Chapter 2
How to Describe a Programming Language

A programming language is an artificial formalism in which algorithms can be ex-
pressed. For all its artificiality, though, this formalism remains a language. Its study
can make good use of the many concepts and tools developed in the last century in
linguistics (which studies both natural and artificial languages). Without going into
great detail, this chapter poses the problem of what it means to “give” (define or un-
derstand) a programming language and which tools can be used in this undertaking.

2.1 Levels of Description

In a study which has now become a classic in linguistics, Morris [6] studied the
various levels at which a description of a language can occur. He identified three
major areas: grammar, semantics and pragmatics.

Grammar is that part of the description of the language which answers the ques-
tion: which phrases are correct? Once the alphabet of a language has been defined
as a first step (in the case of natural language, for example, the Latin alphabet of 22
or 26 letters, the Cyrillic alphabet, etc.), the lexical component, which uses this al-
phabet, identifies the sequence of symbols constituting the words (or tokens) of the
language defined. When alphabet and words have been defined, the syntax describes
which sequences of words constitute legal phrases. Syntax is therefore a relation be-
tween signs. Between all possible sequences of words (over a given alphabet), the
syntax chooses a subset of sequences to form phrases of the language proper.

UIn linguistics, obviously, things are more complicated. In addition to the lexical and the syntactic
levels, there is also a morphological level which is distinct from the two previous ones. At the
morphological level, the different forms assumed by words (or phrases) as a function of their
grammatical function are defined. For example in the lexicon (that is, the dictionary, the thesaurus
of the language in question), we find the word “bear” with the associated lexical value given by
the image of the animal that everybody knows. At the morphological level, on the other hand, the
word is the convertible into the root “bear” and the morpheme “-s” which signals the plural. The
natural language’s phonetic aspects are also present but they are of no interest to us here.

M. Gabbrielli, S. Martini, Programming Languages: Principles and Paradigms, 27
Undergraduate Topics in Computer Science,
DOI 10.1007/978-1-84882-914-5_2, © Springer-Verlag London Limited 2010

http://dx.doi.org/10.1007/978-1-84882-914-5_2

28 2 How to Describe a Programming Language

Semantics is that part of the description of the language which seeks to answer
the question “what does a correct phrase mean?” Semantics, therefore, attributes a
significance to every correct phrase. In the case of natural languages, the process of
attribution of meaning can be very complex; in the case of artificial languages the
situation is rather simpler. It is not difficult to assume, in this case, that semantics
is a relation between signs (correct sentences) and meanings (autonomous entities
existing independently of the signs that are used to describe them). For example,
the meaning of a certain program could be the mathematical function computed by
that program. The semantic description of that language will be constructed using
techniques allowing us, when given a program, to fix the function the program com-
putes.

It is at the third level that the principal actor makes its appearance on the scene,
the person who uses a certain language. Pragmatics is that part of a language de-
scription which asks itself “how do we use a meaningful sentence?”” Sentences with
the same meaning can be used in different ways by different users. Different linguis-
tic contexts can require the use of different sentences; some are more elegant, some
are antiquated, or more dialect-based than others. Understanding these linguistic
mechanisms is no less important than knowing the syntax and semantics.

In the case of programming languages, we can add a fourth level to the three
classical ones: the implementation level. Given that the languages that interest us
are procedural languages (that is, languages whose correct phrases specify actions),
it remains for us to describe “how to execute a correct sentence, in such a way that
we respect the semantics”. A knowledge of the semantics is, in general, enough for
the language user, but the software designer (and more importantly the language
designer) is also interested in the process with which operative phrases implement
the state under consideration. It is precisely this which is described by the language
implementation.

We can give a fairly rudimentary example which we hope will serve our pur-
poses. Let us consider the natural language used to express recipes in cooking. The
syntax determines the correct sentences with which a recipe is expressed. The se-
mantics is about explaining “what is” a recipe, independent of its (specific) execu-
tion. Pragmatics studies how a cook (“that cook™) interprets the various sentences of
the recipe. In the end, the implementation describes the way (where, and with what
ingredients) the kitchen recipe transforms into the dish that the semantics prescribes.

In the next sections, we analyse the role performed by the four levels when they
are applied to programming languages.

2.2 Grammar and Syntax

We have already said that the grammar of a language first establishes the alphabet
and lexicon. Then by means of a syntax, it defines those sequences of symbols corre-
sponding to well-formed phrases and sentences (or to “sentences” in short). Clearly,
at least from the viewpoint of natural language, the definition of the (finite) alphabet
is immediate. Even the lexicon can be defined, at least to a first approximation, in

2.2 Grammar and Syntax 29

a simple fashion. We will be content, for the time being, with a finite vocabulary;
we can simply list the words of interest to us. This is certainly what happens with
natural languages, given that dictionaries are finite volumes!?

How do we describe the syntax? In a natural language, it is the same natural
language which is used, in general, to describe its own syntax (classical examples
are grammar textbooks for various languages). Also a syntax for a programming
language is often described using natural language, particularly for the older lan-
guages. Natural language, though, often introduces ambiguity in its syntactic de-
scription and, in particular, it is of no use in the process of translating (compiling) a
program in a high-level language into another (generally, at a lower level) language.

Linguistics, on the other hand, through the work in the 1950s of the American
linguist Noam Chomsky, has developed techniques to describe syntactic phenom-
ena in a formal manner. This description uses formalisms designed specifically to
limit the ambiguity that is always present in natural language. These techniques,
known as generative grammar, are not of much use in describing the syntax of natu-
ral languages (which are too complex and highly sophisticated). Instead, they are a
fundamental tool for describing the syntax of programming languages (and particu-
larly their compilation, as we will briefly see in Sect. 2.4).

Example 2.1 We will describe a simple language. It is the language of palindromic
strings, composed of the symbols a and b.3 Let us therefore begin by fixing the
alphabet, A = {a, b}. We must now select, from all strings over A (that is finite
sequences of elements of A), the palindromic strings. The simplest way to do this is
to observe that there is a simple recursive definition of a palindromic string. Indeed,
we can say (this is the basis of the induction) that @ and b are palindromic strings.
If, then, s is any string that we know already to be palindromic, then so are asa and
bsb (this is the induction step).

It is not difficult to convince ourselves that this definition captures all and only
the palindromic strings of odd length over A. It remains to account for even-length
strings, such as abba. To include these as well, we add the fact that the empty string
(that is the string which contains no symbol from the alphabet) is also a palindromic
string to the base case of the inductive definition. Now our definition categorises all
and only the palindromic strings over the alphabet A. If a string really is a palin-
dromic string, for example aabaa, or abba, there exists a sequence of applications
of the inductive rule just mentioned which will construct it. On the other hand, if a
string is not a palindromic string (for example aabab), there is no way to construct
it inductively using the rules just introduced.

Context-Free Grammars, which we introduce in the next section, are a notation
for the concise and precise expression of recursive definitions of strings such as

2In programming languages, the lexicon can also be formed from an infinite set of words. We will
see below how this is possible.

3 A string is palindromic if it is identical to its mirror image. That is, the string is the same when

read from left to right or right to left. A famous example in Latin is, ignoring spaces, the riddle “in
girum imus nocte et consumimur igni”.

30 2 How to Describe a Programming Language

the one we have just seen. The inductive definition of palindromic strings can be
expressed in grammatical form as:

P —
P—a
P—b
P — aPa
P —DbPb

In these rules, P stands for “any palindromic string”, while the arrow — is read
as “can be”. The first three lines will be immediately recognised as the basis of the
inductive definition, while the last two form the induction step.

