
Chapter 2 
Dynamic Pricing Models 
 
 
 
 
 
 
 
 
 
Abstract   In this chapter, some pricing models are presented that are character-
ized by the following assumptions: (i) the number of potential customers is not 
limited, and as a consequence, the size of the population is not a parameter of the 
model, (ii) only one type of item is concerned, (iii) a monopoly situation is con-
sidered, and (iv) customers buy items as soon as the price is less than or equal to 
the price they are prepared to pay (myopic customers). A deterministic model with 
time-dated items is presented and illustrated first. To build this model, the rela-
tionship between the price per item and demand has to be established. Then, the 
stochastic version of the same model is analyzed. A Poisson process generates 
customers’ arrivals. Finally, a stochastic model with salvage value where the price 
is a function of inventory level is considered. Detailed algorithms, numerical ex-
amples and figures are provided for each model. These models provide practical 
insights into pricing mechanisms. 

2.1 Introduction 

Any dynamic pricing model requires establishing how demand responds to 
changes in price. This chapter is dedicated to mathematical models of monopoly 
systems. The reader will notice that strong assumptions are made to obtain tracta-
ble models. Indeed, such mathematical models can hardly represent real-life situa-
tions, but they do illustrate the relationship between price and customers’ purchas-
ing behavior. 

In this chapter we consider the case of time-dated items, i.e., items that must be 
sold before a given point in time, say T. Furthermore, there is no supply option be-
fore time T. This situation is common in the food industry, the toy business (when 
toys must be sold before Christmas, for instance), marketing products (products 
associated with special events like movies, football matches, etc.), fashion apparel 
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(because the selling period ends when a season finishes), airplane tickets (which 
are obsolete when the plane takes off), to quote just a few. 

The goal is to find a strategy (dynamic pricing, also called yield management 
or revenue management) that leads to the maximum expected revenue by time T, 
assuming that the process starts at time 0. This strategy consists in selecting a set 
of adequate prices for the items that vary according to the number of unsold items 
and, in some cases, to the time. At a given point in time, we assume that the price 
of an item is a non-increasing function of the inventory level. For a given inven-
tory level, prices are going down over time. 

Indeed, a huge number of models exist, depending of the situation at hand and 
the assumptions made to reach a working model. For instance, selling airplane 
tickets requires a pricing strategy that leads to very cheap tickets as takeoff nears, 
while selling fashion apparel is less constrained since a second market exists, i.e., 
it is still possible to sell these items at discount after the deadline. 

For the models presented in this chapter, we assume that: 

• The number of potential customers is infinite. As a consequence, the size of the 
population does not belong to the set of parameters of the models. 

• A single type of item is concerned and its sales are not affected by other types 
of items. 

• We are in a monopoly situation, which means that there is no competition with 
other companies selling the same type of item. Note that, due to price discrimi-
nation, a company can be monopolistic in one segment of the population while 
other companies sell the same type of item with slight differences to other seg-
ments. This requires a sophisticated fencing strategy that prevents customers 
from moving to a cheaper segment. 

• Customers are myopic, which means that they buy as soon as the price is less 
than the one they are prepared to pay. Strategic customers who optimize their 
purchasing behavior in response to the pricing strategy of the company are not 
considered in this chapter; game theory is used when strategic customers are 
concerned. 

To summarize, this chapter provides an insight into mathematical pricing mod-
els. Note also that few convenient models exist without the assumptions presented 
above, that is to say a monopoly situation, an infinite number of potential custom-
ers who are myopic and no supply option. The reader will also observe that nega-
tive exponential functions are often used to make the model manageable and few 
persuasive arguments are proposed to justify this choice: this is why we consider 
that most of these models are more useful to understand dynamic pricing than to 
treat real-life situations. 
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2.2 Time-dated Items: a Deterministic Model 

2.2.1 Problem Setting 

In this model, we know the initial inventory 0s : it is the maximal quantity that can 
be sold by time T. We assume that demands appear at times T,,2,1 L , and tx  
represents the demand at time t. The demands are real and positive. The price of 
one item at time t is denoted by tp , and this price is a function of the demand and 
the time: ( )txpp tt ,= . 

We assume that there exists a one-to-one relationship between demand and 
price at any time { }Tt L,2,1∈ . Thus, ),( tpxx tt =  is the relation that pro-
vides the demand when the price is fixed. 

We also assume that: 

• ),( tpx  is continuously differentiable with regard to p. 
• ),( tpx  is lower and upper bounded and tends to zero as p tends to its maxi-

mal value. 

Finally, the problem can be expressed as follows: 

Maximize ∑
=

T

t
tt xp

1

 (2.1) 

subject to: 

0
1

sx
T

t
t ≤∑

=

 (2.2) 

0≥tx  for { }Tt L,2,1∈  (2.3) 

),( min tpxx tt ≤  for { }Tt L,2,1∈  (2.4) 

where min
tp  is the minimal value of tp . 

Criterion 2.1 means that the objective is to maximize the total revenue. Con-
straint 2.2 guarantees that the total demand at horizon T does not exceed the initial 
inventory. Constraints 2.3 are introduced to make sure that demands are never less 
than zero. Finally, Constraints 2.4 provide the upper bound of the demand at any 
time. 
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2.2.2 Solving the Problem: Overall Approach 

To solve this problem, we use the Kuhn and Tucker approach based on Lagrange 
multipliers. Since tp  is a function of tx , then tt xp  is the function of tx . Taking 
into account the constraints of the problem, the Lagrangian is: 
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The goal is to solve the T equations: 

0=
∂
∂

tx
L  for { }Tt L,2,1∈  (2.6) 

Together with the 2T +1 complementary slackness conditions: 
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Thus, we have 3T +1 equations for the 3T +1 unknowns that are: 

,,,,,,, 11 TTxx μμλ LL Tll ,,1 L  

A solution to the system of Equations 2.6–2.8 is admissible if ,0≥λ  ,0≥tμ  
0≥tl  and if Inequalities 2.2–2.4 hold. 

Note that, due to Relations 2.7 and 2.8: 
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t
t =∑
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0=tμ  and/or 0=tx  for { }Tt L,2,1∈  

0=tl  and/or ),( min tpxx tt =  for { }Tt L,2,1∈  



2.2 Time-dated Items: a Deterministic Model       45 

2.2.3 Solving the Problem: Example for a Given Price Function 

We consider the case: 

tD
DxBAtxp tt +

−= )(),(  

where A, B and D are positive constants.  
As a consequence:  

)(1),(
D

tDpA
B

tpx tt
+

−=  

As we can see: 

• The price is a decreasing function of t. 

