case I' is one of the rulings of S.

A Liouville surface is a surface patch & whose first fundamental form is of the
form

(U + V)(Pdu? + Qdv?),

where U and P are functions of u only and V and @ are functions of v only.
Show that, if 7y is a geodesic on &, then along 4,

Usin? @ — V cos? = constant,

where 6 is the angle between 7y and the parameter curves v = constant.

Verify that

o (u,v) = \/a(a—i—u)(CH—v) \/b(b—l—u)(lH—v) \/c(c—i—u)(c+v)
; (a—=b)(a—c) '\ (b—a)b—c) \ (c—a)(c—0)
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9.3.1

9.3.2

9.3.3

9.34

9.3.5

9.3.6

9.3.7

9.3.8

is a parametrization of the quadric surface

where a, b, c are distinct. Determine its first fundamental form and deduce that,
along any geodesic on the surface,

usin? 0 + vcos? 0 = constant,

where 6 is the angle at which the geodesic intersects the parameter curves v =
constant.

There is another way to see that all the meridians, and all the parallels cor-
responding to stationary points of f, are geodesics on a surface of revolution.
What is it ?

Describe qualitatively the geodesics on

(i) a spheroid, obtained by rotating an ellipse around one of its axes;
(ii) a torus (Exercise 4.2.5).

Show that a geodesic on the pseudosphere with non-zero angular momentum 2
intersects itself if and only if Q < (1 + 72)~'/2. How many self-intersections are
there in that case?

Show that if we reparametrize the pseudosphere as in Exercise 8.3.1(ii), the
geodesics on the pseudosphere correspond to segments of straight lines and cir-
cles in the parameter plane that intersect the boundary of the disc orthogonally.
Deduce that, in the parametrization of Exercise 8.3.1(iii), the geodesics corre-
spond to segments of straight lines in the parameter plane. We shall see in §10.4
that there are very few surfaces that have parametrizations with this property.

Suppose that a surface of revolution has the property that every parallel is a
geodesic. What kind of surface is it ?

Show that, along any geodesic on the catenoid (Exercise 5.3.1) that is not a

parallel,
dv Q

du v/ cosh? u — 02’

where ) is a constant.

Show that, if every geodesic on a surface of revolution § intersects the meridians
at a constant angle (possibly different angles for different geodesics), then S is a
circular cylinder.

Deduce from Exercise 4.1.6 and Clairaut’s theorem that the geodesics on the
unit cylinder are straight lines, circles and helices.
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Consider the surface of revolution
o(u,v) = (k; cosucosv, kcosusinv, / V1 —k2sin®6 dﬁ)
0

where k is a non-zero constant. (This is a surface of constant Gaussian curvature
equal to 1 and is a sphere if £k = 1 - see §8.3.) Prove that the geodesic which
passes through the point (k,0,0) and makes an angle « with the parallel through
this point is given by

tanu = 4 tan acsin kv.

Find the maximum height above the xy-plane attained by this geodesic.

Let f : o(v,w) — o(0,w) be an isometry of the pseudosphere, where the
parametrization o is that defined in §9.3.

(i) Show that f takes meridians to meridians, and deduce that v does not depend
on w.

(ii) Deduce that f takes parallels to parallels.

(iii) Deduce from (ii) and Exercise 8.3.2 that @ = w.

(iv) Show that f is a rotation about the axis of the pseudosphere or a reflection
in a plane containing the axis of rotation.

The geodesics on a circular (half) cone were determined in Exercise 9.2.2. In-
terpreting ‘line’ as ‘geodesic’, which of the following (true) statements in plane
Euclidean geometry are true for the cone?

(i) There is a line passing through any two points.

(ii) There is a unique line passing through any two distinct points.

(iii) Any two distinct lines intersect in at most one point.

(iv) There are lines that do not intersect each other.

(v) Any line can be continued indefinitely.

(vi) A line defines the shortest distance between any two of its points.

(vii) A line cannot intersect itself transversely (i.e. with two non-parallel tangent
vectors at the point of intersection).

Show that the long great circle arc on S? joining the points p = (1,0,0) and
q = (0,1,0) is not even a local minimum of the length function £ (see the
remarks following the proof of Theorem 9.4.1).

Construct a smooth function with the properties in (9.20) in the following steps:

(i) Show that, for all integers n (positive and negative), tme=1/"" tends to 0 as t
tends to 0.
(ii) Deduce from (i) that the function

—1/t2 f >
Q(t):{e if t >0,
0 ift <0
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9.4.4

9.5.1

is smooth everywhere.
(iii) Show that the function

P(t) =0(14+1)0(1 —1)

is smooth everywhere, that 1(t) > 0 if —1 < ¢t < 1, and that ¢ (¢) = 0 otherwise.
(iv) Show that the function
t—to
o) =v ()
n

Repeat Exercise 9.4.1 for a circular cylinder and a sphere.

has the properties we want.

Let P be a point of a surface S and let v be a unit tangent vector to S at P.
Let 4%(r) be the unit-speed geodesic on S passing through P when r = 0 and

such that the oriented angle v d—g; = . It can be shown that o(r,0) = 4°(r) is
smooth for —e < r < € and all values of 8, where € is some positive number, and
that it is an allowable surface patch for & defined for 0 < r < € and for 6 in any
open interval of length < 27. This is called a geodesic polar patch on S.
Show that, if 0 < R < e,
R
/

By differentiating both sides with respect to 8, prove that

2

9
dl dr = R.

dr

g,..09 =0.