2.2.1 Context-Free Grammars

The example just given is an example of a context-free grammar, a fundamental
device for the description of programming languages. We begin by introducing a
little notation and terminology. Having fixed a finite (or denumerable) set A, which
we call the alphabet, we denote by A* the set of all finite strings over A (that is
finite length sequences of elements of A; the * operator is called Kleene'’s star). Let
us immediately observe that, according to the definition, the sequence of length zero
also belongs to A*—this is the empty string, denoted by €.

A formal language over the alphabet A is nothing more than a subset of A*.
A formal grammar serves to identify a certain subset of strings from all those possi-
ble over a given alphabet.*

Definition 2.1 (Context-Free Grammar) A context-free grammar is a quadruple
(NT, T, R, S) where:

1. NT is a finite set of symbols (non-terminal symbols, or variables, or syntactic
categories).

2. T is afinite set of symbols (terminal symbols).

3. R is a finite set of productions (or rules), each of which is composed of an ex-
pression of the form:

V-ow

where V (the head of the production) is a single non-terminal symbol and w (the
body) is a string composed of zero or more terminal or non-terminal symbols
(that is w is a string over T U NT).

“4In formal languages, a sequence of terminal symbols which appears in a language is usually called
a “word” of the language. We do not use this terminology; instead we speak of strings, to avoid
ambiguity with words and phrases of a language (natural or artificial), in the sense in which they
are normally understood.

2.2 Grammar and Syntax 31
4. S is an element of NT (the initial symbol).

According to this definition, therefore, the grammar in the example shown in
Example 2.1 is composed of the quadruple ({ P}, {a, b}, R, P), where R is the set
of productions used in the example.

Let us observe that, according to the definition, a production can have an empty
body, that is, it can be composed of the null symbol, or, more properly, can be
formed from the empty string, €. We will see in a later section how a given grammar
defines a language over the alphabet formed from its terminal symbols. Let us begin
however with an example.

Example 2.2 Let us see a simple grammar that describes arithmetic expressions
(over the operators +, *, —, both unary and binary). The atomic elements of these
expressions are simple identifiers formed from finite sequences of the symbols a
and b.

We define the grammar G = ({E, I}, {a,b, +, %, —, (,)}, R, E), where R is the
following set of productions:

E—11
.E—->FE+E
E—>ExE
.E—>F—F
.E— —F
.E— (E)

AN AW

7.1 > a
8.1—Db
9.1 >]a
10.1 — Ib

Unlike the grammar in Example 2.1, this one has more than one non-terminal sym-
bol corresponding, in an informal way, to an expression (E) or to an identifier (/).
Note, once more, how the productions are a synthetic way to express recursive def-
initions. In this case, we are dealing with two definitions (which have been graphi-
cally separated), of which one (the one for E') uses in its base case the non-terminal
symbol inductively defined using the other recursive definition.

BNF In the context of programming languages, context-free grammars were used
for the first time in the definition of the language Algol60. In the report that intro-
duced Algol60, the grammar that defines the language is described using a notation
that is slightly different from the one we have just introduced. This notation, (con-
sidered, among other things, to be usable with a reduced character set, that does
not include arrow, cursives, upper case, etc.) goes under the name of Backus Naur
normal form (BNF), named after two authoritative members of the Algol committee
(John Backus who had previously directed the Fortran project and had written the
compiler for it—the first high-level language, and Peter Naur). In BNF:

32 2 How to Describe a Programming Language

Fig. 2.1 A derivation of the E =3 ExE

string ab * (a +b) =1 I+ E
=10 Ib*x E
=7 abx E
=6 abx (E)

=, abx (E+ FE)
=1 abx (I +E)
=7 abx(a+ E)
=1 abx(a+1)
=g abx (a+Db)

il

e The arrow “—” is replaced by “::=".

e The non-terminal symbols are written between angle brackets (for example (Exp)
and (Ide) could be the two non-terminal symbols of the grammar of Example 2.2).

e Productions with the same head are grouped into a single block using vertical bar
(“]”) to separate the productions. In Example 2.2, the productions for E could
therefore be expressed as follows:

(E) m= (1) [(E) + (E) | (E) % (E) [(E) — (E) | =(E) | (E})).

Moreover, some notations mix symbols (for example, use of the vertical bar, the
arrow and non-terminal symbols written in italic upper case).

Derivations and languages A grammar inductively defines a set of strings. We
can make explicit the operative aspect of this inductive definition using the concept
of derivation.

Example 2.3 We can ensure that the string ab % (a + b) is correct according to
the grammar of Example 2.2, reading the productions as “rewriting rules”, and by
repeatedly applying them. We use a bigger arrow (“=>") to denote the operation of
string rewriting. We can then proceed as follows. We start with the initial symbol,
E, and rewrite it using a production (which we are allowed to select). Let us, for
example, use production (3), and we obtain the rewriting £ = E * E. Now we
concentrate on the right-hand side of this production. We have two E’s that can be
rewritten (expanded) independently of each other. Let us take the one on the left
and apply production (1) to obtain E % E = [% E. We can now choose whether we
expand [or E (or the other way round). Figure 2.1 shows the rewriting that we have
just started, developed until the string ab * (a + b) has been derived. The production
used is represented by each =5’ subscript.

We can capitalise on this example in the following definition.

Definition 2.2 (Derivation) Having fixed a grammar, G = (N7, T, R, S), and as-
signed two strings, v and w over NT U T, we say that w is immediately derived

2.2 Grammar and Syntax 33

Fig. 2.2 A derivation tree for E =3 ExE
the string ab x (a + b) =¢ E* (E)

=, Ex(E+E)
=1 Ex(E+1)
=3 Ex(E+b)
=1 Ex(I+b)
=7 Ex(a+Db)
=1 Ix(a+b)
=10 Ibx(a+b)
=7 abx(a+b)

from v (or: v is rewritten in a single step into w), if w is obtained from v by sub-
stituting the body of a production of R whose head is V for a non-terminal symbol,
V, in v. In this case, we will write v = w.

We say that w is derived from v (or: v is rewritten to w) and we write v =* w, if
there exists a finite (possibly empty) sequence of immediate derivations v = wo =
w|p == w.

Using the notation just introduced, and using the grammar for expressions that
we have used so far we can write, for example E * E =* ab * (a +). Particularly
interesting are those derivations where on the left of the =* symbol there is the
grammar’s initial symbol and on the right is a string solely composed of terminal
symbols. In a certain sense, these are maximal derivations which cannot be extended
(by rewriting a non-terminal) either on the left or right. Following the intuition that
has led us to the introduction of grammars, these derivations are the ones that give
us the correct strings as far as the grammar is concerned.

Definition 2.3 (Generated Language) The language generated by a grammar G =
(NT,T,R,S)istheset Z(G)={weT*|S=*w).

Note that this definition, in accordance with everything we said at the start of
Sect. 2.2.1, defines precisely a language over T*.

