Preface

Physikalische Mathematik Physical Mathematics
Die meisten Most
Mathematiker Mathematicians
glauben. believe.
Aber alle But all
Physiker Physicists
wissen. know.

The marriage between gauge theory and the geometry of fiber bundles from
the sometime warring tribes of physics and mathematics is now over thirty
years old. The marriage brokers were none other than Chern and Simons.
The 1978 paper by Wu and Yang can be regarded as the announcement of
this union. It has led to many wonderful offspring. The theories of Donaldson,
Chern—Simons, Floer—Fukaya, Seiberg—Witten, and TQFT are just some of
the more famous members of their extended family. Quantum groups, CFT,
supersymmetry, string theory and gravity also have close ties with this family.
In this book we will discuss some topics related to the areas mentioned above
where the interaction of physical and mathematical theories has led to new
points of view and new results in mathematics. The area where this is most
evident is that of geometric topology of low-dimensional manifolds. I coined
the term “physical mathematics” to describe this new and fast growing area
of research and used it in the title of my paper [265]. A very nice discussion
of this term is given in Zeidler’s book on quantum field theory [417], which is
the first volume of a six-volume work that he has undertaken (see also [418]).

Historically, mathematics and physics were part of what was generally
called “natural philosophy.” The intersection of ideas from different areas of
natural philosophy was quite common. Perhaps the earliest example of this is
to be found in the work of Kepler. Kepler’s laws of planetary motion caused a
major sensation when they were announced. Newton’s theory of gravitation
and his development of the calculus were the direct result of his successful
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attempt to provide a mathematical explanation of Kepler’s laws. We may
consider this the beginning of modern mathematical physics or, in the spirit
of this book, physical mathematics.

Kepler was an extraordinary observer of nature. His observations of
snowflakes, honeycombs, and the packing of seeds in various fruits led him
to his lesser known study of the sphere packing problem. For dimensions
1, 2, and 3 he found the answers to be 2, 6, and 12 respectively. The lat-
tice structures on these spaces played a crucial role in Kepler’s “proof.” The
three-dimensional problem came to be known as Kepler’s conjecture. The
slow progress in the solution of this problem led John Milnor to remark that
here was a problem that nobody could solve but its answer was known to
every schoolboy. It was only solved in 1998 by Tom Hales and the problem
in higher dimensions is still wide open. It was the study of the symmetries
of a special lattice (the 24-dimensional Leech lattice) that led John Conway
to the discovery of his sporadic simple groups. Conway’s groups and other
sporadic simple groups are closely related to the automorphisms of lattices
and algebras. The study of representations of the largest of these sporadic
groups (called the Friendly Giant or Fischer—Griess Mounster) has led to the
creation of a new field of mathematics called vertex algebras. They turn out
to be closely related to the chiral algebras in conformal field theory.

It is well known that physical theories use the language of mathematics
for their formulation. However, the original formulation of a physical law
often does not reveal its appropriate mathematical context. Indeed, the rele-
vant mathematical context may not even exist when the physical law is first
formulated. The most well known example of this is Maxwell’s equations,
which were formulated as a system of partial differential equations for the
electric and magnetic fields. Their formulation in terms of the electromag-
netic field tensor came later, when Minkowski space and the theory of special
relativity were introduced. The classical theory of gravitation as developed
by Newton offers another example of a theory that found later mathematical
expression as a first approximation in Einstein’s work on gravitation. Clas-
sical Riemannian geometry played a fundamental role in Einstein’s general
theory of relativity, and the search for a unified theory of electromagnetism
and gravitation led to continued interest in geometrical methods for some
time.

However, communication between physicists and mathematicians has been
rather sporadic. Indeed, one group has sometimes developed essentially the
same ideas as the other without being aware of the other’s work. A recent
example of this missed opportunity (see [115] for other examples) for commu-
nication is the development of Yang—Mills theory in physics and the theory
of connections in a fiber bundle in mathematics. Attempts to understand the
precise relationship between these theories has led to a great deal of research
by mathematicians and physicists. The problems posed and the methods of
solution used by each have led to significant contributions towards better
mutual understanding of the problems and the methods of the other. For
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example, the solution of the positive mass conjecture in gravitation was ob-
tained as a result of the mathematical work by Schoen and Yau [339]. Yau’s
solution of the Calabi conjecture in differential geometry led to the defini-
tion of Calabi—Yau manifolds. Manifolds are useful as models in superstring
compactification in string theory.

