Chapter 2
Dynamic Pricing Models

Abstract In this chapter, some pricing models are presented that are character-
ized by the following assumptions: (i) the number of potential customers is not
limited, and as a consequence, the size of the population is not a parameter of the
model, (ii) only one type of item is concerned, (iii) a monopoly situation is con-
sidered, and (iv) customers buy items as soon as the price is less than or equal to
the price they are prepared to pay (myopic customers). A deterministic model with
time-dated items is presented and illustrated first. To build this model, the rela-
tionship between the price per item and demand has to be established. Then, the
stochastic version of the same model is analyzed. A Poisson process generates
customers’ arrivals. Finally, a stochastic model with salvage value where the price
is a function of inventory level is considered. Detailed algorithms, numerical ex-
amples and figures are provided for each model. These models provide practical
insights into pricing mechanisms.

2.1 Introduction

Any dynamic pricing model requires establishing how demand responds to
changes in price. This chapter is dedicated to mathematical models of monopoly
systems. The reader will notice that strong assumptions are made to obtain tracta-
ble models. Indeed, such mathematical models can hardly represent real-life situa-
tions, but they do illustrate the relationship between price and customers’ purchas-
ing behavior.

In this chapter we consider the case of time-dated items, i.e., items that must be
sold before a given point in time, say 7. Furthermore, there is no supply option be-
fore time 7. This situation is common in the food industry, the toy business (when
toys must be sold before Christmas, for instance), marketing products (products
associated with special events like movies, football matches, etc.), fashion apparel
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(because the selling period ends when a season finishes), airplane tickets (which
are obsolete when the plane takes off), to quote just a few.

The goal is to find a strategy (dynamic pricing, also called yield management
or revenue management) that leads to the maximum expected revenue by time 7,
assuming that the process starts at time 0. This strategy consists in selecting a set
of adequate prices for the items that vary according to the number of unsold items
and, in some cases, to the time. At a given point in time, we assume that the price
of an item is a non-increasing function of the inventory level. For a given inven-
tory level, prices are going down over time.

Indeed, a huge number of models exist, depending of the situation at hand and
the assumptions made to reach a working model. For instance, selling airplane
tickets requires a pricing strategy that leads to very cheap tickets as takeoff nears,
while selling fashion apparel is less constrained since a second market exists, i.e.,
it is still possible to sell these items at discount after the deadline.

For the models presented in this chapter, we assume that:

e The number of potential customers is infinite. As a consequence, the size of the
population does not belong to the set of parameters of the models.

e A single type of item is concerned and its sales are not affected by other types
of items.

e We are in a monopoly situation, which means that there is no competition with
other companies selling the same type of item. Note that, due to price discrimi-
nation, a company can be monopolistic in one segment of the population while
other companies sell the same type of item with slight differences to other seg-
ments. This requires a sophisticated fencing strategy that prevents customers
from moving to a cheaper segment.

e Customers are myopic, which means that they buy as soon as the price is less
than the one they are prepared to pay. Strategic customers who optimize their
purchasing behavior in response to the pricing strategy of the company are not
considered in this chapter; game theory is used when strategic customers are
concerned.

To summarize, this chapter provides an insight into mathematical pricing mod-
els. Note also that few convenient models exist without the assumptions presented
above, that is to say a monopoly situation, an infinite number of potential custom-
ers who are myopic and no supply option. The reader will also observe that nega-
tive exponential functions are often used to make the model manageable and few
persuasive arguments are proposed to justify this choice: this is why we consider
that most of these models are more useful to understand dynamic pricing than to
treat real-life situations.
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2.2 Time-dated Items: a Deterministic Model

2.2.1 Problem Setting

In this model, we know the initial inventory s, : it is the maximal quantity that can
be sold by time 7. We assume that demands appear at times 1,2,---,T, and x,

represents the demand at time ¢. The demands are real and positive. The price of
one item at time ¢ is denoted by p,, and this price is a function of the demand and

the time: p, =p(x,,t).
We assume that there exists a one-to-one relationship between demand and
price at any time ¢ € { L,2,--T } Thus, x, =x ( p,,t) is the relation that pro-

vides the demand when the price is fixed.
We also assume that:
e x( p,t) is continuously differentiable with regard to p.
e x( p,t) is lower and upper bounded and tends to zero as p tends to its maxi-

mal value.

Finally, the problem can be expressed as follows:

T
Maximize ) p, x, Q.1
t=1
subject to:
T
D x, < (2.2)
=1
x, >0 for tef{l,2,--T} (2.3)
x, <x(p™,t) for te{l,2,--T} (2.4)
where p™ is the minimal value of p, .

Criterion 2.1 means that the objective is to maximize the total revenue. Con-
straint 2.2 guarantees that the total demand at horizon 7" does not exceed the initial
inventory. Constraints 2.3 are introduced to make sure that demands are never less
than zero. Finally, Constraints 2.4 provide the upper bound of the demand at any
time.
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2.2.2 Solving the Problem: Overall Approach

To solve this problem, we use the Kuhn and Tucker approach based on Lagrange
multipliers. Since p, is a function of x,, then p,x, is the function of x,. Taking

into account the constraints of the problem, the Lagrangian is:

T T
L(xy, o3 Ay o s o 1) =D p (3, 0) X, = A (X, = 5,)
t=1 t=1

. . (2.5)
+Zlur X _zlt(xt _x(ptmm, 1))
t=1 t=1
The goal is to solve the 7 equations:
9L 0 forre{l,2,-T} 2.6)
0 x,
Together with the 27+1 complementary slackness conditions:
T
AQQx,—50)=0 (2.7)
t=1
x, =0
He . }forte{l,z,---T} (2.8)
Zz(xt_x(pt :t)):O

Thus, we have 37+1 equations for the 37+1 unknowns that are:
x]a axra 2’7 /uls R} /'lTs l[s slT

A solution to the system of Equations 2.6-2.8 is admissible if 1 >0, u, >0,
[, 20 and if Inequalities 2.2-2.4 hold.
Note that, due to Relations 2.7 and 2.8:

T
A =0 and/or Zx[ =S,

t=1

4, =0 and/or x, =0 forte{l,Z,---T}

[, =0 and/or x, =x(p™,t) for te{l,2,---T}

t
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2.2.3 Solving the Problem: Example for a Given Price Function

We consider the case:
D
x,t)=(A-Bx,)——
p(x,t)=( t)DH

where A, B and D are positive constants.
As a consequence:

D+t
D

x(pt,o:%(A—p, )

As we can see:

e The price is a decreasing function of z.

e The demand must remain less than % , otherwise the cost would become nega-
tive.