• The demand must remain less than 
B
A , otherwise the cost would become nega-

tive. 

The problem to be solved is (see (2.1)–(2.4)): 
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The last constraints guarantee that prices remain greater than or equal to zero. 
In this case, the Lagrangian is: 
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According to Relations 2.6–2.8, the system of equations to solve is: 

0)2( =−+−
+

− ttt l
tD

DxBA μλ  for { }Tt ,,2,1 L∈  (2.9) 
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0=tt xμ  for { }Tt ,,2,1 L∈  (2.11) 

0)/( =− BAxl tt  for { }Tt ,,2,1 L∈  (2.12) 

Whatever { }Tt ,,2,1 L∈ , tx  is either equal to 0, or to BA / , or belongs to 
)/,0( BA  (which represents the interval without its limits). This third option is 

justified as follows.  
If neither of the first two options holds, then 0== tt lμ  and Relation 2.9 be-

comes: 

0)2( =−
+

− λ
tD

DxBA t  

Let us first assume that BAxt /= . In this case, 0=tμ  and Equality 2.9 be-
comes: 

tltD
DAA +=
+

− λ)2(  

The first member of this equality is negative, while the second member is 
greater than or equal to 0 since both λ  and lt must be less than or equal to 0 for 
the solution to be admissible. As a conclusion, tx  cannot be equal to BA / , and 
therefore, see (2.12), lt =  0 whatever t. 

Let us now assume that 0=tx . In this case, and keeping in mind that lt = 0, 
Equality 2.9 becomes: 
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Finally, assume that )/,0( BAxt ∈ . In this case, 0== tt lμ  and 

tD
DxBA t +

−= )2(λ . 

As a consequence, ( ]BAxt /2/,0∈  and )(
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We have to consider two cases: 

1. If BAxt /2/=  then, according to Equations 2.9 and 2.10: 
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2. If )/2/,0( BAxt ∈ , then, according to Equations 2.9 and 2.10: 
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Let be { }{ }0,,,2,1 >∈= txTttY L  and NY the number of elements of Y. 
 
From (2.13) and (2.14) it appears that: 

• If 0/2/ sBAT ≤× , then BAxt /2/=  for { }Tt ,,2,1 L∈  is an admissible so-
lution. 
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We derive an algorithm from the above results. 
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Algorithm 2.1. 

1. If 0/2/ sBAT ≤× , then BAxt /2/=  for { }Tt L,2,1∈ , compute the criterion 
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*  and set tt xx =*  for { }Tt L,2,1∈ , otherwise set 0* =C .  

2. If 0/2/ sBAT ≥× , then for all sequences [ ]TyyyY ,,, 21 L= , where 1or0=ty : 
 2.1. Set 0=tx  if 0=ty  or compute xt using (2.15) if 1=ty . 
 2.2. If )/2/or0( BAxx tt ><  for at least one { }Tt ,,2,1 L∈ , then go to the next sequence 

Y. Otherwise, compute 
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 2.3. If *CC > : 
 2.3.1. Set CC =* . 
 2.3.2. Set tt xx =*  for { }Tt L,2,1∈ . 

3. The solution of the problem is { } Tttx ,,2,1
*

L=  and *C  contains the optimal value. 

 
This algorithm consists of computing the value of the criterion for each of the 

feasible solutions and keeping the solution with the greater value of the criterion. 
Indeed, this approach can be applied only to problems of reasonable size since the 
number of feasible solutions is upper bounded by T2 . 

Numerical Illustrations 

We present 3 examples. Demands and prices are rounded and T = 10. They are 
listed in the increasing order of time. 

Example 1 

A = 200, B = 10 and D = 10 
Initial inventory level: 150 
Demands: 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 
Prices (per item): 90.91, 83.33, 76.92, 71.43, 66.67, 62.5, 58.82, 55.56, 52.63, 50 
Total demand: 100 
Revenue: 6687.71 

Example 2 

A = 500, B = 5 and D = 10 
Initial inventory level: 150 
Demands: 25.56, 23.33, 21.11, 18.89, 16.67, 14.44, 12.22, 10.0, 7.78, 0 
Prices (per item): 338.38, 319.44, 303.42, 289.68, 277.78, 267.36, 258.17, 250.0, 
242.69, 0 
Total demand: 150 
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Revenue: 44 013.1 

Example 3 

A = 500, B = 10 and D = 2 
Initial inventory level: 200 
Demands: 22.67, 22.56, 22.44, 22.33, 22.22, 22.11, 22.0, 21.89, 21.78, 0 
Prices (per item): 260.32, 249.49, 239.61, 230.56, 222.22, 214.53, 207.41, 200.79, 
194.64, 0 
Total demand: 200 
Revenue: 44 933.7 

2.2.4 Remarks 

Three remarks can be made concerning this model: 

• The main difficulty consists in establishing the deterministic relationship be-
tween the demand and the price per item. In fact, establishing such a relation-
ship is a nightmare. Several approaches are usually used to reach this objective. 
One of them is to carry out a survey among a large population, asking custom-
ers the price they are prepared to pay for one item. Let n be the size of the 
population and sp the number of customers who are prepared to pay p or more 
for one item, then sp / n is the proportion of customers who will buy at cost p. 
Then, evaluating at k the number of customers who demonstrate some interest 
in the item, we can consider that the demand is nsk p /×  when the price is p. 
Another approach is to design a “virtual shop” on the Internet and to play with 
potential customers to extract the same information as before. This is particu-
larly efficient for products sold via the Internet. Ebay and other auction sites 
can often provide this initial function for price and demand surveying. 

• In the model developed in this section, demands and prices are continuous. The 
problem becomes much more complicated if demands are discrete. Linear in-
terpolation is usually enough to provide a near-optimal solution. 

• In this model, we also assumed that the value of one item equals zero after time 
T. We express this situation by saying that there is no salvage value. 

2.3 Dynamic Pricing for Time-dated Products: a Stochastic 
Model 

In this model, we assume that there is no salvage value, i.e., that the value of an 
item equals zero at time T. 
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We are in the case of imperfect competition, which means that the vendor has 
the monopoly of the items. The monopoly could be the consequence of a specific-
ity of the items that requires a very special know-how, a technological special fea-
ture, a novelty or the existence of item differentiation that results in a very large 
spectrum of similar items.  

