
Chapter 2

Topology

2.1 Introduction

Several areas of research in modern mathematics have developed as a result
of interaction between two or more specialized areas. For example, the sub-
ject of algebraic topology associates with topological spaces various algebraic
structures and uses their properties to answer topological questions. An el-
egant proof of the theorem that Rm and Rn with their respective standard
topologies, are not homeomorphic for m �= n is provided by computing the
homology of the one point compactification of these spaces. Indeed, the prob-
lem of classifying topological spaces up to homeomorphism was fundamental
in the creation of algebraic topology. In general, however, the knowledge of
these algebraic structures is not enough to decide whether two topological
spaces are homeomorphic. The equivalence of algebraic structures follows
from a weaker relation among topological spaces, namely, that of homotopy
equivalence. In fact, homotopy equivalent spaces have isomorphic homotopy
and homology structures. Equivalence of algebraic structures associated to
two topological spaces is a necessary but not sufficient condition for their
homeomorphism. Thus, one may think of homotopy and homology as provid-
ing obstructions to the existence of homeomorphisms. As we impose further
structure on a topological space such as piecewise linear, differentiable, or
analytic structures other obstructions may arise.

For example, it is well known that Rn, n �= 4, with the standard topology
admits a unique compatible differential structure. On the other hand, as a
result of the study of the moduli spaces of instantons by Donaldson and the
classification of four-dimensional topological manifolds by Freedman, it fol-
lows that R4 admits an uncountable number of non-diffeomorphic structures.
In the case of the standard sphere Sn ⊂ Rn+1, the generalized Poincaré con-
jecture states that a compact n-dimensional manifold homotopically equiv-
alent to Sn is homeomorphic to Sn. This conjecture is now known to be
true for all n and is one of the most interesting recent results in algebraic
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topology. The case n = 2 is classical. For n > 4 it is due to Stephen Smale.
Smale (b. 1930) received a Fields Medal at the ICM 1966 held in Moscow
for his contributions to various aspects of differential topology and, in par-
ticular, to his novel use of Morse theory, which led him to his solution of the
generalized Poincaré conjecture for n > 4. Smale has extensive work in the
application of dynamical systems to physical processes and to economic equi-
libria. His discovery of strange attractors led naturally to chaotic dynamical
systems. The result for n = 4 is due to Michael Hartley Freedman (b. 1951),
who received a Fields Medal at ICM 19861 held in Berkeley for his complete
classification of all compact simply connected topological 4-manifolds, which
leads to his proof of the Poincaré conjecture. The original Poincaré conjecture
was recently proved by Grigory Yakovlevich Perelman (b. 1966). Perelman
received a Fields Medal at ICM 2006 held in Madrid for his fundamental con-
tributions to geometry and for his revolutionary insights into the analytical
and geometric structure of the Ricci flow. He studied the geometric topology
of 3-manifolds by extending Hamilton’s Ricci flow ideas. While he did not
publish his work in a final form, it contains all the essential ingredients of
a proof of the Thruston geometrization conjectures and in particular of the
original Poincaré conjecture (the case n = 3). This problem is one of the
seven, million dollar Clay Prize problems. As of this writing, it is not known
if and when he will get this prize. We will discuss the topology of 3- and
4-manifolds later in this chapter.

In the category of differentiable manifolds, it was shown by John Willard
Milnor that S7 admits an exotic differential structure, i.e., a structure not
diffeomorphic to the standard one. This work ushered in the new field of
differential topology. Milnor was awarded a Fields Medal at the ICM 1962
held in Stockholm for his fundamental work in differential geometry and
topology. Using homotopy theory, Kervaire and Milnor proved the striking
result that the number of distinct differentiable structures on Sn is finite for
any n �= 4. For n = 1, 2, 3, 5, 6, there is a unique differential structure on the
standard n-sphere. As of this writing (May 2010) there is no information on
the number of distinct differentiable structures on S4. The following table
gives a partial list of the number of diffeomorphism classes [Sn] of n-spheres.

Table 2.1 Number of diffeomorphism classes of n-spheres

n 7 8 9 10 11 12 13 14
#[Sn] 28 2 8 6 992 1 3 2

1 The year was the 50th anniversary of the inception of Fields medals. However, several
mathematicians including invited speakers were denied U.S. visas. Their papers were read
by other mathematicians in a show of solidarity.
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We note that the set of these equivalence classes can be given a structure
of a group denoted by θn. Milnor showed that θ7 is cyclic group of order
28. Brieskorn has constructed geometric representatives of the elements of θ7

as 7-dimensional Brieskorn spheres Σ(6m − 1, 3, 2, 2, 2), 1 ≤ m ≤ 28, by
generalizing the Poincaré homology spheres in three dimensions. Thus the
mth sphere is the intersection of S9 ⊂ C5 with the space of solutions of the
equation

z6m−1
1 + z3

2 + z2
3 + z2

4 + z2
5 = 0, 1 ≤ m ≤ 28, zi ∈ C, 1 ≤ i ≤ 5.

Until recently, such considerations would have seemed too exotic to be of
utility in physical applications. However, topological methods have become
increasingly important in classical and quantum field theories. In particular,
several invariants associated to homotopy and homology of a manifold have
appeared in physical theories as topological quantum numbers. In the re-
maining sections of this chapter and in the next chapter is a detailed account
of some of the most important topics in this area.

2.2 Point Set Topology

Point set topology is one of the core areas in modern mathematics. How-
ever, unlike algebraic structures, topological structures are not familiar to
physicists. In this appendix we collect some basic definitions and results con-
cerning topological spaces. Topological concepts are playing an increasingly
important role in physical applications, some of which are mentioned here.

Let X be a set and P(X) the power set of X , i.e., the class of all subsets
of X . T ⊂ P(X) is called a topology on X if the following conditions are
satisfied:

1. {∅, X} ⊂ T ;
2. if A, B ∈ T , then A ∩B ∈ T ;
3. if {Ui | i ∈ I} ⊂ T , then

⋃
i∈I Ui ∈ T , where I is an arbitrary indexing

set.

The pair (X, T ) is called a topological space. It is customary to refer to X
as a topological space when the topology T is understood. An element of T
is called an open set of (X, T ). If W ⊂ X , then TW := {W ∩A | A ∈ T } is a
topology on W called the relative topology on W induced by the topology
T on X .

Example 2.1 Let T = {∅, X}. Then T is called the indiscrete topology on
X. If T = P(X), then T is called the discrete topology on X. If {Ti | i ∈ I}
is a family of topologies on X, then

⋂
{Ti | i ∈ I} is also a topology on X.
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The indiscrete and the discrete topologies are frequently called trivial
topologies. An important example of a nontrivial topology is given by the
metric topology.

Example 2.2 Let R+ denote the set of nonnegative real numbers. A metric
or a distance function on X, is a function d : X × X → R+ satisfying,
∀x, y, z ∈ X, the following properties:

1. d(x, y) = d(y, x), symmetry;
2. d(x, y) = 0 if and only if x = y, non-degeneracy;
3. d(x, y) ≤ d(x, z) + d(z, y), triangle inequality.

The pair (X, d) is called a metric space. If (X, d) is a metric space, we can
make it into a topological space with topology Td defined as follows. Td is the
class of all subsets U ⊂ X such that

∀x ∈ U, ∃ε > 0, such that B(ε, x) := {y ∈ X | d(x, y) < ε} ⊂ U.

The set B(ε, x) is called an ε-ball around x and is itself in Td. Rn with the
usual Euclidean distance function is a metric space. The corresponding topol-
ogy is called the standard topology on Rn. The relative topology on Sn−1 ⊂ Rn

is called the standard topology on Sn−1.

A topological space (X, T ) is said to be metrizable if there exists a distance
function d on X such that T = Td. It is well known that Riemannian mani-
folds are metrizable. It is shown in [256] that pseudo-Riemannian manifolds,
and in particular, space-time manifolds, are also metrizable.

Let (X, TX) and (Y, TY ) be topological spaces. A function f : X → Y is
said to be continuous if ∀V ∈ TY , f−1(V ) ∈ TX . If f is a continuous bijection
and f−1 is also continuous, then f is called a homeomorphism between X
and Y . Homeomorphism is an equivalence relation on the class of topological
spaces. A property of topological spaces preserved under homeomorphisms
is called a topological property. For example, metrizability is a topological
property.

Let (Xi, Ti), i ∈ I, be a family of topological spaces and let X =
∏

i∈I Xi

be the Cartesian product of the family of sets {Xi | i ∈ I}. Let πi : X → Xi

be the canonical projection. Let {Sj | j ∈ J} be the family of all topologies
on X such that πi is continuous for all i ∈ I. If S =

⋂
{Sj | j ∈ J}, then

S is called the product topology on X . We observe that it is the smallest
topology on X such that all the πi are continuous.

Let (X, T ) be a topological space, Y a set, and f : X → Y a surjection.
The class Tf defined by

Tf := {V ⊂ Y | f−1(V ) ∈ T }

is a topology on Y called the quotient topology on Y defined by f . Tf is
the largest topology on Y with respect to which f is continuous. We observe
that if ρ is an equivalence relation on X , Y = X/ρ is the set of equivalence
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classes and π : X → Y is the canonical projection, then Y with the quotient
topology Tπ is called quotient topological space of X by ρ.

Let (X, T ) be a topological space and let A, B, C denote subsets of X . C
is said to be closed if X \ C is open. The closure Ā or cl(A) of A is defined
by

Ā :=
⋂
{F ⊂ X | F is closed and A ⊂ F}.

Thus, Ā is the smallest closed set containing A. It follows that C is closed
if and only if C = C̄. Let f : X → Y be a function. We define supp f , the
support of f to be the set cl{x ∈ X | f(x) �= 0}. A subset A ⊂ X is said to
be dense in X if Ā = X . X is said to be separable if it contains a countable
dense subset. A is said to be a neighborhood of x ∈ X if there exists U ∈ T
such that x ∈ U ⊂ A. We denote by Nx the class of neighborhoods of x. A
subclass B ⊂ T ∩Nx is called a local base at x ∈ X if for each neighborhood
A of x there exists U ∈ B such that U ⊂ A. X is said to be first countable if
each point in X admits a countable local base. A subclass B ⊂ T is called a
base for T if ∀A ∈ T , ∀x ∈ A, there exists U ∈ B such that x ∈ U ⊂ A. X is
said to be second countable if its topology has a countable base. A subclass
S ⊂ T is called a subbase for T if the class of finite intersections of elements
of S is a base for T . Any metric space is first countable but not necessarily
second countable. First and second countability are topological properties.
We now give some further important topological properties.

X is said to be a Hausdorff space if ∀x, y ∈ X , there exist A, B ∈ T
such that x ∈ A, y ∈ B and A ∩ B = ∅. Such a topology is said to separate
points and the Hausdorff property is one of a family of separation axioms for
topological spaces. The Hausdorff property implies that finite subsets of X
are closed. A metric space is a Hausdorff space.