The problem to be solved is (see (2.1)—(2.4)):

T
. D
Maximize E (A_th)xtD_
+t

t=1

subject to:

T
Z X, <8,
t=1

=

=

A forte{l,Z,o--,T}
xtSE

The last constraints guarantee that prices remain greater than or equal to zero.
In this case, the Lagrangian is:

T D T
L(Xl,"',xr,ﬂ,ﬂ],"', ,uTal]a"'alT)ZZ(Axt —Bx,z)m—l(Zx, _SO)
t=1 t=1

T T A
+ Z’u’ X _le (xt _E)
t=1 t=1
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According to Relations 2.6-2.8, the system of equations to solve is:

D

(A—szt)E—myt—z, =0 forte{l,2,-, T} (2.9)
T

AQ %, =5)=0 (2.10)
t=1

w,x, =0 for te{l,2,--,T} (2.11)

I,(x,~A/B)=0 for te{1,2,--,T} (2.12)

Whatever ¢ e {1, 2,---, T }, x, is either equal to 0, or to A/ B, or belongs to
(0, A/ B) (which represents the interval without its limits). This third option is
justified as follows.

If neither of the first two options holds, then g, =/, =0 and Relation 2.9 be-
comes:

D
D+t

(A-2Bx,) ~2=0

Let us first assume that x, = A/ B . In this case, g, =0 and Equality 2.9 be-
comes:

D
A-2A)——=1+1
( )D+t !

The first member of this equality is negative, while the second member is
greater than or equal to 0 since both 4 and /, must be less than or equal to O for
the solution to be admissible. As a conclusion, x, cannot be equal to 4/B, and
therefore, see (2.12), /,= 0 whatever ¢.

Let us now assume that x, =0. In this case, and keeping in mind that /, = 0,
Equality 2.9 becomes:

AL i p =00r a=4
D+t D+t

+u, >0

T
Thus, according to (2.10), th =35,

t=1
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Finally, assume that x, €(0,4/B). In this case, g =/=0 and

A=(A-2Bx,)

D+t

As a consequence, x, € (0, 4/2/B ] and x, =%(A—A Dl;rt.).

We have to consider two cases:

1. If x, = A/2/ B then, according to Equations 2.9 and 2.10:

T
A=0and ) x, <s, (2.13)

t=1

2. If x, €(0, 4/2/B), then, according to Equations 2.9 and 2.10:

T
A>0 and ) x, =s, (2.14)

t=1
Let be Y:{t|te{l,2,~-,T}, X, >0} and Ny the number of elements of Y.

From (2.13) and (2.14) it appears that:

o If TxA/2/B<s,,then x,=A4/2/B for te{l, 2,~~,T} is an admissible so-

lution.
T
: 1
o If NyxA/2/B2s,, then ) x =s,. Since x,:ﬁ(A—/l

t=1

D+t

) when

T
x,>0, equality Zx, =s, becomes Z{L(A—2D+t)}:so and
t=1 teY 2B D

,_ Ny DA-2BDs,

. Finally:
NyD+Yt Y
tey
N,DA-2BD
x =4 So DALy e ey (2.15)
2B Ny D+t

teY

We derive an algorithm from the above results.
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Algorithm 2.1.

1. If TxA/2/B<s,, then x,=A4/2/B for te{1,2,~~~T}, compute the criterion

T

* D * *

C :E A—Bx,)x,—— andset x, =x, for tei1,2,---T {, otherwise set C =0 .
t:l( l) 1D+t t t { }

2. If TxA/2/Bz2s,, then for all sequences Y:[yl,yz,m,yr],where y,=0orl:
2.1.Set x, =0 if y, =0 or compute x, using (2.15) if y, =1.
22.1f (x, <0orx, >A/2/B) for at least one ¢ e {1, 2, T}, then go to the next sequence

Y. Otherwise, compute C = A—Bx,)x .
P thzf 2 "D+t
23.1fC>C":

23.1.8et C"=C.

232.Set x, =x, for tef{l,2,---T}.

3. The solution of the problem is {x7 },:]‘25 ...r and C" contains the optimal value.

This algorithm consists of computing the value of the criterion for each of the
feasible solutions and keeping the solution with the greater value of the criterion.
Indeed, this approach can be applied only to problems of reasonable size since the

number of feasible solutions is upper bounded by 2" .

Numerical Illustrations

We present 3 examples. Demands and prices are rounded and 7 = 10. They are
listed in the increasing order of time.

Example 1

A=200,B=10and D=10

Initial inventory level: 150

Demands: 10, 10, 10, 10, 10, 10, 10, 10, 10, 10

Prices (per item): 90.91, 83.33, 76.92, 71.43, 66.67, 62.5, 58.82, 55.56, 52.63, 50
Total demand: 100

Revenue: 6687.71

Example 2

A=500,B=5and D=10

Initial inventory level: 150

Demands: 25.56, 23.33, 21.11, 18.89, 16.67, 14.44, 12.22,10.0, 7.78, 0

Prices (per item): 338.38, 319.44, 303.42, 289.68, 277.78, 267.36, 258.17, 250.0,
242.69,0

Total demand: 150
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Revenue: 44 013.1

Example 3

A=500,B=10and D=2

Initial inventory level: 200

Demands: 22.67, 22.56, 22.44,22.33,22.22,22.11,22.0,21.89, 21.78, 0

Prices (per item): 260.32, 249.49, 239.61, 230.56, 222.22, 214.53, 207.41, 200.79,
194.64, 0

Total demand: 200

Revenue: 44 933.7

2.2.4 Remarks

Three remarks can be made concerning this model:

The main difficulty consists in establishing the deterministic relationship be-
tween the demand and the price per item. In fact, establishing such a relation-
ship is a nightmare. Several approaches are usually used to reach this objective.
One of them is to carry out a survey among a large population, asking custom-
ers the price they are prepared to pay for one item. Let n be the size of the
population and s, the number of customers who are prepared to pay p or more
for one item, then s, / n is the proportion of customers who will buy at cost p.
Then, evaluating at k£ the number of customers who demonstrate some interest
in the item, we can consider that the demand is kxs,/n when the price is p.

Another approach is to design a “virtual shop” on the Internet and to play with
potential customers to extract the same information as before. This is particu-
larly efficient for products sold via the Internet. Ebay and other auction sites
can often provide this initial function for price and demand surveying.

In the model developed in this section, demands and prices are continuous. The
problem becomes much more complicated if demands are discrete. Linear in-
terpolation is usually enough to provide a near-optimal solution.

In this model, we also assumed that the value of one item equals zero after time
T. We express this situation by saying that there is no salvage value.

2.3 Dynamic Pricing for Time-dated Products: a Stochastic
Model

In this model, we assume that there is no salvage value, i.c., that the value of an
item equals zero at time 7.
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We are in the case of imperfect competition, which means that the vendor has
the monopoly of the items. The monopoly could be the consequence of a specific-
ity of the items that requires a very special know-how, a technological special fea-
ture, a novelty or the existence of item differentiation that results in a very large
spectrum of similar items.