A geodesic

circle

geodesics

This is called Gauss’s Lemma — geometrically, it means that the parameter curve
r = R, called the geodesic circle with centre P and radius R, is perpendicular
to each of its radii, i.e. the geodesics passing through P. Deduce that the first
fundamental form of o is

dr? + G(r,0)d6?,
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for some smooth function G(r,9).

Let P and @) be two points on a surface §, and assume that there is a geodesic
polar patch with centre P as in Exercise 9.5.1 that also contains (); suppose that
Q is the point o(R, a), where 0 < R < ¢, 0 < a < 2mw. Show in the following
steps that the geodesic y*(t) = o(t, ) is (up to reparametrization) the unique
shortest curve on § joining P and Q).

(i) Let y(t) = a(f(t),g(t)) be any curve in the patch ¢ joining P and ). We
assume that 7 passes through P when ¢ = 0 and through @ when ¢ = R (this
can always be achieved by a suitable reparametrization). Show that the length
of the part of 4 between P and @) is > R, and that R is the length of the part
of ¥* between P and Q.

(ii) Show that, if 4 is any curve on S joining P and @) (not necessarily staying
inside the patch o), the length of the part of 7y between P and @ is > R.

(iii) Show that, if the part of a curve 4 on S joining P to @ has length R, then
v is a reparametrization of y¢.

Suppose that every geodesic circle with centre P in the surface patch in Exercise
9.5.1 has constant geodesic curvature (possibly different constants for different

circles). Prove that G is of the form G(r, §) = f(r)g(0) for some smooth functions
f and g.

Chapter 10

A surface patch has first and second fundamental forms
cos?vdu® +dv? and — cos®vdu® — dv?,

respectively. Show that the surface is an open subset of a sphere of radius one.
Write down a parametrization of S? with these first and second fundamental
forms.

Show that there is no surface patch whose first and second fundamental forms
are
du? + cos®? udv? and  cos® udu® + dv?,

respectively.

Suppose that a surface patch a(v, w) has first and second fundamental forms

dv? + dw?

— and Ldv® + Nduw?,
w

respectively, where w > 0. Prove that L and N do not depend on v, that
LN = —1/w? and that

dL
Lw5d— =1— L%
w
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10.1.4

10.1.5

10.1.6

10.1.7

10.1.8

Solve this equation for L and deduce that ¢ cannot be defined in the whole of
the half-plane w > 0. Compare the discussion of the pseudosphere in Example
9.3.3.

Suppose that the first and second fundamental forms of a surface patch are
Edu? 4+ Gdv? and Ldu? + Ndv?, respectively. Show that the Codazzi-Mainardi
equations reduce to

1 L N 1 L N

Deduce that the principal curvatures k; = L/E and ke = N/G satisfy the
equations

Gy
(KQ /ﬁ), (@)u Ye
What are the necessary and sufficient conditions for constants E, F, G, L, M, N
to be the coefficients of the first and second fundamental forms of a surface patch
o(u,v)?
Assuming that these conditions are satisfied, show that there is a reparametriza-
tion of ¢ of the form

(/{1>v = &

= Yo, (Kl—fig).

u = au + bv, v = cu + dv,

where a, b, ¢, d are constants, such that the first and second fundamental forms
become
du® +dv?  and  kdi?,

respectively, where k is a constant. Deduce that the surface is an open subset of
a plane or a circular cylinder.

Suppose that a surface patch has first and second fundamental forms Edu?+Gdv?
and 2dudv, respectively. Show that:
(i) E/G is a constant.
(ii) By a suitable reparametrization we can arrange that this constant is equal
to 1.
(iii) If F = G then

9?*(InE) n 0?(InE) 2

ou? o2  E’

Show that, if the parameter curves of a surface patch are asymptotic curves,
M 1 2 M 2 1
ﬁu =T — T, ﬁv =I5 —I'p.

Suppose that a surface S has no umbilics and that one of its principal curvatures
is a non-zero constant k. Let p € S.
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(i) Show that there is a patch o(u, v) of S containing p which has first and second
fundamental forms

du? + Gdv? and kdu? + Ndv?,

for some smooth functions G and N of (u,v).
(ii) Calculate the Christoffel symbols of o.

(iii) Show that the parameter curves v = constant are circles of radius r = 1/|x|.

(iv) Show that

Ouu + 10

is independent of u, and deduce that

o(u,v) =)+ r(c(v) cos % +d(v) sin %),

for some curve y(v), where ¢(v) and d(v) are perpendicular unit vectors for all
values of v.

(v) Show that ¢ and d are perpendicular to dy/dv and deduce that o is a
reparametrization of the tube of radius r around 4.

Let ¥(u,v,w) be a parametrization of a triply orthogonal system as in §5.5.
Prove that, if p =|| Ty |, ¢ = || By [, 7 = || Sy |, then

Euu - &Eu - PP 21} - Mzwa

D q2 ,r2
q qq qq
v — _Uzv - —szw - —QUEua

q r p

z)ww - T_wzw - %zu - %207
r b q

sz - q_wzv + T_Uzun
q T

P

g

T
wu — _uzw + p_w21u
r p

v, =2wn s
p q
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Deduce Lamé’s relations:

DPvGuw PwTv
Pow = ’
q r
QuwTu | GuPw
Quu )
r p
Y = TuPo 4 Tvqu
p q

It can be shown, conversely, that if p, ¢, are smooth functions of u, v, w satis-
fying Lamé’s relations, there is a triply orthogonal system ¥(u,v,w), uniquely
determined up to an isometry of R3, such that p = || E, ||, ¢ = || Zo ||, 7 = || Zw |-

10.2.1 Show that if a surface patch has first fundamental form e*(du? + dv?), where A
is a smooth function of u and v, its Gaussian curvature K satisfies

AN+ 2Ke* =0,

where A denotes the Laplacian 92 /0u? + 92 /0v?.