Derivation Trees The derivation of a string is a sequential process. In it, there are
steps that must be performed in a certain order. For example, in Fig. 2.1, it is clear
that the first = o must follow the first =>3 because production (10) rewrites the non-
terminal symbol I which does not exist in the initial string (which is composed of
only the initial symbol E) which is introduced by production (3). But there are some
steps whose order could be exchanged. In the derivation in Fig. 2.1, for example,
each time that it is necessary to rewrite a non-terminal symbol, the leftmost is always
chosen. We could imagine, on the other hand, concentrating first on the rightmost
non-terminal symbol, thereby obtaining the derivation shown in Fig. 2.2.

The two derivations that we have given for the string ab * (a +b) are, in a highly
intuitive way, equivalent. Both reconstruct the structure of the string in the same
way (in terms of non-terminal and terminal strings), while they differ only in the

34 2 How to Describe a Programming Language

Fig. 2.3 A derivation tree for E
the string ab x (a + b) / \
E * E
« E)

VAN

+

~— 1y

g —~—"1"

order with which the productions are applied. This fact is made explicit in Fig. 2.3
which represents the derivation of the string ab * (a 4+ b) in the form of a tree.

Definition 2.4 Given a grammar, G = (NT, T, R, S), a derivation tree (or parse
tree) is an ordered tree in which:

Each node is labelled with a symbol in NTU T U {€}.

The root is labelled with S.

Each interior node is labelled with a symbol in NT.

If a certain node has the label A € NT and its children are m1, ..., mj labelled
respectively with X1, ..., Xi, where X; e NTUT for all i € [1, k], then A —
X1 ... X is a production of R.

5. If anode has label €, then that node is the unique child. If A is its parent, A — €
is a production in R.

il e

It is easy to see that, a derivation tree can be obtained from any derivation. It is
enough to start at the root (labelled with the initial symbol) and successively adding
a level of children corresponding to the production used during the derivation. By
applying this procedure to the derivation of Fig. 2.1, the derivation tree of Fig. 2.3
is obtained. Let us now apply this construction procedure to the derivation tree in
Fig. 2.2. Again, the tree in Fig. 2.3 is obtained. The two derivations result in the
same tree, and this fact corresponds to the intuition that the two derivations were
substantially equivalent.

Derivation trees are one of the most important techniques in the analysis of pro-
gramming language syntax. The structure of the derivation tree indeed expresses,
by means of its subtrees, the logical structure that the grammar assigns to the string.

2.2 Grammar and Syntax 35

Trees

The concept of tree is of considerable importance in Computer Science and is also
used a great deal in common language (think of a genealogical tree, for example).
A tree is an information structure that can be defined in different ways and that exists
in different “spaces”. For our purposes, we are interested only in ordered, rooted
trees (or simply trees) which we can define as follows. A (rooted, ordered) tree is
a finite set of elements called nodes, such that if it is not empty, a particular node
is called the root and the remaining nodes, if they exist, are partitioned between the
elements of an (ordered) n-tuple (S, $2, ..., Sp), n > 0, where each S;, i € [1, N]
is a tree.

Intuitively, therefore, a tree allows us to group nodes into levels where, at level
0, we have the root, at level 1 we have the roots of the trees Si, >, ..., S, and so
on.

Another (equivalent) definition of tree is often used. It is probably more signif-
icant for the reader who is familiar with genealogical trees, botanical classifications,
taxonomies, etc. According to this definition, a tree is a particular case of a graph: a
(rooted, ordered) tree is therefore a pair T = (N, A), where N is a finite set of nodes
and A is a set of ordered pairs of nodes, called arcs, such that:

e The number of arcs is equal to one less than the number of nodes.

e T is connected, that is, for each pair of nodes, n, m € N, there exists a sequence of
distinct nodes ng, n1, ..., ng such that nop = n and ny = m and the pair (n;, n;+1)
is an arc, fori =0, ...,k — 1.

e A (unique) node, r, is said to be the rootr and the nodes are ordered by level
according to the following inductive definition. The root is at level O; if a node n
is at level i, and there exists the arc (n, m) € A then node m is at level i + 1.

e Given a node, n, the nodes m such that there exists an arc (n, m) € A are said to
be the children of n (and n is said to be their parent); for every node n € N, a
total order is established on the set of all the children of 7.

Using a curious mix of botanical, mathematical and “familiar” terms, nodes
with the same parent are said to be siblings while nodes without children are said to
be leaves. The root is the only node without a parent.

For example, the tree in Fig. 2.4 corresponds to the following derivation:

E=,E+E
=>3ExE+E
= IxE+E
=7axE+FE
=iaxl+ FE
=gaxb+ E
=iaxb+1
=7axb+a

36 2 How to Describe a Programming Language

Fig. 2.4 A derivation tree for

E
the stringaxb +a /
E

+ E
SN
E * E 1
o
1 1 a
|
a b
Fig. 2.5 Another derivation E
tree for the stringaxb 4 a / \
E * E
/N
1 E + E
o
a 1 1
|
b a

In the tree in Fig. 2.4, we can see that the subexpression a x b appears as a left child
of a sum. This expresses the fact that the string a xb + a must be interpreted as “first
multiply a by b and add the result to a”, given that in order to compute the sum, the
operand present in the left subtree is needed.

Ambiguity Let us consider the following derivation (again using the grammar of
Example 2.2):

E=3ExE
EPEY>
=7axFE
=saxE+ FE
=1ax]+E
=ga*xb+ E
=i1axb+/
=7axb+a

If we construct the corresponding derivation tree, we obtain the tree in Fig. 2.5.
Comparing the trees in Figs. 2.4 and 2.5, it can be seen that we have two different
trees producing the same string. Reading the leaves of the two trees from left to
right, in both cases, we obtain the string a x b 4 a. Let us observe, however, that
the two trees are radically different. The second assigns a structure to the same
string that is quite different (and therefore reveals a different precedence implicit in
the arithmetic operators). If we want to use derivation trees to describe the logical

2.2 Grammar and Syntax 37

structure of a string, we are in a bad position. The grammar of Example 2.2 is
incapable of assigning a unique structure to the string in question. According to
how the derivation is constructed, the precedence of the two arithmetic operators
differs. Let us now see a formal definition of these concepts.

First, let us be clear about what it means to read or visit the leaves of a tree
“from left to right”. Visiting a tree consists of following a path through the tree’s
nodes so that each node is visited exactly once. There are different ways to visit
nodes (depth-, breadth-first and symmetric), which, when applied to the same tree,
produce different sequences of nodes. If only the leaves are considered, however,
each and every one of these methods produces the same result for which we can use
the following definitions:

Definition 2.5 Let T = (N, A), be a non-empty, ordered tree with root r. The result
of the left-to-right traversal of T is the sequence of nodes (leaves) obtained by the
following recursive definition:

e If r has no children, the result of the traversal is r.

e If r has k children, my, ..., mg, let Ty, ..., Ty be the subtrees of T such that
T; has m; as its root (7; therefore contains m; and all of that part of 7" which is
underneath this node). The result of the traversal is the sequence of nodes obtained
by visiting T to T in turn, from left to right.

A this point, we can say what it means for a string to admit a derivation tree.

Definition 2.6 We say that a string of characters admits a derivation tree 7 if it is
the result of a left-to-right traversal of T'.

Finally, we can give the definition that interests us.

Definition 2.7 (Ambiguity) A grammar, G, is ambiguous if there exists at least one
string of .Z(G) which admits more than one derivation tree.

We remark that ambiguity comes not from the existence of many derivations for
the same string (a common and innocuous property) but from the fact that (at least)
one string has more than one derivation tree.