In the case of imperfect competition, customers respond to the price. 
Furthermore, this model is risk-neutral, which means that the objective is only 

to maximize the expected revenue at time T, without taking into account the risk 
of poor performance. This kind of model applies when the number of problem in-
stances is large enough to annihilate risk, which is a consequence of the “large 
number” statistical rule. 

These hypotheses are the same as those introduced in the previous model. The 
differences will appear in the next subsection. 

This approach is presented in detail in (Gallego and Van Ryzin, 1994). 

2.3.1 Problem Considered 

To make the explanation simple, consider that possible customers appear at ran-
dom. Each customer buys an item, or not, depending on the price and the maxi-
mum amount of money they are prepared to pay for it. 

We assume that a Poisson process generates the arrival of the customers.1  
Let δ  be an “infinitely small” increment of time t. The probability that a cus-

tomer appears during the period [ ), δ+tt  is δλ , and at most one customer can 
appear during this period. In this model, we assume that λ  is constant. In particu-
lar, λ  depends neither on time nor on the number of unsold items. In other words, 
the arrival process of customers is steady. 

After arriving in the system, a customer may buy an item. As mentioned be-
fore, this decision depends on the price of the item and the amount of money they 
are prepared to pay for it. We denote by ( )pf  the density of probability reflect-
ing the fact that a customer is prepared to pay p for one unit of product. The fol-
lowing characteristics hold:  

                                                           
1 In this study, a Poisson process of parameter λ  generates the arrival of one potential customer dur-
ing an “infinitely small” period δ  with the probability δλ  and does not generate any customer with 
the probability δλ−1 . In this process, the probability of the arrival of more than one potential cus-
tomer is ( )δo , which is practically equivalent to zero. Another way to express the Poisson process is to 
say that the probability that k potential customers arrive during a period [ ]t,0  is: 

( ) ( )
!

exp
k
t

tP
k

k
λ

λ−= . 
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• The density ( )pf  is a decreasing function of p, which means that the more 
expensive the product, the smaller the probability that a customer is prepared to 
pay this amount of money. 

• If the price of an item is p, then any customer who is prepared to pay p1 ≥ p 
will buy it. Thus, the probability of buying an item when the price is p is: 

( ) ( ) ( ) ( )pFuufuufpP
p

upu

−=−== ∫∫
=

+∞

=

1d1d
0

 

where )( pF  is the distribution function of the price.  
This probability tends to 0 when p tends to infinity and to 1 when p tends to 0. 
A set of n items are available at time 0. 
We define the value ( )tkv , , [ ]nk ,0∈  and [ ]Tt ,0∈ , as the maximum ex-

pected revenue we can obtain by time T from k items available at time t. We as-
sume that ( )tkv ,  is continuously differentiable with regard to t. Thus, ( )0,nv  is 
the solution to the problem. 

Indeed, ( ) 0,0 =tv , [ ]Tt ,0∈∀  and ( ) 0, =Tkv , [ ]nk ,0∈∀ . In other words, 
if the inventory is empty at time t, we cannot expect any further revenue. Also, if 
the inventory is not empty at time T, it is no longer possible to sell the items that 
are in inventory. 

Assume that k is the number of items available at time t. Three cases should be 
considered when the system evolves from time t to time δ+t : 

• No customer appears during the period [ ), δ+tt . The probability of this non-
event is δλ−1  and the value associated with the state ( )δ+tk,  at time δ+t  
is ( )δ+tkv , . 

• A customer appears during the period [ ), δ+tt  (probability δλ ), but does 
not buy anything (probability ( )pF ). Finally, the probability associated with 
this case is ( )pFδλ  and the value associated with the system is still 
( )δ+tkv ,  at time δ+t . 

• A customer appears during the period [ ), δ+tt  (probability δλ ) and buys 
one item (probability ( )pF−1 ). The probability associated with this case is 

( )[ ]pF−1δλ  and the value associated with the system at time δ+t  is 
( ) cptkv −++− δ,1 . In this expression, p is the price of one item and c is the 

marginal cost when selling one item (cost to invoice, packaging, transportation, 
for instance). The cost c depends neither on the inventory level nor on the time. 
It is assumed to be less than p. 

Figure 2.1 represents the evolution of the number of items during the elemen-
tary period [ ), δ+tt  if k items are available at time t. 
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t t+δ 

Inventory level 

Time

v (k,t) v (k,t+δ) 

v (k–1,t+δ) 
k–1 

k 
( )[ ]pF−−= 11Pr δλ

( )[ ]pF−= 1Pr δλ p–c 

 
Figure 2.1 Evolution of the number of items 

Let p* be the optimal cost of one item at time t when the inventory level is k, 
and ( )tkv ,  the maximum expected revenue for the state ),( tk  of the system. At 
time δ+t  the maximum expected revenue becomes either ( )δ+tkv ,  with the 
probability ( )[ ]*11 pF−− δλ  or ),1( δ+− tkv  with the probability 

( )[ ]*1 pF−δλ , but, in the later case, some revenue has been taken by the re-
tailer when the item was sold and this amount is p*–c. In terms of flow, we can 
consider that the flow p*–c of money exited the system during the elementary pe-
riod [ ), δ+tt . Thus, writing the balance of the maximum expected revenues, we 
obtain: 
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This equality can be rewritten as: 
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This equality leads to: 
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If δ  tends to 0, the previous equality becomes: 

( ) =tkv t ,'  

( )[ ] ( ) ( )[ ] ( )[ ]{ }cptkvpFtkvpF
p

−+−−−−−
≥

,11,1Min
0

λ  (2.16) 

The solution of the problem (i.e., maximizing the revenue) consists of finding, 
for each pair ( )tk, , the price *p  that minimizes the second member of Equal-
ity 2.16, and then solving the differential equation (2.16). Thus, two values will be 
associated to the pair ( )tk, : 

• The price ( )tkp ,*  that should be assigned to a unit of product at time t if the 
inventory level is k. 

• The maximum expected revenue on period ],[ Tt  if the inventory level is k at 
time t. 

Unfortunately, it is impossible to find an analytic solution for a general func-
tion ( )pF . From this point onwards, we assume that: 

( ) ppF α−−= e1  (2.17) 

where 0>α . 