A family U = {Ui | i ∈ I} of subsets of X is said to be a cover or a
covering of A ⊂ X if A ⊂

⋃
U . A cover {Vj | j ∈ J} of A ⊂ X is called

a refinement of U if, for all j ∈ J, Vj ⊂ Ui for some i ∈ I. A covering by
open sets is called an open covering. A ⊂ X is said to be compact if every
open covering of A has a finite refinement or, equivalently, if it has a finite
subcovering. The continuous image of a compact set is compact. It follows
that compactness is a topological property. The Heine–Borel theorem
asserts that a subset of Rn is compact if and only if it is closed and bounded. A
consequence of this is the extreme value theorem, which asserts that every
continuous real-valued function on a compact space attains its maximum and
minimum values. A Hausdorff space X is said to be paracompact if every
open covering of X has a locally finite open refinement, i.e., each point has
a neighborhood that intersects only finitely many sets of the refinement. A
family F = {fi : X → R | i ∈ I} of functions is said to be locally finite if
each x ∈ X has a neighborhood U such that fi(U) = 0, for all but a finite
subset of I. A family F of continuous functions is said to be a partition of
unity if it is a locally finite family of nonnegative functions and
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∑

i∈I

fi(x) = 1, ∀x ∈ X.

If X is a paracompact space and U = {Ui | i ∈ I} is an open covering of
X , then there exists a partition of unity F = {fi : X → R | i ∈ I} such that
supp fi ⊂ Ui. F is called a partition of unity subordinate to the cover U .
The existence of such a partition of unity plays a crucial role in showing the
existence of a Riemannian metric on a paracompact manifold. The concepts
of paracompactness and partition of unity were introduced into topology by
Dieudonné. It was shown by the author in [265] that pseudo-Riemannian
manifolds are paracompact. In particular, this implies that space-time (a
Lorentz manifold) is topologically a metric space. X is said to be locally
compact if each point has a compact neighborhood.

Let (X, T ) be a topological space and A ⊂ X . U, V ∈ T are said to form a
partition or a disconnection of A if the following conditions are satisfied:

1. A ⊂ U ∪ V,
2. A ∩ U �= ∅, A ∩ V �= ∅,
3. A ∩ U ∩ V = ∅.

The set A is said to be connected if there does not exist any disconnection
of A. This is equivalent to saying that A is connected as a topological space
with the relative topology. It follows that X is connected if and only if the
only subsets of X that are both open and closed are ∅ and X . If X is not
connected then it can be partitioned into maximal connected subsets called
the connected components of X . Each connected component is a closed
subset of X . The set of all connected components is denoted by π0(X). The
cardinality of π0(X) is a topological invariant. The continuous image of a
connected set is connected. Since the connected subsets of R are intervals, it
follows that every real-valued continuous function f on a connected subset
of X satisfies the intermediate value property, i.e., f takes every value
between any two values. X is said to be locally connected if its topology
has a base consisting of connected sets. The commonly used concepts of path
connected and simply connected are discussed in the next section.

2.3 Homotopy Groups

In homotopy theory the algebraic structures (homotopy groups) associated
with a topological space X are defined through the concept of homotopy be-
tween maps from standard sets (intervals and spheres) to X . The fundamental
group or the first homotopy group of a topological space was introduced by H.
Poincaré (1895), while the idea of the higher homotopy groups is principally
due to W. Hurewicz (1935). All the homotopy groups arise naturally in the
mathematical formulation of classical and quantum field theories. To make
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our treatment essentially self-contained, we have given more details than are
strictly necessary for the physical applications.

Let X and Y be topological spaces and h a map from D(h) ⊂ Y to X that
can be extended to a continuous map from Y to X . Let C(Y, X ; h) be the set

C(Y, X ; h) = {f ∈ C(Y, X) | f|D(h) = h}

where C(Y, X) is the set of continuous maps from Y to X . We say that
f ∈ C(Y, X) is homotopic to g ∈ C(Y, X) relative to h and write f ∼h g
if there exists a continuous map H : Y × I → X , where I := [0, 1], such that
the following conditions hold:

H(y, 0) = f(y), H(y, 1) = g(y), ∀y ∈ Y, (2.1)

H(y, t) = h(y), ∀y ∈ D(h), ∀t ∈ I. (2.2)

H is called a homotopy relative to h from f to g. Observe that condi-
tion (2.2) implies that f, g ∈ C(Y, X ; h). We may think of H as a family
{Ht := H(·, t) | t ∈ I} ⊂ C(Y, X ; h) of continuous maps from Y to X
parametrized by t, which deforms the map f continuously into the map g,
keeping fixed their values on D(h), i.e., Ht ∈ C(Y, X ; h), ∀t ∈ I. It can be
shown that the relation∼h is an equivalence relation in C(Y, X ; h). We denote
the equivalence class of f by [f ]. If h is the empty map, i.e., D(h) = ∅ so that
C(Y, X ; h) = C(Y, X), then we will simply write f ∼ g and say that f and g
are homotopic. We observe that in this case there is no condition (2.2) but
only the condition (2.1). A topological space X is contractible if idX ∼ ca,
where idX is the identity map on X and ca : X → X is the constant map
defined by ca(x) = a, ∀x ∈ X and for some fixed a ∈ X .

Let X be a topological space. A path in X from a ∈ X to b ∈ X is a map
α ∈ C(I, X) such that α(0) = a, α(1) = b. We say that X is path connected
if there exists a path from a to b, ∀a, b ∈ X . X is locally path connected
if its topology is generated by path connected open sets. A path connected
topological space is connected, but the converse is not true. However, a con-
nected and locally path connected topological space is path connected, and
hence connected manifolds are path connected. In what follows, we take all
topological spaces to be connected manifolds unless otherwise indicated.

Let α be a path in X from a to b; the opposite path of α is the path
←
α

in X from b to a such that
←
α (t) = α(1 − t), ∀t ∈ I. A loop in X at a ∈ X

is a path in X from a to a. The set of loops in X at a is

P (X, a) := C(I, X ; ha),

where D(ha) = ∂I = {0, 1} and ha(0) = ha(1) = a. Let [α] be the equivalence
class of the loops at a that are homotopic to α relative to ha and let E1(X, a)
be the set of equivalence classes of homotopic loops at a, i.e.,
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E1(X, a) := {[α] | α ∈ P (X, a)}.

If α, β ∈ P (X, a), then we denote by α ∗ β ∈ P (X, a) the loop defined by

(α ∗ β)(t) =
{

α(2t), 0 ≤ t ≤ 1/2
β(2t− 1), 1/2 ≤ t ≤ 1.

(2.3)

The operation ∗ induces an operation on E1(X, a), which we denote by juxta-
position. This operation makes E1(X, a) into a group with identity the class
[ca] of the constant loop at a, the class [

←
α] being the inverse of [α]. This group

is called the fundamental group or the first homotopy group of X at a
and is denoted by π1(X, a). A topological space X with a distinguished point
a is called a pointed topological space and is denoted by (X, a). Thus, we
have associated with every pointed topological space (X, a) a group π1(X, a).
Let (X, a), (Y, b) be two pointed topological spaces and f : X → Y a mor-
phism of pointed topological spaces; i.e., f is continuous and f(a) = b. Then
the map

π1(f) : π1(X, a)→ π1(Y, b)

defined by [α] �→ [f ◦ α] is a homomorphism. π1 turns out to be a covari-
ant functor from the category of pointed topological spaces to the cate-
gory of groups (see Appendix C). If X is path connected then π1(X, a) ∼=
π1(X, b), ∀a, b ∈ X (the isomorphism is induced by a path from a to b and
hence is not canonical). In view of this result we sometimes write π1(X) to
indicate the fundamental group of a path connected topological space X . A
topological space X is said to be simply connected if it is path connected
and π1(X) is the trivial group consisting of only the identity element. A
contractible space is simply connected.

We now introduce the notion of n-connected, which allows us to give an al-
ternative definition of simply connected. Let Xn := C(Sn, X) be the space of
continuous maps from the n-sphere Sn to X . We say that X is n-connected
if the space Xn with its standard (compact open) topology is path connected.
Thus 0-connected is just path connected and 1-connected is simply con-
nected as defined above. The fundamental group is an important invariant of
a topological space, i.e.,

X ∼= Y ⇒ π1(X) ∼= π1(Y ).

A surprising application of the non-triviality of the fundamental group is
found in the Bohm–Aharonov effect in Abelian gauge theories. We discuss
this application in Chapter 8.

The topological spaces X, Y are said to be homotopically equivalent
or of the same homotopy type if there exist continuous maps f : X → Y
and g : Y → X such that

f ◦ g ∼ idY , g ◦ f ∼ idX .
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The relation of homotopy equivalence is, in general, weaker than homeomor-
phism. The following discussion of the Poincaré conjecture and its general-
izations illustrate this.
Poincaré Conjecture: Every closed (i.e., compact and without boundary)
simply connected 3-manifold is homeomorphic to S3.

For n > 3 the conjecture is not true, as shown by our discussion after
Example 2.6. However, we have the following.
Generalized Poincaré Conjecture: Every closed n-manifold homotopi-
cally equivalent to the n-sphere Sn is homeomorphic to Sn.

As we remarked in the introduction, this generalized conjecture was proved
to be true for n > 4 by Smale in 1960. The case n = 4 was settled in the
affirmative by Freedman [136] in 1981 and the case n = 3 by Perelman (see
section 6.8 for Perelman’s work).

Let p : E → B be a continuous surjection. We say that the pair (E, p) is
a covering of B if each x ∈ B has a path connected neighborhood U such
that each pathwise connected component of p−1(U) is homeomorphic to U .
In particular, p is a local homeomorphism. E is called the covering space,
B the base space, and p the covering projection. It can be shown that
if B is path connected, then the cardinality of the fibers p−1(x), x ∈ B, is
the same for all x. If this cardinality is a natural number n, then we say that
(E, p) is an n-fold covering of B.

Example 2.3 Let U(1) := {z ∈ C | |z| = 1}.

1. Let qn : U(1)→ U(1) be the map defined by

qn(z) = zn,

where z ∈ U(1) = {z ∈ C | |z| = 1}. Then (U(1), qn) is an n-fold covering
of U(1).

2. Let p : R→ U(1) be the map defined by

p(t) = exp(2πit).

Then (R, p) is a simply connected covering of U(1). In this case the fiber
p−1(1) is Z.

3. Let n > 1 be a positive integer and π : Sn → RPn be the natural projection

x �→ [x].

This is a 2-fold covering. In the special case n = 3, S3 ∼= SU(2) ∼= Spin(3)
and RP3 ∼= SO(3). This covering π : Spin(3) → SO(3) is well known in
physics as associating two spin matrices in Spin(3) to the same rotation
matrix in SO(3). The distinction between spin and angular momentum is
related to this covering map.

A covering space (U, q) with U simply connected is called a universal
covering space of the base space B. A necessary and sufficient condition
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for the existence of a universal covering space of a path connected and lo-
cally path connected topological space X is that X be semi locally simply
connected, i.e., ∀x ∈ X there should exist an open neighborhood A of x
such that any loop in A at x is homotopic in X to the constant loop at x.
All connected manifolds are semi locally simply connected. If (E, p) is a cov-
ering of B and (U, q) is a universal covering of B and u ∈ U, x ∈ E are such
that q(u) = p(x), then there exists a unique covering (U, f) of E such that
f(u) = x and p ◦ f = q, i.e., the following diagram commutes.

U E�f

B

q
�

�
�
��

p
�

�
�

��

From this it follows that, if (U1, q1), (U2, q2) are two universal covering spaces
of B and u1 ∈ U1, u2 ∈ U2 are such that q1(u1) = q2(u2), then there exists a
unique homeomorphism f : U1 → U2, such that f(u1) = u2 and q2 ◦ f = q1,
i.e., the following diagram commutes.

