
Chapter 2
From CSP to Game Semantics

Samson Abramsky

Abstract In this short essay, we describe in informal terms how game semantics
can be seen to arise as a perturbation of process calculi such as CSP, by making an
explicit distinction between the rôles of the System and the Environment. Drawing
out the consequences of this distinction uncovers a wealth of mathematical struc-
ture, with Game intuitions entering in a natural and compelling fashion. This leads
ultimately to the elaboration of mathematically well-structured and behaviourally
expressive semantic universes for computation. These provide a basis for fully ab-
stract models of a wide range of programming languages, and lead on to algorithmic
methods, with applications to compositional model-checking and program analysis.

2.1 Introduction

Tony Hoare has been a major influence on me, as on so many of my generation
of computer scientists. Moreover, he has always shown a keen interest in the work
on game semantics by myself and others, and his remarks have often forced me to
sharpen my thinking. In this short note, a mini-essay rather than a paper, I will try to
present and motivate some key features of game semantics from the point of view of
CSP and other process calculi. I will try to convey how we can see game semantics
as arising from a small — but significant! — perturbation of the CSP paradigm.
We add one, apparently minor, piece of additional structure, and from this much
else follows.

2.2 Polarity

We shall assume some background in CSP [18, 32], or other process calculi such as
CCS [27]. We know that these calculi are designed to express communication, or
more generally interaction, between concurrent processes. This is achieved in each
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case by some form of synchronized communication which is built into the semantics
of the parallel composition operation.

Although CSP allows for value-passing idioms, at a more fundamental level,
these are “flattened out” or “compiled away” into pure atomic actions. Similar com-
ments can be made for CCS. In the case of CCS, a basic distinction is made between
actions and coactions (˛ and N̨ ), but this is purely formal, and its purpose is to sup-
port the particular form of binary “synchronization algebra” of CCS.1

In principle, then, all actions in process calculus are at the same level; each action
could, a priori, be performed by any process. In the language of logic, actions do
not have (positive or negative) polarities; in the language of category theory, they
do not have (co- or contra-) variance.

A basic starting point for game semantics is the recognition that introducing an
explicit notion of polarity of actions provides a modest-looking fulcrum which we
can use to lever up a great deal of structure. Moreover, this notion arises in a very
direct fashion from basic intuitions about interactive systems.

The basic idea flows naturally from the observation that our universe of study
in the arena of concurrent, distributed, mobile and pervasive processes is that of
open systems. That is, we study systems which must be seen as embedded in some
larger, and as yet not completely specified, system. (Just think of the Internet.) This
means that a key part of identifying and delimiting any system we study is that
we have a boundary between the system being considered, and the larger system
which contains it. We call the system under consideration simply the System; and
everything outside the boundary is the Environment. Actions can then be classified
as performed by the System (under its control) or by the Environment (not under
its control). The essence of the behaviour of the System is how it interacts with its
Environment across this boundary.

To specify a System in these terms is to specify how it will react in the presence of
an (unknown) Environment. Thus we must specify what the System will (or would)
do given any possible behaviour by the Environment. This assumes a natural nested
conditional or hypothetical form:

If the Environment initially does e1,
then the System responds with s1;

1 The input–output distinction does occur in a more fundamental way in the �-calculus [28–30].
However, even here there are symmetric variants such as the fusion calculus [31], and the �-
calculus does not seem to force a fundamental modification of the distinction we are making here.
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If the Environment then does e2,
then the System responds with s2;

:::

This apparently minor manoeuvre, of expressing the System/Environment
dichotomy directly in our classification of actions, releases much additional mathe-
matical structure, as we shall now see.

2.3 Games

With the introduction of polarized moves, the games metaphor becomes natural,
and indeed compelling. We think of the System and the Environment as the players
in a two-person game. The hypothetical specification of the actions of a System in
response to those of its Environment then exactly fits the game-theoretic notion of
strategy; so we have a natural reading of processes in this polarized framework as
strategies.