An ambiguous grammar is useless as description of a programming language
because it cannot be used to translate (compile) a program in a unique fashion.
Fortunately, given an ambiguous grammar it is often possible to transform it into
another, unambiguous, grammar that generates the same language.’ Techniques for
grammar disambiguation are outside the scope of this book. By way of example,
Fig. 2.6 shows an unambiguous grammar whose generated language coincides with
the one in Example 2.2.

SThere exist pathological cases of languages which are generated only by ambiguous grammars.
These languages have no relevance to programming languages.

38 2 How to Describe a Programming Language

Fig. 2.6 An unambiguous G =(E,T,A, I}, {a,b,+,% — ()}, R, E)
grammar for the language of

expressions E>T|T+E|T—E

T — A|AxT
A—T|—A|(E)
I —>alb|Ia|Ib

We have a grammar which interprets the structure of an expression according
to the usual concept of arithmetic operator precedence. Unary minus (“-”’) has the
highest precedence, followed by *, followed in their turn by + and binary — (which
have the same precedence). The grammar interprets, then, a sequence of operators
at the same level of precedence by association to the right. For example, the string
a+ b + a will be assigned the same structure as the string a + (b 4+ a). The absence
of ambiguity is paid for by increased complexity. There are more non-terminals and
the intuitive interpretation of the grammar is therefore more difficult.

The need to provide unambiguous grammars explains the contortions that appear
in the definitions of some programming languages. For example, Fig. 2.7 shows an
extract of the official grammar for Java’s conditional command (its if) (the non-
terminal symbols are printed in italic, while the terminal symbols in this extract are
if, else and brackets).

This grammar is interesting for two reasons. First, note that what are formally
considered single symbols (terminal or non-terminal) in context-free grammars are
here represented by words composed of a number of characters. For example, if
represents a single terminal symbol and, analogously, IfThenElseStatement repre-
sents a non-terminal symbol.

This happens because, in the definition of a programming language, it is prefer-
ential to use meaningful words (1 £, then, else) which can, up to certain limits,
suggest an intuitive meaning, rather than symbols which would be harder to under-
stand by the language user. In other words, as we will better see in the next chap-
ters, that the use of (meaningful) symbolic names definitely makes programming
easier. Analogously, for non-terminal symbols, they make the grammar easier to
understand. It is definitely better to use names such as Statement rather than single
symbols.

The second interesting aspect of the grammar is its complex nature. This com-
plexity is necessary to resolve the ambiguity of strings (programs) such as the one
exemplified by the following skeleton program:

if (expressionl) if (expression2) commandl;
else command?2;

Java, like a great many other programming languages allows conditional com-
mands both with an else branch and without it. When an if command without
else is combined with an if with an else branch (as in the case of the program
appearing above), it is necessary to determine which of the two 1ifs is the owner
of the single else. The grammar in Fig. 2.7 is an unambiguous one which makes

2.3 Contextual Syntactic Constraints 39

Statement ::= . ..| IfThenStatement | [fThenElseStatement |
StatementWithoutTrailingSubstatement
StatementWithoutTrailingSubstatement ::=...| Block | EmptyStatement |
ReturnStatement
StatementNoShortlf ::= .. .| StatementWithoutTrailingSubstatement |
IfThenElseStatementNoShortIf
IfThenStatement ::= i £ (Expression) Statement
IfThenElseStatement ::=
if (Expression) StatementNoShortlf else Statement
IfThenElseStatementNoShortlf ::=
if (Expression) StatementNoShortlf else StatementNoShortlf

Fig. 2.7 Grammar for Java conditional commands

“an else clause belong to the innermost if to which it might possibly belong”
(from the Java definition [3]). In simple words, the else is paired with the second
if (the one which tests expression?2). Intuitively, this happens because, once
an 1f command with an else is introduced by use of the non-terminal symbol
IfThenElseStatement, the command in the then branch will be unable to hold an i £
command without an else, as can be seen by inspection of the rules which define
the non-terminal symbol StatementNoShortlf.

2.3 Contextual Syntactic Constraints

The syntactic correctness of a phrase of a programming language sometimes de-
pends on the context in which that phrase occurs. Let us consider, for example,
the assignment I = R+3 ;. Assuming that the productions in the grammar that are
used permit the correct derivation of this string, it might be, though, incorrect at the
exact point in the program at which it occurs. For example, if the language requires
the declaration of variables, it is necessary for programs to contain the declarations
of T and R before the assignment. If, then, the language is typed, it would not accept
the assignment if the type of the expression R+3 is not compatible® with that of the
variable T.

Strings that are correct with respect to the grammar, therefore, can be legal only
in a given context. There are many examples of these contextual syntactic con-
straints:

e An identifier must be declared before use (Pascal, Java).
e The number of actual parameters to a function must be the same as the formal
parameters (C, Pascal, Java, etc.).

6 All these concepts will be introduced below. For now, an intuitive understanding of these concepts
will suffice.

40 2 How to Describe a Programming Language

e In the case of assignment, the type of an expression must be compatible with that

of the variable to which it is assigned (C, Pascal, Java, etc.).

Assignments to the control variable of a for loop are not permitted (Pascal).

Before using a variable, there must have been an assignment to it (Java).

e A method can be redefined (overridden) only by a method with the same signature
(Java) or with a compatible signature (Java$).

These are, to be sure, syntactic constraints. However, their contextual nature
makes it impossible to describe them using a context-free grammar (the name of this
class of grammars was chosen purpose). A book on formal languages is required to
go into detail on these issues; here, it suffices to note that there exist other types
of grammar, called contextual grammars.” These grammars permit the description
of cases such as this. These grammars are difficult to write, to process and, above
all, there are no automatic techniques for efficient generation of translators, such as
exist, on the other hand, for context-free grammars. This suggests, therefore, that
use of grammars should be limited to the non-contextual description of syntax and
then to express the additional contextual constraints using natural language or using
formal techniques such as transition systems (which we will see in Sect. 2.5 when
we consider semantics).

The term static semantic constraint is used in programming language jargon to
denote the contextual constraints that appear in the syntactic aspects of a language.
In the jargon, “syntax” in general means “describable using a context-free gram-
mar”, “static semantics” means “describable with verifiable contextual constraints
on a static basis using the program text”, while “dynamic semantics” (or simply
“semantics”) refers to everything that happens when a program is executed.

The distinction between context-free and context-dependent syntax (that is, static
semantics) is established precisely by the expressive power of context-free gram-
mars. The distinction between syntax and semantics is not always clear. Some cases
are clear. Let us assume, for example, that we have a language whose definition es-
tablishes that should a division by 0 happen during execution, the abstract machine
for the language must report it with an explicit error. This is clearly a dynamic se-
mantic constraint. But let us assume, now, that the definition of another language is
specified as follows:

A program is syntactically incorrect when a division by 0 can happen.

The program in Fig. 2.8 would be syntactically incorrect in this hypothetical lan-
guage because there exists a sequence of executions (those in which the read com-
mand assigns the value 0 to A) which causes division by zero. Does the constraint
that we have stated above (which certainly cannot be expressed in a free grammar)
belong to static or dynamic semantics? It is clear that it refers to a dynamic event

In extreme synthesis, in a contextual grammar, a production can take the form (which is more
general than in a context-free grammar) u Av — uwv, where u, v and w are strings over 7 U NT.
Fundamental to this production, the non-terminal symbol A can be rewritten to w only if it appears
in a certain context (the one described by u and v).