In the case of imperfect competition, customers respond to the price.

Furthermore, this model is risk-neutral, which means that the objective is only
to maximize the expected revenue at time 7, without taking into account the risk
of poor performance. This kind of model applies when the number of problem in-
stances is large enough to annihilate risk, which is a consequence of the “large
number” statistical rule.

These hypotheses are the same as those introduced in the previous model. The
differences will appear in the next subsection.

This approach is presented in detail in (Gallego and Van Ryzin, 1994).

2.3.1 Problem Considered

To make the explanation simple, consider that possible customers appear at ran-
dom. Each customer buys an item, or not, depending on the price and the maxi-
mum amount of money they are prepared to pay for it.

We assume that a Poisson process generates the arrival of the customers.!

Let 6 be an “infinitely small” increment of time ¢. The probability that a cus-
tomer appears during the period [t, t+0) is A9, and at most one customer can

appear during this period. In this model, we assume that A4 is constant. In particu-
lar, A depends neither on time nor on the number of unsold items. In other words,
the arrival process of customers is steady.

After arriving in the system, a customer may buy an item. As mentioned be-
fore, this decision depends on the price of the item and the amount of money they
are prepared to pay for it. We denote by f ( p ) the density of probability reflect-

ing the fact that a customer is prepared to pay p for one unit of product. The fol-
lowing characteristics hold:

! In this study, a Poisson process of parameter A generates the arrival of one potential customer dur-
ing an “infinitely small” period & with the probability 4 J and does not generate any customer with
the probability 1 -4 & . In this process, the probability of the arrival of more than one potential cus-
tomer is o(é' ) , which is practically equivalent to zero. Another way to express the Poisson process is to
say that the probability that k potential customers arrive during a period [0, t] is:

b= exp(f/i Z)% .



2.3 Dynamic Pricing for Time-dated Products: a Stochastic Model 51

e The density f ( p) is a decreasing function of p, which means that the more

expensive the product, the smaller the probability that a customer is prepared to
pay this amount of money.

e If the price of an item is p, then any customer who is prepared to pay p, > p
will buy it. Thus, the probability of buying an item when the price is p is:

P(p)= [ £(u)du=1- [ f(u)du=1-F(p)

where F(p) is the distribution function of the price.

This probability tends to 0 when p tends to infinity and to 1 when p tends to 0.
A set of n items are available at time 0.
We define the value v(k, ), ke [O, n] and te [0, T], as the maximum ex-

pected revenue we can obtain by time 7" from k items available at time z. We as-
sume that v(k, ¢ ) is continuously differentiable with regard to z. Thus, v(n,0) is

the solution to the problem.

Indeed, v(0,¢)=0, Vre [0, T] and v(k,7)=0, Vke [O, n ] In other words,
if the inventory is empty at time ¢, we cannot expect any further revenue. Also, if
the inventory is not empty at time 7, it is no longer possible to sell the items that
are in inventory.

Assume that £ is the number of items available at time ¢. Three cases should be
considered when the system evolves from time ¢ to time ¢+ 0 :

e No customer appears during the period [t, t+0) . The probability of this non-
eventis 1-A4 6 and the value associated with the state (k, t+0 ) at time t+0
is v(k,t+5).

e A customer appears during the period [t, t+0) (probability A 6), but does
not buy anything (probability F ( P )). Finally, the probability associated with
this case is A0 F ( p ) and the value associated with the system is still
v(k,t+68) attime t+65 .

e A customer appears during the period [t, t+0) (probability A06) and buys
one item (probability 1—-F ( p)). The probability associated with this case is
Ao [1—F ( p)] and the value associated with the system at time ¢+0 is
v(k -Lt+0 )+ p —c . In this expression, p is the price of one item and c is the

marginal cost when selling one item (cost to invoice, packaging, transportation,
for instance). The cost ¢ depends neither on the inventory level nor on the time.
It is assumed to be less than p.

Figure 2.1 represents the evolution of the number of items during the elemen-
tary period [t, t+0) if k items are available at time ¢.
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4 Inventory level
, Pr=1-16[1-F(p)] .
k vk 1) ' v (k1)
L pr=asi-F(p)] = e
=1 o (k- 1,1+0)
| | .
It ti& Time

Figure 2.1 Evolution of the number of items

Let p* be the optimal cost of one item at time ¢ when the inventory level is £,
and v(k, t ) the maximum expected revenue for the state (&, ) of the system. At

time ¢+ the maximum expected revenue becomes either v ( k, 7+ ) with the
probability 1-A8[1-F(p*)] or v(k-1,6+8) with the probability
Ao [ 1-F(p* )], but, in the later case, some revenue has been taken by the re-

tailer when the item was sold and this amount is p*—c. In terms of flow, we can
consider that the flow p*—c of money exited the system during the elementary pe-
riod [t, t+9) . Thus, writing the balance of the maximum expected revenues, we

obtain:

) v (kt+6)

v(k,t)=[1-26[1-F(p*
)] [v(k—l,t+é')+p*—c]

+A5[1-F(p*

Asa consequence:

v(k,t)=Max

p=0

(1-26 )v(k,t+8)+ A6 F(p)v(kt+6)
{+/1§[1—F(p)][v(k—l,t+é')+p—c] }

This equality can be rewritten as:

(ki)= v(kt+8)-26[1-F(p)]v(kt+6)
vAE _l\g)x +15[1—F(p)][v(k—l,t+5)+p—c]
This equality leads to:

vik,t+0 )-v(k,t —[I—F( )]v(k,t+5)
- (k 5) (k ):iMax{+[l—F(i)][v(k—l,t+5)+p—c]}

p20
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If & tends to 0, the previous equality becomes:

v;(k,t)z

—aMin { [1-F(p)]v(kt)-[1-F(p)][v(k-Lt)+p-c]} (16)

p=0

The solution of the problem (i.e., maximizing the revenue) consists of finding,
for each pair ( k,t ), the price p* that minimizes the second member of Equal-

ity 2.16, and then solving the differential equation (2.16). Thus, two values will be
associated to the pair (&, ):

e The price p *( k,t ) that should be assigned to a unit of product at time ¢ if the

inventory level is k.
e The maximum expected revenue on period [ ¢, 7T ] if the inventory level is k at

time ¢.

Unfortunately, it is impossible to find an analytic solution for a general func-
tion F ( p ) From this point onwards, we assume that:

F(p)=1-e™@” (2.17)

where o >0.