In this way, we start to use the basic notions of game theory to structure our
semantic universe, and we are well on the road to game semantics. But this is only
the first step.

One immediate consequence of adopting the game perspective is that we have a
natural “dynamic” take on negation and duality: as interchange of polarity (reversal
of rôles in the game) rather than interchange of truth-values.

Referring back to our intuitive reading, this corresponds to the fact that our
choice of point of view across the System–Environment boundary is conventional;
we could as well take the Environment as the System under consideration, and
vice versa. This ability to interchange between different points of view on the same
interaction is characteristic of game-theoretic reasoning.

2.4 Determinism

We now proceed to elaborate further structural consequences of our basic move to
polarization. We start in a low key, with a humble yet profoundly useful notion: that
of deterministic computation. The intuitive notion of a deterministic program or
computation is rather clear: at each step, what the program does next is uniquely
determined by the previous history of the computation. The lack of an explicit
distinction between the actions of the process and those of its environment means
that the notion of deterministic computation in this sense in the standard setting of
process calculi is a very limited one.2

2 These calculi do have notions of “deterministic” and “confluent” process as part of their the-
ory [27, 32], but these notions refer to the absence of non-observable branching in the system.
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By contrast, in the polarized setting, the obvious notion of deterministic strategy
– one for which the System actions are uniquely determined by the preceding
Environment actions – easily and naturally cover the full sweep of deterministic
computation. Because of polarization, one can distinguish between the Environment
actions, which a strategy for System cannot control, and hence must be allowed
to branch arbitrarily; and the System actions, which in the case of a determinis-
tic strategy must be uniquely determined by what has gone before. In this way, a
large portion of what would usually be encoded as non-determinism in the process
calculus setting is simply referred to the Environment, while the strategy remains
perfectly deterministic.

2.5 Interaction

As we have already mentioned, each process algebra has its own hand-crafted
primitives and semantics for communication and synchronization. There are many
plausible variations, and different styles suggest different models and process equiv-
alences. This profusion of choices is something of an embarrassment – an instance
of the “next 700” syndrome [4, 20].

By contrast, the polarization structure of games entails an intrinsic notion of
interaction: namely the basic notion in extensive game theory of playing a strategy
(for System) off against a counter-strategy (for the Environment) (or “evaluating a
strategy profile”). The specification of a strategy for System, as we have already
seen, allows for arbitrary branching at Environment moves, while specifying what
the System then does in response. A counter-strategy works dually. Thus the strategy
and counter-strategy “fit” together, just by the logic of polarization, without need of
any synchronization algebra. Note in particular that in the case that the strategy and
the counter-strategy are both deterministic, the result of this interaction is a uniquely
determined computation trace.

This idea really becomes powerful when we combine it with types, to which we
now turn.

2.6 Types

Process calculus is fundamentally untyped, although sometimes a rudimentary sort-
ing by action alphabet is used. More elaborate type systems for process calculi have
been proposed and studied, but they are a kind of super-structure, motivated more by
specification and verification issues than by articulating the structure of the universe
of processes.

They do not directly correspond to the sense in which the computation of a standard functional or
imperative program is deterministic.
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Once again the game metaphor shows its ability to reveal significant additional
mathematical structure. We have already been led to a view of processes as strate-
gies, but for which games? If we constrain the moves which can be made by a player
(System or Environment) at each stage where it may perform an action, we are led
to the usual notion of a game tree (game in extensive form), and we can see that
games play the role of types in a very natural and intuitive fashion.

The real power of this step comes when we consider the possibility of build-
ing compound types expressing the behaviour of systems built hierarchically from
sub-systems. These compound types will be interpreted as constructions on games,
which build more complex games, e.g. by combining “game boards”. Indeed, it is
by virtue of this step to compound games that we can see why it is plausible to re-
strict ourselves to two-person games. System and Environment may each actually
comprehend a “team” of players; the important point is that we are drawing a bound-
ary between the teams, and distinguishing the actions of one team from the other.
A useful analogy is with the theory of functions. By using type constructions such
as cartesian product, it suffices to develop a theory of one-place functions, rather
than having to treat n-place functions as primitive for each n. Indeed, note that func-
tions can be seen as special cases of (deterministic) strategies; where the System
allows the Environment to branch on the input, and then produces the corresponding
output.

