Introduction

Facilius per partes in cognitionem totius adducimur
(Seneca, Epist. 89,1)

Learning a programming language, for most students in computing, is akin to a
rite of passage. It is an important transition, soon recognised as insufficient. Among
the tools of the trade, there are many languages, so an important skill for the good
computer professional is to know how to move from one language to another (and
how to learn new ones) with naturalness and speed.

This competence is not obtained by learning many different languages from
scratch. Programming languages, like natural languages, have their similarities,
analogies and they inherit characteristics from each other. If it is impossible to learn
tens of languages well, it is possible completely to understand the mechanisms that
inspire and guide the design and implementation of hundreds of different languages.
This knowledge of the “parts” facilitates the understanding of the “whole” of a new
language and therefore underpins a fundamental methodological competence in the
life of the computing professional, at least as far as it allows them to anticipate
innovations and to outlive technologies that grow obsolete.

It is for these reasons that a course on the general aspects of programming lan-
guages is, throughout the world, a key step at advanced level for a computing pro-
fessional (at university or in a profession). The fundamental competences which a
computing professional must possess about programming languages are of at least
four types:

e Some aspects that are properly considered linguistic.

Knowledge of how language constructs can be implemented and the relative cost
of these implementations.

e Knowledge of those architectural aspects influencing implementation.

e Compilation techniques.

It is rare that a single course deals with all four of these aspects. In particular, de-
scription of architectural aspects and compilation techniques are both topics that are
sufficiently complex and elaborate to merit independent courses. The remaining 2
aspects are primarily the content of a general course on programming languages and
comprise the principle subject of this book.

ix



X Introduction

The literature is rich in texts dealing with these subjects. Generations of students
have used them in their learning. All these texts, though, have in mind an advanced
reader who already understands many different programming languages, who al-
ready has a more than superficial competence with fundamental mechanisms and
who is not afraid when confronted by a fragment of code written in an unknown
language (because they are able understand it by analogy using the differences be-
tween it and what they already know). These are texts, then, that we can say are
on “comparative languages”. These are long, deep and stimulating, but they are foo
long and deep (read: difficult) for the student who begins their career with a single
programming language (or at most 2) and who still has to learn the basic concepts
in detail.

This text aims to fill this gap. Experts will see that the content in large measure
reflects classical themes. But these very themes are treated in an elementary fashion,
assuming only the indispensable minimum of prerequisites. The book also avoids
being a catalogue of the differences between different existing programming lan-
guages. The ideal (or reference) reader is one who knows one language (well) (for
example, Pascal, C, C++ or Java). It is better if they have had some exposure to
another language or paradigm. References to languages that are now obsolete have
also been avoided and code examples are rarely written in a specific programming
language. The text freely uses a sort of pseudo-language (whose concrete syntax
was inspired by C and Java) and seeks, in this way, to describe the most relevant
aspects of different languages.

Every so often, the boxes at the top of pages contain development of material or
a note on a basic concept or something specific about common languages (C, C++,
Java; ML and L1SP for functional languages; PROLOG for logic-programming lan-
guages). The material in boxes can almost always be omitted on a first reading.

Every chapter contains a short sequence of exercises which should be understood
as a way of demonstrating an understanding of the material. There are no truly
difficult exercises or any that require more than 10 minutes for their solution.

Chapter 3 (Foundations) deals with themes that are not usually encountered in
a book on programming languages. It is, however, natural, while discussing static
semantics and comparing languages, to ask what are the limits to syntactic analysis
of programs and whether what can be done in one language can also be done in an-
other. Rather than send the reader to another text, given the cultural and pragmatic
relevance of these questions, we decided to answer these questions directly. In an
informal but rigorous manner, in the space of a few pages, we present the undecid-
ability of the halting problem. We also show that all general purpose programming
languages express the same class of functions. This helps students who do not al-
ways have complete courses on foundations understand the principal results on the
limitations on computations.

As well as principles, the text also introduces the three principal programming
paradigms: object oriented (a theme that is already obligatory in computing), func-
tional and logic programming. The need to write an introductory text is the reason
for the exclusion of important themes, such as concurrency and scripting languages,
whose mastery represent important skills.



Introduction xi

Use of the text The text is first of all a university textbook, even if there is an
almost total absence of mathematical and formal prerequisites (this lack makes the
book suitable for personal study by the professional who wishes to deepen their
knowledge of the mechanisms that lie behind the languages they use). The choice
of themes and the presentation style were largely influenced by the experience of
teaching the content as part of the degree course in Computer Science in the Faculty
of Mathematical, Physical and Natural Sciences at the University of Bologna.

In our experience, a course on programming languages for 6 credits in the second
year of a 3-year degree course can cover most of the fundamental aspects covered
in the first ten chapters (say 4/5 of them) and, perhaps, including a brief outline of
one of the remaining paradigms. With increase in student maturity, the quantity of
material that can be presented will clearly increase. In a master’s degree course, the
material could also be completed by a treatment of compilation.

Acknowledgements Our thanks to Giorgio Levi goes beyond the fact that he had
the grace to write the Foreword. Both of us owe to him our first understanding of
the mechanisms that underpin programming languages. His teaching appears in this
book in a way that is anything but marginal.

Ugo Dal Lago drew the figures using METAPOST, Cinzia Di Giusto, Wilmer
Ricciotti, Francesco Spegni and Paolo Tacchella read and commented attentively
on the drafts of some chapters. The following people pointed out misprints and er-
rors: Irene Borra, Ferdinanda Camporesi, Marco Comini, Michele Filannino, Matteo
Friscini, Stefano Gardenghi, Guido Guizzunti, Giacomo Magisano, Flavio Marchi,
Fabrizio Massei, Jacopo Mauro, Maurizio Molle, Mirko Orlandelli, Marco Pedicini,
Andrea Rappini, Andrea Regoli, Fabiano Ridolfi, Giovanni Rosignoli, Giampiero
Travaglini, Fabrizio Giuseppe Ventola. We gladly acknowledge the support of the
Dipartimento di Scienze dell’Informazione of the Universita di Bologna towards the
English translation.

Maurizio Gabbrielli
Bologna

Simone Martini
Bologna



2 Springer
http://www.springer.com/978-1-84882-913-8

Programming Languages: Principles and Paradigms
Gabbrielli, M.; Martini, 5.

2010, XX 440 p., Softcover

ISBN: 278-1-84882-091 3-8



	Introduction
	Use of the text
	Acknowledgements