2.3.2 Solution to the Problem

According to Relation 2.17, Equation 2.16 becomes:

v, (kt)=-aMin{e” (v(kt)=v(k=L1)-p+c)} (2.18)

p=0
Since e™*” >0, the minimum value of the second member of (2.18) is ob-
tained for the value p *( k,t ) of p that makes its derivative with regard to p

equal to 0. Thus, p*( k. ) is the solution of:

e“”’[—av(k,t)+av(k—l,t)+ap—ac—l]:0
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Finally:

okt )=v (ko )=v (k=1 )+cs— 2.19)
a

By replacing p by p *( k,t ) in Equation 2.18 we obtain:
v (ki )= _% el (kv (ke heriva ] (2.20)

Equation 2.20 holds for £ > 1.

As we can see, the derivative of v with respect to ¢ is negative. This means that
the maximum expected revenue decreases when the time increases, whatever the
inventory level. In other words, the closer the deadline, the smaller the maximum
expected revenue for any given inventory level.

For k= 0, the differential equation is useless since we know that:

v(0,)=0 vee[0,T]
For k= 1, the differential equation (2.20) is rewritten as:

v, (l,t ):—ie”l["(l,f)ﬂ‘ﬂ/a]
a

The solution to this differential equation is:

k9 o i(rae) ()i
v(k,t):lln{zll/1 el (1 1) } 2.21)

o =0 J!

Let set:

k i —i(l+ac) Y
A(k,t)zz A e’ ]'(T t)/
Jj=0 :

With this definition, Relation 2.21 can be rewritten as:
1
v(k,t)y=—In[A4(kt)]
a

and Relation 2.19 becomes:
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p*(kt Filﬂ{%}wé

or:

. _l el+aCA(k,l)
P (k,t)—aln{—A(k_l,t)} (2.22)

Finally, for any pair ( k,t ), we can compute A4 ( k,t ) and A4 ( k-1t ), and
thus we can compute the optimal price associated to this pair by applying Relation
2.22. Note that, when we refer to the state of the system, we refer to the pair
(k,t).

In this model, the system change over time according to a frozen control char-
acterized by parameters « that provides the probability for a customer to buy an
item, and A that defines the probability for a customer to appear in the system
during an elementary period. Thus, the behavior of customers, as well as their de-
cision-making process, is frozen as soon as 4 and « are selected. As a conse-
quence, this model is not very useful in practice, but it is a good example of help-
ing the reader to understand the objective of dynamic pricing that consists in
adjusting dynamically the price of the items to the state of the system.

Example

We illustrate the above presentation using an example defined by the following
parameters:

e «=0.8. Remember that the greater « , the faster the probability of buying a
product decreases with the cost.

e 1=1.5. Remember that the greater A, the greater the probability that a cus-
tomer enters the system.

o The initial level of the inventory is 10.

o 7=20.

The probability of reaching the inventory level k at time ¢ is represented in Fig-
ure 2.2. At time 0, the inventory level is equal to 10 with probability 1. When time
increases, the set of possible inventory levels with significant probabilities in-
creases and the mean value of the inventory level decreases.

Figure 2.3 represents the optimal price of a product according to the time and
the inventory level. For a given inventory level, price decreases with time. Simi-
larly, at a given time, the price increases when the inventory level decreases.
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Figure 2.2 Probability versus time and inventory level
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Figure 2.3 Optimal price versus time and inventory level

2.3.3 Probability for the Number of Items at a Given Point in Time

Let n be the number of items available at time 0. We denote by » (&, ) the prob-
ability that & items are still available at time ¢.
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Indeed, r(n,0)=1 since the initial state (7,0 ) is given and r(k,0)=0

whatever the number & of items, & € { 0,1,...n-1 } .

Result 1

The probability to have k unsold items at time t is:

_[ﬂe_(l-wc)t]”_k A(k,t)
)= o) (2.23)

Proof
Let d¢ be an elementary increment of ¢. To have & items at time ¢+ d¢ we should
be in one of the following cases:

e The number of items at time ¢ was k + 1 (this case holds only if k < n), a cus-
tomer appeared on the time interval [ t,t+dt ) (probability A dt ) and this cus-

tomer bought an item ( probability e™*” (ke )).
e The number of items at time ¢ was k and either no customer appeared on the
time interval [t,t+dt ) (probability 1— A dt) or one customer appeared but

he/she didn’t buy anything (probability A d¢ (1— e (kt) )).

As a consequence, we obtain the following relation:
r(ht+de )=r(k+1 ) adee ) (ke [ 1= dee (1) ] (2.24)
when k£ <n, and
r(ne+dt )=r(nt)[1-Adre? (n1)] (2.25)
Let us first consider Relation 2.25. It leads to:
ro(nt)==ar(n)eer(nt)
Using Relation 2.22, we obtain:
Inr(nt)=InA(nt)+W,where Wis constant.
Since (n,0)=1, the previous relation leads to:

W:—lnA(n,O)
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Finally:

_A(n1)
r(n,t)—A(nO) (2.206)

>

Thus, Relation 2.23 holds for £ = n.
From Relation 2.24 and using (2.22), we derive:

r;(k,t)=

(ko) a ALk

A(k+1,1)

e (M) g (k—1,1)

A(k,t)

If we write Equation 2.27 for k = n—1, we can use Equation 2.26 to obtain a dif-
ferential equation in » ( n—1,t ) . Solving this equation leads to:

—r(kt)A

(2.27)

—(l+ac) _
I"(I’l—l,t):/le tA(n l,t)

A(n,O)

In turn, this result used with Relation 2.27 leads to a differential equation in
r ( n—-2,t¢ ) . As soon as the general form of the solution is recognized, a recursion
is applied to verify the result. Q.E.D.

Result 2 concerns the expected number of items sold at the end of period ¢.

Result 2
The expected number of items sold by time t is

E=2e"t4(n-1,0)/A4(n,0)

Proof
Taking into account Result 1:

_nn_ . [:nn— [/16—(1+m n/fA(k’t)
5= 3ok ) ()= o) 2 AL

This relation can be rewritten as:

n—1 1+ac) ]nklA(k’t)

=0 ) (”»0)

E l+ac t
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ﬂ,e_(Hac)tA(l/l—l,O) n—l[le—(lJrac)t]n—k—lA(k’t)
E, =
A(n,0) ~ (n—k-1)A(n-1,0)

The sum in the second member of the equality is equal to 1 since the elements
of this sum are the probability (k) assuming that the initial number of items is
n—1.

This completes the proof. Q.ED.

Example
As we can see in Figure 2.4:

e The number of items sold by time 7 is an increasing function of 4 when «a is
fixed; in other words, the lower the average probability that a customer arrives
in the system, the lower the number of items sold at time 7.

e The number of products sold by time 7 is a decreasing function of @ when A
is fixed; in other words, the higher the average price of a product, the lower the
number of items sold by time 7.