A complete solution for a class of Yang—Mills instantons (the Euclidean
BPST instantons) was obtained by using methods from differential geometry
by Atiyah, Drinfeld, Hitchin, and Manin (see [19]). This result is an example
of a result in mathematical physics. Donaldson turned this result around and
studied the topology of the moduli space of BPST instantons. He found a
surprising application of this to the study of the topology of four-dimensional
manifolds. The first announcement of his results [106] stunned the mathemat-
ical community. When combined with the work of Freedman [136,137] one of
its implications, the existence of exotic R* spaces, was a surprising enough
piece of mathematics to get into the New York Times. Since then Donaldson
and other mathematicians have found many surprising applications of Freed-
man’s work and have developed a whole area of mathematics, which may
be called gauge-theoretic mathematics. In a series of papers, Witten has
proposed new geometrical and topological interpretations of physical quanti-
ties arising in such diverse areas as supersymmetry, conformal and quantum
field theories, and string theories. Several of these ideas have led to new in-
sights into old mathematical structures and some have led to new structures.
We can regard the work of Donaldson and Witten as belonging to physical
mathematics.

Scientists often wonder about the “unreasonable effectiveness of mathe-
matics in the natural sciences.” In his famous article [402] Wigner writes:

The first point is that the enormous usefulness of mathematics in the
natural sciences is something bordering on the mysterious and that
there is no rational explanation for it. Second, it is just this uncanny use-
fulness of mathematical concepts that raises the question of the unique-
ness of our physical theories.

It now seems that mathematicians have received an unreasonably effective
(and even mysterious) gift of classical and quantum field theories from physics
and that other gifts continue to arrive with exciting mathematical applica-
tions.

Associated to the Yang—Mills equations by coupling to the Higgs field are
the Yang—Mills—Higgs equations. If the gauge group is non-abelian then the
Yang—Mills—Higgs equations admit smooth, static solutions with finite action.
These equations with the gauge group Ge,, = U(1) x SU(2) play a fundamen-
tal role in the unified theory of electromagnetic and weak interactions (also
called the electroweak theory), developed in major part by Glashow [155],
Salam [333], and Weinberg [397]. The subgroup of Ge,, corresponding to U(1)
gives rise to the electromagnetic field, while the force of weak interaction cor-
responds to the SU(2) subgroup of Ge,. The electroweak theory predicted
the existence of massive vector particles (the intermediate bosons W+, W,
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and Z°) corresponding to the various components of the gauge potential,
which mediate the weak interactions at short distances. The experimental
verification of these predictions was an important factor in the renewed in-
terest in gauge theories as providing a suitable model for the unification of
fundamental forces of nature. Soon thereafter a theory was proposed to unify
the electromagnetic, weak and strong interactions by adjoining the group
SU(3) of quantum chromodynamics to the gauge group of the electroweak
theory. The resulting theory is called the standard model. It has had great
success in describing the known fundamental particles and their interactions.
An essential feature of the standard model is symmetry breaking. It requires
the introduction of the Higgs field. The corresponding Higgs particle is as yet
unobserved. Unified theory including the standard model and the fourth fun-
damental force, gravity, is still a distant dream. It seems that further progress
may depend on a better understanding of the mathematical foundations of
these theories.

The gulf between mathematics and physics widened during the first half of
the twentieth century. The languages used by the two groups also diverged to
the extent that experts in one group had difficulty understanding the work of
those in the other. Perhaps the classic example of this is the following excerpt
from an interview of Dirac by an American reporter during Dirac’s visit to
Chicago.

Reporter: T have been told that few people understand your work. Is
there anyone that you do not understand?

Dirac: Yes.

Reporter: Could you please tell me the name of that person?
Dirac: Weyl.