10.2.2 With the notation of Exercise 9.5.1, define u = rcosf, v = rsinf, and let
o(u,v) be the corresponding reparametrization of a. It can be shown that & is
an allowable surface patch for & defined on the open set u? + v? < €2. (Note
that this is not quite obvious because ¢ is not allowable when r = 0.)

(i) Show that the first fundamental form of & is Edu? + 2Fdudv + Gdv?, where

Pt - v, e
7"2 7"4 7"2 7"2, ,,«2 ,,«4

u2_|_G1127 P ( G)@ & v Gu?
(ii) Show that u?(F — 1) = v?(G — 1), and by considering the Taylor expansions
of E and G about u = v = 0, deduce that
G(r,0) = r? 4 kr* 4 remainder
for some constant k, where remainder/r* tends to zero as 7 tends to zero.

(iii) Show that k = —K(p)/3, where K (p) is the value of the Gaussian curvature
of S at p.
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With the notation of Exercises 9.5.1 and 10.2.2, show that:

(i) The circumference of the geodesic circle with centre p and radius R is
K
Cr=27R (1 — %RQ + remainder) ,

where remainder/R? tends to zero as R tends to zero.
(ii) The area inside the geodesic circle in (i) is

Ap = 7R? <1 — %RQ + remainder) ,

where the remainder satisfies the same condition as in (i).

Verify that these formulas are consistent with those in spherical geometry ob-
tained in Exercise 6.5.3.

Let A, B and C' be the vertices of a triangle 7 on a surface S whose sides are
arcs of geodesics, and let o, 3 and «y be its internal angles (so that « is the angle
at A, etc.). Assume that the triangle is contained in a geodesic patch o as in
Exercise 9.5.1 with P = A. Thus, with the notation in that exercise, if we take v
to be tangent at A to the side passing through A and B, then the sides meeting
at A are the parameter curves # = 0 and # = «, and the remaining side can be
parametrized by () = a(f(0),0) for some smooth function f and 0 < 6 < a.

(i) Use the geodesic equations (9.2) to show that
N 106
A2 20
where a dash denotes d/df and A = || 7' ||.

(ii) Show that, if ¢/(0) is the angle between o, and the tangent vector to the side
opposite A at y(0), then

f// _

50 = -2 1(0).0).
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10.2.10

10.2.11

(iii) Show that, if K is the Gaussian curvature of S,

// Kd.Aa':(l/‘i‘ﬂ‘F’)/—ﬂ'.
T

This result will be generalized in Corollary 13.2.3.

Show that the Gaussian curvature of the Mobius band in Example 4.5.3 is equal
to —1/4 everywhere along its median circle. Deduce that this M&bius band
cannot be constructed by taking a strip of paper and joining the ends together
with a half-twist. (The analytic description of the ‘cut and paste’ Mobius band
is more complicated than the version in Example 4.5.3.)

Show that the only isometries from the catenoid to itself are products of rotations
around its axis, reflections in planes containing the axis, and reflection in the
plane containing the waist of the catenoid.

A surface has first fundamental form
v du? + u"dv?

for some integers m, n. For which value(s) of the pair (m,n) is this surface flat ?
Show directly that, in each case in which the surface is flat, it is locally isometric
to a plane. (This is, of course, an immediate consequence of the results of §8.4.)

A surface patch o has first fundamental form
du? + 2 cos Odudv + dv?,

where 6 is a smooth function of (u,v) (Exercise 6.1.5). Show that the Gaussian

curvature of o is
eu’v

sinf’

Verify the Gauss equations (Proposition 10.1.2).
Show that there is no isometry between any region of a sphere and any region
of a generalized cylinder or a generalized cone.

Consider the surface patches
o(u,v) = (ucosv,usinv,Inu), &(u,v)= (ucosv,usinv,v).

Prove that the Gaussian curvature of o at o(u,v) is the same as that of o at
o(u,v), but that the map from ¢ to ¢ which takes o(u,v) to 6(u,v) is not an
isometry. Prove that, in fact, there is no isometry from o to o.

Show that the only isometries of the torus in Example 4.2.5 are the maps
o0(0,p) — o(x0,+p + «), where « is any constant (and any combination of
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signs is allowed). Thus, the isometries are composites of reflection in the coor-
dinate planes and rotations about the z-axis.

Show that, if the parameter curves of a surface are pre-geodesics that intersect
orthogonally, the surface is flat. Is this still true without the assumption of
orthogonality 7

Show that a compact surface with Gaussian curvature > 0 everywhere and con-
stant mean curvature is a sphere.

Show that the solution of the sine-Gordon equation corresponding to the pseu-
dosphere constructed in §8.3 is

(u,v) = 2tan”*(sinh(u — v + ¢)),

where c¢ is a constant.

Let o(u,v) be a surface patch of constant Gaussian curvature —1 such that
the parameter curves form a Chebyshev net, as in Exercise 6.1.5. Let Q be a
quadrilateral whose sides are parameter curves, and let aq, as, as and ay be its
interior angles. Show that the area inside Q is

oy + ag + ag + oy — 2m.

Show that a local diffeomorphism between surfaces that takes unit-speed geodesics
to unit-speed geodesics must be a local isometry.

Show that a local diffeomorphism between surfaces that is the composite of a
dilation and a local isometry takes geodesics to geodesics. Is the converse of this
statement true?

This exercise shows that a geodesic local diffeomorphism F' from a surface S
to a surface S that is also conformal is the composite of a dilation and a local
isometry.