Lambda

Figure 2.4 Number of products sold by time T with regards to 4 (lambda) and o (alpha)

2.3.4 Remarks

In the model presented in this section, it is assumed that the buying activity pro-
ceeds in two steps: first, a buyer enters the system with a given probability that
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depends on parameter « and, second, he/she decides to buy an item or not, de-
pending on the maximum amount of money he/she is prepared to pay for it, and
this buying probability depends upon a parameter denoted by A . Furthermore, the
value of one item is equal to zero at time 7, the horizon of the problem; in other
words, there is no salvage value.

The biggest drawback with this model is related to its following characteristics:

1. We have to compute the maximum value of
[1-F(p)][v(k,t)=v (k=1 )= p+c ] with respect to p. Let p* be the
value of p that leads to this maximum value. The problem is that, if we want to
solve the differential equation (2.18) analytically, we must be able to express p*
as a function of v.

2. We then have to be able to solve the differential equation in which p* is re-
placed by its function of v.

These two conditions make the computation of an analytical solution usually
impossible, mainly if the problem at hand is a real-life problem, especially if the
probability density is not exponential.

2.4 Stochastic Dynamic Pricing for Items with Salvage Values

The difference from the previous model lies not only in the existence of salvage
values, but also in the fact that there exists a one-to-one relationship between the
demand intensity, denoted by A, and the price for one item, denoted by p. Thus,
the two-stage buying process that was the basis of the previous model vanishes.

We assume that the demand follows a Poisson process of parameter 4. We
also assume that only a finite number of prices can be chosen by the retailer and
that each price is associated with one demand intensity.

Some additional assumptions will be made. They will be presented in detail in
the next section.

2.4.1 Problem Studied

The period available to sell the items is [ 0, 7 ] and the number of items available
at time 0 is n. We denote by P = { Dis Pasees Pys Poo } the set of prices that can be
chosen by the retailer and by A = {21, Aygees Ays Aoy } the corresponding demand

intensities.

Establishing the relationship between the elements of P and the elements of A
is not an easy task. We assume that this task has been performed at this point of
the process.
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The available prices are arranged in their decreasing order, i.e.,
P> p,>...>py>p,, and thus 4, <A, <..<A4, <A, since the greater the
price, the lower the demand intensity: the price is a decreasing function of the de-
mand intensity.

As mentioned before, salvage values are included in the model, which means
that it is still possible to sell the unsold items in a secondary market after time 7.
We denote by w(r,T) the salvage value of r items unsold at the deadline 7. In

other words, w(r,T) is the selling price in the second market of the » unsold

items at time 7. The salvage value w(r, T') is assumed to be non-decreasing and

concave in 7. This means that:

1. The salvage value of the remaining items increases with the number of items,
which is realistic.

2. The average price of one item is a non-increasing function of the number of
items. It may also happen that the price per unit does not depend upon the
number of remaining items: it is the borderline case. Note that this second hy-
pothesis is quite common.

We denote by p (r,t) the price of one item at time ¢ if the inventory level is r.

We also assume that:

lw(n,T)Sw(l,T)Sp(n,T)
n
where p (n, T ) is the price of one item when the inventory level is still full just

before the end of the selling period.
Indeed, according to the hypotheses made before, p(n,T )S p(k,t) for

ke { 1,2,..,n } and t<[0,7). In other words, selling one item for its salvage

value is always worse than selling it before time 7, whatever the inventory level.
We first consider the case when the price of one item depends on the inventory
level only.

2.4.2 Price as a Function of Inventory Levels: General Case

2.4.2.1 Model

In practice, it is rare to assign a different price for each inventory level, except if
the items under consideration are very expensive (cars, for instance). This case
will be considered in Section 2.4.3. For the time being, we assume that the same
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price applies when the inventory level lies between two given limits. In the fol-
lowing, k; is the rank of the i-th item sold.
We would like to recall the following convention: writing x & ( a, b | means

that a does not belong to the interval (i.e., x cannot take the value a) while b does
(i.e., x can take the value b). Also, to simplify the notations, we introduce

N, = an for i=1,2,...,s, where s is the number of levels, Ny, = 0, and n, is
j=1
the number of items sold at price p, .

If n is the inventory level at time 0, we assume that:

e Price p, applies to the k-th item sold when &, €[ N, N, ).
e Price p, applies to the kp-th item sold when k, e[ N,, N, ).

e Price p, applies to the k-th item sold when k, e[ N,_, N, ).

e Price p, applies to the k-th item sold when £k, e[ N, N, ).
Indeed,

N
n=n; =N,
Jj=1

At this point of the discussion, the goal does not consist in finding the values of
parameters n; that optimize the mean value of the revenue. We just want to pro-
pose a tool that provides the mean value of the revenue when the values of the pa-
rameters are given.

Let k, € {N_ +1,..,N, } and let Pr(k,[a,b]| r) be the probability that k,

items are sold during period [a, b ] if the inventory level is r at time a. The for-

mulation of the probability has been slightly modified to precisely match the ini-
tial value of the inventory, which will be useful in the remainder of the section to
avoid confusion. When the initial inventory is #, this information is ignored and
we use the previous notation.

In Figure 2.5, we provide the structure that underlies the computation of
Pr(k,[0,T17).

We first write that the probability that &, items are sold during period [0, T ]
is the integral on [ 0, T ] with regard to #, of the product of the two following fac-

tors (Bayer’s theorem):

e The probability that n, = N, items are sold in period (0, #,], the last item being
sold at time #. This probability is:
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Figure 2.5 Structure used to compute the probability to sell &; items in [ 0, 7]

m-l1
L )™ o ca )4

( n =1 )!
e The probability that k, — N, items are sold during period (¢, T ], knowing that

the inventory level at time ¢, is n— N, . This probability is:

Pri{k -N, (4,T1|n=N, }

Finally, Pr (k,,[ 0,7 ]) is expressed as:

Pr(k,[0.7])= j%exp(—z, t )4 Pr(k =N, (4, T1|n=N, )ds

We now compute Pr { k,—N,,(t,T] | n—N, } as the integral on the interval
(¢, T ] with respect to #, of the product of the following two factors:

1. The probability that n, items are sold on period (#,¢, ], the last item being
sold at time #,. This probability is:

2. The probability that k, — N, items are sold during period (¢,,7 ], knowing
that the inventory level at time #, is #n— N, . This probability is:
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Pr(k —Ny, (6,,T1|n-N, )
Thus,

Pr(k —-N,(¢,T]

J‘[/1 - —1]))] exp -4, (5,-1, )], Pr(kf_Nza(tz’T”n_Nz )dtz

We further extend this approach to the next lower layers. We obtain:

Pr(k =N, (1, T1|n-N,, )

T n_y—1
= { [ L= ((ti_z i ) ] exXp [_ Ais ( L, —lis ) ]ﬂ’i—Z
n_,—1 )!