Dirac’s opinion was shared by most physicists. The following remark by Yang
made at the Stoney Brook Festschrift honoring him illustrates this: Most
physicists had a copy of Hermann Weyl’s “Gruppentheorie und Quanten-
mechanik” in their study, but few had read it.

On the mathematical side the great emphasis on generality and abstraction
driven largely by the work of the Bourbaki group and its followers further
widened the gulf between mathematics and science. Most of them viewed the
separation of mathematics and science as a sign of maturity for mathematics:
It was becoming an independent field of knowledge. In fact, Dieudonné (one
of the founders of the Bourbaki group) expressed the following thoughts in
[99]:

The nay-sayers who predicted that mathematics will be doomed by its
separation from science have been proven wrong. In the sixty years or so
after early 1900s, mathematics has made great progress, most of which
has little to do with physical applications. The one exception is the
theory of distributions by Laurent Schwartz, which was motivated by
Dirac’s work in quantum theory.
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These statements are often quoted to show that mathematicians had little in-
terest in talking to scientists. However, in the same article Dieudonné writes:

I do not intend to say that close contact with other fields, such as
theoretical physics, is not beneficial to all parties concerned.

He did not live to see such close contact and dialogue between physicists and
mathematicians and to observe that it has been far more beneficial to the
mathematicians than to the physicists in the last quarter century.

Gauss called mathematics the queen of sciences. It is well known that
mathematics is indispensable in the study of the sciences. Mathematicians
often gloat over this. For example, Atiyah has said that he and other math-
ematicians were very happy to help physicists solve the pseudoparticle (now
called the Euclidean instanton) problem. His student, Donaldson, was not
happy. He wanted to study the geometry and topology of the moduli space
of instantons on a 4-manifold M and to find out what information it might
provide on the topology of M. Donaldson’s work led to totally unexpected
results about the topology of M and made gauge theory an important tool
for studying low-dimensional topology. At about the same time, the famous
physicist Ed Witten was using ideas and techniques from theoretical physics
to provide new results and new ways of understanding old ones in mathemat-
ics. It is this work that ushered in the study of what we have called “physical
mathematics.”

Nature is the ultimate arbiter in science. Predictions of any theory have to
be tested against experimental observations before it can be called a physical
theory. A theory that makes wrong predictions or no predictions at all must
be regarded as just a toy model or a proposal for a possible theory. An ap-
pealing (or beautiful) formulation is a desirable feature of the theory, but it
cannot sustain the theory without experimental verification. The equations
of Yang—Mills gauge theory provide a natural generalization of Maxwell’s
equations. They have a simple and elegant formulation. However, the the-
ory predicted massless bosons, which have never been observed. Yang has
said that this was the reason he did not work on the problem for over two
decades. Such a constraint does not exist in “Physical Mathematics.” So the
nonphysical pure Yang—Mills theory has been heartily welcomed, forming the
basis for Donaldson’s theory of 4-manifolds and Floer’s instanton homology
of 3-manifolds. However, it was Witten who brought forth a broad spectrum
of physical theories to obtain new results and new points of view on old re-
sults in mathematics. His work created a whole new area of research that led
me to coin the term “physical mathematics” to describe it. Perhaps we can
now reverse Dirac’s famous statement and say instead “Mathematics is now.
Physics can wait.” The mathematicians can now say to physicists, “give us
your rejects, toy models and nonpredictive theories and we will see if they
can give us new mathematics and let us hope that some day they may be
useful in physics.”
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The starting point of the present monograph was The Mathematical Foun-
dations of Gauge Theories [274], which the author cowrote with Prof. Mar-
tucci (Firenze). That book was based in part on a course in differential geo-
metric methods in physics” that the author gave at CUNY and then repeated
at the Dipartimento di Fisica, Universita di Firenze in 1986. The course was
attended by advanced graduate students in physics and research workers in
theoretical physics and mathematics. This monograph is aimed at a simi-
lar general audience. The author has given a number of lectures updating
the material of that book (which has been out of print for some time) and
presenting new developments in physics and their interaction with results in
mathematics, in particular in geometric topology. This material now forms
the basis for the present work. The classical and quantum theory of fields
remains a very active area of research in theoretical physics as well as math-
ematics. However, the differential geometric foundations of classical gauge
theories are now firmly established.