(i) Let p € S and let o be a geodesic patch containing p as in Proposition 9.5.1,
with first fundamental form du? + Gdv?. Show that & = F o ¢ is a patch of
o containing F(p) with first fundamental form A\(du? + Gdv?) for some smooth
function A(u,v).

(ii) Show that the parameter curves v = constant are pre-geodesics on 6 and
deduce that A is independent of v.

(iii) Show that if 4 is a geodesic on ¢ and 6 is the oriented angle between 4 and
the parameter curves v = constant,

do Gy

10.19 — +

=0.
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11.1.1

11.1.2

11.1.3

11.1.4

11.1.5

11.1.6

(iv) Show that

do N (AG)u 0
dv  22\/G

(v) Deduce from Egs. (10.19) and (10.20) that A is constant.
(vi) Show that F': & — & is the composite of a dilation and a local isometry.

(10.20)

Chapter 11

Show that, if [ is a half-line geodesic in H and a is a point not on [, there are
infinitely-many hyperbolic lines passing through a that do not intersect [.

Complete the proof of Proposition 11.1.4 by dealing with the case in which the
hyperbolic line passing through a and b is a half-line.

Show that for any a € H there is a unique hyperbolic line passing through a that
intersects the hyperbolic line [ given by v = 0 perpendicularly. If b is the point
of intersection, one calls dy(a, b) the hyperbolic distance of a from L.

The hyperbolic circle C, r with centre a € 'H and radius R > 0 is the set of points
of H which are a hyperbolic distance R from a:

Ca,r = {2 € H|dn(z,a) = R}.

Show that C, r is a Euclidean circle.
Show that the Euclidean centre of C;c, g, where ¢ > 0, is 7b and that its Euclidean

radius is r, where

c=Vb—-1r2, R= 1lnb—i_r.

2 b—r

Deduce that the hyperbolic length of the circumference of C;. r is 2w sinh R and
that the hyperbolic area inside it is 27(cosh R — 1). Note that these do not
depend on ¢; in fact, it follows from the results of the next section that the
circumference and area of C, r depend only on R and not on a (see the remarks
preceding Theorem 11.2.4).
Compare these formulas with the case of a spherical circle in Exercise 6.5.3, and
verify that they are consistent with Exercise 10.2.3.

Let [ be a half-line geodesic in H. Show that, for any R > 0, the set of points
that are a distance R from [ is the union of two half-lines passing through the
origin. Note that these half-lines are not geodesics. This contrasts with the
situation in Euclidean geometry, in which the set of points at a fixed distance
from a straight line is a pair of straight lines.

Which region in H corresponds to the pseudosphere with the meridian v = 7
removed (in the parametrization used in §11.1)7
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Show that if a,b € H, the hyperbolic distance dy(a,b) is the length of the
shortest curve in ‘H joining a and b.

Show that, if [ is any hyperbolic line in ‘H and a is a point not on [, there are
infinitely-many hyperbolic lines passing through a that do not intersect .

Let a be a point of H that is not on a hyperbolic line . Show that there is a
unique hyperbolic line m passing through a that intersects [ perpendicularly. If
b is the point of intersection of [ and m, and c is any other point of /, prove that

dy(a,b) < dy(a,c).

Thus, b is the unique point of [ that is closest to a.

This exercise and the next determine all the isometries of H.

(i) Let F' be an isometry of H that fixes each point of the imaginary axis [ and
each point of the semicircle geodesic m of centre the origin and radius 1. Show
that F' is the identity map.

(ii) Let F' be an isometry of H such that F'()={and F(m)=m, where [ and m
are as in (i). Prove that F' is the identity map, the reflection Ry, the inversion
To,1 or the composite Zy 1 o Ry (in the notation at the beginning of §11.2).

(iii) Show that every isometry of H is a composite of elementary isometries.
(iv) Show that every isometry of H is a composite of reflections and inversions
in lines and circles perpendicular to the real axis.

A Mobius transformation (see Appendix 2) is said to be real if it is of the form

az+b

M(z) ="~

where a, b, c,d € R. Show that:

(i) Any composite of real Mobius transformations is a real Mobius transfor-
mation, and the inverse of any real Md6bius transformation is a real Mobius
transformation.

(ii) The Mobius transformations that take H to itself are exactly the real Mobius
transformations such that ad — bc > 0.

(iii) Every real Mobius tranformation is a composite of elementary isometries of
‘H, and hence is an isometry of H.

(iv) If J(2) = —Z and M is a real Mobius transformation, M o J is an isometry
of H.

(v) If we call an isometry of type (iii) or (iv) a Mdbius isometry, any composite
of M6bius isometries is a Mobius isometry;

(vi) every isometry of H is a Mobius isometry.

Show that, if a, b, c are three points of ‘H that do not lie on the same geodesic,
then
dy(a,b) < dy(a,c) + dp(c,b).
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11.2.7

11.2.8

11.2.9

11.2.10

11.3.1
11.3.2

11.3.3

11.3.4

11.3.5

11.3.6

Let [ be a semicircle geodesic in ‘H that intersects the real axis at points a and b.
Show that, for any d > 0, the set of points of H that are a hyperbolic distance d
from [is the union of two circular arcs (called equidistant curves) passing through
a and b, but that these are not geodesics unless d = 0. Note that in Euclidean
geometry equidistant curves are straight lines (i.e. geodesics).

Suppose that a triangle in H with vertices a, b, ¢ is such that dy(a,b) = dy(a,c)
(the triangle is ‘isosceles’) and let a be the angle at a. Prove that there is
a function f(«) such that, if d is the mid-point of the side joining b, ¢, then
dy(a,d) < f(a). (The point is that this upper bound is independent of the
lengths of the sides of the triangle passing through a, which are not bounded.)