Pr(k,. -N._,,(t.,,T] | n—N,_, )}dt[-z

—

Lia=lig

Pr(kl.—N,;z,(ti,z,T]|n_Ni72 )

r A (t. -t i1
= J. { [ = (tl_l b )] exp [_ A (ti—l ) )]ﬂ’i—l

(ni—l_l )!

L=t

Pr(k[_Ni—l’(ti—lﬁT]|n_Ni—1 )}dti—]

The last echelon of the formulation is slightly different from the previous ones:

Pr(k,—NIl,(tll, |n—N )

T ]k =N, -1

I t— =5 exp[-4, (1=t )4 Pr(0, (4, T1|n-k )ds,
and:
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This sequence of equalities can be rewritten as a unique relation:

r(k,[0,T]) :11( )/IkN 1;_11[[(71/-1—1)!}(1‘1'_;["_1)!
K

64=0 t,=t, t=t,_, J=I

ﬁ(exp[—i/ (t./‘ _tjfl )])exp [_ﬂ“i (T_ti )]}dti dti—l "'dtl

J=1

i—1

( (t,=0,, )" )(ti —t,, )i (2.28)

This relation holds for k;=1, 2, ..., n—1.
The probability that any item is sold by horizon T is:

Pr(0,[0,T])=exp(-4T)

Furthermore, the probability that all the items are sold at time 7 is:

Assuming that the probabilities are known, the mean value of the revenue is:

n

v(n )= APr(k[0.7])k [p(k)+w(n-kT)]} (2.29)

k=0

where p(k )=p, if ke{N,_ +1,..,N, }.

2.4.2.2 Computation of the Mean Value of the Revenue

An analytical expression of the integrals of the second member in Relation 2.28 is
possible only for very small values of parameters i and »; since the complexity of
the solution increases exponentially. This is why a numerical approach is neces-
sary.

We chose the Monte-Carlo approach. In order to simplify the notations, we de-
note by ¢, the probability Pr ( k, [ 0, T ] ) and by p, the cost of one item if the

inventory level k£ belongs to {Ni—l +L..., N, } Others notations are those intro-

duced in the previous subsection.
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Algorithm 2.2.

1. Compute g, =exp(—-4 T).
2. For k=1ton-1 do:

2.1. Compute i such that N, <k < N,.
22.Ifi>1set K;=n; for j=1,..,i-1.
23. K;=k—-N,,.
24.u=1.
25.For j=1,..,i dou=u /1jK/ .
i-1
At this point, u contains the term H ( A ;'.’ )/1 K= of Formulae (2.28).
j=1
The Monte-Carlo method starts below.
2.6. Set g, =0.
2.7. For Mc = 1 to M do:
M is the number of iterations (around 10 000).
2.7.1. Set = 0.
2.7.2.For j=1,...,i generate ¢; at randomon [¢; ;,7T].

J
273.Setw=1,s=0,z=1.
2.74.For j=1,...,i do:

K-l

t.—t._ j

2.7.4.1. Compute v :(»’/—‘)
(K, —1)!

2.7.4.2. Compute v= v(Tftj_l )
2.7.43. Compute w=wv.
2.744.1f (j<i), then compute z=zexp[—4; (tj =1, )] .
27451t [(j=i) and (k< N, )] do:
2.74.5.1. Compute z=zexp[4; ¢, ].
27452 1f ( Mc =1 ), then compute u=uexp[-4; T].
2.7.46.16 [(j=i) and (k =N, )] do:
2.7.4.6.1. Compute z=zexp[~A, (1, 1,4 J+ A1, 1.
2.74.6.2.1f ( Mc =1 ), then compute u =uexp[-4,,, T].
2.7.5. End of loop ;.
2.7.6. Compute w=wz.

2.7.7. Compute g, =q, +w/ M .

2.8. End of loop Mc.
2.9. Compute g, =q, u .

3. End of loop .
Computation of qy.

4. Set u=0.
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5. For k=0,..,n=1do u=u+gq,.
6. Compute g, =1-u.

Computation of the mean value of the revenue denoted by Ct.

7. SetCt=0.
8. For k=0 to n do:
8.1.Set cc=0.
8.2. Compute i such that N;_| <k <N;.
83.1f i>1 do cc=cc+p; n; for j=1,..,i-1.

8.4. Compute cc = cc+( k- N;_ )p[ .
8.5. Compute Ct=Ct+gq, [cc+w(n—k,T )]

9. End of loop k.

2.4.2.3 Improvement of the Solution

We denote by n,,i=1,2,---, s the initial sizes of the layers, from the upper to the
lower one, and by A, (respectively, p,) the corresponding demand intensities (re-
spectively, prices). Remember that 4, <A, <---< A and p, > p, >---> p,.

Since a numerical approach has been used to evaluate the probabilities of the
states of the system at time 7 and the mean value of the revenue knowing the lay-
ers, we can also use a numerical approach to reach the layers that maximize the
mean value of the revenue. We chose a simulated annealing algorithm to improve
a given solution. This method is an iterative approach and some layers may be-
come empty (and thus disappear) during the process. This requires some addi-
tional notations.

We denote by 7 the number of layers, by n’ the size of the i-th layer and by
A (respectively, p!) the corresponding demand intensities (respectively, prices)
for i=1,2,---,7° at the beginning of an iteration of the simulated annealing algo-
rithm or the initial stage. Indeed, »° <s. At the beginning of the first iteration,
r’=s,n’=n,A =4 and p) =p, fori=1,2,---,s.

We denote by ' the number of layers at the end of the first iteration, by n' the
size of the i-th layer, and by A, (respectively, p!) the corresponding demand in-
tensities (respectively, prices) for i=1,2,---,7'. Indeed, »' <s. Furthermore, the

corresponding mean value of the revenue is Copt'.
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Figure 2.6 Links between the second and the initial iteration

We introduce a vector TT to link the initial demand intensities (and thus the

initial price), with the current demand intensities and prices. This linkage is illus-
trated in Figure 2.6.

Algorithm 2.3 describes the simulated annealing mechanism that we apply to

our problem. Note: Algorithm 2.3 contains Algorithm 2.2.

Algorithm 2.3.
1. Introduce s,n,4;, p; for i=1,2,---, s and the salvage costs w(k,T) for k=1,2,---,n.
2. Generate at random n; for i=1,2,---,s such that Zni =n , the value generated being inte-
i=1
ger and positive.
The first two steps of the algorithm provide the initial data.
3. Introduce KK.
KK is the number of iterations that will be made. For instance, we may assign the value 2000
or 3000 to this variable.
4. Set 10=s5, =4, p’=p,andn’ =n; for i=1,2,---,s.
This set of values represents the initial solution that is called S°.
5. Compute the mean value of the revenue corresponding to solution S°. We denote this value
Copto.
This is obtained by applying Algorithm 2.2.
6. Weset $*=S5" and Copt* = Copt® .
For each iteration, S* contains the best solution and Copt* the greatest mean value of the
revenue obtained since the beginning of the algorithm.
The simulated annealing process starts at this point.
7. For kkt=1 to KK do:

7.1.Fori=1tosset TT,=0.
72.Seti=1landj=1.
7.3. While (i <r°)



2.4 Stochastic Dynamic Pricing for Items with Salvage Values 69

73.1.0f (A) = 4, ) do:
7.3.1.2. Set TT, =i.