U1 U2
�f

B

q1

�
�

�
��

q2

�
�

�
��

Thus a universal covering space is essentially unique, i.e., is unique up
to homeomorphism. Let (U, q) be a universal covering of B. A covering or
deck transformation f is an automorphism of U such that q ◦ f = q or the
following diagram commutes:

U U�f

B

q
�

�
�
��

q
�

�
�

��

It can be shown that the set C(U, q) of all covering transformations is a sub-
group of Aut(U) isomorphic to π1(B). This observation is useful in computing
fundamental groups of some spaces as indicated in the following example.

Example 2.4 The covering (U(1), qn) of Example (2.3) above is not a
universal covering while the coverings (R, p) and (Sn, π) discussed there
are universal coverings. Every deck transformation of (R, p) has the form
fn(t) = t + n, n ∈ Z. From this it is easy to deduce the following:

π1(RP1) ∼= π1(S1) ∼= π1(U(1)) ∼= Z.
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The only deck transformation of (Sn, π) different from the identity is the
antipodal map α defined by α(x) = −x, ∀x ∈ Sn. It follows that

π1(RPn) ∼= Z2, n > 1.

The fundamental group can be used to define invariants of geometric struc-
tures such as knots and links in 3-manifolds.

Example 2.5 An embedding k : S1 → R3 is called a knot in R3. Two knots
k1, k2 are said to be equivalent if there exists a homeomorphism h : R3 →
R3 which is the identity on the complement of some disk Dn = {x ∈ R3 |
‖x‖ ≤ n}, n ∈ N and such that h ◦ k1 = k2, i.e., the following diagram
commutes.

R3 R3�
h

S1

k1

�
�

�
��

k2

�
�

�
��

We define the knot group ν(k) by

ν(k) := π1(R3 \ k(S1)).

It is easy to verify that equivalent knots have isomorphic knot groups. An
algebraic structure preserved under knot equivalence is called a knot invari-
ant. Thus, the fundamental group provides an important example of a knot
invariant.

If X, Y are topological spaces, then π1(X × Y ) ∼= π1(X) × π1(Y ). In
particular, if X and Y are simply connected, then X×Y is simply connected.
From this result it follows, for example, that π1(Rn) = id and

π1(T n) ∼= Zn where T n = S1 × · · · × S1

︸ ︷︷ ︸
n times

is the real n-torus.

If B is a connected manifold then there exists a universal covering (U, q)
of B such that U is also a manifold and q is smooth. If G is a connected
Lie group then there exists a universal covering (U, p) of G such that U is
a simply connected Lie group and p is a local isomorphism of Lie groups.
The pair (U, p) is called the universal covering group of the group G. In
particular G and all its covering spaces are locally isomorphic Lie groups and
hence have the same Lie algebra. This fact has the following application in
representation theory. Given a representation r of a Lie algebra L on V , there
exists a unique simply connected Lie group U with Lie algebra u ∼= L and a
representation ρ of U on V such that its induced representation ρ̂ of u on V
is equivalent to r. If G is a Lie group with Lie algebra g ∼= L, then we get a
representation of G on V only if the representation ρ of U is equivariant under
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the action of π1(G). Thus, from a representation r of the angular momentum
algebra so(3) we get a unique representation of the group Spin(3) ∼= SU(2)
(spin representation). However, r gives a representation of SO(3) (an angular
momentum representation) only for even parity, r in this case, being invariant
under the action of π1(SO(3)) ∼= Z2. A similar situation arises for the case
of the connected component of the Lorentz group SO(3, 1) and its universal
covering group SL(2,C). In general, the universal covering group of SO(r, s)0
(the connected component of the identity of the group SO(r, s)) is denoted
by Spin(r, s) and is called the spinor group (see Chapter 3).

There are several possible ways to generalize the definition of π1 to obtain
the higher homotopy groups. We list three important approaches.

(1) Let

In = {t = (t1, . . . , tn) ∈ Rn | 0 ≤ ti ≤ 1, 1 ≤ i ≤ n}.

Define the boundary of In by

∂In = {t ∈ In | ti = 0 or ti = 1 for some i, 1 ≤ i ≤ n}.

Consider the homotopy relation in

Pn(X, a) := C(In, X ; h)

where D(h) = ∂In and h(∂In) = {a} ⊂ X . Let En(X, a) be the set of
equivalence classes in Pn(X, a). Observe that Pn(X, a) is the generalization
of P (X, a) = P1(X, a) for n > 1. We generalize the product ∗ in P (X, a) with
the following definition. Let

R1 = {(t1, . . . , tn) ∈ In | 0 ≤ t1 ≤ 1/2},

R2 = {(t1, . . . , tn) ∈ In | 1/2 ≤ t1 ≤ 1}

and ji : Ri → In, i = 1, 2, be the maps such that

j1(t) = (2t1, t2, . . . , tn), j2(t) = (2t1 − 1, t2, . . . , tn).

For α, β ∈ Pn(X, a) we define α ∗ β by

(α ∗ β)(t) =
{

α(j1(t)), t ∈ R1

β(j2(t)), t ∈ R2.

Then α ∗ β ∈ Pn(X, a) and α ∼h α1, β ∼h β1 implies α ∗ β ∼h α1 ∗ β1. This
allows us to define a product in En(X, a), denoted by juxtaposition, by

[α][β] = [α ∗ β].

With this product En(X, a) is a group. It is called the nth homotopy group
of X at a and is denoted by πn(X, a).
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(2) The second definition is obtained with Sn in the place of In and e1 =
(1, 0, . . . , 0) in the place of ∂In. Let us consider the space

P ′n(X, a) := C(Sn, X ; h0),

where D(h0) = {e1} and h0(e1) = a. Let q : In → Sn be a continuous
map that identifies ∂In to e1. Then F1 = q(R1), F2 = q(R2) are hemispheres
whose intersection A = q(R1 ∩ R2) is homeomorphic to Sn−1 and contains
e1. The quotient spaces of F1 and F2 obtained by identifying A to e1 are
homeomorphic to Sn. Let r1 (resp., r2) be a continuous map of F1 (resp., F2)
to Sn that identifies A to e1. One can take q, r1, r2 so that

q ◦ ji = ri ◦ q|Ri
, i = 1, 2.

Let us define a product ∗′ in P ′n(X, a) by

(α ∗′ β)(u) =
{

α(r1(u)), u ∈ F1

β(r2(u)), u ∈ F2.

Let E′n(X, a) be the set of equivalence classes of homotopic maps in P ′n(X, a).
The operation ∗′ induces a product on E′n(X, a) which makes E′n(X, a) into
a group, which we denote by π′n(X, a). Let φ : P ′n(X, a) → Pn(X, a) be the
map defined by

α �→ φ(α) = α ◦ q.

One can verify that α ∼ β =⇒ φ(α) ∼ φ(β) and φ(α ∗′ β) = φ(α) ∗ φ(β).
Then φ induces a map φ̃ : π′n(X, a) → πn(X, a) which is an isomorphism.
Thus, we can identify π′n(X, a) and πn(X, a).

(3) The third definition considers loops on the space of loops. We give
only a brief indication of the construction of πn(X, a) using loop spaces. In
order to consider loops in the space P (X, a), we have to define a topology
on this set. P (X, a) is a function space and a standard topology on P (X, a)
is the compact-open topology defined as follows. Let W (K, U) ⊂ P (X, a)
be the set

W (K, U) := {α ∈ P (X, a) | α(K) ⊂ U, K ⊂ I, U ⊂ X} .

The compact-open topology is the topology that has a subbase given by the
family of subsets W (K, U), where K varies over the compact subsets of I
and U over the open subsets of X . Then we define

π
′′
2 (X, a) := π1(P (X, a), ca),

where ca is the constant loop at a. We inductively define

π
′′
n(X, a) := π

′′
n−1(P (X, a), ca). (2.4)
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It can be shown that π
′′
n(X, a) is isomorphic to πn(X, a) and thus can be

identified with πn(X, a).
The space P (X, a) with the compact-open topology is called the first loop

space of the pointed space (X, a) and is denoted by Ω(X, a), or simply by
Ω(X) when the base point is understood. With the constant loop ca at a as
the base point, the loop space Ω(X) becomes the pointed space (Ω(X), ca).
We continue to denote by Ω(X) this pointed loop space. The nth loop space
Ωn(X) of X is defined inductively by

Ωn(X) = Ω(Ωn−1(X)).

From this definition and equation (2.4) it follows that

πn(X) = π1(Ωn−1(X)).

Thus one can calculate all the homotopy groups πn(X) of any space if one
can calculate just the fundamental group of all spaces. However, very little
is known about the topology and geometry of general loop spaces. A loop
space carries a natural structure of a Hopf space in the sense of the following
definition.

Definition 2.1 A pointed topological space (X, e) is said to be a Hopf space
(or simply an H-space) if there exists a continuous map

μ : X ×X → X

of pointed spaces called multiplication such that the maps defined by x �→
μ(x, e) and x �→ μ(e, x) are homotopic to the identity map of X.

One can verify that the map μ induced by the operation ∗ defined by
equation (2.3) makes the pointed loop space Ω(X) into an H-space. Iterating
this construction leads to the following theorem:

Theorem 2.1 The loop space Ωn(X), n ≥ 1, is an H-space.

We note that loop spaces of Lie groups have recently arisen in many math-
ematical and physical calculations (see Segal and Presley [321]). A general
treatment of loop spaces can be found in Adams [4]. For a detailed discussion
of the three definitions of homotopy groups and their applications see, for
example, Croom [90]. In the following theorem we collect some properties of
the groups πn.

Theorem 2.2 Let X denote a path connected topological space; then

1. πn(X, a) ∼= πn(X, b), ∀a, b ∈ X. In view of this we will write πn(X) instead
of πn(X, a).

2. If X is contractible by a homotopy leaving x0 fixed, then πn(X) = id.
3. πn(X) is Abelian for n > 1.
4. If (E, p) is a covering space of X, then p induces an injective homomor-

phism p∗ : πn(E)→ πn(X) for n > 1.
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Furthermore, if Y is another path connected topological space, then

πn(X × Y ) ∼= πn(X)× πn(Y ).

The computation of homotopy groups is, in general, a difficult problem.
Even in the case of spheres not all the higher homotopy groups are known.
The computation of the known groups is facilitated by the following theorem:

Theorem 2.3 (Freudenthal) There exists a homomorphism

F : πk(Sn)→ πk+1(Sn+1),

called the Freudenthal suspension homomorphism, with the following
properties:

1. F is surjective for k = 2n− 1;
2. F is an isomorphism for k < 2n− 1.

The results stated in the above theorems are useful in computing the homo-
topy groups of some spaces that are commonly encountered in applications.

Example 2.6 In this example we give the homotopy groups of some impor-
tant spaces that are useful in physical applications.

1. πn(Rm) = id.
2. πk(Sn) = id, k < n.
3. πn(Sn) ∼= Z.

If G is a Lie group then π2(G) = 0. In many physical applications one
needs to compute the homotopy of semi-simple Lie groups such as the groups
SO(n), SU(n), U(n). If G is a semi-simple Lie group then π3(G) ∼= Z. An
element α ∈ π3(G) often arises in field theories as a topological quantum
number. It arises in the problem of extending a G-gauge field from R4 to
its compactification S4 (see Chapter 8 for details).

