
Chapter 2
Sensor Coverage Model

Abstract Sensor coverage models are used to reflect sensors’ sensing capability
and quality. They are abstraction models trying to quantify how well sensors can
sense physical phenomena at some locations, or in other words, how well sensors
can cover such locations. In almost all cases, sensor coverage models can be math-
ematically formulated as a coverage function of distances and angles. The inputs
of such a coverage function are the distances between a particular space point and
sensors’ locations, and the output is a nonnegative real-valued number and is called
coverage measure of this space point. In some cases, a space point is said to be cov-
ered if its coverage measure satisfies some predefined threshold. On the other hand,
sensor types are diverse, and each sensor type has its own manner of sensing physi-
cal stimuli. Also application scenarios are various, and each application scenario has
its own way of interpreting sensory data. As such, sensor coverage functions can be
defined in different forms and are subject to different interpretations, depending on
sensor types and application scenarios. This chapter introduces some common sen-
sor coverage models, including their motivations, formulations, interpretations, and
applications.

2.1 Motivations

A sensor converts physical stimuli into electrical or other recordable signals. These
signals are further processed to output digital sensing data which are embedded with
comprehensible information. An interesting and important question is: how well a
sensor works? In order to address this question, many measurement mechanisms
have been used to quantify and compare sensors. As introduced in the previous
chapter, some sensor characteristics, such as transfer function, sensitivity, dynamic
range, accuracy, etc., can be used to measure how well a sensor reacts to physical
stimuli. In this chapter, we introduce sensor coverage model as another mechanism
to measure sensors’ sensing capability and quality. In what follows, we first discuss
some motivations of sensor coverage models with examples.
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Fig. 2.1 Illustration of
radiation of sound waves
from a point source in free
space

Example Let us first consider an example of using an acoustic sensor to measure
sound pressure. Figure 2.1 illustrates the radiation of sound waves from a sound
source in the free space. Suppose that the sound source emits a pure tone char-
acterized by a sine function a sin(2πf + θ), where a is the maximum amplitude,
f the frequency, and θ the initial phase. The root-mean-square (RMS) amplitude
aams = a√

2
is used to measure the sound pressure

Lp = 20 log10 aams + C (dB),

where the constant C is the reference sound pressure (an internationally agreed
value of C is 94 dB). A free space is a homogeneous medium, free from bound-
aries or reflecting surfaces. In such a free space, the sound waves radiated from a
sound source will diffuse in all directions, and its amplitude (or energy in terms
of arms) attenuates with distances. The sound pressure at a given point, at a distance
d (in meters) from the source, can be computed as [7, 9, 16]

Lp = Lref − 20 log10

(
d

dref

)
(dB),

where Lref is the sound pressure at a reference point (usually greater than 1 meter to
avoid source near field effects), and dref is the distance between the reference point
and sound source. From this expression it can be seen that in the free space, the
sound pressure decreases by 6 dB when the distance d doubles.

All kinds of acoustic sensors have limitations on the measurable sound pres-
sure level (in dB), beyond which an accurate measurement cannot be obtained. The
lower measurement limit of a microphone is established by its cartridge thermal
noise [27]. There are two sources of thermal noise, air damping and preamplifier
circuitry. The air damping causes a white noise that is a property of the microphone.
The preamplifier has low-frequency noise which is inversely proportional to fre-
quency and white noise. The thermal noise determines the lower measurement limit
of an acoustic sensor, which is the dB level that would be read by a measurement
instrument connected to the microphone output when there is no acoustic pressure
applied to the microphone. If the distance between a sound source and an acoustic
sensor is too large, the sound pressure at the sensor location is too small and cannot
be accurately measured by the sensor. This suggests that a sensor may only sense
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some object within a limited range. Or in other words, a sensor can cover some
region with limited area.

Example Let us consider another example of using a thermometer sensor to mea-
sure environmental temperature. The thermocouple of a thermometer consists of
two electrical conductors of dissimilar materials. One is called the measurement
junction, and the other is called the reference junction with known reference tem-
perature. When the temperature of the measurement junction is different from the
reference junction, a current will flow in the circuitry with the intensity proportional
to their temperature difference. Although the measurement is the temperature of the
air around the thermometer, it may be extended to infer the temperature of some
other space points not far away from the thermometer. Such inferences may not be
very accurate; however, they are useful in practice. For example, if the measured
temperature is 30◦C, then we may infer that a space point with distance of 10 me-
ters away from the thermometer has the same temperature. This suggests that the
sensing data of a sensor can be applied to the space points not only around the sen-
sor but also close to the sensor. Or in other words, a sensor can cover some space
with limited area.

There are also some other types of sensors whose sensing capability and quality
can be related to the distances between a space point and sensors. These motivate
the use of sensor coverage model, as one of many other mechanisms, to model how
well sensors can sense physical phenomena at some locations, or in other words,
how well sensors can cover such locations. We will introduce some commonly used
sensor coverage models in the next section. Before that, we make an important note
here. As abstraction models, sensor coverage models only apply to some types of
sensors. There exist some other types of sensors to which coverage considerations
may not apply at all.

2.2 Sensor Coverage Models

Sensor coverage models measure the sensing capability and quality by capturing
the geometric relation between a space point and sensors. In almost all cases, a
sensor coverage model can be formulated as a function of the Euclidean distances
(and the angles) between a space point and sensors. The inputs of such a coverage
function are the distances (and angles) between a particular space point and sensors’
locations, and the output is called coverage measure of this space point, which is a
nonnegative real number.