The latest period of strong interaction between theoretical physics and
mathematics began in the early 1980s with Donaldson’s fundamental work
on the topology of 4-manifolds. A look at Fields Medals since then shows
several going for work closely linked to physics. The Fields Medal is the
highest honor bestowed by the mathematics community on a young (under
40 years of age) mathematician. The Noble Prize is the highest honor in
physics but is often given to scientists many years after a work was done and
there is no age bar. Appendix B contains more information on the Fields
Medals.

Our aim in this work is to give a self-contained treatment of a mathematical
formulation of some physical theories and to show how they have led to
new results and new viewpoints in mathematical theories. This includes a
differential geometric formulation of gauge theories and, in particular, of the
theory of Yang—Mills fields. We assume that the readers have had a first course
in topology, analysis and abstract algebra and an acquaintance with elements
of the theory of differential manifolds, including the structures associated with
manifolds such as tensor bundles and differential forms. We give a review of
this mathematical background material in the first three chapters and also
include material that is generally not covered in a first course.

We discuss in detail principal and associated bundles and develop the
theory of connections in Chapter 4.

In Chapter 5 we introduce the characteristic classes associated to principal
bundles and discuss their role in the classification of principal and associated
bundles. A brief account of K-theory and index theory is also included in this
chapter. The first five chapters lay the groundwork for applications to gauge
theories, but the material contained in them is also useful for understanding
many other physical theories.

Chapter 6 begins with an introduction and a review of the physical back-
ground necessary for understanding the role of gauge theories in high-energy
physics. We give a geometrical formulation of gauge potentials and fields on
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a principal bundle P over an arbitrary pseudo-Riemannian base manifold M
with the gauge group G. Various formulations of the group of gauge transfor-
mations are also given here. Pure gauge theories cannot describe interactions
that have massive carrier particles. A resolution of this problem requires the
introduction of matter fields. These matter fields arise as sections of bundles
associated to the principal bundle P. The base manifold M may also sup-
port other fields such as the gravitational field. We refer to all these fields as
associated fields. A Lagrangian approach to associated fields and coupled
equations is also discussed in this chapter. We also discuss the generalized
gravitational field equations, which include Einstein’s equations with or with-
out the cosmological constant, as well as the gravitational instanton equations
as special cases.

Quantum and topological field theories are introduced in Chapter 7. Quan-
tization of classical fields is an area of fundamental importance in modern
mathematical physics. Although there is no satisfactory mathematical the-
ory of quantization of classical dynamical systems or fields, physicists have
developed several methods of quantization that can be applied to specific
problems. We discuss the Feynman path integral method and some regular-
ization techniques briefly.

In Chapter 8 we begin with some historical observations and then dis-
cuss Maxwell’s electromagnetic theory, which is the prototype of gauge the-
ories. Here, a novel feature is the discussion of the geometrical implications
of Maxwell’s equations and the use of universal connections in obtaining
their solutions. This last method also yields solutions of pure (or source-free)
Yang—Mills fields. We then discuss the most extensively studied coupled sys-
tem, namely, the system of Yang—Mills—Higgs fields. After a brief discussion
of various couplings we introduce the idea of spontaneous symmetry breaking
and discuss the standard model of electroweak theory. The idea of sponta-
neous symmetry breaking was introduced by Nambu (who received the Nobel
prize in Physics in 2008) and has been extensively studied by many physi-
cists. Its most spectacular application is the Higgs mechanism in the standard
model. A brief indication of some of its extensions is also given there.

Chapter 9 is devoted to a discussion of invariants of 4-manifolds. The spe-
cial solutions of Yang—Mills equations, namely the instantons, are discussed
separately. We give an explicit construction of the moduli space M; of the
BPST-instantons of instanton number 1 and indicate the construction of the
moduli space My, of the complete (8k — 3)-parameter family of instanton
solutions over S* with gauge group SU(2) and instanton number k. The
moduli spaces of instantons on an arbitrary Riemannian 4-manifold with a
semisimple Lie group as gauge group are then introduced. A brief account of
Donaldson’s theorem on the topology of moduli spaces of instantons and its
implications for smoothability of 4-manifolds and Donaldson’s polynomial in-
variants is then given. We then discuss Seiberg—Witten monopole equations.
The study of N = 2 supersymmetric Yang—Mills theory led Seiberg and Wit-
ten to the now well-known monopole, or SW equations. The Seiberg—Witten
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theory provides new tools for the study of 4-manifolds. It contains all the
information provided by Donaldson’s theory and is much simpler to use. We
discuss some applications of the SW invariants and their relation to Donald-
son’s polynomial invariants.