73.1.3.Set i=i+1.
73.1.4.Set j=j+1.

732.0F (A # 4, ) do: j=j+1.
The instructions of Stage 7 lead to vector TT.
In the following steps, we modify the layers.
7.4. Generate the integer i at random on {1,2,---, 7% }.
7.5. Generate the integer j at random on { 1,2,-,8 } .

7.6.1f (TT; #0) do:

In this case, one item will be added to the i-th layer that is not empty.
7.6.1. Set i =TT,.
7.6.2.Set n} =n +1.
77.1f (TT,; =0) do:
In this case, one item will be added to an empty layer that corresponds to the j-th initial
layer. This layer is temporarily set at the last position in the current solution.
7.7.1. Set i, =r° +1.
7.7.2.Set ' =70 +1.
7.73.Set nj =1, p; =p;. A =2,
7.8.Set n} =n! —1.
7.9.1f (n} =0) do:
In this case, one layer becomes empty and disappears.
79.1.If (i<r") do:
79.1.1. Fork=itor' —1set nf =nj,, Pi=Dis1> M = Aeus -
7.9.1.2. Setr' ="~ 1.
The next stage consists in putting the parameters into the increasing order of the demand
intensities.
7.10. Fori=1tor'—1do
7.10.1. Forj=i+1to '
1l 1 11 11 1
7.10.1.1.If (4; <4; ) permute A; and 4;, p; and p;, n; and n; .
At this stage of the computation, a new solution S' is available.
7.11. Compute the mean value of the revenue corresponding to solution S'. We denote this
value by Copt'. This value is obtained by applying Algorithm 2.2.
7.12.1f Copt' > Copt® do:
7.12.1. If Copt' > Copt* set S*=S' and Copt* = Copt'.
7.12.2. Set S”=S".
7.13.If Copt! < Copt® do:
7.13.1. Compute y =exp [ —( Copt” —Copt' ) /kkt ].
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7.13.2. Generate x at random on [ 0,1] (probability density 1).
7.133.1f (x<y) set S°=8".

2.4.2.4 Numerical Example

In the case presented hereafter, the number of items to sold before time T is 25
(n=25). A one-to-one relationship has been established between five prices and
five demand intensities. These data are presented in Table 2.1.

Table 2.1 Price versus demand intensity

Price 20 14 10 7 5
Demand intensity 0.2 04 0.6 0.8 1

The salvage value is linear: each item can be sold on the second market for 2
monetary units. The computation starts with five layers numbered from the upper
to the lower layer. Each of them is initially made with 5 consecutive inventory
levels. The number of iterations made in the simulated annealing process is 5000.

Remark: A large number of choices (see Appendix A) are available when ap-
plying simulated annealing for defining, in particular:

e the number of iterations;
o the evolution of the “temperature” that affects the selection of the next state;
o the “neighborhood” of a solution.

In Table 2.2, we give some intermediate results provided by the simulated an-
nealing algorithm. The last one is the near-optimal solution.

Table 2.2 Some intermediate steps of the simulated annealing process

Iteration Solution Mean value of the
number revenue (rounded)

Layer size 5 5 5 5 5

1 Price 20 14 10 7 5 174
Demand intensity 0.2 0.4 0.6 0.8 1
Layer size 2 4 6 7 6

16 Price 20 14 10 7 6 184
Demand intensity 0.2 0.4 0.6 0.8 1
Layer size 0 11 1 10 3

993 Price 20 14 10 7 6 199
Demand intensity 0.2 0.4 0.6 0.8 1
Layer size 0 13 1 10 1

1243 Price 20 14 10 7 6 202
Demand intensity 0.2 0.4 0.6 0.8 1
Layer size 0 1 15 1 8

3642 Price 20 14 10 7 6 205
Demand intensity 0.2 0.4 0.6 0.8 1
Layer size 0 1 17 7 0

4006 Price 20 14 10 7 6 211
Demand intensity 0.2 0.4 0.6 0.8 1
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Figure 2.7 Probabilities at time T for the last structure of layers

Figure 2.7 provides the probabilities of the different inventory levels at time T
for the last structure of layers.

2.4.2.5 How to Use the Approach?

The previous approach is used on a periodic basis. This strategy corresponds to the
usual behavior of vendors: they choose a pricing policy on a given period (one or
two weeks for instance) and they reconsider the pricing policy for the next period
according to the inventory level at the end of the previous period, and so on. In
other words, they work on a rolling-horizon basis.

2.4.3 Price as a Function of Inventory Levels: a Special Case

We assume that the demand intensity, and thus the price, is different from one in-
ventory level to the next. This kind of situation happens when the items are expen-
sive (cars, for instance). In this particular case, it is possible to express analytically
the probability that k items are sold at the end of period 7.

We denote by A, the demand intensity when the inventory level is i and the

price of the next item is p;, The initial inventory level is n. Indeed
A, <A, <..<A, <A and, as mentioned earlier, p, > p,, >...> p, > p,.



72 2 Dynamic Pricing Models

As in the previous section, Pr (&, [tl, t ]) refers to the probability that k&
items are sold in period [ 4,1, ]
Since at each inventory level the demand is generated by a Poisson process:
. Pr(O,[O,T]):exp(—ﬂn T)
T

e Pr(1,[0,7])= j exp (—4, 1) A, exp[-4, ., (T—t)]dt

t=0

A A
=——"—exp (-4, T)——"—exp(-4,, T
PR exp (-4, T)—————exp (-4, T)

n—1 n—1 n

e pr2[0,7]=[PreL[oe]) 4, Pro[eT Jdr

=0

A A
=——n"nl | ¢ -1 t)exp[-A T—t)]dt
ﬂ,,—ﬂ,,_l,!o xp (=4, 1) exp[ =4, (T—1)]
A At
_n—HIexp(_/lnflt)exp[_ﬂ’an(T_t)]dt
ﬂ'n—]_/lnt:o

:“{ exp(=4,T) . ep(=/,T)
o (ﬂ’n_ﬂ’n—l)(ﬂ’n_ﬂ’n—Z) (ﬂ’n—l_ﬂ'n)(ﬂ’n—l_ln—Z)

L e (=4,T)
( /1;1—2 - /In )(ﬂn-z - ﬂn—1 )

At this level of the computation, it appears that the formula could be:

k 1 J -A . T
P[0T =(-1) " [[(4,,)> | =22Aa D)
i=0 =0 H (Api =4 y)