2.3.2 Solution to the Problem 

According to Relation 2.17, Equation 2.16 becomes: 

( ) ( ) ( )( ){ }cptkvtkvtkv p

pt +−−−−= −

≥
,1,eMin,

0

' αλ  (2.18) 

Since 0e >− pα , the minimum value of the second member of (2.18) is ob-
tained for the value ( )tkp ,*  of p that makes its derivative with regard to p  
equal to 0. Thus, ( )tkp ,*  is the solution of: 

( ) ( )[ ] 01,1,e =−−+−+−− cptkvtkvp ααααα  
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Finally: 

( ) ( ) ( )
α
1,1,,* ++−−= ctkvtkvtkp  (2.19) 

By replacing p by ( )tkp ,*  in Equation 2.18 we obtain: 

( ) ( ) ( )[ ]αα

α
λ /1,1,' e, ++−−−−= ctkvtkv

t tkv  (2.20) 

Equation 2.20 holds for k > 1. 
As we can see, the derivative of v with respect to t is negative. This means that 

the maximum expected revenue decreases when the time increases, whatever the 
inventory level. In other words, the closer the deadline, the smaller the maximum 
expected revenue for any given inventory level. 

For k =  0, the differential equation is useless since we know that: 

( ) [ ]Tttv ,00,0 ∈∀=  

For k = 1, the differential equation (2.20) is rewritten as: 

( ) ( )[ ]αα

α
λ /1,1' e,1 ++−−= ctv

t tv  

The solution to this differential equation is: 
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Let set: 

( )
( ) ( )∑
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With this definition, Relation 2.21 can be rewritten as: 

( )[ ]tkAtkv ,ln1),(
α

=  

and Relation 2.19 becomes: 
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( ) αα

1
,1

,ln1,* ++⎥
⎦

⎤
⎢
⎣

⎡
−

= c
tkA

tkAtkp  

or: 

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−

=
+

tkA
tkAtkp

c

,1
,eln1,*

1 α

α
 (2.22) 

Finally, for any pair ( )tk, , we can compute ( )tkA ,  and ( )tkA ,1− , and 
thus we can compute the optimal price associated to this pair by applying Relation 
2.22. Note that, when we refer to the state of the system, we refer to the pair 
( )tk, . 

In this model, the system change over time according to a frozen control char-
acterized by parameters α  that provides the probability for a customer to buy an 
item, and λ  that defines the probability for a customer to appear in the system 
during an elementary period. Thus, the behavior of customers, as well as their de-
cision-making process, is frozen as soon as λ  and α  are selected. As a conse-
quence, this model is not very useful in practice, but it is a good example of help-
ing the reader to understand the objective of dynamic pricing that consists in 
adjusting dynamically the price of the items to the state of the system.  

Example 

We illustrate the above presentation using an example defined by the following 
parameters: 

• 8.0=α . Remember that the greater α , the faster the probability of buying a 
product decreases with the cost. 

• 5.1=λ . Remember that the greater λ , the greater the probability that a cus-
tomer enters the system. 

• The initial level of the inventory is 10. 
• T=20. 

The probability of reaching the inventory level k at time t is represented in Fig-
ure 2.2. At time 0, the inventory level is equal to 10 with probability 1. When time 
increases, the set of possible inventory levels with significant probabilities in-
creases and the mean value of the inventory level decreases. 

Figure 2.3 represents the optimal price of a product according to the time and 
the inventory level. For a given inventory level, price decreases with time. Simi-
larly, at a given time, the price increases when the inventory level decreases.  
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Figure 2.2 Probability versus time and inventory level 
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Figure 2.3 Optimal price versus time and inventory level 

2.3.3 Probability for the Number of Items at a Given Point in Time 

Let n be the number of items available at time 0. We denote by ( )tkr ,  the prob-
ability that k items are still available at time t. 
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Indeed, ( ) 10, =nr  since the initial state ( )0,n  is given and ( ) 00, =kr  
whatever the number k of items, { }1...,,1,0 −∈ nk . 

Result 1 

The probability to have k unsold items at time t is: 

( )
( ) ( )
( ) ( )0,!

,]e[,
1

nAkn
tkAttkr

knc

−
=

−+− αλ  (2.23) 

Proof 
Let td  be an elementary increment of t. To have k items at time tt d+  we should 
be in one of the following cases: 

• The number of items at time t was k + 1 (this case holds only if k < n), a cus-
tomer appeared on the time interval [ )ttt d, +  (probability tdλ ) and this cus-

tomer bought an item ( probability ( )tkp ,1*e +−α ). 
• The number of items at time t was k and either no customer appeared on the 

time interval [ )ttt d, +  (probability td1 λ− ) or one customer appeared but 

he/she didn’t buy anything (probability ( )( )tkpt ,*e1d αλ −− ). 

As a consequence, we obtain the following relation:  

( ) ( ) ( ) ( ) ( ) ]ed1[,ed,1d, ,*,1* tkptkp ttkrttkrttkr αα λλ −+− −++=+  (2.24) 

when k < n, and 

( ) ( ) ( ) ]ed1[,d, ,* tnpttnrttnr αλ −−=+  (2.25) 

Let us first consider Relation 2.25. It leads to: 

( ) ( ) ( )tnp
t tnrtnr ,*' e,, αλ −−=  

Using Relation 2.22, we obtain: 

( ) ( ) WtnAtnr += ,ln,ln , where W is constant. 

Since ( ) 10, =nr , the previous relation leads to: 

( )0,ln nAW −=  



58       2 Dynamic Pricing Models 

Finally: 

( )
( )0,

,),(
nA

tnAtnr =  (2.26) 

Thus, Relation 2.23 holds for k = n. 
From Relation 2.24 and using (2.22), we derive: 

( ) =tkr t ,'  

( )
( ) ( )
( ) ( )

( ) ( )
( )tkA

tkAtkr
tkA

tkAtkr
cc

,
,1e,

,1
,e,1

11 −
−

+
+

+−+− αα

λλ  (2.27) 

If we write Equation 2.27 for k = n–1, we can use Equation 2.26 to obtain a dif-
ferential equation in ( )tnr ,1− . Solving this equation leads to: 

( )
( ) ( )

( )0,
,1e,1

1

nA
tnAttnr

c −
=−

+− αλ  

In turn, this result used with Relation 2.27 leads to a differential equation in 
( )tnr ,2− . As soon as the general form of the solution is recognized, a recursion 

is applied to verify the result. Q.E.D. 
 