As a direct consequence of this idea of using structured types to build
specifications of complex systems, we shall show how the primitive form of
interaction intrinsically supported by games leads on to the fundamental notions of
composition and identity.

2.7 Identity and Composition

2.7.1 Copy-Cat Strategies

Consider the following little fable, illustrated by Fig. 2.1. The idea is to rely on logic,
rather than on any talent at Chess. We arrange to play two games of Chess with the
grandmaster, say Gary Kasparov, once as White and once as Black. Moreover, we
so arrange matters that we start with the game in which we play as Black. Kasparov
makes his opening move; we respond by playing the same move in the other game –
this makes sense, since we are playing as White there. Now Kasparov responds (as
Black) to our move in that game; and we copy that response back in the first game.
We simply proceed in this fashion, copying the moves that our opponent makes
in one board to the other board. The net effect is that we play the same game
twice – once as White, and once as Black. (We have essentially made Kasparov
play against himself.) Thus, whoever wins that game, we can claim a win in one of
our games against Kasparov! (Even if the game results in a stalemate, we have done
as well as Kasparov over the two games – surely still a good result!) Of course, this
idea has nothing particularly to do with Chess. It can be applied to any two-person
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How to beat an International Chess Grandmaster by the power of pure logic

Fig. 2.1 How to beat a Grandmaster

game of a very general form. The use of Chess-boards to illustrate the discussion
will continue, but this underlying generality should be kept in mind.

What are the salient features which can be extracted from this example?

A Dynamic Tautology There is a sense (which will shortly be made more precise)
in which the copy-cat strategy can be seen as a dynamic version of the tautology
A _ :A. Note, indeed, that an essential condition for being able to play the copy-cat
is that the roles of the two players are inter-changed on one board as compared to the
other. Note also the disjunctive quality of the argument that we must win in one or
other of the two games. But the copy-cat strategy is a dynamic process: a two-way
channel which maintains the correlation between the plays in the two games.

Conservation of Information Flow The copy-cat strategy does not create any infor-
mation; it reacts to the environment in such a way that information is conserved. It
ensures that exactly the same information flows out to the environment as flows in
from it. Thus one gets a sense of logic appearing in the form of conservation laws
for information dynamics.

The Power of Copying Another theme which appears here, and of which more will
be seen later, concerns the surprising power of simple processes of copying informa-
tion from one place to another. Indeed, as shall eventually be seen, such processes
are computationally universal.

The Geometry of Information Flow From a dynamical point of view, the copy-cat
strategy realizes a channel between the two game boards, by performing the actions
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of copying moves. But there is also some implicit geometry here. Indeed, the very
idea of two boards laid out side by side appeals to some basic underlying spatial
structure. In these terms, the copy-cat channel can also be understood geometrically,
as creating a graphical link between these two spatial locations. These two points of
view are complementary, and link the logical perspective to powerful ideas arising
in modern geometry and mathematical physics.

Further evidence that the copy-cat strategy embodies more substantial ideas than
might at first be apparent, can be obtained by varying the scenario. Consider now
the case where we play against Kasparov on three boards; one as Black, two as
White.

Kasparov Kasparov Kasparov

B

W

W

B

W

B

�

������������

������������

����������������������������

Does the copy-cat strategy still work here? In fact, it can easily be seen that it does
not. Suppose Kasparov makes an opening move m1 in the left-hand board where
he plays as White; we copy it to the board where we play as White; he responds
with m2; and we copy m2 back to the board where Kasparov opened. So far, all has
proceeded as in our original scenario. But now Kasparov has the option of playing
a different opening move, m3 say, in the rightmost board. We have no idea how
to respond to this move; nor can we copy it anywhere, since the board where we
play as White is already “in use”. This shows that these simple ideas already lead
us naturally to the setting of a resource-sensitive logic, in which in particular the
Contraction Rule, which can be expressed as A ! A ^ A (or equivalently as :A _
.A ^ A/) cannot be assumed to be valid.