2.4 Compilers

Fig. 2.8 A program that can
cause a division by 0

Fig. 2.9 An abstract syntax
tree

int A, B;
read(A) ;
B = 10/A;

ComCond

ThenBranch

ElseBranch

41

RN | |

Exp Eq Exp /C om\ /C om\
Assn Exp

X Assn Exp X

0 1

(division by zero) but the constraint, to be meaningful (that is, that it really does
exclude some programs) would have to be detected statically (as we have done for
the simple program given above). A person can decide that it is syntactically incor-
rect without executing it but only from looking at the code and reasoning about it).
More important than its classification, is understanding whether we have a verifiable
constraint or not. Otherwise stated, is it really possible to implement an abstract ma-
chine for such a language, or does the very nature of the constraint imply that there
can exist no abstract machine which is able to check it in a static fashion for an
arbitrary program?

These are questions that we cannot immediately answer, even though they are
very important, because they concern what we can, and cannot, do with an ab-
stract machine. We will concern ourselves with these questions in the next chapter
(Chap. 3).

2.4 Compilers

The moment has arrived at which to see in outline how the syntactic description of a
language can be used automatically to translate a program. We know from Chap. 1
that such an automatic translator is called a compiler, whose general logical struc-
ture is shown in Fig. 2.10. It is characterised by a cascaded series of phases. The
various phases, starting with a string representing the program in the source lan-
guage, generate various internal intermediate representations until a string in the
object language is generated. Note that, as seen in the previous chapter, in this con-
text, “object language” does not necessarily equate to “machine code” or to “low-
level language”. It is merely a language towards which the translation is directed.
In what follows, we briefly describe the different phases of compilation. We do not
pretend to explain how to construct a compiler (see [1]), but just to fix some ideas
useful for our study of programming languages.

Lexical analysis The aim of lexical analysis is to read the symbols (characters)
forming the program sequentially from the input and to group these symbols into

42 2 How to Describe a Programming Language

Fig. 2.10 Organisation of a
compiler
Source Program

Lexical
analysis

Token list

Syntactic
analysis

Derivation tree
table

Semantic
analysis

Symbol

Augmented derivation tree

Generation of
intermediate form

Intermediate form

Optimisation

Optimised intermediate form
Code
generation

\
Object code

meaningful logical units, which we call tokens, (which are analogous, for our pro-
gramming language, to the words in the dictionary of a natural language). For ex-
ample, the lexical analyser of C or Java, when presented with the string x = 1
+ foo++; will produce 7 tokens: the identifier x, the assignment operator =, the
number 1, the addition operator +, the identifier foo, the auto increment operator
++ and finally the command termination token ;. Particularly important tokens are
the reserved words of the language (such as for, 1 £, else, etc.), operators, open
and close brackets (such as { and } in C or Java, but also those such as begin
and end in Pascal). Lexical analysis (or scanning) is a very simple operation which
scans the input text of the source program from left to right, taking a single pass
to recognise tokens. No check is yet made on the sequence of tokens such as, for
example, checking that brackets are correctly balanced. As discussed in detail in
the box, the technical tool used for lexical analysis is a particular class of generative
grammars (regular grammars). The use of a grammar to describe the elements of the
lexicon is due both to the necessity of efficiently recognising these elements, and to

2.4 Compilers 43

Abstract and Concrete Syntax

The grammar of a programming language defines the language as a set of strings.
This set of strings corresponds in a natural way to the set of their derivation trees.
These trees are much more interesting than the strings. First, they abstract from the
specific lexical characteristic of the tokens. It can also happen that lexically different
structures can result in the same tree. The tree depicted in Fig. 2.9 could correspond
to the Pascal string:

if A=0 then X:=0 else X:=1

or to the Java string:
if (A==0) X=0; else X=1;

As we have already repeatedly observed, derivation trees are interesting be-
cause they express the canonical structure that can be assigned to the string.

Not all derivation trees correspond to legal programs. We know that static se-
mantic analysis has the task of selecting those trees satisfying the contextual con-
straints of the language. The set of trees resulting from this process constitutes the
abstract syntax of language. This is a much more convenient way of thinking of a
language if we are interested in its manipulation (and not merely in writing correct
programs in it).

the fact that, unlike the case of natural language lexicons, lexicons for programming
languages can be formed from an infinite set of words and therefore a simple list,
so the one used in a normal dictionary is inadequate (think, for example, of the pos-
sibility of defining identifiers as sequences of characters of arbitrary length starting
with a particular letter).

Syntactic analysis Once the list of tokens has been constructed, the syntactic anal-
yser (or parser) seeks to construct a derivation tree for this list. This is, clearly, a
derivation tree in the grammar of the language. Each leaf of this tree must corre-
spond to a token from the list obtained by the scanner. Moreover, these leaves, read
from left to right, must form a correct phrase (or a sequence of terminal symbols) in
the language. We already know that such trees represent the logical structure of the
program which will be employed by the successive phases of compilation.

It can happen that the parser is unable to construct a derivation tree. This hap-
pens when the input string is not correct with reference to the language’s grammar.
In such a case, the parser reports the errors it has encountered and compilation is
aborted. In reality, lexical and syntactic analysis are interleaved in a more direct
fashion than appears from these notes (in particular, the two phases are not sequen-
tial but the scanner produces a token for each invocation of the parser); more details
can be obtained from one of the many texts on compilers.

44 2 How to Describe a Programming Language

Regular Grammars

The difference between lexical and syntactic analysis can be made precise using
a formal classification of grammars. If a grammar has all productions of the form
A — bB (orin the form A — Bb), where A and B are non-terminal symbols (B can
also be absent or coincide with A) and b is a single terminal symbol, the grammar
is said to be regular. In Example 2.2, the (sub-) grammar based on the non-terminal
symbol I is a regular grammar (while the subgrammar for E is not).

The expressive power of regular grammars is highly limited. In particular, using
a regular grammar, it is not possible to “count” an arbitrary number of characters.
As a consequence, it is not possible to express the balancing of syntactic structures
such as brackets using a regular grammar.

Technically, lexical analysis is the first phase of translation which checks that
the input string can be decomposed into tokens, each of which is described by a
regular grammar (in Example 2.2, lexical analysis would have recognised the se-
quences of a and b as instances of the non-terminal symbol 7).

Once the sequence of tokens has been obtained, syntactic analysis takes place
using a properly context-free grammar which uses the tokens produced by the pre-
ceding lexical analysis as its terminal symbols.

Semantic analysis The derivation tree (which represents the syntactic correctness
of the input string) is subjected to checks of the language’s various context-based
constraints. As we have seen, it is at this stage that declarations, types, number of
function parameters, etc., are processed. As these checks are performed, the deriva-
tion tree is augmented with the information derived from them and new structures
are generated. By way of an example, every token that corresponds to a variable
identifier will be associated with its type, the place of declaration and other useful
information (for example its scope, see Chap. 4). To avoid the useless duplication
of this information, it is, in general, collected into structures external to the deriva-
tion tree. Among these structures, the one in which information about identifiers
is collected is called the symbol table. The symbol table plays an essential role in
successive phases.

At the cost of boring the reader, so that we do not confuse it with what we call
semantics in Sect. 2.5, let us note that the term semantic analysis is an historical
relic and that it is concerned with context-based syntactic constraints.