From Theorems 2.1 and 2.2 and Example 2.6 it follows that π2(S4) = id
and

π2(S2 × S2) ∼= π2(S2)× π2(S2) ∼= Z× Z.

Also π1(S4) = id and π1(S2×S2) ∼= π1(S2)×π1(S2) = id. Thus S4 and S2×
S2 are both closed simply connected manifolds that are not homeomorphic.
This illustrates the role that higher homotopy groups play in the generalized
Poincaré conjecture.

All the homotopy groups of the circle S1 except the first one are trivial. A
path connected topological space X is said to be an Eilenberg–MacLane
space for the group π if there exists n ∈ N such that

πn(X) = π and πk(X) = id, ∀k �= n.
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Note that π must be Abelian if n > 1. It is customary to denote such a
space by K(π, n). Thus, S1 is a K(Z, 1) space. The construction of Eilenberg–
MacLane spaces in the late 1940s is considered a milestone in algebraic topol-
ogy. In 1955, Postnikov showed how to construct a topological space starting
with an Eilenberg–MacLane space as a base and building a succession of fiber
spaces with other Eilenberg–MacLane spaces as fibers. This construction is
known as the Postnikov tower construction and allows us to construct a
model topological space having the homotopy type of a given space.

Example 2.7 (Hopf Fibration) An important example of computation of
higher homotopy groups was given by H. Hopf in 1931 in his computation of
π3(S2). Consider the following action h : U(1) × C2 → C2 of U(1) on C2

defined by
(z, (z1, z2)) �→ (zz1, zz2).

This action leaves the unit sphere S3 ⊂ C2 invariant and hence induces an
action on S3 with fibers isomorphic to S1 and quotient CP1 ∼= S2, making S3

a principal fiber bundle over S2. We also denote by h : S3 → S2 the natural
projection. The above construction is called the Hopf fibration of S3. Hopf
showed that [h] ∈ π3(S2) is non-trivial, i.e., [h] �= id, and generates π3(S2)
as an infinite cyclic group, i.e. π3(S2) ∼= Z. This class [h] is essentially
the invariant that appears in the Dirac monopole quantization condition (see
Chapter 8). The Hopf fibration of S3 can be extended to the unit sphere
S2n−1 ⊂ Cn. The quotient space in this case is the complex projective space
CPn−1 and the fibration is called the complex Hopf fibration. This fibration
arises in the geometric quantization of the isotropic harmonic oscillator.

One can similarly consider the real, quaternionic and octonionic Hopf fi-
brations. For example, to study the quaternionic Hopf fibration we begin by
observing that

SU(2) ∼= {x = x0 + x1i + x2j + x3k ∈ H | |x| = 1}

acts as the group of unit quaternions on Hn on the right by quaternionic
multiplication. This action leaves the unit sphere S4n−1 ⊂ Hn invariant and
induces a fibration of S4n−1 over the quaternionic projective space HPn−1.
For the case n = 2, HP1 ∼= S4 and the Hopf fibration gives S7 as a nontrivial
principal SU(2) bundle over S4. This bundle plays a fundamental role in our
discussion of the BPST instanton in Chapter 9.

We conclude this section with a brief discussion of a fundamental result in
homotopy theory, namely, the Bott periodicity theorem.
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2.3.1 Bott Periodicity

The higher homotopy groups of the classical groups were calculated by Bott
[49] in the course of proving his well known periodicity theorem. An excellent
account of this proof as well as other applications of Morse theory may be
found in Milnor [284]. We comment briefly on the original proof of the Bott
periodicity theorem for the special unitary group. Bott considered the space
S of parametrized smooth curves c : [0, 1]→ SU(2m), joining −I and +I in
SU(2m), and applied Morse theory to the total kinetic energy function K of
c defined by

K(c) =
1
2

∫ 1

0

v2dt,

where v = ċ is the velocity of c. The Euler–Lagrange equations for the func-
tional K : S → R are the well known equations of geodesics, which are the
auto-parallel curves with respect to the Levi-Civita connection on SU(2m).
Now SU(2m)/SU(m)×SU(m) can be identified with the complex Grassman-
nian Gm(2m) of m-planes in 2m space. The gradient flow of K is a homotopy
equivalence between the loop space on SU(2m) and the Grassmannian up to
dimension 2m, i.e.,

πi+1SU(2m) = πi(ΩSU(2m)) = πiGm(2m), 0 ≤ i ≤ 2m.

This result together with the standard results from algebraic topology on the
homotopy groups of fibrations imply the periodicity relation

πi−1SU(k) = πi+1SU(k), i ≤ 2m ≤ k.

We give below a table of the higher homotopy groups of U(n), SO(n), and
SP (n) and indicate the stable range of values of n in which the periodicity
appears.

Table 2.2 Stable homotopy of the classical groups

πk U(n), 2n > k SO(n), n > k + 1 SP (n), 4n > k − 2

π1 Z Z2 0

π2 0 0 0

π3 Z Z Z

π4 0 0 Z2

π5 Z 0 Z2

π6 0 0 0

π7 Z Z Z

π8 0 Z2 0

period 2 8 8
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Table 2.2 of stable homotopy groups of the classical groups we have
given is another way of stating the Bott periodicity theorem. More gener-
ally, Bott showed that for sufficiently large n the homotopy groups of the
n-dimensional unitary group U(n), the rotation group SO(n) and the sym-
plectic group Sp(n) do not depend on n and that they exhibit a certain
periodicity relation. To state the precise result we need to define the infinite-
dimensional groups U(∞), SO(∞), and Sp(∞). Recall that the natural em-
bedding of Cn into Cn+1 induces the natural embedding of U(n) into U(n+1)
and defines the inductive system (see Appendix C)

U(1) ⊂ U(2) ⊂ · · · ⊂ U(n) ⊂ U(n + 1) ⊂ · · ·

of unitary groups. We define the infinite-dimensional unitary group U(∞) to
be the inductive limit of the above system. The groups SO(∞) and Sp(∞)
are defined similarly. Using these groups we can state the following version
of the Bott periodicity theorem.

Theorem 2.4 The homotopy groups of the infinite-dimensional unitary, ro-
tation, and symplectic groups satisfy the following relations:

1. πk+2(U(∞)) = πk(U(∞))
2. πk+8(SO(∞)) = πk(SO(∞))
3. πk+8(Sp(∞)) = πk(Sp(∞))

We already indicated how the statements of this theorem are related to
the periodicity relations of Clifford algebras in Chapter 1. We will give the K-
theory version of Bott periodicity in Chapter 5. The Bott periodicity theorem
is one of the most important results in mathematics and has surprising con-
nections with several other fundamental results, such as the Atiyah–Singer
index theorem. Several of the groups appearing in this theorem have been
used in physical theories. Some homotopy groups outside the stable range also
arise in gauge theories. For example, π3(SO(4)) = Z⊕Z is closely related to
the self-dual and the anti-self-dual solutions of the Yang–Mills equations on
S4. π7(SO(8)) = Z⊕Z arises in the solution of the Yang–Mills equations on
S8 (see [175, 243] for details). It can be shown that this solution and simi-
lar solutions on higher-dimensional spheres satisfy certain generalized duality
conditions.

2.4 Singular Homology and Cohomology

In homology theory the algebraic structures (homology modules) associated
with a topological space X are defined through the construction of chain
complexes (see Appendix D) related to X . If one uses simplexes related to X ,
one has simplicial homology, which was introduced by Poincaré (see [90] for
a very accessible introduction). There are, however, other homology theories
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that give rise to isomorphic homology modules under fairly general conditions
on X . We will discuss only the singular homology theory, whose introduction
is usually attributed to Lefschetz. For other approaches see, for example,
Eilenberg, Steenrod [118], and Spanier [357].

Let q be a nonnegative integer and Δq ⊂ Rq+1 be the set

Δq := {(x0, . . . , xq) ∈ Rq+1 |
q∑

i=0

xi = 1, xi ≥ 0, i = 0, 1, . . . , q}.

The set Δq with the relative topology is called the standard q-simplex. Let
X be a topological space. A singular q-simplex in X is a continuous map
s : Δq → X . We denote by Σq(X) the set of all singular q-simplexes in X .
If P is a principal ideal domain, we denote by Sq(X ;P) the free P-module
generated by Σq(X) and we will simply write Sq(X) when the reference to P
is understood. By definition of a free module it follows that every element of
Sq(X) can be regarded as a function c : Σq(X)→ P such that c(s) = 0 for all
but finitely many singular q-simplexes s in X . An element of Sq(X) is called
a singular q-chain and Sq(X) is called the qth singular chain module of
X . If s ∈ Σq(X), let χs denote the singular q-chain defined by

χs(s′) = δss′ , ∀s′ ∈ Σq(X),

where δss′ = 0 for s �= s′ and δss = 1 (1 is the unit element of P). χs is
called an elementary singular chain. It is customary to write s instead of
χs. Thus, any element c ∈ Sq(X) can be expressed uniquely as

c =
∑

s∈Σq(X)

gss, gs ∈ P,

where gs = 0 for all but finitely many s.
Let q be a positive integer, s ∈ Σq(X) be a singular q-simplex and i ≤ q

a nonnegative integer. The map

s(i) : Δq−1 → X

defined by

s(i)(x0, . . . , xq−1) = s(x0, . . . , xi−1, 0, xi, . . . , xq−1)

is a singular (q− 1)-simplex, called the ith face of s. Let us denote by δq the
unique linear map

δq : Sq(X)→ Sq−1(X)

such that

δq(s) =
q∑

i=0

(−1)is(i).
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One can show that
δq−1 ◦ δq = 0.

Let q ∈ Z. For q < 0 we define Sq(X) = 0 and for q ≤ 0 we define δq = 0.
With these definitions

· · · ←− Sq−1(X)
δq←− Sq(X)

δq+1←− Sq+1(X)←− · · ·

is a chain complex, which is also simply denoted by S∗(X). S∗(X) is called the
singular chain complex (with coefficients in P). Let X, Y be topological
spaces and f : X → Y a continuous map. For all q ∈ Z, let us denote by
Sq(f ;P), or simply Sq(f), the unique linear map

Sq(f) : Sq(X)→ Sq(Y )

such that χs �→ χf◦s. One can show that

δ ◦ Sq(f) = Sq−1(f) ◦ δ. (2.5)

The family S∗(f) := {Sq(f) | q ∈ Z} is a chain morphism such that

1. S∗(idX) = idS∗(X),
2. S∗(g ◦ f) = S∗(g) ◦ S∗(f), g ∈Mor(Y, Z).

Thus, S∗(· ;P) is a covariant functor from the category of topological spaces
to the category of chain complexes over P. The qth homology module of the
complex S∗(X) over P is called the qth singular homology module and
is denoted by Hq(X ;P), or simply Hq(X). An element of Hq(X) is called
a q-th homology class of X . In general, computing homology modules is a
non-trivial task and requires the use of specialized tools. However, it is easy
to show that H0(X ;P) is a free P-module on as many generators as there
are path components of X . In particular, if X is path connected, then

H0(X ;P) ∼= P.