Suppose that two triangles T and 7" in ‘H with vertices a,b,c and da’,b’,c are
such that

(i) the angle of T" at a is equal to that of 77 at a’,

(H) d?’((a7 b) = dn (CLI, bl)? and

(iii) dn(a,c) = dy(d’, ).

Prove that T and T” are congruent.

Show that the set of points that are the same hyperbolic distance from two fixed
points of H is a geodesic.

Prove Proposition 11.3.4.

Let [ and m be hyperbolic lines in Dp that intersect at right angles. Prove that
there is an isometry of Dp that takes [ to the real axis and m to the imaginary
axis. How many such isometries are there?

Show that the Mobius transformations that take Dp to itself are those of the
form
az+b
2z ———, a| > [b]
bz +a

Show that the isometries of Dp are the transformations of the following two

types:
az+b aZ+b
2z ==
bz +a bz +a
where a and b are complex numbers such that |a| > |b|. Note that this and the
preceding exercise show that the isometries of Dp are exactly the Mobius and

conjugate-Mobius transformations that take Dp to itself.

Prove that every isometry of Dp is the composite of finitely-many isometries of
the two types in Proposition 11.3.3.

Consider a hyperbolic triangle with vertices a, b, ¢, sides of length A, B, C' and
angles a, 3,7 (so that A is the length of the side opposite a and « is the angle
at a, etc.). Prove the hyperbolic sine rule

sina sinf8  siny
sinhA  sinhB  sinhC’
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11.3.7 With the notation in the preceding exercise, suppose that v = 7 /2. Prove that:

11.3.8

11.3.9

11.3.10
11.3.11

11.3.12

11.3.13

(i) cosq = sinhBeosh A
(ii) cosh A = 225
(iii) sinh A = 28,

With the notation in Exercise 11.3.6, prove that

cos a + cos (3 cosy

cosh A = . -
sin (3siny

This is the formula we promised at the end of §11.2 for the lengths of the sides
of a hyperbolic triangle in terms of its angles.

Show that if R? is provided with the first fundamental form

4(du? + dv?)
(14 u? +v2)2’

the stereographic projection map II : S?\{north pole} — R? defined in Example
6.3.5 is an isometry. Note the similarity between this formula and that in Propo-
sition 11.3.2: the plane with this first fundamental form provides a ‘model’ for
the sphere in the same way as the half-plane with the first fundamental form in
Proposition 11.3.2 is a ‘model’ for the pseudosphere.

Show that Proposition 11.2.3 holds as stated in Dp.

Let n be an integer > 3. Show that, for any angle o such that 0 < a < (n—2)7/n,
there is a regular hyperbolic n-gon with interior angles equal to a. Show that
each side of such an n-gon has length A, where

A CoS %
cosh — = —=.
2 sin 5

A Saccheri quadrilateral is a quadrilateral with geodesic sides such that two
opposite sides have equal length A and intersect a third side of length B at right
angles. If C' is the length of the fourth side, prove that

cosh C' = cosh? A cosh B — sinh? A,

and determine the other two angles of the quadrilateral.

Prove that the set of points in Dp that are equidistant from two geodesics [ and
m that intersect at a point a € Dp is the union of two hyperbolic lines that
bisect the angles between [ and m. Deduce that (as in Euclidean geometry) the
geodesics that bisect the internal angles of a hyperbolic triangle meet in a single
point.
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11.3.14

11.4.1
11.4.2

11.4.3

11.4.4

11.4.5

11.4.6

11.5.1
11.5.2

Let a € Dp be a point on a geodesic [, let b be a point on the geodesic m
that intersects [ perpendicularly at a, and let ¢ be one of the points in which
m intersects C. Let C, be the hyperbolic circle with centre b that touches [ at
a. Show that, as b recedes from a along m towards c, the circles C, approach a
limiting curve (called a horocycle) which is a Euclidean circle touching C at c.
Show also that the horocycle is orthogonal to all the geodesics in Dp that pass
through c.

Which pairs of hyperbolic lines in ‘H are parallel? Ultraparallel?

Let [ be the imaginary axis in H. Show that, for any R > 0, the set of points
that are a distance R from [ is the union of two half-lines passing through the
origin, but that these half-lines are not hyperbolic lines. This contrasts with the
situation in Euclidean geometry, in which the set of points at a fixed distance
from a line is a pair of lines.

Let a and b be two distinct points in Dp, and let 0 < A < w. Show that the set
of points ¢ € Dp such that the hyperbolic triangle with vertices a,b and c¢ has
area A is the union of two segments of lines or circles, but that these are not
hyperbolic lines. Note that this equal-area property could be used to characterize
lines in Euclidean geometry.

A triangle in Dp is called asymptotic, biasymptotic or triasymptotic if it has one,
two or three vertices on the boundary of Dp, respectively (so that one, two or
three pairs of sides are parallel). Note that such a triangle always has at least
two sides of infinite length.

(i) Show that any triasymptotic triangle has area 7.

(ii) Show that the area of a biasymptotic triangle with angle o is 7 — a. Show
that such a triangle exists for any o with 0 < a < 7.

(iii) Show that the area of an asymptotic triangle with angles o and 3 is 1—a— (3.
Express the length of the finite side of the triangle in terms of o and (.

Prove that:

(i) If two asymptotic triangles have the same angles (interpreting the angle at
the vertex on the boundary as zero), they are congruent.

(ii) The same result as in (i) holds for biasymptotic triangles.

(iii) Any two triasymptotic triangles are congruent.