Result 2 concerns the expected number of items sold at the end of period t. 
 

Result 2 
The expected number of items sold by time t is 

( ) ( )0,/0,1e )1( nAnAtE c
t −= +− αλ  

Proof 
Taking into account Result 1: 

( ) ( ) ( )
( ) ( )

( ) ( )∑∑
=

−+−

= −
−=−=

n

k

kncn

k
t nAkn

tkAtkntkrknE
0

1

0 0,!
,]e[,

αλ  

This relation can be rewritten as: 

( )
( ) ( )

( ) ( )∑
−

=

−−+−
+−

−−
=

1

0

11
1

0,!1
,]e[e

n

k

knc
c

t nAkn
tkAttE

α
α λλ  
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( ) ( )
( )

( ) ( )
( ) ( )∑

−

=

−−+−+−

−−−
−

=
1

0

111

0,1!1
,]e[

0,
0,1e n

k

kncc

t nAkn
tkAt

nA
nAtE

αα λλ  

The sum in the second member of the equality is equal to 1 since the elements 
of this sum are the probability ( )tkr ,  assuming that the initial number of items is 
n–1.  

This completes the proof. Q.E.D. 

Example 

As we can see in Figure 2.4: 

• The number of items sold by time T is an increasing function of λ  when α  is 
fixed; in other words, the lower the average probability that a customer arrives 
in the system, the lower the number of items sold at time T. 

• The number of products sold by time T is a decreasing function of α  when λ  
is fixed; in other words, the higher the average price of a product, the lower the 
number of items sold by time T. 
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Figure 2.4 Number of products sold by time T with regards to λ  (lambda) and α (alpha) 

2.3.4 Remarks 

In the model presented in this section, it is assumed that the buying activity pro-
ceeds in two steps: first, a buyer enters the system with a given probability that 
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depends on parameter α  and, second, he/she decides to buy an item or not, de-
pending on the maximum amount of money he/she is prepared to pay for it, and 
this buying probability depends upon a parameter denoted by λ . Furthermore, the 
value of one item is equal to zero at time T, the horizon of the problem; in other 
words, there is no salvage value. 

The biggest drawback with this model is related to its following characteristics: 

1. We have to compute the maximum value of 
( )[ ] ( ) ( )[ ]cptkvtkvpF +−−−− ,1,1  with respect to p. Let p* be the 

value of p that leads to this maximum value. The problem is that, if we want to 
solve the differential equation (2.18) analytically, we must be able to express p* 
as a function of v. 

2. We then have to be able to solve the differential equation in which p* is re-
placed by its function of v. 

These two conditions make the computation of an analytical solution usually 
impossible, mainly if the problem at hand is a real-life problem, especially if the 
probability density is not exponential. 

2.4 Stochastic Dynamic Pricing for Items with Salvage Values 

The difference from the previous model lies not only in the existence of salvage 
values, but also in the fact that there exists a one-to-one relationship between the 
demand intensity, denoted by λ , and the price for one item, denoted by p. Thus, 
the two-stage buying process that was the basis of the previous model vanishes. 

We assume that the demand follows a Poisson process of parameter λ . We 
also assume that only a finite number of prices can be chosen by the retailer and 
that each price is associated with one demand intensity. 

Some additional assumptions will be made. They will be presented in detail in 
the next section. 

2.4.1 Problem Studied 

The period available to sell the items is ],0[ T  and the number of items available 
at time 0 is n. We denote by { }∞= ppppP N ,...,,, 21  the set of prices that can be 
chosen by the retailer and by { }∞=Λ λλλλ ,,...,, 21 N  the corresponding demand 
intensities. 

Establishing the relationship between the elements of P and the elements of Λ  
is not an easy task. We assume that this task has been performed at this point of 
the process. 
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The available prices are arranged in their decreasing order, i.e., 
∞>>>> pppp N...21 , and thus ∞<<<< λλλλ N...21  since the greater the 

price, the lower the demand intensity: the price is a decreasing function of the de-
mand intensity. 

As mentioned before, salvage values are included in the model, which means 
that it is still possible to sell the unsold items in a secondary market after time T. 
We denote by ( )Trw ,  the salvage value of r items unsold at the deadline T. In 
other words, ( )Trw ,  is the selling price in the second market of the r unsold 
items at time T. The salvage value ( )Trw ,  is assumed to be non-decreasing and 
concave in r. This means that: 

1. The salvage value of the remaining items increases with the number of items, 
which is realistic. 

2. The average price of one item is a non-increasing function of the number of 
items. It may also happen that the price per unit does not depend upon the 
number of remaining items: it is the borderline case. Note that this second hy-
pothesis is quite common. 

We denote by ),( trp  the price of one item at time t if the inventory level is r. 
We also assume that: 

( ) ( )TnpTwTnw
n

,),1(,1
≤≤  

where ( )Tnp ,  is the price of one item when the inventory level is still full just 
before the end of the selling period. 

Indeed, according to the hypotheses made before, ( ) ( )tkpTnp ,, ≤  for 
{ }nk ...,,2,1∈  and ),0[ Tt∈ . In other words, selling one item for its salvage 

value is always worse than selling it before time T, whatever the inventory level. 
We first consider the case when the price of one item depends on the inventory 

level only. 

2.4.2 Price as a Function of Inventory Levels: General Case 

2.4.2.1 Model 

In practice, it is rare to assign a different price for each inventory level, except if 
the items under consideration are very expensive (cars, for instance). This case 
will be considered in Section 2.4.3. For the time being, we assume that the same 
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price applies when the inventory level lies between two given limits. In the fol-
lowing, ki is the rank of the i-th item sold. 

We would like to recall the following convention: writing ( ]bax ,∈  means 
that a does not belong to the interval (i.e., x cannot take the value a) while b does 
(i.e., x can take the value b). Also, to simplify the notations, we introduce 

∑
=

=
i

j
ji nN

1

 for si ...,,2,1= , where s  is the number of levels, N0 = 0, and jn  is 

the number of items sold at price jp . 
If n is the inventory level at time 0, we assume that: 

• Price 1p  applies to the k1-th item sold when ),[ 101 NNk ∈ . 
• Price 2p  applies to the k2-th item sold when ),[ 212 NNk ∈ . 
… 
• Price ip  applies to the ki-th item sold when ),[ 1 iii NNk −∈ . 
… 
• Price sp  applies to the ks-th item sold when ),[ 1 sss NNk −∈ . 