Let X, Y be topological spaces and f : X → Y a continuous map. By passage
to the quotient, Sq(f ;P) induces the map

Hq(f ;P) : Hq(X)→ Hq(Y ),

which we simply denote also by Hq(f). Hq(f) is a linear map such that

1. Hq(idX) = idHq(X),
2. Hq(g ◦ f) = Hq(g) ◦Hq(f), g ∈Mor(Y, Z).

Thus, Hq(· ;P) is a covariant functor from the category of topological spaces
to the category of P-modules. It follows that homeomorphic spaces have iso-
morphic homology modules. This result is often expressed by saying that
homology modules are topological invariants. In fact, one can show that ho-
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motopy equivalent spaces have isomorphic homology modules, or that homol-
ogy modules are homotopy invariants.

Observe that singular 1-simplexes in a topological space X are paths in
X . Thus, there exists a natural map

φ : π1(X, x0)→ H1(X ;P)

such that, if γ is a loop at x0, φ([γ]) is the homology class of the singular 1-
simplex γ. The precise connection between fundamental groups and homology
groups of path connected topological spaces is given in the following theorem
(see [160] for a proof):

Theorem 2.5 Let X be a path connected topological space. The map φ de-
fined above is a surjective homomorphism whose kernel is the commutator
subgroup F of π1(X) (F is the subgroup of π1(X) generated by all the ele-
ments of the form aba−1b−1). Thus, H1(X ;Z) is isomorphic to π1(X)/F . In
particular, H1(X) is isomorphic to π1(X) if and only if π1(X) is Abelian.

In view of the above theorem the first homology group is sometimes re-
ferred to as the “Abelianization” of the fundamental group. For the relation
between higher homology and homotopy groups an important result is the
following Hurewicz isomorphism theorem, which gives sufficient conditions
for isomorphisms between Hq(X ;Z) and πq(X) for q > 1.

Theorem 2.6 (Hurewicz) Let X be a simply connected space. If there exists
j ∈ N such that πj(X) is the first non-trivial higher homotopy group of X,
then

πk(X) ∼= Hk(X ;Z), ∀k, 1 ≤ k ≤ j.

Thus for a simply connected space the first non-trivial homotopy and homol-
ogy groups are in the same dimension and are equal.

Let A be a subspace of the topological space X . The pair (X, A) is called
a topological pair. If (X ′, A′) is another topological pair and f : X → X ′

is a continuous map such that f(A) ⊂ A′, then f is called a morphism of the
topological pair (X, A) into (X ′, A′) and is denoted by f : (X, A)→ (X ′, A′).

Let (X, A) be a topological pair. Then, ∀q ∈ Z, Sq(A) can be regarded as a
submodule of Sq(X) and δq(Sq(A)) ⊂ Sq−1(A). The quotient chain complex
of (S∗(X), δ) by S∗(A) is called the relative singular chain complex of
X mod A and is denoted by S∗(X, A). The qth homology module of this
chain complex is denoted by Hq(X, A), or Hq(X, A;P) if one wants to stress
the fact that the coefficients are in the principal ideal domain P. Hq(X, A)
is called the qth relative singular homology module of X mod A. Let
Zq(X, A), Bq(X, A) be defined by

Zq(X, A) := {c ∈ Sq(X) | δc ∈ Sq−1(A)},

Bq(X, A) := {c ∈ Sq(X) | c = δw + c′, w ∈ Sq+1(X), c′ ∈ Sq(A)}.
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Then one can show that

Hq(X, A) ∼= Zq(X, A)/Bq(X, A).

Indeed, the above relation is sometimes taken as the definition of Hq(X, A).
The elements of Zq(X, A) (resp. Bq(X, A)) are called q-cycles (resp., q-
boundaries) on X mod A. Let f : (X, A)→ (X ′, A′) be a morphism of topo-
logical pairs. Then the map Sq(f) sends Sq(A) into Sq(A′) and hence Sq(f)
induces, by passage to the quotient, the map S̃q(f) : Sq(X, A)→ Sq(X ′, A′).
The family {S̃q(f) | q ∈ Z} is denoted by S̃∗(f). It is customary to write
simply Sq(f) and S∗(f) instead of S̃q(f) and S̃∗(f), respectively. The map
Sq(f) satisfies equation (2.5). From this it follows that it sends Zq(X, A) into
Zq(X ′, A′) and Bq(X, A) into Bq(X ′, A′). Thus, Sq(f) induces, by passage to
the quotient, a homomorphism

H̃q(f ;P) : Hq(X, A)→ Hq(X ′, A′).

It is customary to write Hq(f ;P), or simply Hq(f), instead of H̃q(f ;P). One
can show that

Hq(id(X,A)) = idHq(X,A).

Moreover, if g : (X ′, A′)→ (X ′′, A′′) is a morphism of topological pairs, then

Hq(g ◦ f) = Hq(g) ◦Hq(f).

Thus, ∀q ∈ Z, H̃q(·;P) is a covariant functor from the category of topological
pairs to the category of P-modules.

Let (X, A) be a topological pair, i : A → X the natural inclusion map,
and j : (X, ∅) → (X, A) the natural morphism of (X, ∅) into (X, A). Then
the sequence induced by these maps

0 −→ S∗(A)
S∗(i)−→ S∗(X)

S∗(j)−→ S∗(X, A) −→ 0

is a short exact sequence of chain complexes. Moreover, one has the related
connecting morphism h∗ (see Appendix D)

h∗ = {hq : Hq(X, A)→ Hq−1(A) | q ∈ Z}.

The corresponding long exact sequence

· · · −→ Hq+1(X, A)
hq+1−→ Hq(A) −→ Hq(X) −→

−→ Hq(X, A)
hq−→ Hq−1(A) −→ · · ·

is called the
Relative homology is useful in the evaluation of homology because of the

following excision property. Let (X, A) be a topological pair and U ⊂ A.
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Let i : (X \ U, A \ U)→ (X, A) be the natural inclusion. We say that U can
be excised and that i is an excision if

Hq(i) : Hq(X \ U, A \ U)→ Hq(X, A)

is an isomorphism. One can show that, if the closure Ū ⊂ A, then U can
be excised. If X is an n-dimensional topological manifold, then, using the
excision property, one can show that, ∀x ∈ X ,

Hn(X, X \ {x}) ∼= P.

Let U be a neighborhood of x ∈ X . If jU
x : (X, X \U)→ (X, X \{x}) denotes

the natural inclusion, then we have the homomorphism

Hn(jU
x ) : Hn(X, X \ U)→ Hn(X, X \ {x}).

One can show that, ∀x ∈ X , there exists an open neighborhood U of x and
α ∈ Hn(X, X \U) such that αy := Hn(jU

y )(α) generates Hn(X, X \{y}), ∀y ∈
U . Such an element α is called a local P-orientation of X along U . A P-
orientation system of X is a set {(Ui, αi) | i ∈ I} such that

1.
⋃

i∈I Ui = X ;
2. ∀i ∈ I, αi is a local P-orientation of X along Ui;
3. αi,y = αj,y, ∀y ∈ Ui ∩ Uj .

Given the P-orientation system {(Ui, αi) | i ∈ I} of X , for each x ∈ X ,
∃i ∈ I such that x ∈ Ui and hence we have a generator αx of Hn(X, X \ {x})
given by αx := αi,x. Two P-orientation systems {(Ui, αi) | i ∈ I },
{(U ′i , α′i) | i ∈ I ′ } are said to be equivalent if αx = α′x, ∀x ∈ X . An
equivalence class of P-orientation systems of X is denoted simply by α and
is called a P-orientation of X . One can show that, if X is connected, then
two P-orientations that are equal at one point are equal everywhere. A topo-
logical manifold is said to be P-orientable if it admits a P-orientation. A
P-oriented manifold is a P-orientable manifold with the choice of a fixed
P-orientation α. A manifold is said to be orientable (resp., oriented) when
it is Z-orientable (resp., Z-oriented). We note that homology with integer
(resp., rational, real) coefficients is often referred to as the integral (resp.
rational, real) homology.

If X is a compact connected n-dimensional, P-oriented manifold, then

Hn(X) ∼= P.

This allows us to give the following definition of the fundamental class of
a compact connected oriented manifold with orientation α. Let αx be the
local orientation at x ∈ X . Then there exists a unique generator of Hn(X),
whose image under the canonical map Hn(X) → Hn(X, X \ {x}) is αx.
This generator of Hn(X) is called the fundamental class of X with the
orientation α and is denoted by [X ].
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Using integral homology we can define the Betti numbers and Euler char-
acteristic for certain topological spaces. They turn out to be integer-valued
topological invariants. In order to define them, let us recall some results from
algebra. Let V be a P-module. An element v ∈ V is called a torsion ele-
ment if there exists a ∈ P\{0} such that av = 0. The set of torsion elements
of V is a submodule of V denoted by Vt and called the torsion submodule
of V . If Vt = {0} then V is said to be torsion free. One can show (see Lang
[244]) that if V is finitely generated then there exists a free submodule Vf of
V such that

V = Vt

⊕
Vf .

The dimension of Vf is called the rank of V . Let M be a topological manifold.
If the homology modules Hq(M ;Z) are finitely generated, then the rank of
Hq(M ;Z) is called the qth Betti number and is denoted by bq(M). In this
case we define the Euler (or Euler–Poincaré) characteristic χ(M) of M
by

χ(M) :=
∑

q

(−1)qbq(M).

We observe that if M is compact then the homology modules are finitely
generated. Roughly speaking, the Betti numbers count the number of holes
of appropriate dimension in the manifold, whereas the torsion part indicates
the twisting of these holes.

An example of this is the following. Recall that the Klein bottle K
is obtained by identifying the two ends of the cylinder [0, 1] × S1 with an
antipodal twist, i.e., by identifying (0, θ) with (1,−θ), θ ∈ S1. This twist is
reflected in the torsion part of homology and we have H1(K;Z) = Z ⊕ Z2,
whereas H1(K;R) = R. Note that if we use homology with coefficient in Z2

then the torsion part also vanishes since Z2 has no non-trivial subgroups. If
the integral domain P is taken to be the field Q or R, then the Betti numbers
remain the same but there is no torsion part in the homology modules.

By duality a homology theory gives a cohomology theory. As an example
singular cohomology is defined as the dual of singular homology. The qth
singular cochain module of a topological space X with coefficients in P
is the dual of Sq(X ;P) and is denoted by Sq(X ;P) or simply Sq(X). If X, Y
are topological spaces and f : X → Y is a continuous map, then we denote
by Sq(f ;P) or simply by Sq(f) the map

Sq(f) := tSq(f) : Sq(Y )→ Sq(X),

where we have used the notation tL for the transpose of the linear map L
(here L = Sq(f) ). Then it is easy to verify that Sq( · ;P) is a contravariant
functor from the category of topological spaces to the category of P-modules.
The qth singular cohomology P-module Hq(X ;P) or simply Hq(X) is
defined by
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Hq(X) = Ker tδq+1/ Im tδq,

where tδq+1 : Sq(X) → Sq+1(X) is the qth coboundary operator. The
module Zq(X) := Ker tδq+1 (resp., Bq(X) := Im tδq) is called the qth
singular cohomology module of cocycles (resp., coboundaries). In partic-
ular, the duality of Hq(X,Z) with Hq(X,Z) and the finite dimensionality
of Hq(X,Z) implies that dimHq(X,Z) = dimHq(X,Z) = bq(X), ∀q ≥ 0,
where bq(X) is the qth Betti number of X . If X, Y are topological spaces and
f : X → Y is a continuous map, then Sq(f) sends Zq(Y ) to Zq(X) and Bq(Y )
to Bq(X). Hence, it induces, by passage to the quotient, the homomorphism

Hq(f ;P) ≡ Hq(f) : Hq(Y )→ Hq(X).