It is a theorem of Euclidean geometry that the altitudes of a triangle meet at a
single point (the altitudes are the straight lines through the vertices perpendic-
ular to the opposite sides). By considering first a suitable biasymptotic triangle,
show that the corresponding result in hyperbolic geometry is not true.

Prove Eq. (11.8).

Extend the definition of cross-ratio in the obvious way to include the possibility
that one of the points is equal to oo, e.g. (00,b;¢,d) = (b —d)/(b— ¢). Show
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11.5.5

11.5.6

11.5.7

11.5.8

11.5.9

12.1.1

12.1.2
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that, if M : C,o — C is a Mobius transformation, then
(M(a), M (b); M(c),M(d)) = (a,b;c,d) for all distinct points a, b, c,d € C.

Show, conversely, that if M : C,, — C, is a bijection satisfying this condition,
then M is a Mobius transformation.

Use the preceding exercise to show that, if (a,b,c) and (a’,b’, ") are two triples
of distinct points of C,, there is a unique Mobius transformation M such that
M(a) =ad', M(b) =b" and M(c) = .

Let a,b € C and let d be the spherical distance between the points of S? that
correspond to a,b under the stereographic projection map Il (Example 6.3.5).

Show that . . .
—tan®’ =d = (a,——;b,—= | .
2 a b

Show that, if R is the reflection in a line passing through the origin, then LR =
RK. Deduce that R is an isometry of Dy .

Show that the isometries of Dy are precisely the composites of (finitely-many)
perspectivities and reflections in lines passing through the origin.

Show that the angle between two curves in Dy that intersect at the origin is the
same as the Euclidean angle of intersection.

Show that points a,b,c,d € C4 lie on a Circle if and only if (a,b;c,d) is real
(see Appendix 2 for the definition of a Circle (capital C!)).

If A = (a,b;c,d), show that the cross-ratio obtained by taking the same points
a,b,c,d in a different order has one of the six values A\, 1/, 1 — A, 1/(1 — \),
A (1=X), (1=X)/A

Chapter 12

Show that the Gaussian curvature of a minimal surface is < 0 everywhere, and
that it is zero everywhere if and only if the surface is an open subset of a plane.
We shall obtain a much more precise result in Corollary 12.5.6.

Let ¢ : U — R3 be a minimal surface patch, and assume that Ag(U) < oo
(see Definition 6.4.1). Let A # 0 and assume that the principal curvatures k of
o satisfy |Ak| < 1 everywhere, so that the parallel surface 6* of o (Definition
8.5.1) is a regular surface patch. Prove that

Ag(U) < Ao (U)

and that equality holds for some A # 0 if and only if a(U) is an open subset
of a plane. (Thus, any minimal surface is area-minimizing among its family of
parallel surfaces.)
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12.1.3
12.1.4

12.1.5
12.1.6

12.1.7
12.1.8

12.2.1
12.2.2

12.2.3

12.2.4

Show that there is no compact minimal surface.

Show that applying a dilation or an isometry of R3 to a minimal surface gives
another minimal surface. Can there be a local isometry between a minimal
surface and a non-minimal surface?

Show that every umbilic on a minimal surface is a planar point.
Let S be a parallel surface of a minimal surface (Definition 8.5.1), and let x;

and kg be the principal curvatures of S. Show that

1
— 4+ — = constant.
K1 ]

Show that no tube (Exercise 4.2.7) is a minimal surface.
Let S be a minimal surface, let p € § and let t be any non-zero tangent vector
to § at p. Show that the Gaussian curvature of S at p is

g - -

(see Exercise 8.2.31).

Show that every helicoid is a minimal surface.

Show that the surfaces o' in the isometric deformation of a helicoid into a
catenoid given in Exercise 6.2.2 are minimal surfaces. (This is ‘explained’ in
Exercise 12.5.4.)

Show that a generalized cylinder is a minimal surface only when the cylinder is
an open subset of a plane.

Verify that Catalan’s surface
u v
o(u,v) = (u — sinu coshv, 1 — cosu cosh v, —4 sin 5 sinh 5)

is a conformally parametrized minimal surface. (As in the case of Enneper’s
surface, Catalan’s surface has self-intersections, so it is only a surface if we
restrict (u,v) to sufficiently small open sets.)




12.2.5

12.2.6

12.3.1

12.3.2

12.4.1

7

Show that:

(i) The parameter curve on the surface given by u = 0 is a straight line.

(ii) The parameter curve u = 7 is a parabola.

(iii) The parameter curve v = 0 is a cycloid (see Exercise 1.1.7).

Show also that each of these curves, when suitably parametrized, is a geodesic
on Catalan’s surface. (There is a sense in which Catalan’s surface is ‘designed’
to have a cycloidal geodesic - see Exercise 12.5.5.)

A translation surface is a surface of the form

z= f(z) +9(),

where f and g are smooth functions. (It is obtained by “translating the curve
u — (u,0, f(u)) parallel to itself along the curve v — (0,v,g(v))”.) Show that
this is a minimal surface if and only if

@Bflde® dg/dy?
L+ (df /dx)? 1+ (dg/dy)?

Deduce that any minimal translation surface is an open subset of a plane or can
be transformed into an open subset of Scherk’s surface in Example 12.2.6 by a
translation and a dilation (z,y, z) — a(x,y, z) for some non-zero constant a.

Show that
sin z = sinh z sinh y

is a minimal surface. It is called Scherk’s fifth minimal surface.

Let S be a connected surface whose Gauss map is conformal.

(i) Show that, if p € S and if the mean curvature H of S at p is non-zero, there
is an open subset of S containing p that is part of a sphere.

(ii) Deduce that, if H is non-zero at p, there is an open subset of S containing
p on which H is constant.

(iii) Deduce that S is either a minimal surface or an open subset of a sphere.