Generation of intermediate forms An appropriate traversal of the augmented
derivation tree allows an initial phase of code generation. It is not yet possible to
generate code in the object language, given that there are many optimisations left to
do and they are independent of the specific object language. Moreover, a compiler
is often implemented to generate code for a whole series of object languages (for
example, machine code for different architectures), not just one. It is useful, there-
fore, to concentrate all choices relating to a specific language in a single phase and

2.5 Semantics 45

to generate code to an intermediate form, which is designed to be independent of
both the source and the object languages.

Code optimisation The code obtained from the preceding phases by repeatedly
traversing the derivation tree is fairly inefficient. There are many optimisations that
can be made before generating object code. Typical operations that can be performed
are:

e Removal of useless code (dead code removal). That is, removal of pieces of code
that can never be executed because there is no execution sequence that can reach
them.

e [n-line expansion of function calls. Some function (procedure) calls can be sub-
stituted by the body of the associated function, making execution faster. It also
makes other optimisations possible.

e Subexpression factorisation. Some programs compute the same value more than
once. If, and when, this fact is discovered by the compiler, the value of the com-
mon subexpression can be calculated once only and then stored.

e Loop optimisations. Iterations are the places where the biggest optimisations can
be performed. Among these, the most common consists of removing from inside
a loop the computation of subexpressions whose value remains constant during
different iterations.

Code generation Starting with optimised intermediate form, the final object code
is generated. There follows, in general, a last phase of optimisation which depends
upon the specific characteristics of the object language. In a compiler that generates
machine code, an important part of this last phase is register assignment (decisions
as to which variables should be stored in which processor registers). This is a choice
of enormous importance for the efficiency of the final program.

2.5 Semantics

As is intuitively to be expected, the description of the semantics of a programming
language is somewhat more complex than its syntactic description. This complexity
is due both to technical problems, as well to the need to mediate between two op-
posing issues: the need for exactness as well as for flexibility. As far as exactness is
concerned, a precise and unambiguous description is required of what must be ex-
pected from every syntactically correct construct so that every user knows a priori
(that is before program execution), and in a manner independent of the architecture,
what will happen at runtime. This search for exactness, however, must not preclude
different implementations of the same language, all of which are correct with respect
to the semantics. The semantic specification must therefore also be flexible, that is,
it must not anticipate choices that are to be made when the language is implemented
(and which therefore do not play a part in the definition of the language itself).

It would not be difficult to achieve exactness at the expense of flexibility. It is
enough to give the semantics of a language using a specific compiler on a specific

46 2 How to Describe a Programming Language

architecture. The official meaning of a program is given by its execution on this
architecture after translation using that compiler. Apart form the difficulty of speak-
ing in general about the semantics of the language’s constructs, this solution has no
flexibility. Although we have constructed what we claim to be a semantics, there ex-
ists only one implementation (the official one) and all the other implementations are
completely equivalent. But to what level of detail is the canonical implementation
normative? Is the computation time of a particular program part of its definition? Is
the reporting of errors? How can typically architecture-dependent input/output com-
mands be ported to a different architecture? When the implementation technology
of the physical machine changes, how is the semantics, which we have incautiously
defined in terms of a specific machine, affected?

One of the difficulties of semantic definition is really that of finding the happy
medium between exactness and flexibility, in such a way as to remove ambiguity,
still leaving room for implementation. This situation suggests using formal methods
to describe the semantics. Methods of this kind have existed for a long time for the
artificial languages of mathematical logic and they have been adapted by computer
scientists for their own ends. Yet, some semantic phenomena make formal descrip-
tion complex and not easily usable by anyone who does not have the appropriate
skills. It is for this reason that the majority of official programming language def-
initions use natural language for their semantic description. This does not detract
from the fact that formal methods for semantics are very often used in the prepara-
tory phases of the design of a programming language, or to describe some of its
particular characteristics, where it is paramount to avoid ambiguity at the cost of
simplicity.

Formal methods for semantics divide into two main families: denotational and
operational semantics.® Denotational semantics is the application to programming
languages of techniques developed for the semantics of logico-mathematical lan-
guages. The meaning of a program is given by a function which expresses the in-
put/output behaviour of the program itself. The domain and codomain of this func-
tion are suitable mathematical structures, such as the environment and the memory
(store), that are internal to the language. Refined mathematical techniques (continu-
ity, fixed points, etc.) allow the appropriate treatment of phenomena such as iteration
and recursion (see [8]).

In the operational approach, on the other hand, there are no external entities (for
example, functions) associated with language constructs. Using appropriate meth-
ods, an operational semantics specifies the behaviour of the abstract machine. That
is, it formally defines the interpreter, making reference to an abstract formalism at a
much lower level. The various operational techniques differ (sometimes profoundly)
in their choice of formalism; some semantics use formal automata, others use sys-
tems of logico-mathematical rules, yet others prefer transition systems to specify
the state transformations induced by a program.

8For completeness, we should also talk about algebraic and axiomatic semantics, but simplicity
and conciseness require us to ignore them.

2.5 Semantics 47

Num =:=1|2|3]...
Var =X X2 X3]...

AExp ::= Num | Var | (AExp + AExp) | (AExp — AExp)
BExp ::=tt | ff | (AExp == AExp) | =BExp | (BExp A BExp)

Com ::=skip | Var := AExp | Com; Com |
if BExp then Com else Com | while BExp do Com

Fig. 2.11 Syntax of a simple imperative language

This is not a book in which an exhaustive treatment of these semantic techniques
can be given. We content ourselves with a simple example of techniques based on
transition systems to give a semantics for a rudimentary imperative language. This
technique, called SOS (Structured Operational Semantics, [7]), is highly versatile
and has been effectively used in giving the semantics to some languages including
Standard ML (an influential functional language).

Figure 2.11 shows the grammar of a simple language. For reasons of readability
(and so that we can obtain a concise semantics), we have a grammar with infinite
productions for the Num and Var non-terminal symbols. The explicit presence of
brackets around each binary operator application eliminates possible problems of
ambiguity.

We need to introduce some notation. We will use n to denote an arbitrary Num
(numeric constant); using X, we will denote an arbitrary Var (variable). We write a
for an arbitrary AExp (arithmetic expression). We use b to denote an arbitrary BExp
(boolean expression, where tt and ff denote the values true and false, respectively).
We write ¢ for arbitrary Comm (commands). We use, when needed, subscripts to
distinguish between objects of the same syntactic category (for example, we will
write ap, a», etc., for AExps).

State The semantics of a command in our language uses a simple memory model
which stores values of Var. In this model, a state is a finite sequence of pairs of
the form (X, n) which we can read as “in the current state, the variable X has the
value n” (in our little language, the value will always be an integer but we can easily
imagine more complex situations). Given a command c (that is a derivation tree
that is correct according to the grammar in Fig. 2.11), its reference state is given by
a sequence of pairs which includes all Vars which are named in ¢. We denote an
arbitrary state by o or t, with or without subscripts.

We need to define some operations on states: modification of an existing state
and the retrieval of a variable’s value in the current state. To this end, given a state,
o, a Var X and a value v, we write o[X < v] to denote a new state that is the same
as o but differs from it by associating X with the value v (and thereby losing any
previous association to X). Given a state, o, and a variable, X, we write o (X) for
the value that o associates with X; this value is undefined if X does not appear in
the domain of o (o is therefore a partial function).