Then it is easy to verify that Hq( · ;P) is a contravariant functor from the
category of topological spaces to the category of P-modules. With an analo-
gous procedure one can define the qth relative singular cohomology modules
for a topological pair (X, A), denoted by Hq(X, A) (see Greenberg [160] for
details). A comprehensive introduction to algebraic topology covering both
homology and homotopy can be found in Tammo tam Dieck’s book [98].

In dealing with noncompact spaces it is useful to consider singular coho-
mology with compact support that we now define. Let X be a topological
manifold. The set K of compact subsets of X is a directed set with the partial
order given by the inclusion relation. Let us consider the direct system

D = ({Hq(X, X \K) | K ∈ K}, {fK′
K | (K, K ′) ∈ K2

0}),

where
K2

0 := {(K, K ′) ∈ K2 | K ⊂ K ′}.

The map fK′
K : Hq(X, X \ K) → Hq(X, X \ K ′) is the homomorphism in-

duced by the inclusion. The qth singular cohomology P-module with
compact support is the direct limit of the direct system D and is denoted
by Hq

c (X ;P), or simply Hq
c (X). Then, by definition

Hq
c (X) := lim−→ Hq(X, X \K).

We observe that if X is compact then X is the largest element of K. Thus, if
X is compact we have that Hq

c (X) = Hq(X), ∀q ∈ Z.
As with homology theories, there are several cohomology theories. An ex-

ample is given by the differentiable singular homology (resp., cohomol-
ogy) whose difference from singular homology (resp., cohomology) is essen-
tially in the fact that its construction starts with differentiable singular
q-simplexes instead of (continuous) singular q-simplexes. The differentiable
singular homology (resp., cohomology) of X is denoted by ∞H∗(X ;P) (resp.,
H∗∞(X ;P)). Under very general conditions the various cohomology theories
are isomorphic (see Warner [396]); for example, H∗(X ;P) ∼= H∗∞(X ;P). In
most physical applications we are interested in topological spaces that are dif-
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ferentiable manifolds. We now discuss the cohomology theory based on the
cochain complex of differential forms on a manifold. This is the well known
de Rham cohomology with real coefficients.

2.5 de Rham Cohomology

The de Rham complex of an m-dimensional manifold M is the cochain
complex (Λ(M), d) given by

0 −→ Λ0(M) d−→ Λ1(M) d−→ · · · d−→ Λn(M) −→ 0 . (2.6)

The cohomology H∗(Λ(M), d) is called the de Rham cohomology of M and
is denoted by H∗deR(M). The de Rham cohomology has a natural structure of
graded algebra induced by the exterior product. The product on homogeneous
elements is given by the map

∪ : Hi(M ;P)×Hj(M ;P)→ Hi+j(M ;P)

defined by
([α], [β]) �→ [α ∧ β].

This induced product in cohomology is in fact a special case of a cohomology
operation called the cup product (see Spanier [357]).

If M, N are manifolds then we have

H∗deR(M ×N) = H∗deR(M)⊗̂H∗deR(N),

where ⊗̂ denotes the graded tensor products. In particular, we can express
the cohomology of M × N in terms of the cohomologies of M and N as
follows:

Hk
deR(M ×N) =

⊕

k=i+j

Hi
deR(M)⊗Hj

deR(N). (2.7)

In fact, the above formula holds more generally and is called the Künneth
formula.

There is a canonical map ρ called the de Rham homomorphism

Hq
deR(M)→ (∞Hq(M ;R))′ ∼= Hq

∞(M ;R)

given by the following pairing between de Rham cohomology classes [α] and
real differentiable singular homology classes [c]

([α], [c]) �→
∫

c

α.
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One can show that this map ρ is independent of the choice of α ∈ [α] and
c ∈ [c]. The classical de Rham theorem says that the map ρ is an isomorphism.
Thus, ∀q we have

Hq
deR(M) ∼= Hq

∞(M ;R) ∼= Hq(M ;R).

Let (M, g) be an oriented, closed (i.e., compact and without boundary)
Riemannian manifold with metric volume form μ. Recall that the Hodge–
de Rham operator Δ = d ◦ δ + δ ◦ d maps Λk(M)→ Λk(M), ∀k and that
the Hodge star operator ∗ maps Λk(M)→ Λn−k(M), ∀k. For further details,
see Chapter 3. The map

〈 , 〉 : Λk(M)× Λk(M)→ R

defined by

〈α, β〉 =
∫

M

α ∧ ∗β =
∫

M

g(α, β)μ (2.8)

is an inner product on Λk(M). One can show that, for σ ∈ Λk+1(M), we have

〈dα, σ〉 = 〈α, δσ〉 and 〈Δα, β〉 = 〈α, Δβ〉. (2.9)

That is, δ is the adjoint of d and Δ is self-adjoint with respect to this inner
product. Furthermore, Δα = 0 if and only if dα = δα = 0. An element of the
set

Hk := {α ∈ Λk(M) | Δα = 0} (2.10)

is called a harmonic k-form. It follows that a k-form is harmonic if and only
if it is both closed and coclosed. The set Hk is a subspace of Λk(M). Using
these facts one can prove (see, for example, Warner [396]) the Hodge decom-
position theorem, which asserts that Hk is finite-dimensional and Λk(M)
has a direct sum decomposition into the orthogonal subspaces d(Λk(M)),
δ(Λk(M)), and Hk. Thus any k-form α can be expressed by the formula

α = dβ + δγ + θ, (2.11)

where β ∈ Λk−1(M), γ ∈ Λk+1(M) and θ is a harmonic k-form. For α in a
given cohomology class, the harmonic form θ of equation (2.11) is uniquely
determined. Thus, we have an isomorphism of the kth cohomology space
Hk(M ;R) with the space of harmonic k-forms Hk. Therefore, the kth Betti
number bk is equal to the dimHk. This is an illustration of a relation between
physical or analytic data (the solution space of a partial differential operator)
on a manifold and its topology. A far-reaching, nonlinear generalization of
this idea relating the solution space of Yang–Mills instantons to the topology
of 4-manifolds appears in the work of Donaldson (see Chapter 9 for further
details).
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2.5.1 The Intersection Form

Let M be a closed (i.e., compact, without boundary), connected, oriented
manifold of dimension 2n. Let v denote the volume form on M defining the
orientation. We shall use the de Rham cohomology to define ιM , the in-
tersection form of M as follows. Let α, β ∈ Λn(M) be two closed n-forms
representing the cohomology classes a, b ∈ Hn(M ;Z) ⊂ Hn(M ;R) respec-
tively, i.e., a = [α] and b = [β]. Now α∧β ∈ Λ2n(M) and hence

∫
α∧β is well

defined with respect to the volume form v. It can be shown that this integral
is independent of the choice of forms α, β representing the cohomology classes
a, b and takes values that are integral multiples of the volume of M . Thus,
we can define the binary operator

ιM : Hn(M ;Z)×Hn(M ;Z)→ Z

by

ιM (a, b) =
∫

M

(α ∧ β).

In what follows we shall use the same letter to denote the cohomology class
and an n-form representing that class. It can be shown that ιM is a symmetric,
non-degenerate bilinear form on Hn(M ;Z). This symmetric, non-degenerate
form ιM is called the intersection form of M . The definition given above
works only for smooth manifolds. However, as is the case with de Rham co-
homology, the intersection form does not depend on the differential structure
and is a topological invariant. In particular, it is defined for topological man-
ifolds. In fact, the intersection form can also be defined for non-orientable
manifolds by considering cohomology or homology with coefficients in Z2 in-
stead of Z. Now for a compact manifold M, Hn(M ;Z) is a finitely generated
free Abelian group of rank bn (the nth Betti number), i.e., an integral lattice
of rank bn. Thus, the intersection form gives us the map

ι : M �→ ιM ,

which associates to each compact, connected, oriented topological manifold
M of dimension 2n a symmetric, non-degenerate bilinear form ιM on a lattice
of rank bn. Let (b+, b−) be the signature of the bilinear form ιM . If bn > 0 and
cj , 1 ≤ j ≤ bn, is a basis of the lattice Hn(M ;Z), then the intersection form
is completely determined by the matrix of integers ιM (cj , ck), 1 ≤ j, k ≤ bn.
From Poincaré duality it follows that the intersection form is unimodular,
i.e.,

| det(ιM (cj , ck))| = 1.

If bn = 0 then we take ιM := ∅ the empty form. Recall that on the abstract
level two forms ι1, ι2 on lattices L1, L2, respectively, are said to be equivalent
if there exists an isomorphism of lattices f : L1 → L2 such that f∗ι2 = ι1.
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The intersection form plays a fundamental role in Freedman’s classification
of topological 4-manifolds. We give a brief discussion of this result in the next
section.

2.6 Topological Manifolds

In this section we discuss topological manifolds with special attention to
low-dimensional manifolds. The following theorem gives some results on the
existence of smooth structures on topological manifolds.

Theorem 2.7 Let M be a closed topological manifold of dimension n. Then
we have the following results:

1. For n ≤ 3 there is a unique compatible smooth structure on M .
2. For n = 4 there exist (infinitely many) simply connected manifolds that

admit infinitely many distinct smooth structures. It is not known whether
there are manifolds that admit only finitely many distinct smooth struc-
tures.

3. For n ≥ 5 there are at most finitely many distinct compatible smooth
structures.

Thus, dimension 4 seems very special. This is also true for open topologi-
cal manifolds. There is a unique smooth structure on Rn, n �= 4, compatible
with its standard topology. However, R4 admits uncountably many smooth
structures. We do not know at this time if every open topological 4-manifold
admits uncountably many smooth structures. For further results in the sur-
prising world of 4-manifolds, see, for example, the book by Scorpan [343].

2.6.1 Topology of 2-Manifolds

The topology of 2-manifolds, or surfaces, was well known in the nineteenth
century. Smooth, compact, connected and oriented 2-manifolds are called
Riemann surfaces. An introduction to compact Riemann surfaces from
various points of view and their associated geometric structures may be found
in Jost [213]. They are classified by a single non-negative integer, the genus
g. The genus counts the number of holes in the surface. There is a standard
model Σg for a surface of genus g obtained by attaching g handles to a
sphere (which has genus zero). Every smooth, compact, oriented surface is
diffeomorphic to one and only one Σg. The classification is sometimes given
in terms of the Euler characteristic of the surface. It is related to the genus
by the formula χ(Σg) = 2− 2g.

In the classical theory of surfaces, homology classes a, b ∈ H1(M ;Z) were
represented by closed curves, which could be chosen to intersect transversally.
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The intersection form was then defined by counting the algebraic number
of intersections of these curves. Surfaces are completely classified by their
intersection forms. In the orientable case we have the following well known
result.

Theorem 2.8 Let M, N be two closed, connected, oriented surfaces. Then
M ∼= N (i.e., M is diffeomorphic to N) if and only if the intersection forms
ιM , ιN are equivalent. Moreover, if ιM = ∅ then M ∼= S2 and if ιM �= ∅ then
there exists k ∈ N such that ιM ∼= kσ1, where

σ1 =
(

0 1
1 0

)

is a Pauli spin matrix, and kσ1 is the block diagonal form with k entries of
σ1, and M ∼= kT 2, where T 2 = S1 × S1 is the standard torus and kT 2 is the
connected sum of k copies of T 2.