Indeed,  

s

s

j
j Nnn ==∑

=1

 

At this point of the discussion, the goal does not consist in finding the values of 
parameters ni that optimize the mean value of the revenue. We just want to pro-
pose a tool that provides the mean value of the revenue when the values of the pa-
rameters are given. 

Let { }iii NNk ...,,11 +∈ −  and let [ ]( )rbaki ,,Pr  be the probability that ki 
items are sold during period [ ]ba,  if the inventory level is r at time a. The for-
mulation of the probability has been slightly modified to precisely match the ini-
tial value of the inventory, which will be useful in the remainder of the section to 
avoid confusion. When the initial inventory is n, this information is ignored and 
we use the previous notation.  

In Figure 2.5, we provide the structure that underlies the computation of 
).],0[,(Pr Tki  

We first write that the probability that ik  items are sold during period ],0[ T  
is the integral on ],0[ T  with regard to t1 of the product of the two following fac-
tors (Bayer’s theorem): 

• The probability that 11 Nn =  items are sold in period ],0( 1t , the last item being 
sold at time t1. This probability is:  
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Figure 2.5 Structure used to compute the probability to sell ki  items in [ 0, T ] 
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• The probability that 1Nki −  items are sold during period ],( 1 Tt , knowing that 
the inventory level at time t1 is 1Nn − . This probability is: 

{ }111 ],(,Pr NnTtNki −−  

Finally, )],0[,(Pr Tki  is expressed as: 

[ ]( ) ( )
( ) ( ) ( ) 1111111

0 1

1
11 d],(,Prexp

!1
,0,Pr

1

1

tNnTtNkt
n

tTk i

T

t

n

i −−−
−

= ∫
=

−

λλλ  

We now compute { }111 ],(,Pr NnTtNki −−  as the integral on the interval 
],( 1 Tt  with respect to t2 of the product of the following two factors: 

1. The probability that n2 items are sold on period ],( 21 tt , the last item being 
sold at time t2. This probability is:  

( )
( ) 22122

2

1
122 d])([exp

!1
][ 2

ttt
n

tt n

λλλ
−−

−
− −

 

2. The probability that 2Nki −  items are sold during period ],( 2 Tt , knowing 
that the inventory level at time t2 is 2Nn − . This probability is: 
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( )222 ],(,Pr NnTtNki −−  

Thus, 

( )
( ) ( )[ ] ( ) 22222122
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1
122

111

d],(,Prexp
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][

)],(,(Pr
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∫
=
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λλλ  

We further extend this approach to the next lower layers. We obtain: 

( )
( )[ ]
( ) ( )[ ]

( ) } 2222

2322
2

1
322

333

d],(,Pr

exp
!1

],(,Pr

32

2

−−−−
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−
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−−−
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∫
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1
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The last echelon of the formulation is slightly different from the previous ones: 

( )
( )[ ]
( ) ( )[ ] ( ) iiiiiii

T

tt ii

Nk
iii

iiii

tknTttt
Nk
tt

NnTtNk

ii

ii

d],(,0Prexp
!1

],(,Pr

1
1

1
1

111

1

1

−−−
−−

−
=

−−

−
= −

−−
−

−−−

∫
−

−

λλλ  

and: 

( ) ( )[ ]iiii tTknTt −−=− λexp],(,0Pr  
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This sequence of equalities can be rewritten as a unique relation: 
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⎠
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 (2.28) 

This relation holds for ki = 1, 2, …, n–1. 
The probability that any item is sold by horizon T is: 

)(exp)],0[,0(Pr 1 TT λ−=  

Furthermore, the probability that all the items are sold at time T is: 

[ ]( ) [ ]( )∑
−

=

−=
1

0

,0,Pr1,0,Pr
n

k

TkTn  

Assuming that the probabilities are known, the mean value of the revenue is: 

( ) [ ]( ) ( ) ( )[ ]{ }∑
=

−+=
n

k

TknwkpkTkTnv
0

,,0,Pr,  (2.29) 

where ( ) ipkp =  if { }ii NNk ...,,11 +∈ − . 

2.4.2.2 Computation of the Mean Value of the Revenue 

An analytical expression of the integrals of the second member in Relation 2.28 is 
possible only for very small values of parameters i and ni since the complexity of 
the solution increases exponentially. This is why a numerical approach is neces-
sary.  

We chose the Monte-Carlo approach. In order to simplify the notations, we de-
note by kq  the probability [ ]( )Tk ,0,Pr  and by ip  the cost of one item if the 
inventory level k belongs to { }ii NN ...,,11 +− . Others notations are those intro-
duced in the previous subsection. 
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Algorithm 2.2. 

1. Compute )(exp 10 Tq λ−= . 
2. For 1  to1 −= nk  do: 

 2.1. Compute i such that ii NkN ≤<−1 . 
 2.2. If 1>i  set jj nK =  for 1...,,1 −= ij . 

 2.3. 1−−= ii NkK . 

 2.4. u = 1. 
 2.5. For ij ...,,1=  do jK

juu λ= . 

 At this point, u contains the term ∏
−

=

− −⎟
⎠
⎞⎜

⎝
⎛

1

1

1

i

j

Nkn
j

ii

i

j λλ  of Formulae (2.28). 

 The Monte-Carlo method starts below. 
 2.6. Set qk = 0. 
 2.7. For Mc = 1 to M do: 
 M is the number of iterations (around 10 000). 
  2.7.1. Set t0 = 0. 
  2.7.2. For ij ...,,1=  generate tj at random on ],[ 1 Tt j− . 

  2.7.3. Set w = 1, s = 0, z = 1. 
  2.7.4. For ij ...,,1=  do:  

   2.7.4.1. Compute 
( )

!)1(

1
1

−

−
=

−
−

j

K
jj

K
tt

v
j

. 

   2.7.4.2. Compute ( )1−−= jtTvv . 
   2.7.4.3. Compute vww = . 
   2.7.4.4. If ( )ij < , then compute ( ) ][exp 1−−−= jjj ttzz λ . 