J#
fork=1,...,n-1 (2.30)

To complete the proof, we will show that if (2.30) holds for £, then it also holds
for k+1. If we express Pr(k+1,[0,7]) according to Pr(4,[0,7]) (Bayes’
theorem), we obtain:
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Pr(k+L[0,T])= j Pr(k,[0,61)4,, Pr(0,[£,T])dt

t=0

k-1

T k
=0 G [ |2 AL D) G expl-A,,, (T-0)] |dr
= a0

j:tl

Developing this expression, we reach the following equality:

N k k exp(—-A . T
Pr(k+1,[0,T])=(-1)"" A )20 = P(AT)
i=0 i=0 H (ﬂ,’ﬂ.—ﬂnﬁ-)
0
J#i

(2.31)

k k
k+1 n i eXp ( - ﬂ’n—k—l T ) Z f+1
=0

i=0 H(ﬂv",_nl

jil

i

Expanding the left side of the following equality, we obtain:

k+l 1
3 s
= ]:0[ (ln—i _ln—j )

J#i

This equality can be rewritten as:
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£ 1 1
_Z 1 ]
=0 H (/1n—i _ﬂ’n—j ) H (ﬂ“n—k—l _)l‘n—j )
=0 =0

J#i J#k+1

Thus, Equation 2.31 becomes:

k k _
Pr(k+L[07 ) =(-D) " [T (4,.)> exp A T)
e = H (/Infi _/In—j )
J=0
»/#l
k+1 - 1
+(-D T (A Jexp (=2, T)
0 H (ﬂ’n—k—] _ﬂ’n—j )
j=0

J#Ek+1

k k+1 _
=(_1)k+IH(in—i)z kixp( A T)
T A=)

J#i

This completes the computation.
Result 3 is derived from the above development. In this result, according to the
usual mathematical convention, we assume that if no factor remains in a product,

then the product equals 1. For instance, Hai =1 ifm<n.
Result 3
The probability that k items are sold in period [ 0, T] is given by (2.30) for

n-1

ke{l,..,n—1}. Furthermore, Pr(n,[O,T])zl—z Pr(k,[O,T]). Then

k=0
the mean value of the revenue can be obtained applying (2.29), Section 2.4.2.1.
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2.5 Concluding Remarks

The goal of this chapter was to provide an insight into the domain of pricing mod-
els. We limited ourselves to time-dated items with no supply option in a monopo-
listic environment with myopic customers. Although these assumptions drastically
simplify the problem, many additional restrictive assumptions are required to ob-
tain a mathematical model that is easy to analyze.

Nevertheless, the numerical development of the stochastic dynamic pricing
model with salvage values is an interesting tool when integrated in a rolling-
horizon approach since it allows prices to be adjusted periodically according to the
inventory level and time, as required in the case of sales. Unfortunately, the one-
to-one relationship between price and demand intensity remains under the respon-
sibility of the user, and is not a risk-free task.

In our opinion, the pricing models are simply tools to help better understand
what dynamic pricing is rather than something to solve real-life problems.

Reference

Gallego G, Van Ryzin G (1994) Optimal dynamic pricing of inventories with stochastic demand
over finite horizons. Manag. Sci. 40:999-1020

Further Reading

Belobaba PP (1989) Application of a probabilistic decision model to airline seat inventory con-
trol. Oper. Res. 37:183-197

Bitran GR, Mondschein SV (1995) An application of yield management to the hotel industry
considering multiple day stays. Oper. Res. 43:427-443

Bitran GR, Gilbert SM (1996) Managing hotel reservations with uncertain arrivals. Oper. Res.
44:35-49

Caroll WJ, Grimes RC (1995) Evolutionary change in product management: Experiences in the
car rental industry. Interfaces 25:84—104

Chen F, Federgruen A, Zheng YS (2001) Near-optimal pricing and replenishment strategies for a
retail/distribution system. Oper. Res. 49(6):839-853

Chen F, Federgruen A, Zheng YS (2001) Coordination mechanisms for a distribution system
with one supplier and multiple retailers. Manag. Sci. 47:693—708

Federgruen A, Heching A (1997) Combined pricing and inventory control under uncertainty.
Oper. Res. 47:454-475

Federgruen A, Zipkin P (1986) An inventory model with limited production capacity and uncer-
tain demands. Math. Oper. Res. 11:193-215

Feng Y, Gallego G (1995) Optimal starting times for end-of-season sales and optimal stopping
times for promotional fares. Manag. Sci. 41:1371-1391

Gallego G, Van Ryzin G (1997) A multi-product dynamic pricing problem and its application to
network yield management. Oper. Res. 45:24—41



76 2 Dynamic Pricing Models

Gaimon C (1988) Simultaneous and dynamic price, production, inventory and capacity deci-
sions. Eur. J. Oper. Res. 35:426-441

Garcia-Diaz A, Kuyumcu A (1997) A Cutting-Plane Procedure for Maximizing Revenues in
Yield Management. Comput. Ind. Eng. 33:51-54

Gerchak Y, Parlar M, Yee TKM (1985) Optimal rationing policies and production quantities for
products with several demand classes. Can. J. Adm. Sci. 2:161-176

Kimes SE (1989) Yield management: A tool for capacity constrained service firms. J. Oper.
Manag. 8:348-363

Levin Y, McGill J, Nediak M (2007) Price guarantees in dynamic pricing and revenue manage-
ment. Oper. Res. 55(1):75-97

McGill J, Van Ryzin G (1999) Revenue management: Research overview and prospects. Transp.
Sci. 33(2):233-256

Petruzzi NC, Dada M (2002) Dynamic pricing and inventory control with learning. Nav. Res.
Log. Quart. 49:304-325

Raju CVL, Narahari Y, Ravikumar K (2006) Learning dynamic prices in electronic retail mar-
kets with customer segmentation. Ann. Oper. Res. 143(1):59-75

Talluri KT, Van Ryzin GJ (2004) The Theory and Practice of Revenue Management. Kluwer
Academic Publishers, Norwell, MA

Van Mieghem J, Dada M (1999) Price versus production postponement: Capacity and competi-
tion. Manag. Sci. 45(12):1631-1649

Vulcano G, Van Ryzin G, Maglaras C (2002) Optimal dynamic auctions for revenue manage-
ment. Manag. Sci. 48(11):1388-1407

Zhao W, Zheng Y-S (2000) Optimal dynamic pricing for perishable assets with nonhomogene-
ous demand. Manag. Sci. 46(3):375-388



2 Springer
http://www.springer.com/978-1-84996-016-8

Supply Chain Engineering
Useful Methods and Technigues
Dolgui, &.; Proth, |.-M.

2010, XX, 541 p., Hardcowver
ISBN: 978-1-84996-016-8