The Riemann surface together with a fixed complex structure provides a
classical model for one-dimensional algebraic varieties or complex curves. A
compact surface corresponds to a projective curve. The genus of such a sur-
face is equal to the dimension of the space of holomorphic one forms on the
surface. This way of looking at a Riemann surface is crucial in the Gromov–
Witten theory. We will not consider it in this book. The genus has also a
topological interpretation as half the first Betti number of the surface. We
note that the classification of orientable surfaces given by the above theorem
can be extended to include non-orientable surfaces as well. We are inter-
ested in extending this theorem to the case of 4-manifolds. This was done by
Freedman in 1981. Before discussing his theorem we consider the topology of
3-manifolds where no intersection form is defined.

2.6.2 Topology of 3-Manifolds

The classification of manifolds of dimension 3 or higher is far more difficult
than that of surfaces. It was initiated by Poincaré in 1900. The year 1900 is
famous for the Paris ICM and Hilbert’s lecture on the major open problems
in mathematics. The classification of 3-manifolds was not among Hilbert’s
problems. Armed with newly minted homology groups and his fundamental
group Poincaré began his study by trying to characterize the simplest 3-
manifold, the sphere S3. His first conjecture was the following:

Let M be a compact connected 3-manifold with the same homology groups
as the sphere S3. Then M is homeomorphic to S3.

In attempting to prove this conjecture Poincaré found a 3-manifold P
that provided a counterexample to the conjecture. This 3-manifold P is now
called the Poincaré homology sphere. It is denoted by Σ(2, 3, 5) as it can
be represented as a special case of the Brieskorn homology 3-spheres,
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Σ(a1, a2, a3) := {(z1, z2, z3) | za1
1 + za2

2 + za3
3 = 0} ∩ S5, a1, a2, a3 ∈ N.

We will compute various new invariants of the Brieskorn homology 3-spheres
in Chapter 10. Poincaré’s original ingenious construction of P can be de-
scribed via well known geometric figures. It is the space of all regular icosa-
hedra inscribed in the standard unit 2-sphere. Note that each icosahedron is
uniquely determined by giving one vertex on the sphere (2 parameters) and
a direction to a neighboring vertex (1 parameter). It can be shown that the
parameter (or moduli) space P of all icosahedra is a 3-manifold diffeomor-
phic to Σ(2, 3, 5) and that it has the same homology groups as the sphere
S3. Poincaré showed that π1(P ), the fundamental group of P , is non-trivial.
Since π1(S3) is trivial, P cannot be homeomorphic to S3. Yet another de-
scription of P is obtained by observing that the rotation group SO(3) maps
S2 to itself and the induced action on P is transitive. The isotropy group Ix

of a fixed point x ∈ P can be shown to be a finite group of order 60. Thus, P
is homeomorphic to the coset space SO(3)/Ix. This fact can be used to show
that π1(P ) is a perfect group of order 120.

Icosahedron is one of the five regular polyhedra or solids known since
antiquity. They are commonly referred to as Platonic solids (see Appendix
B for some interesting properties of Platonic solids). Poincaré’s counterexam-
ple showed that homology was not enough to characterize S3 and that one
has to take into account the fundamental group. He then made the following
conjecture:

Let M be a closed simply connected 3-manifold. Then M is homeomor-
phic to S3.

We give it in an alternative form, which is usrful for stating the generalized
Poincaré conjecture in any dimension, with 3 replaced by a natural number n.

Poincaré Conjecture: Let M be a closed connected 3-manifold with the
same homotopy type as the sphere S3. Then M is homeomorphic to S3.

Definition 2.2 Let Hn denote the n-dimensional hyperbolic space. A 3-
manifold X is said to be a Thurston 3-dimensional geometry if it is
one of the following eight homogeneous manifolds (i.e., the group of isome-
tries of X acts transitively on X).

• Three spaces of constant curvature R3, S3, H3.
• Two product spaces R× S2, R×H2.
• Three twisted product spaces, each of which is a Lie group with a left

invariant metric. They are

◦ the universal covering space of the group SL(2,R);
◦ the group of upper triangular matrices in M3(R) with all diagonal en-

tries 1, called Nil;
◦ the semidirect product of R and R2, where R acts on R2 through mul-

tiplication by the diagonal matrix diag(t, t−1), t ∈ R, called Sol.
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We can now define a geometric 3-manifold in the sense of Thurston.

Definition 2.3 A 3-manifold M is said to be geometric if it is diffeo-
morphic to X/Γ , where Γ is a discrete group of isometries of X (i.e.
Γ < Isom(X)) acting freely on X, and X is one of Thurston’s eight 3-
dimensional geometries.

We can now state the Thurston geometrization conjecture.

Thurston Geometrization Conjecture: : Let M be a closed 3-manifold
that does not contain two-sided projective planes. Then M admits a con-
nected sum decomposition and a decomposition along disjoint incompress-
ible tori and Klein bottles into a finite number of pieces each of which is a
geometric manifold.

The Thurston geometrization conjecture was recently proved by Perelman
using a generalized form of Hamilton’s Ricci flow technique. This result im-
plies the original Poincaré conjecture. We will comment on it in Chapter 6.

2.6.3 Topology of 4-manifolds

The importance of the intersection form for the study of 4-manifolds was al-
ready known since 1940 from the following theorem of Whitehead (see Milnor
and Husemoller [285]).

Theorem 2.9 Two closed, 1-connected, 4-manifolds are homotopy equiva-
lent if and only if their intersection forms are equivalent.

In the category of topological manifolds a complete classification of closed,
1-connected, oriented 4-manifolds has since been carried out by Freedman
(see [136]). To state his results we begin by recalling the general scheme of
classification of symmetric, non-degenerate, unimodular, bilinear forms (re-
ferred to simply as “forms” in the rest of this section) on lattices (see Milnor
and Husemoller [285]). The classification of forms has a long history and is an
important area of classical mathematics with applications to algebra, num-
ber theory, and more recently to topology and geometry. We have already
defined two fundamental invariants of a form, namely its rank bn and its
signature (b+, b−). We note that sometimes the signature is defined to be
the integer b+ − b− = bn − 2b−. We shall denote this integer by σ(M), i.e.,
σ(M) := bn−2b−. We say that a form ι on the lattice L is even or of type II
if ι(a, a) is even for all a ∈ L. Otherwise we say that it is odd or of type I. It
can be shown that for even (type II) forms, 8 dvides the signature σ(M). In
particular, 8 divides the rank of a positive definite even form. The indefinite
forms are completely classified by the rank, signature, and type. We have the
following result.

Theorem 2.10 Let ι be an indefinite form of rank r and signature (j, k), j >
0, k > 0. Then we have



2.6 Topological Manifolds 65

1. ι ∼= j(1)⊕ k(−1) if it is odd (type I),
2. ι ∼= mσ1 ⊕ pE8, m > 0 if it is even (type II),

where (1) and (−1) are 1 × 1 matrices representing the two possible forms
of rank 1, σ1 is the Pauli spin matrix defined earlier, and E8 is the matrix
associated to the exceptional Lie group E8 in Cartan’s classification of simple
Lie groups, i.e.,

E8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The classification of definite forms is much more involved. The number
N(r) of equivalence classes of definite forms (which counts the inequivalent
forms) grows very rapidly with the rank r of the form, as Table 2.3 illustrates.

Table 2.3 Number of inequivalent definite forms

r 8 16 24 32 40
N(r) 1 2 24 ≥ 109 ≥ 1051

We now give some simple examples of computation of intersection forms
that we will use later.

Example 2.8 We denote H2(M ;Z) by L in this example.

1. Let M = S4; then L = 0 and hence ιM = ∅.
2. Let M = S2 × S2; then L has a basis of cohomology classes α, β dual to

the homology cycles represented by S2 × {(1, 0, 0)} and {(1, 0, 0)} × S2,
respectively. With respect to this basis the matrix of ιM is the Pauli spin
matrix

σ1 =
(

0 1
1 0

)

.

3. Let M = CP2; then L = Z and hence ιM = (1).
4. Let M = CP

2
, i.e., CP2 with the opposite complex structure and orien-

tation. Then L = Z and hence ιM = (−1).

Whitehead’s Theorem 2.9 stated above says that the map ι that associates
to a closed, 1-connected topological 4-manifold its intersection form induces
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an injection from the homotopy equivalence classes of manifolds into the
equivalence classes of forms. It is natural to study this map ι in greater
detail. One can ask, for example, the following two questions.

1. Is the map ι surjective? I.e., given an intersection form μ, does there exist
a manifold M such that ιM = μ?

2. Does the injection from the homotopy equivalence classes of manifolds
into the equivalence classes of forms extend to other equivalence classes of
manifolds?

The first question is an existence question while the second is a uniqueness
question. These questions can be restricted to different categories of manifolds
such as topological or smooth manifolds. A complete answer to these ques-
tions in the topological category is given by the following theorem, proved
by Freedman in 1981 [136].

Theorem 2.11 Let Msp (resp., Mns) denote the set of topological equiva-
lence classes (i.e. homeomorphism classes) of closed, 1-connected, oriented,
spin (resp., non-spin) 4-manifolds. Let Iev (resp. Iod) denote the set of equiv-
alence classes of even (resp. odd) forms. Then we have the following:

1. the map ι :Msp → Iev is bijective;
2. the map ι : Mns → Iod is surjective and is exactly two-to-one. The two

classes in the preimage of a given form are distinguished by a cohomology
class κ(M) ∈ H4(M ;Z2) called the Kirby–Siebenmann invariant.

We note that the Kirby–Siebenmann invariant represents the obstruc-
tion to the existence of a piecewise linear structure on a topological manifold
of dimension ≥ 5. Applying the above theorem to the empty rank zero form
provides a proof of the Poincaré conjecture for dimension 4. Freedman’s the-
orem is regarded as one of the fundamental results of modern topology.

In the smooth category the situation is much more complicated. It is well
known that the map ι is not surjective in this case. In fact, we have the
following theorem:

Theorem 2.12 (Rochlin) Let M be a smooth, closed, 1-connected, oriented,
spin manifold of dimension 4. Then σ(M), the signature of M is divisible by
16.

Now, as we observed earlier, 8 always divides the signature of an even
form, but 16 need not divide the form. Thus, we can define the Rochlin
invariant ρ(μ) of an even form μ by

ρ(μ) :=
1
8
σ(μ) (mod 2).

We note that the Rochlin invariant and the Kirby–Siebenmann invariant
are equal in this case, but for non-spin manifolds the Kirby–Siebenmann
invariant is not related to the intersection form and thus provides a further
obstruction to smoothability. From Freedman’s classification and Rochlin’s
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theorem it follows that a topological manifold with nonzero Rochlin invariant
is not smoothable. For example, the topological manifold |E8| := ι−1(E8)
corresponds to the equivalence class of the form E8 and has signature 8
(Rochlin invariant 1) and hence is not smoothable.