   2.7.4.5. If ( )[ ij =  and ( ) ]iNk <  do:  
    2.7.4.5.1. Compute ][exp 1−= jj tzz λ . 

    2.7.4.5.2. If ( )1Mc = , then compute ][exp Tuu jλ−= . 

   2.7.4.6. If ( )[ ij =  and ( ) ]iNk =  do: 
    2.7.4.6.1. Compute ( ) ][exp 11 jjjjj tttzz +− +−−= λλ . 

    2.7.4.6.2. If ( )1Mc = , then compute ][exp 1 Tuu j+−= λ . 
  2.7.5. End of loop j . 
  2.7.6. Compute zww = . 
  2.7.7. Compute Mwqq kk /+= . 

 2.8. End of loop Mc. 
 2.9. Compute uqq kk = . 

3. End of loop k. 

Computation of qn. 

4. Set 0=u . 
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5. For 1...,,0 −= nk  do kquu += . 
6. Compute uqn −=1 . 

Computation of the mean value of the revenue denoted by Ct. 

7. Set Ct = 0. 
8. For nk to0=  do: 

 8.1. Set 0cc = . 
 8.2. Compute i such that ii NkN ≤<−1 . 
 8.3. If 1>i  do jj np+= cccc  for 1...,,1 −= ij . 

 8.4. Compute ( ) ii pNk 1cccc −−+= . 
 8.5. Compute ( )[ ]Tknwqk ,ccCtCt −++= . 

9. End of loop k. 

2.4.2.3 Improvement of the Solution 

We denote by sini ,,2,1, L=  the initial sizes of the layers, from the upper to the 
lower one, and by iλ  (respectively, ip ) the corresponding demand intensities (re-
spectively, prices). Remember that sλλλ <<< L21  and sppp >>> L21 . 

Since a numerical approach has been used to evaluate the probabilities of the 
states of the system at time T and the mean value of the revenue knowing the lay-
ers, we can also use a numerical approach to reach the layers that maximize the 
mean value of the revenue. We chose a simulated annealing algorithm to improve 
a given solution. This method is an iterative approach and some layers may be-
come empty (and thus disappear) during the process. This requires some addi-
tional notations. 

We denote by r0 the number of layers, by 0
in  the size of the i-th layer and by 

0
iλ  (respectively, 0

ip ) the corresponding demand intensities (respectively, prices) 

for 0,,2,1 ri L=  at the beginning of an iteration of the simulated annealing algo-

rithm or the initial stage. Indeed, sr ≤0 . At the beginning of the first iteration, 
sr =0 , iiii nn λλ == 00 ,  and ii pp =0  for si ,,2,1 L= . 

We denote by r1 the number of layers at the end of the first iteration, by 1
in  the 

size of the i-th layer, and by 1
iλ  (respectively, 1

ip ) the corresponding demand in-

tensities (respectively, prices) for 1,,2,1 ri L= . Indeed, sr ≤1 . Furthermore, the 
corresponding mean value of the revenue is .Copt1  
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1λ  2λ  3λ  4λ 5λ 6λ 7λ 8λ 9λ

*
1λ  *

2λ  *
3λ  *

4λ

r1=4 

0 0 0 0 0 1 2 3 4 TT 

r0= s= 9  
Figure 2.6 Links between the second and the initial iteration 

We introduce a vector TT to link the initial demand intensities (and thus the 
initial price), with the current demand intensities and prices. This linkage is illus-
trated in Figure 2.6. 

Algorithm 2.3 describes the simulated annealing mechanism that we apply to 
our problem. Note: Algorithm 2.3 contains Algorithm 2.2. 

 
Algorithm 2.3. 

1. Introduce ins λ,, , ip  for si ,,2,1 L=  and the salvage costs ),( Tkw  for .,,2,1 nk L=  

2. Generate at random in  for si ,,2,1 L=  such that nn
s

i
i =∑

=1
, the value generated being inte-

ger and positive. 
 The first two steps of the algorithm provide the initial data. 
3. Introduce KK. 

KK is the number of iterations that will be made. For instance, we may assign the value 2000 
or 3000 to this variable.  

4. Set ,0 sr = iiiiii nnpp === 000  and,λλ  for si ,,2,1 L= .  

 This set of values represents the initial solution that is called S0. 
5. Compute the mean value of the revenue corresponding to solution S0. We denote this value 

Copt0. 
 This is obtained by applying Algorithm 2.2. 
6. We set 0* SS ≡  and 0Copt*Copt = . 

For each iteration, S* contains the best solution and Copt* the greatest mean value of the 
revenue obtained since the beginning of the algorithm. 

 The simulated annealing process starts at this point. 
7. For kkt = 1 to KK do: 

 7.1. For i = 1 to s set TTi = 0. 
 7.2. Set i = 1 and j = 1. 
 7.3. While )( 0ri ≤   
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  7.3.1. If )( 0
ii λλ =  do: 

   7.3.1.2. Set .TT ij =  

   7.3.1.3. Set .1+= ii  
   7.3.1.4. Set .1+= jj  

  7.3.2. If )( 0
ii λλ ≠  do: .1+= jj   

The instructions of Stage 7 lead to vector TT. 
In the following steps, we modify the layers. 

 7.4. Generate the integer i at random on { 0,,2,1 rL }. 
 7.5. Generate the integer j at random on }{ s,,2,1 L . 
 7.6. If )0TT( ≠j  do: 

 In this case, one item will be added to the i-th layer that is not empty. 
  7.6.1. Set .TT1 ji =  

  7.6.2. Set .101
11
+= ii nn  

 7.7. If )0TT( =j  do: 

In this case, one item will be added to an empty layer that corresponds to the j-th initial 
layer. This layer is temporarily set at the last position in the current solution. 

  7.7.1. Set .10
1 += ri  

  7.7.2. Set .101 += rr  
  7.7.3. Set .,,1 111

111 jijii ppn λλ ===  

 7.8. Set .101 −= ii nn  

 7.9. If )0( 1 =in  do: 

In this case, one layer becomes empty and disappears. 
  7.9.1. If )( 0ri <  do: 

   7.9.1.1. For k = i to r0 – 1 set 1
1

1
+= kk nn , 1

1
1

+= kk pp , 1
1

1
+= kk λλ . 

   7.9.1.2. Set r1 = r0 – 1. 
The next stage consists in putting the parameters into the increasing order of the demand 
intensities. 

 7.10. For i = 1 to r1 – 1 do 
  7.10.1. For j = i + 1 to r1 
   7.10.1.1. If )( 11

ij λλ <  permute 11 and ij λλ , 11 and ij pp , 11 and ij nn . 