48 2 How to Describe a Programming Language

Example 2.4 Let us fix 0 = [(X, 3), (Y,5)], we have o[X < 7] =[(X,7), (Y, 5)].
We also have o (Y) =5 and o[X < 7](X) = 7; o (W) is undefined.

Transitions Structured operational semantics can be seen as an elegant way of
defining the functioning of an abstract machine without going into any details about
its implementation.” This functioning is expressed in terms of the elementary com-
putational steps of the abstract machine. The formal way in which structured oper-
ational semantics defines the meaning of a program, c, is in terms of a transition
which expresses a step in the transformation (of the state and/or of the program
itself) induced by the execution of the command. The simplest form of transition
is:

(c,o0) >,

where c is a command, o the starting state and t the terminal state. The interpreta-
tion that we give to this notation is that if we start the execution of c in the state o,
the execution terminates (in a single step) with state t. For example, the transition
which defines the skip command is

(skip, o) — 0.

It can be seen that we have a command that does nothing. Starting in any state,
o, skip terminates leaving the state unchanged.

In more complex cases, a terminal situation will be reached not in a single large
step, but rather in many little steps which progressively transform the state (starting
with ¢); the command, c, is progressively executed a part at a time until the whole
has been “consumed”. These little steps are expressed by transitions of the form:

(c,o)— (', d').
For example, one of the transitions which define the conditional command will be:
(if tt then c; else ¢y, 0) — (c1,0),

This means that if the boolean condition is true, the command in the then branch
must be executed. Some transitions, finally, are conditional: if some command, ¢y,
has a transition, then the command ¢ has another transition. Conditional transitions
take the form of a rule, expressed as a fraction:

(c1,01) = (c],00) {c2,00) = (¢}, 03)

(c,0) — (c',0")

We read this rule in the following way. If the command, c1, starting in state o7,
can perform a computational step that transforms itself into command ¢} in state

9Using terminology which we will use again in the final chapters of this book, we can say that it is
a declarative description of the language’s abstract machine.

2.5 Semantics 49

(X,0) = (0(X),0)

((n+m),0)— (p,o) ((n—m),0)— (p,o)
where p=n+m where p=n—men>m
(a1, 0) —> {d',0) (a2, 0) = (a",0)

((a1 +az),0) = (@' +az),0) ((a1 +a2),0) = ((a1 +a"),0)

(a1,0) —> (d', o) (a2,0) > (a",0)

((a1 —a2),0) = ((@' —az),0) ((a1 —a2),0) = ((a1 —a"), o)

Fig. 2.12 Semantics of arithmetic expressions

oy, and if the command c;, starting in o7, can perform a computational step and
transform itself into the command c’2 in state 02’, then the command, c, starting in
the state o can perform a computational step and transform itself into the command
¢’ in state o’. It is clear that a specific rule will express a number of meaningful
relationships between c, ¢ and ¢, (and their respective states). In general, ¢1 and c¢;
will be subcommands of ¢.!0

Expression semantics Figure 2.12 shows the rules for the semantics of arithmetic
expressions. The first three rules are terminal rules (that is, the computation to the
right of the arrow is in a form to which no more transitions can be applied). In order
of presentation, they define the semantics of a variable, of addition in the case in
which both of the summands are constants, of subtraction in the case in which both
its arguments are constants and its result is a natural number. Note that no semantics
is given for expressions such as 5 — 7. The second group of four rules is formed
of conditional rules. The first pair defines the semantics of sums and expresses the
fact that to calculate the value of a sum, it is necessary first to evaluate its two
arguments separately. Note how the semantics specifies no order of evaluation for
the arguments of an addition. Subtraction is handled in a similar fashion.

Figure 2.13 shows the semantics of logical expressions and adopts the same ideas
as for arithmetic expressions. Note that in this figure, bv denotes a boolean value (tt
or ff).

Command semantics It can be seen how the state, o, always remains unaltered
during the evaluation of an expression and how it is only used to obtain the value
of a variable. This changes for the semantics of commands as shown in Fig. 2.14.
Note how the rules in the Figure are essentially of two types: those which, for every
command, express the actual computational step for that command (this holds for
rules (c1), (c2), (c4), (c6), (c7) and (c9)), as well as those which serve just to make

107¢ will not have escaped the attentive reader that what we have called conditional rules are, in
reality, inductive rules forming part of the definition of transition relations.

50 2 How to Describe a Programming Language

(n==m), o) — (tt, o) (n==m),o0) — {ff, o)
ifn=m ifn#m

((bvy A bvy),0) — (bv, o)
where bv is the and of bv; and bv,

(—tt, o) — (ff, o) (—ff, o) — (tt, o)
(a1, 0) = (d',0) (az,0) = (d",0)

(a1 == @), 0) — ((@' == @), 0) ((a1 == ap),0) — ((a1 ==a"), 0)
(b1,0) = (b, 0) (by,0) — (", 0)

(b1 Ab2), o) = (B Ab2), 0) (b1 Ab2), o) = (b1 AD"), 0)

(b,o) — (b',0)
(=b,0) — (—b,0)

Fig. 2.13 Semantics of boolean expressions

(skip, o) > o (cl)

(a,0) = (a’,0)
(X:=n,0)—>o[X<«<n] (2) X:=a,0)—> (X:=d,0)

(c3)

(c1,0) =o' () (c1,0) = (c],0")
C
(c15¢2,0) = {c2,0) (c1;¢2,0) = (c}sc2,07)

(c5)

(if tt then ¢ else ¢y, 0) — {(c1,0) (c6)
(if ff then ¢ else ¢y, 0) — {(c2,0) (c7)

(b,o)— (b',0)
(if b then c; else ¢p, o) — (if b’ then c; else ¢;, o)

(c8)

(while b do ¢, o) — (if b then c; while b do c else skip, o) (c9)

Fig. 2.14 Semantics of commands

the computation of a subcommand (or of a subexpression) progress. The semantic
description of our language is now complete.

Computations A computation is a sequence of transitions which cannot be ex-
tended by another transition. Moreover, each transformation in a computation must
be described by some rule.

2.5 Semantics 51

Example 2.5 Let us consider the following program, c:
X :=1; while (X ==0)do X :=(X—-1)

Let us fix a state which includes all the variables mentioned in the program, for
example, o = [(X, 6)]. We can calculate the computation of ¢ in o as follows. To
abbreviate the notation, we write ¢’ to denote the iterative command while —(X ==
0) do X := (X — 1). It is not difficult to see that the computation generated by c is
the following:

—
)
\v

if =(X ==0) then X := (X — 1); ¢’ else skip, o[X <« 0])
if =(0 ==0) then X := (X — 1); ¢’ else skip, o[X <« 0])
if —tt then X := (X — 1); ¢’ else skip, o [X < 0])

if ff then X := (X — 1); ¢’ else skip, o [X <« 0])

— (sKkip, o[X <« 0])

—o[X < 0]

— (,o[X < 1])

— (if =(X ==0) then X := (X — 1); ¢’ else skip, o[X « 1])
— (if =(1 ==0) then X := (X — 1); ¢/ else skip, o[X « 1])
— (if —ff then X := (X — 1); ¢’ else skip, o[X < 1])

— (if tt then X := (X — 1); ¢’ else skip, o[X « 1])

- (X =X-1);c,0[X < 1]

— (X —(1—1) c,o[X < 1])

- (X:=0;c,0[X < 1])

— (c/,0[X < 0])

-

-

— (if

—

The computation in the example just discussed is a terminated computation, in
the sense that, after a certain number of transitions, a situation is reached in which
no other transition is possible. It can be seen that, moreover, the definition of com-
putation that we have given above does not require that a computation be finite but
only that it cannot be extended. There is, therefore, the possibility that there are
infinite computations, as the following example demonstrates:

Example 2.6 Consider the following program, d:
X :=1; while (X == 1) do skip

Assume we are in the state T = [(X, 0)]. Let d’ be the command while (X == 1)
do skip. We have:

(d, 1)

- (d,T[X < 1])

— (if (X ==1) then skip ; d’ else skip, T[X <« 1])
— (if (1 ==1) then skip ; d’ else skip, T[X <« 1])

52 2 How to Describe a Programming Language

— (if tt then skip ; d’ else skip, T[X < 1])
— (skip;d’, t[X < 1])
— (', t[X < 1])

There exist, therefore, two fundamentally different types of computations: finite
ones (also called terminating) and divergent ones (that is, infinite ones which corre-
spond, intuitively, to looping programs).