Chern—Simons theory and its application to Floer type homologies of 3-
manifolds and other 3-manifold invariants form the subject of Chapter 10.
Witten has argued that invariants obtained via Chern—Simons theory be re-
lated to invariants of a string theory. We discuss one particular example of
such a correspondence between Chern—Simons theory and string theory in
the last section. (String theory is expected to provide unification of all four
fundamental forces. This expectation is not yet a reality and the theory (or
its different versions) cannot be regarded as a physical theory. However, it
has led to many interesting developments in mathematics.)

Classical and quantum invariants of 3-manifolds and knots and links in
3-manifolds are considered in Chapter 11. The relation of some of these in-
variants with conformal field theory and TQFT are also indicated there. The
chapter concludes with a section on Khovanov’s categorification of the Jones’
polynomial and its extensions to categorification of other link invariants. The
treatment of some aspects of these theories is facilitated by the use of tech-
niques from analytic (complex) and algebraic geometry. A full treatment of
these would have greatly increased the size of this work. Moreover, excel-
lent monographs covering these areas are available (see, for example, Atiyah
[15], Manin [257], Wells [399]). Therefore, topics requiring extensive use of
techniques from analytic and algebraic geometry are not considered in this
monograph.

There are too many other topics omitted to be listed individually. The
most important is string theory. There are several books that deal with this
still very active topic. For a mathematical treatment see for example, [95,96]
and [9,212].

The epilogue points out some highlights of the topics considered. We note
that the last three chapters touch upon some areas of active current research
where a final definitive mathematical formulation is not yet available. They
are intended as an introduction to the ever growing list of topics that can be
thought of as belonging to physical mathematics. There are four appendices.
Appendix A is a dictionary of terminology and notation between that used
in physics and in mathematics. Background notes including historical and
biographical notes are contained in Appendix B. The notions of categories
and chain complexes are fundamental in modern mathematics. They are the
subject of Appendix C. The cobordism category originally introduced and
used in Thom’s work is now the basis of axioms for TQFT. The general theory
of chain complexes is basic in the study of any homology theory. Appendix D
contains a brief discussion of operator theory and a more detailed discussion
of the Dirac type operators.
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Remark on References and Notation

Even though the foundations of electromagnetic theory (the prototype of
gauge theories) were firmly in place by the beginning of nineteenth century,
the discovery of its relation to the theory of connections and subsequent
mathematical developments occurred only during the last three decades. As
of this writing field theories remain a very active area of research in math-
ematical physics. However, the mathematical foundations of classical field
theories are now well understood, and these have already led to interesting
new mathematics. But we also use theories such as QF T, supersymmetry, and
string theory for which the precise mathematical structure or experimental
verification is not yet available. We have tried to bring the references up to
date as of June 2009. In addition to the standard texts and monographs we
have also included some books that give an elementary introductory treat-
ment of some topics. We have included an extensive list of original research
papers and review articles that have contributed to our understanding of the
mathematical aspects of physical theories. However, many of the important
results in papers published before 1980 and in the early 1980s are now avail-
able in texts or monographs and hence, in general, are not cited individually.
The references to e-prints and private communication are cited in the text
itself and are not included in the references at the end of the book.

As we remarked earlier, gauge theories and the theory of connections were
developed independently by physicists and mathematicians, and as such have
no standard notation. This is also true of other theories. We have used nota-
tion and terminology that is primarily used in the mathematical literature,
but we have also taken into account the terminology that is most frequently
used in physics. To help the reader we have included in Appendix A a corre-
lation of terminology between physics and mathematics prepared along the
lines of Trautman [378] and [409].
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