What about the other obvious variation, where we play on two boards as White,
and one as Black?

Kasparov Kasparov Kasparov

B

W

B

W

W

B
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It seems that the copy-cat strategy does still work here, since we can simply ignore
one of the boards where we play as White. However, a geometrical property of
the original copy-cat strategy has been lost, namely a connectedness property, that
information flows to every part of the system. This at least calls the corresponding
logical principle of Weakening, which can be expressed as A^A ! A, into question.

These remarks indicate that we are close to the realm of Linear Logic and
its variants, and, mathematically, to the world of monoidal (rather than cartesian)
categories.

2.7.2 Composition as Interaction

We also show how interaction can be explained in the same terms: Construc-
tors create “potentials” for interaction; the operation of plugging modules together
so that they can communicate with each other releases this potential into actual
computation.

A?

&

B � A � B B?

&

C � B � C

Here we see two separate sub-systems, each with a compound structure,
expressed by the logical types of their interfaces. What these types tell us is
that these systems are composable; in particular, the output type of the first sys-
tem, namely B, matches the input type of the second system. Note that this “logical
plug-compatibility” makes essential use of the duality, just as the copy-cat strategy
did. What makes Gary (the player for the first system) a fit partner for interaction
with Nigel (the player for the second system) is that they have complementary
views of their locus of interaction, namely B. Gary will play in this type “posi-
tively”, as Player (he sees it as B), while Nigel will play “negatively”, as Opponent
(he sees it as B?). Thus each will become part of the environment of the other – part
of the potential environment of each will be realized by the other, and hence part of
the potential behaviour of each will become actual interaction.
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This leads to a dynamical interpretation of the fundamental operation of
composition, in mathematical terms:

A
Gary � B

Nigel � C

A
Gary; Nigel � C

or of the Cut rule, in logical terms:

Cut:
` �; A ` A?; �

�; �

: : :

��

: : :

A?A

QP

Composition as Interaction

The picture here shows the new system formed by plugging together the two
sub-systems. The “external interface” to the environment now shows just the left-
hand board A as input, and the right-hand board C as output. The Cut formula B
is hidden from the environment, and becomes the locus of interaction inside the
black box of the system. Suppose that the Environment makes some move m in C.
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This is visible only to Nigel, who as a strategy for B � C has a response. Suppose
this response m1 is in B. This is a move by Nigel as Player in B?, hence appears
to Gary as a move by Opponent in B. Gary as a strategy for A � B has a response
m2 to this move. If this response is again in B, Nigel sees it as a response by the
environment to his move, and will have a response again; and so on. Thus there is
a sequence of moves m1; : : : ; mk in B, ping-ponging back and forth between Nigel
and Gary. If, eventually, Nigel responds to Gary’s last move by playing in C, or Gary
responds to Nigel’s last move by playing in A, then this provides the response of the
composed strategy Gary; Nigel to the original move m. Indeed, all that is visible
to the Environment is that it played m, and eventually some response appeared, in
A or C.3

Summarizing, the two strategies are played off against each other in the shared
part of their interfaces (where one plays as White and the other as Black –
corresponding to matching of logical polarities), leaving a residual interface to
the environment. Note the “duality” between this operation and the copy-cat (Iden-
tity and Cut): the copy-cat strategy makes the same thing happen in two different
places, while composition makes two different things (with opposite polarities,
hence non-conflicting) happen in the same place.