At this stage of the computation, a new solution S1 is available. 
 7.11. Compute the mean value of the revenue corresponding to solution S1. We denote this 

value by Copt1. This value is obtained by applying Algorithm 2.2. 
 7.12. If 01 CoptCopt ≥  do: 

  7.12.1. If *CoptCopt1 >  set 1* SS =  and Copt* = Copt1. 

  7.12.2. Set 10 SS = . 
 7.13. If 01 CoptCopt <  do: 

  7.13.1. Compute ].kkt/)CoptCopt([exp 10 −−=y  
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  7.13.2. Generate x at random on ]1,0[  (probability density 1). 

  7.13.3. If )( yx ≤  set 10 SS = . 

2.4.2.4 Numerical Example 

In the case presented hereafter, the number of items to sold before time T  is 25 
(n = 25). A one-to-one relationship has been established between five prices and 
five demand intensities. These data are presented in Table 2.1. 

Table 2.1 Price versus demand intensity 

Price 20 14 10 7 5 

Demand intensity 0.2 0.4 0.6 0.8 1  

The salvage value is linear: each item can be sold on the second market for 2 
monetary units. The computation starts with five layers numbered from the upper 
to the lower layer. Each of them is initially made with 5 consecutive inventory 
levels. The number of iterations made in the simulated annealing process is 5000.  

Remark: A large number of choices (see Appendix A) are available when ap-
plying simulated annealing for defining, in particular:  

• the number of iterations; 
• the evolution of the “temperature” that affects the selection of the next state; 
• the “neighborhood” of a solution. 

In Table 2.2, we give some intermediate results provided by the simulated an-
nealing algorithm. The last one is the near-optimal solution. 

Table 2.2 Some intermediate steps of the simulated annealing process 

Iteration 
number 

 Solution Mean value of the 
revenue (rounded) 

 
1 

Layer size 
Price 

Demand intensity 

5 
20 
0.2 

5 
14 
0.4 

5 
10 
0.6 

5 
7 

0.8 

5 
5 
1 

 
174 

 
16 

 

Layer size 
Price 

Demand intensity 

2 
20 
0.2 

4 
14 
0.4 

6 
10 
0.6 

7 
7 

0.8 

6 
6 
1 

 
184 

 
993 

 

Layer size 
Price 

Demand intensity 

0 
20 
0.2 

11 
14 
0.4 

1 
10 
0.6 

10 
7 

0.8 

3 
6 
1 

 
199 

 
1243 

 

Layer size 
Price 

Demand intensity 

0 
20 
0.2 

13 
14 
0.4 

1 
10 
0.6 

10 
7 

0.8 

1 
6 
1 

 
202 

 
3642 

 

Layer size 
Price 

Demand intensity 

0 
20 
0.2 

1 
14 
0.4 

15 
10 
0.6 

1 
7 

0.8 

8 
6 
1 

 
205 

 
4006 

 

Layer size 
Price 

Demand intensity 

0 
20 
0.2 

1 
14 
0.4 

17 
10 
0.6 

7 
7 

0.8 

0 
6 
1 

 
211 
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Figure 2.7 Probabilities at time T for the last structure of layers 

Figure 2.7 provides the probabilities of the different inventory levels at time T  
for the last structure of layers. 

2.4.2.5 How to Use the Approach? 

The previous approach is used on a periodic basis. This strategy corresponds to the 
usual behavior of vendors: they choose a pricing policy on a given period (one or 
two weeks for instance) and they reconsider the pricing policy for the next period 
according to the inventory level at the end of the previous period, and so on. In 
other words, they work on a rolling-horizon basis. 

2.4.3 Price as a Function of Inventory Levels: a Special Case 

We assume that the demand intensity, and thus the price, is different from one in-
ventory level to the next. This kind of situation happens when the items are expen-
sive (cars, for instance). In this particular case, it is possible to express analytically 
the probability that k items are sold at the end of period T. 

We denote by iλ  the demand intensity when the inventory level is i and the 
price of the next item is pi. The initial inventory level is n. Indeed 

121 ... λλλλ <<<< −nn  and, as mentioned earlier, 121 ... pppp nn >>>> − . 
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As in the previous section, [ ]( )21,,Pr ttk  refers to the probability that k 
items are sold in period [ ]21, tt . 

Since at each inventory level the demand is generated by a Poisson process: 

• [ ]( ) ( )TT nλ−= exp,0,0Pr  

• [ ]( ) ttTtT n

T

t
nn d])([exp)(exp,0,1Pr 1
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At this level of the computation, it appears that the formula could be: 

( )∑
∏

∏
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≠
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)(exp)1()],0[,(Pr
λλ

λ
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for k = 1,…, n–1 (2.30) 

To complete the proof, we will show that if (2.30) holds for k, then it also holds 
for k +1. If we express )],0[,1(Pr Tk +  according to )],0[,(Pr tk  (Bayes’ 
theorem), we obtain: 
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Developing this expression, we reach the following equality: 
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 (2.31) 

Expanding the left side of the following equality, we obtain: 
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This equality can be rewritten as: 
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Thus, Equation 2.31 becomes: 
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This completes the computation. 
Result 3 is derived from the above development. In this result, according to the 
usual mathematical convention, we assume that if no factor remains in a product, 

then the product equals 1. For instance, 1=∏
=

m

ni
ia  if m < n. 

Result 3 
The probability that k items are sold in period [ 0, T ] is given by (2.30) for 

{ }1,...,1 −∈ nk . Furthermore, [ ]( ) [ ]( )∑
−

=

−=
1

0

,0,Pr1,0,Pr
n

k

TkTn . Then 

the mean value of the revenue can be obtained applying (2.29), Section 2.4.2.1. 
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2.5 Concluding Remarks 

The goal of this chapter was to provide an insight into the domain of pricing mod-
els. We limited ourselves to time-dated items with no supply option in a monopo-
listic environment with myopic customers. Although these assumptions drastically 
simplify the problem, many additional restrictive assumptions are required to ob-
tain a mathematical model that is easy to analyze. 

Nevertheless, the numerical development of the stochastic dynamic pricing 
model with salvage values is an interesting tool when integrated in a rolling-
horizon approach since it allows prices to be adjusted periodically according to the 
inventory level and time, as required in the case of sales. Unfortunately, the one-
to-one relationship between price and demand intensity remains under the respon-
sibility of the user, and is not a risk-free task. 

In our opinion, the pricing models are simply tools to help better understand 
what dynamic pricing is rather than something to solve real-life problems. 
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