Show that:

(i) The Gauss map of a catenoid is injective and its image is the whole of S?
except for the north and south poles.

(ii) The image of the Gauss map of a helicoid is the same as that of a catenoid,
but that infinitely-many points on the helicoid are sent by the Gauss map to any
given point in its image.

(The fact that the Gauss maps of a catenoid and a helicoid have the same image
is ‘explained’ in Exercise 12.5.3(ii).)

Use Proposition 12.3.2 to give another proof of Theorem 12.4.1 for surfaces S
with nowhere vanishing Gaussian curvature.
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12.4.2 It was shown in Exercise 8.2.9 that
z z

Y Cos — = x sin —,
a a
where a is a non-zero constant, is a minimal surface. Find a conformal parametriza-
tion of this surface.

12.5.1 Find the holomorphic function ¢ corresponding to Enneper’s minimal surface
given in Example 12.2.5. Show that its conjugate minimal surface coincides with
a reparametrization of the same surface rotated by 7/4 around the z-axis.

i
SN

Henneberg: close up

Henneberg: large scale
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12.5.4

12.5.5
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Find a parametrization of Henneberg’s surface, the minimal surface correspond-
ing to the functions f(¢) = 1 — (%, g(¢) = ¢ in Weierstrass’s representation.
Shown above are a ‘close up’ view and a ‘large scale’ view of this surface.

Show that, if ¢ satisfies the conditions in Theorem 12.5.2, so does a¢ for any
non-zero constant a € C; let % be the minimal surface patch corresponding to
ap, and let 6! = o be that corresponding to ¢. Show that:

(i) If a € R, then 6 is obtained from & by applying a dilation and a translation.
(ii) If |a| = 1, the map o(u,v) — 0%(u,v) is an isometry, and the tangent planes
of o and ¢ at corresponding points are parallel (in particular, the images of the
Gauss maps of ¢ and ¢ are the same).

Show that if the function ¢ in the preceding exercise is that corresponding to

ezt

the catenoid (see Example 12.5.3), the surface 6 coincides with the surface

denoted by o! in Exercise 6.2.3.
Let 4 : (o, 8) — R? be a (regular) curve in the xy-plane, say

and assume that there are holomorphic functions F' and G defined on a rectangle
U={ut+iweCla<u<f, —e<v<e},

for some € > 0, and such that F(u) = f(u) and G(u) = g(u) if u is real and
a < u < f. Note that (with a dash denoting d/dz as usual),

F'(2)* 4+ G'(2)* #0  if Jm(z) =0,

so by shrinking e if necessary we can assume that F’(z2)? + G'(2)? # 0 for all
z € U. Show that:
(i) The vector-valued holomorphic function

0= (F’, G/, i(F’Q + G/2>1/2>

satisfies the conditions of Theorem 12.5.2 and therefore defines a minimal surface
o(u,v).

(ii) Up to a translation, o(u,0) = y(u) for a < u < .

(iii) 4 is a pre-geodesic on o (see Exercise 9.1.2).

(iv) If we start with the cycloid

Y¥(u) = (u — sinu, 1 — cosu, 0),

the resulting surface o is, up to a translation, Catalan’s surface and we have
‘explained’” why Catalan’s surface has a cycloidal geodesic - see Exercise 12.2.4.
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12.5.6

12.5.7

12.5.8

12.5.9

12.5.10

13.1.1

13.1.2

13.1.3

If a minimal surface § corresponds to a pair of functions f and g in Weierstrass’s
representation, to which pair of functions does the conjugate minimal surface of
S correspond ?

Calculate the functions f and g in Weierstrass’s representation for the catenoid

and the helicoid.

Let G be the Gauss map of a minimal surface S and let IT : S? — C, be the
stereographic projection map defined in Example 6.3.5. Show that Il o G is the
function g in Weierstrass’s representation of S.

Find a parametrization of Richmond’s surface, the minimal surface correspond-
ing to the functions f(¢) = 1/¢2, g(¢) = ¢? in Weierstrass’s representation. Show
that its Gaussian curvature tends to zero as the point (u,v) tends to infinity.

Find the Weierstrass representation of the minimal surface

z .z
ycos — = xsin —,
a a

where a is a non-zero constant (see Exercises 8.2.9 and 12.4.2). Hence find the
Gaussian curvature of this surface.

Chapter 13

A surface patch o has Gaussian curvature < 0 everywhere. Prove that there are
no simple closed geodesics on . How do you reconcile this with the fact that
the parallels of a circular cylinder are geodesics ?

Let 4 be a unit-speed curve in R?® with nowhere vanishing curvature. Let n be
the principal normal of 4, viewed as a curve on S?, and let s be the arc-length
of n. Show that the geodesic curvature of n is, up to a sign,

i (tan_l Z)
ds K/’

where k and 7 are the curvature and torsion of 4. Show also that, if n is a
simple closed curve on S2, the interior and exterior of n are regions of equal area
(Jacobi’s Theorem).

The vertex of the half-cone
2 +y? =22tan’, 2 >0,
where the constant « is the semi-vertical angle of the cone, is smoothed so that

the cone becomes a regular surface. Prove that the total curvature of the surface
is increased by 27(1 — sin ).
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Consider the surface of revolution
o(u,v) = (f(u)cosv, f(u)sinv, g(u)),
where y(u) = (f(u),0,¢g(u)) is a unit-speed curve in the zz-plane. Let u; < uq
be constants, let 7y; and 7, be the two parallels © = u; and u = us on o, and let

R be the region of the uv-plane given by

u < u<Luy, 0<v<2m.