2.6 Pragmatics

If a precise description of the syntax and semantics of a programming language is
(and must be) given, the same is not true of the pragmatics of the language. Let
us recall that, for our purposes, the pragmatics of a language answers the question
“what is the purpose of this construct?” or “what use is a certain command?” It is
clear, therefore, that the pragmatics of a programming language is not established
once and for all during its definition (that is, the definition of its syntax and seman-
tics). On the contrary, it evolves with the use of the language. All suggestions about
programming style are part of pragmatics. For example, there is the principle that
jumps (gotos) should be avoided at all possible times. The choice of the most ap-
propriate mode for passing parameters to a function is also a pragmatic question, as
is the choice between bounded and unbounded iteration.

In a sense, the pragmatics of a programming language coincides with software
engineering (the discipline which studies methods for the design and production of
software) and is not much studied there. For many other aspects, on the other hand,
clarifying the purpose and use of constructs is an essential part of the study of a
programming language. It is for this that we will often refer below to pragmatics,
possibly without making it explicit that we are so doing.

2.7 Implementation

The final level of programming language description will not be considered in this
book in details. As we amply saw in the previous chapter, implementing a language
means writing a compiler for it, as well as implementing an abstract machine for
the compiler’s object language; or to write an interpreter and implement the abstract
machine in the language in which the interpreter is written. Alternatively, as hap-
pens in practice, a mix of both techniques is employed. Once more, this is not a
book in which we can be exhaustive about these matters. But it would not be correct
to present the constructions of programming languages without some reference to
their implementation cost. Even without specifying the set of constructions in an in-
terpreter, for each construct, we should always ask: “How is it to be implemented?”,
“At what cost?” The answer to these questions will also help us better to understand

2.8 Chapter Summary 53

the linguistic aspect (because a certain construct is formed in a certain way), as well
as the pragmatic one (how can a certain construct best be used).

2.8 Chapter Summary

The chapter introduced the fundamental techniques for the description and imple-
mentation of a programming language.

e The distinction between syntax, semantics, pragmatics and implementation. Each
of these disciplines describes a crucial aspect of the language.

e Context-free grammars. A formal method essential for the definition of a lan-
guage’s syntax.

e Derivation trees and ambiguity. Derivation trees represent the logical structure
of a string. The existence of a unique tree for every string permits a canonical
interpretation to be assigned to it.

e Static semantics. Not all syntactic aspects of a language are describable using
grammars: Static semantic checks are concerned with eliminating from legal pro-
grams those strings which, though correct as far as the grammar is concerned, do
not respect additional contextual constraints.

e The organisation of a compiler.

e Structured operational semantics. A formal method for describing the semantics
of programming languages based on transition systems.

2.9 Bibliographical Notes

The literature on the topics of this chapter is enormous, even considering only in-
troductory material. We limit ourselves to citing [4], the latest edition of a classic
text on formal languages used by generations of students. For compiler-construction
methods, we refer the reader to [1] and [2]. An introduction to operational seman-
tics 1s [5], which also deals with denotational semantics; at a more advanced level,
see [8], which also deals with denotational semantics.

2.10 Exercises

1. Consider the grammar G”, obtained from that in Fig. 2.6 by substituting the
productions for the non-terminal symbol 7 with the following:

T— A|ExT.

Show that G” is ambiguous.
2. Give the obvious ambiguous grammar for the conditional command if, then,
else.

54

3

10.

2 How to Describe a Programming Language

. Using the grammar fragment in Fig. 2.7 as a reference point, construct a deriva-

tion tree for the string

if (expressionl) if (expression2) commandl
else command2

Assume that the following derivations exist:
Expression =* expressionl,

Expression =* expression2,
StatementWithoutTrailingSubstatement =* command,
StatementWithoutTrailingSubstatement =* command.

Define a grammar that will generate all the pairs of balanced curly brackets
(braces).

. Define a grammar that generates the language {a"b™ | n, m > 1} using only pro-

ductions of the form N — tM or N — t, where N and M are any non-terminal
symbol and ¢ is any terminal symbol. Try to give an intuitive explanation of why
there exists no grammar with these characteristics which generates the language
{a"b" |n > 1}.

Moditfy the rule of Fig. 2.12 so as to describe a right-to-left evaluation of arith-
metic expressions.

. Calculate the computation of the command

X :=1; while (X ==3)do X :=(X +1)

starting with a chosen state.

. In Example 2.5, the last transition has as its right member only a state (and not

a pair composed of a command and a state). Is this always the case in a finite
computation? (Hint: consider the command X := 0; X := (X — 1), starting with
any state whatsoever which includes X.)

State what the computation corresponding to the following command is:

X=1 X=X-1); X=X-1); X:=5

Considering Exercises 8 and 9, state a criterion which allows the division of
finite computations into those which are correct and those which terminate be-
cause of an error.

References

1.

2.

3.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, 1988.

A. W. Appel. Modern Compiler Implementation in Java. Cambridge University Press, Cam-
bridge, 1998.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification, 3/E. Addison
Wesley, Reading, 2005. Available online at http://java.sun.com/docs/books/jls/index.html.

http://java.sun.com/docs/books/jls/index.html

References 55

4. J. E. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, 2001.

5. C. Laneve. La Descrizione Operazionale dei Linguaggi di Programmazione. Franco Angeli,
Milano, 1998 (in Italian).

6. C. W. Morris. Foundations of the theory of signs. In Writings on the Theory of Signs, pages
17-74. Mouton, The Hague, 1938.

7. G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
University of Aarhus, 1981.

8. G. Winskel. The Formal Semantics of Programming Languages. MIT Press, Cambridge, 1993.

2 Springer
http://www.springer.com/978-1-84882-913-8

Programming Languages: Principles and Paradigms
Gabbrielli, M.; Martini, 5.

2010, XX 440 p., Softcover

ISBN: 278-1-84882-091 3-8

	How to Describe a Programming Language
	Levels of Description
	Grammar and Syntax
	Context-Free Grammars
	BNF
	Derivations and languages
	Derivation Trees
	Ambiguity

	Contextual Syntactic Constraints
	Compilers
	Lexical analysis
	Syntactic analysis
	Semantic analysis
	Generation of intermediate forms
	Code optimisation
	Code generation

	Semantics
	State
	Transitions
	Expression semantics
	Command semantics
	Computations

	Pragmatics
	Implementation
	Chapter Summary
	Bibliographical Notes
	Exercises
	References