For several years very little progress was made beyond the result of the
above theorem in the smooth category. Then, in 1982, through his study of
the topology and geometry of the moduli space of instantons on 4-manifolds
Donaldson discovered the following, unexpected, result. The theorem has led
to a number of important results including the existence of uncountably many
exotic differentiable structures on the standard Euclidean topological space
R4.

Theorem 2.13 (Donaldson) Let M be a smooth closed 1-connected oriented
manifold of dimension 4 with positive definite intersection form ιM . Then
ιM ∼= b2(1), the diagonal form of rank b2, the second Betti number of M .

Donaldson’s work uses in an essential way the solution space of the Yang–
Mills field equations for SU(2) gauge theories and has already had profound
influence on the applications of physical theories to mathematical problems.
In 1990 Donaldson obtained more invariants of 4-manifolds by using the
topology of the moduli space of instantons. Donaldson theory led to a number
of new results for the topology of 4-manifolds, but it was technically a difficult
theory to work with. In fact, Atiyah announced Donaldson’s new results
at a conference at Duke University in 1987, but checking all the technical
details delayed the publication of his paper until 1990. The matters simplified
greatly when the Seiberg–Witten equations appeared in 1994. We discuss
the Donaldson invariants of 4-manifolds in more detail in Chapter 9. It is
reasonable to say that at that time a new branch of mathematics which may
be called “Physical Mathematics” was created.

In spite of these impressive new developments, there is at present no ana-
logue of the geometrization conjecture in the case of 4-manifolds. Here ge-
ometric topologists are studying the variational problems on the space of
metrics on a closed oriented 4-manifold M for one of the classical curvature
functionals such as the square of the L2 norm of the Riemann curvature Rm,
Weyl conformal curvature W , and its self-dual and anti-dual parts W+ and
W−, respectively, and Ric, the Ricci curvature. The Hilbert–Einstein varia-
tional principle based on the scalar curvature functional and its variants are
important in the study of gravitational field equations. Einstein metrics, i.e.,
metrics satisfying the equation

K := Ric− 1
4
Rg = 0

are critical points of all of the functionals listed above. Here K is the trace-free
part of the Ricci tensor. In many cases the Einstein metrics are minimizers,
but there are large classes of minimizers that are not Einstein metrics. A well-
known obstruction to the existence of Einstein metrics is the Hitchin–Thorpe
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inequality χ(M) ≥ 3
2 |τ(M)|, where χ(M) is the Euler characteristic and τ(M)

is the signature of M . A number of new obstructions are now known. Some of
these indicate that their existence may depend on the smooth structure of M
as opposed to just the topological structure. These obstructions can be inter-
preted as implying a coupling of matter fields to gravity (see [269, 270, 94]).
The basic problem is to understand the existence and moduli spaces of these
metrics on a given manifold and perhaps to find a geometric decomposition
of M with respect to a special functional. One of the most important tools for
developing such a theory is the Chern–Gauss–Bonnet theorem which states
that

χ(M) =
1

8π2

∫

(|Rm|2 − |K|2)dv =
1

8π2

∫ (

|W |2 − 1
2
|K|2 +

1
24

R2

)

dv.

This result allows one to control the full Riemann curvature in terms of the
Ricci curvature Ric. It is interesting to note that in [242], Lanczos had arrived
at the same result while searching for Lagrangians to generalize Einstein’s
gravitational field equations. He noted the curious property of the Euler class
that it contains no dynamics (or is an invariant). He had thus obtained the
first topological gravity invariant (without realizing it). Chern’s fundamental
paper [74] appeared in the same journal seven years later. Chern–Weil the-
ory and Hirzebruch’s signature theorem give the following expression for the
signature τ(M):

τ(M) =
1

12π2

∫

(|W+|2 − |W−|2)dv.

The Hitchin–Thorpe inequality follows from this result and the Chern–
Gauss–Bonnet theorem. In dimension 4, all the classical functionals are con-
formally (or scale) invariant, so it is customary to work with the space of
unit volume metrics on M .

2.7 The Hopf Invariant

As we remarked in the preface, mathematicians and physicists have often
developed the same ideas from different perspectives. The Hopf fibration and
Dirac’s monopole construction provide an example of this. Each is based on
the observation that S2 (the base of the Hopf fibration) is a deformation
retract of R3 \{0} (the base of the Dirac monopole field). Thus non-triviality
of π3(S2) can be interpreted as Dirac’s monopole quantization condition.
Other Hopf fibrations and Hopf invariants also arise in physical theories, as
we indicate later in this section.

Let f : S2n−1 → Sn, n > 1, be a continuous map. Let X denote the
quotient space of the disjoint union D2n

⊔
Sn under the identification of
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x ∈ S2n−1 ⊂ D2n with f(x) ∈ Sn. The map f is called the attaching
map. The space X is called the adjunction space obtained by attaching
the 2n-cell e2n := (D2n, S2n−1) to Sn by f and is denoted by Sn ∪f e2n. The
cohomology H∗(X ;Z) of X is easy to calculate and is given by

Hi(X ;Z) =
{

Z if i = n or 2n,
0 otherwise .

Let α ∈ Hn(X ;Z) and β ∈ H2n(X ;Z) be the generators of the respective
cohomology groups. We note that in de Rham cohomology α, β can be identi-
fied with closed differential forms. It follows that α2 is an integral multiple of
β. The multiplier h(f) is completely determined by the map f and is called
the Hopf invariant of f . Thus we have

α2 = h(f)β.

It can be shown that h(f) is, in fact, a homotopy invariant and hence defines
a map (also denoted by h)

[f ] �→ h(f) of π2n−1(Sn)→ Z.

To include the case n = 1 we note that the double covering c2 : S1 → S1 has
adjunction space RP2 and Hopf invariant 1. The following theorem is due to
H. Hopf:

Theorem 2.14 Let Fn := C(S2n−1, Sn), n > 0, denote the space of contin-
uous functions from S2n−1 to Sn. Then we have the following:

1. If n > 1 is odd, then h(f) = 0, ∀f ∈ Fn.
2. If n is even, then for each k ∈ Z there exists a map fk ∈ Fn such that

h(fk) = 2k.
3. If there exists g ∈ Fn such that h(g) is odd, then n = 2m, where m is a

nonnegative integer.
4. Let π ∈ F1 (resp., F2) be the real (resp., complex) Hopf fibration. Then

h(π) = 1.

We note that the real Hopf fibration π : S1 → RP1 ∼= S1 occurs in the
geometric quantization of the harmonic oscillator [271,272] while the complex
Hopf fibration π : S3 → CP1 ∼= S2 occurs in the geometric construction
of the Dirac monopole. It can be shown that the last result in the above
theorem can be extended to include the quaternionic and octonionic Hopf
fibrations (which arise in the solution of Yang–Mills equations on S4 and
S8, respectively) and that this extended list exhausts all Fn that contain a
map with Hopf invariant 1. This result is part of the following extraordinary
theorem, which links several specific structures from algebra, topology, and
geometry.
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Theorem 2.15 Let Sn−1 ⊂ Rn, n > 0 denote the standard (n − 1)-sphere
in the real Euclidean n-space with the convention that S0 := {−1, 1} ⊂ R
and R0 := {0}. Then the following statements are equivalent:

1. The integer n ∈ {1, 2, 4, 8}.
2. Rn has the structure of a normed algebra.
3. Rn has the structure of a division algebra.
4. Rn−1 admits a cross product (or a vector product).
5. Sn−1 is an H-space.
6. Sn−1 is parallelizable (i.e., its tangent bundle is trivializable).
7. There exists a map f : S2n−1 → Sn with Hopf invariant h(f) = 1.

The relation of conditions (1) and (3) with condition (4) and its general-
izations have been considered in [126]. It is well known that complex numbers
have applications to 2-dimensional geometry and its ring of Gaussian in-
tegers (i.e., numbers of the form m + ni, where m, n ∈ Z) is used in many
classical questions in arithmetic. Similarly, the quaternions are related to 3-
dimensional and 4-dimensional geometry and they contain rings of integers
with many properties similar to those of Gaussian integers. The octonions
have applications to 7- and 8-dimensional geometry. In elementary algebra
one encounters the construction of the complex numbers in terms of certain
real matrices of order 2. This doubling procedure of constructing C from
R was generalized by Dixon to construct H from C and the octonions O from
H. This procedure leads to identities expressing the product of two sums of
2n squares as another such sum. The familiar identity from high school

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2

is the special case n = 1. Many interesting further developments of these
ideas can be found in the book [83] by Conway and Smith.

2.7.1 Kervaire invariant

In 1960 Kervaire defined a geometric topological invariant of a framed differ-
ential manifold M of dimension m = 4n+2 generalizing the Arf invariant for
surfaces. Ten years earlier Pontryagin had used the Arf invariant of surfaces
embedded in Sk+2 with trivialized normal bundle to compute the homotopy
groups πk+2(Sk) for k > 1. This group can be identified with the cobordism
group of such surfaces. The cobordism of manifolds and the corresponding
cobordism groups were defined by Thom in 1952. Algebraically the Arf invari-
ant is defined for any quadratic form over Z2. Kervaire defined a quadratic
form q on the homology group H2n+1(M ;Z2) by using the framing and the
Steenrod squares. The Kervaire invariant is the Arf invariant of q. A gen-
eral reference for this section is Snaith [356]. Kervaire used his invariant to
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obtain the first example of a non-smoothable 10-dimensional PL-manifold.
In the smooth category the first three examples of manifolds with Kervaire
invariant 1 are S1 × S1, S3 × S3, and S7 × S7. In these three cases the Ker-
vaire invariant is related to the Hopf invariant of certain maps of spheres. No
further examples of manifolds with Kervaire invariant 1 were known for many
years. The problem of finding the dimensions of framed manifolds for which
the Kervaire invariant is 1 came to be know as the Kervaire invariant 1
problem.

In 1969 Bill Browder proved that the Kervaire invariant is 0 for a mani-
fold M if its dimension is different from 2j+1 − 2, j ∈ N. By 1984, it was
known that there exist manifolds of dimensions 30 and 62 with the Kervaire
invariant 1. Then on April 21, 2009, during the Atiyah 80 conference at Ed-
inburgh, Mike Hopkins announced that he, Mike Hill, and Doug Ravenel had
proved that there are no framed manifolds of dimension greater than 126 with
Kervaire invariant 1. The case n = 126 was open as of January 2010. Mike
Hopkins gave a very nice review of the problem and indicated key steps in the
proof at the Strings, Fields and Topology workshop at Oberwolfach (June,
2009). This section is based in part on that review. The proof makes essential
use of ideas from a generalized cohomology theory, called topological mod-
ular forms, or tmf theory. It was developed by Hopkins and collaborators.
Witten has introduced a homomorphism from the string bordism ring to the
ring of modular forms, called the Witten genus. This can be interpreted in
terms of the theory of topological modular forms or tmf. We have al-
ready seen in Theorem 2.15, how the spheres S1, S3, S7 enter from various
perspectives in it. We have also discussed their relation to the Hopf fibration
and to different physical theories. The relation of the other manifolds with
other parts of mathematics and with physics is unclear at this time.

The discussion of homotopy and cohomology given in this chapter forms a
small part of an area of mathematics called algebraic topology, where these
and other related concepts are developed for general topological spaces. Stan-
dard references for this material and other topics in algebraic topology are
Bott and Tu [55], Massey [279], and Spanier [357]. A very readable introduc-
tion is given in Croom [90].
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