«(,) «2)
/ Kgds, / kgds and // KdAg,
0 0 R

and explain your result on the basis of the Gauss-Bonnet theorem.

Compute

Suppose that the Gaussian curvature K of a surface S satisfies K < —1 every-
where and that 4 is a curvilinear n-gon on & whose sides are geodesics. Show
that n > 3, and that, if n = 3, the area enclosed by 4 must be less than .

Suppose that the parameter curves of a surface S are geodesics that intersect at
a constant angle. By applying the Gauss-Bonnet theorem to a small curvilinear
quadrilateral whose sides are parameter curves, show that S is flat. Note that
this gives another solution of Exercise 10.1.9.

Show that, if a 3 x 3 matrix A has rows the vectors a, b, ¢, then
det(A) = a.(b x c).

Let n be a positive integer. Show that there are smooth functions @1, s, ..., @1
such that

(i) pr(t) > 0 for B <t < Bt and ¢ (t) = 0 otherwise;

(ii) p1(t) + p2(t) + -+ @n_1(t) =1 for all 0 < ¢ < 1.

Show that, if a compact surface S is diffeomorphic to the torus 77, then

[ waa=o

(cf. Exercise 8.1.9). Can such a surface S have K = 0 everywhere ?

Suppose that S is a compact surface whose Gaussian curvature K is > 0 ev-
erywhere. Show that S is diffeomorphic to a sphere. Is the converse of this
statement true ?
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13.4.3

13.4.4

13.5.1
13.5.2

13.5.3
13.5.4

13.5.5

13.6.1

13.6.2

13.6.3

Show that, if S is the ellipsoid

.’BQ 4 y2 22

—1
p? q?

Y

where p and ¢ are positive constants, then

//KdA:47r.
S

By computing the above integral directly, deduce that

df = 2.

/W/Q pq? cos 0
/2 (P? sin? § + ¢2 cos? 0)3/2

What is the Euler number of the compact surface in Exercise 5.4.17

Prove Proposition 13.5.3.

Show that every triangulation of a compact surface of Euler number x by curvi-
linear triangles has at least N (x) vertices.

Show that diffeomorphic compact surfaces have the same chromatic number.

A cubic map is a map in which exactly three edges meet at each vertex (like the
edges of a cube). Suppose that a cubic map on a surface of Euler number x has
¢, countries with n-edges, for each n > 2. Show that

oo

2(6 —n)e, = 6.

n=2

Show that:

(i) A soccer ball must have exactly 12 pentagons (a soccer ball is a cubic map
with only pentagons and hexagons).

(ii) If the countries of a cubic map on a sphere are all quadrilaterals or hexagons,
there are exactly 6 quadrilaterals.

Let (6, ¢) be the parametrization of the torus in Exercise 4.2.5. Show that the
holonomy around a circle § = 6y is 2w (1 — sinfy). Why is it obvious that the
holonomy around a circle ¢ = constant is 277 Note that these circles are not
simple closed curves on the torus.

Calculate the holonomy around the parameter circle v = 1 on the cone a(u,v) =
(vcosu,vsinu,v), and conclude that the converse of Proposition 13.6.5 is false.

In the situation of Proposition 13.6.2, what can we say if 7y is a closed, but not
necessarily simple, curve?
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Let v be a parallel vector field along a unit-speed curve 7 on a surface o, and let
© be the oriented angle 4v. Show that

[ [| = [n cos ¢ + 74 sing],
where k,, is the normal curvature of v and 7, is its geodesic torsion (Exercise

7.3.22).

Let k be a non-zero integer and let V(x,y) = («, 3) be the vector field on the
plane given by
(x+iy)k  if k>0,

(x —iy)™F ifk<0.
Show that the origin is a stationary point of V of multiplicity k.

Oz—l—zﬁz{

Show that the definition of a smooth tangent vector field is independent of the
choice of surface patch. Show also that a tangent vector field V on § is smooth
if and only if, for any surface patch o of S, the three components of V at the
point a(u,v) are smooth functions of (u,v).

Show that the Definition 13.7.2 of the multiplicity of a stationary point of a
tangent vector field V is independent of the ‘reference’ vector field &.

Show directly that the definitions of a critical point (13.8.1), and whether it is
non-degenerate (13.8.2), are independent of the choice of surface patch. Show
that the classification of non-degenerate critical points into local maxima, local
minima and saddle points is also independent of this choice.

For which of the following functions on the plane is the origin a non-degenerate
critical point 7 In the non-degenerate case(s), classify the origin as a local max-
imum, local minimum or saddle point.

(i) 22 — 2zy + 4y°.

(i) 2% + 4xy.

(iii) 23 — 3zy°.

Let S be the torus obtained by rotating the circle (z — 2)? + 22 = 1 in the
xz-plane around the z-axis, and let F': & — R be the distance from the plane
x = —3. Show that F' has four critical points, all non-degenerate, and classify
them as local maxima, saddle points, or local minima. (See Exercise 4.2.5 for a
parametrization of S.)

Show that a smooth function on a torus all of whose critical points are non-
degenerate must have at least four critical points.

A rod is attached to a fixed point at one end and a second rod is joined to its
other end. Both rods may rotate freely and independently in a vertical plane.
Explain why there is a bijection from the torus to the set of possible positions
of the two rods.
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The potential energy of the rods is a linear combination (with positive coeffi-
cients) of the heights of the mid-points of the two rods above some fixed hor-
izontal plane. Show that the corresponding function on the torus has exactly
four critical points, all of which are non-degenerate. (These points correspond
to the static equilibrium positions of the rods.) Determine whether each critical
point is a local maximum, local minimum or saddle point, and verify the result
of Theorem 13.8.6.
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