2.8 Categories: the “Objective Structure” of Interaction

Putting together the various ingredients we have developed from the basic idea of
polarization, we now have a mathematical universe in which we have:

� Games as types or objects
� Strategies as morphisms
� Composition of strategies by playing them off against each other in the common

subgame
� Copy-cat strategies as identities for this composition

This means that the games and strategies naturally organize themselves into a cate-
gory. This immediately moves us onto a higher plane of mathematical organization.
Recall that once we have fixed a category, any constructions defined by universal
properties therein are already fixed up to unique isomorphism. For example, if a cat-
egory is cartesian closed, and hence provides a model of higher-order computation,
this is uniquely determined by the bare structure of arrows under composition in the
category. This example is highly relevant, since the successful application of game
semantics to providing fully abstract models for a wide range of �-calculus based

3 It is also easy to show that if Nigel and Gary are both playing winning strategies, meaning that
they always have a response to the Environment’s actions, and that the infinite plays which may
arise from following these strategies satisfy some given liveness specifications, then the composed
strategy will again be a winning strategy, with respect to a liveness specification defined composi-
tionally in a natural fashion from the given ones. See [1] for details and a proof of this.
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programming languages rests upon the construction of suitable cartesian closed
categories of games and strategies. The mathematical structure present in a category
is objectively there, it is not a matter of one of “700 choices”.

In fact, categories of games and strategies have fascinating mathematical
structure. They give rise to:

� Constructions of free categories with structure of various kinds.
� Full completeness results characterizing the “space of proofs” for various logical

systems.
� There are even connections with geometry, e.g. Temperley-Lieb and other dia-

gram algebras [5].

2.9 Developments: The Game Semantics Landscape

Over the past 15 years, there has been an extensive development of Game Seman-
tics in Computer Science.4 One major area of application has been to the semantics
of programming languages, where it has led to major progress in the construction
of fully abstract models for programming languages embodying a wide range of
computational effects, and starting with the first semantic construction of a fully
abstract model for PCF, thus addressing a famous open problem in the field. It has
been possible to give crisp characterizations of the “shapes” of computations carried
out within certain programming disciplines: including purely functional program-
ming [2, 19], stateful programming [9], general references [7, 33], programming
with non-local jumps and exceptions [21, 22], non-determinism [16], probability
[11], concurrency [15], names [6], and more. In many cases, game semantics have
yielded the first, and often still the only, semantic construction of a fully abstract
model for the language in question.

There has also been a parallel line of development of giving full completeness
results for a range of logics and type theories, characterizing the “space of proofs”
for a logic in terms of informatic or geometric constraints which pick out those
processes which are proofs for that logic [8, 10, 12, 13, 25]. This enables a new look
at such issues as the boundaries between classical and constructive logic, or the fine
structure of polymorphism and second-order quantification.

More recently, there has been an algorithmic turn, and some striking applications
to verification and program analysis [3, 6, 14, 24].

4 A key quality of this form of game semantics, as compared to earlier work in the logical literature,
such as the Game-Theoretical Semantics of Hintikka [17] and the Dialogical game semantics of
Lorenzen and his school [26], is its syntax-independence and compositionality. Here composi-
tionality refers, crucially, to the level of strategies as well as merely to the games.
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2.10 Concluding Remarks

It should be emphasized that game semantics cannot be said to subsume CSP or
other process calculi. Indeed, by imposing more structure, it makes it harder to
achieve the same breadth of expressive power. Game semantics has been extended
to concurrent languages with some success [15, 23], but the treatment to date is far
from comprehensive. Moreover, in the course of modelling concurrent programming
languages, some of the familiar issues of a proliferation of models and equivalences
tend to recur, albeit in a considerably reduced form, as the setting is much more
constrained.

Nevertheless, it seems fair to say that game semantics has found a fruitful path,
combining the mathematical structure of denotational semantics with much of the
behavioural expressiveness of process calculi. We hope to have conveyed something
of how this trend in semantics arises naturally as a refinement of the CSP and process
calculus point of view. It is a tribute to Tony Hoare’s vision that many of his insights
persist in this new guise, and combine gracefully with other structures, seemingly
of quite a different character.

Acknowledgements My thanks to Bill Roscoe and Paul Levy for their comments on an earlier
version of this paper, which led to several clarifications. The remaining obscurities and inaccuracies
are entirely my responsibility.
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