We introduce the concept of coverage function in the context of two-dimensional
space. Let us consider a space point z and a set of sensors S = {s1, s2, . . . , sn}. We
use d(s, z) (d(s, z) ≥ 0) to denote the Euclidean distance between a sensor s and a
space point:

d(s, z)
.=

√
(sx − zx)2 + (sy − zy)2 (2.1)
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in the two-dimensional space, where (sx, sy) and (zx, zy) are the Cartesian co-
ordinates of the sensor s and the space point z, respectively. We use φ(s, z)

(0 ≤ φ(s, z) < 2π ) to denote the angle between them. For a sensor s, we draw
a horizontal line starting from the sensor and pointing to right. We connect the
sensor s and the space point u with another line sz. Then φ(s, z) is the an-
ticlockwise angle between the two lines, starting from the horizontal line and
ending at the line sz. Figure 2.1 illustrates an example of d and φ. We use
dn = (d(s1, z), d(s2, z), . . . , d(sn, z)) to denote the vector of such distances and
φn = (φ(s1, z),φ(s2, z), . . . , φ(sn, z)) to denote the vector of such angles between
the set of sensors and the space point. A sensor coverage model can be formulated
as a coverage function f mapping (dn,φn) to a nonnegative real number, that is,

f : (dn,φn) → R
+, (2.2)

where R
+ stands for the set of nonnegative real numbers. We call f (dn,φn) the

coverage measure of a space point with respect to the sensors s1, s2, . . . , sn. Simi-
lar definition can also be applied in three-dimensional space yet with some simple
modification of the definition of angles.

Many sensor coverage models have been proposed in the literature. In some mod-
els, the inputs of a coverage function are only the distance and angle between a space
point and one sensor. In some other models, the inputs of a coverage function are the
distances and angles between a space point and more than one sensor. In our view,
two types of coverage functions can be classified: One type is a kind of Boolean
coverage models, where the coverage measure is either 0 or 1 for one space point;
and the other can be called general coverage models, where the coverage measure
can take various nonnegative values. If the angle argument is not included in the
coverage function, then such coverage models are called omnidirectional coverage
models. On the other hand, if it is included, such coverage models are called di-
rectional coverage models. In what follows, we elaborate some commonly used
coverage models in details.

2.2.1 Boolean Sector Coverage Models

The Boolean sector coverage model (sometimes called the sector model), which
might be motivated from a directional camera, is a Boolean directional coverage
model [12]. Figure 2.2(a) illustrates such a sector model, where φs is called an
orientational angle, ω is called a visual angle of the sector model, and Rs is called
a sensing range. The coverage function of the sector model is given by

f
(
d(s, z),φ(s, z)

) =
{

1 if d(s, z) ≤ Rs and φs ≤ φ(s, z) ≤ φs + ω,

0 otherwise,
(2.3)

where d(s, z) is the Euclidean distance between a sensor s and a space point z,
and φ(s, z) is their angle. This coverage function defines a sector: All space points
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Fig. 2.2 Illustration of (a) a directional Boolean sector coverage model; (b) a directional Boolean
sector coverage model with adjustable orientational angle; and (c) a space point being 3-covered
by three sectors

within such a sector have the coverage measure of 1 and are said to be covered by
this sensor. All space points outside such a sector have the coverage measure of 0
and are said to be not covered by this sensor. In Fig. 2.2(a), the space point marked
by a star has a coverage measure of 1 and is covered by the sensor.

The orientational angle of a directional sensor might be adjustable after a sen-
sor has been deployed [2, 3, 6]. Obviously, the area that can be covered by such a
sensor will be different when it takes different orientational angle. For example, in
Fig. 2.2(b), if the sensor takes φs1 as its orientational angle, then the space point
z1 is covered, and z2 is not. If it takes φs2 as its orientational angle, then the space
point z1 is not covered, and z2 is covered.

A space point may be covered by more than one sector [10]. With the Boolean
sector coverage model, the coverage measure of a space point relative to a set of
sensors can be the addition of the coverage measure of the point relative to each
individual sensor. Formally, the coverage function can be defined as

f (dn,φn) =
n∑

i=1

fi

(
d(si, z),φ(si , z)

)
, (2.4)

where fi is the coverage function of a sensor si and is given by (2.3). If f (dn,φn) =
k (k ≥ 1), then we say that the point is k-covered. Obviously, if a point is k-covered,
it is also (k − 1)-covered. Figure 2.2(c) illustrates an example of space point being
3-covered, where the space point marked by the star is within the sensing sectors of
sensors s2, s4 and s5.

2.2.2 Boolean Disk Coverage Models

The Boolean disk coverage model (often simplified as the disk model) might be the
most widely used sensor coverage model in the literature. The coverage function of
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Fig. 2.3 Illustration of (a) an omnidirectional Boolean disk coverage model; (b) an omnidirec-
tional Boolean disk coverage model with variable sensing ranges; and (c) a space point being
3-covered by three disks

the disk model is given by

f
(
d(s, z)

) =
{

1 if d(s, z) ≤ Rs,

0 otherwise,
(2.5)

where d(s, z) is the Euclidean distance between a sensor s and a space point z, and
the constant Rs > 0 is called sensing range. Indeed, this function defines a disk
(often called a sensing disk) centered at the sensor with the radius of the sensing
range. Figure 2.3(a) illustrates a disk coverage model. The disk coverage model is
an omnidirectional coverage model. All space points within such a disk have the
coverage measure of 1 and are said covered by this sensor. All space points outside
such a disk have the coverage measure of 0 and are said not covered by this sensor.

The sensing range Rs is used to characterize the sensing capability of a sensor.
Normally, different sensor types are assumed to have different sensing ranges. Some
researchers even argue that a single sensor unit may have different sensing ranges
and can choose one sensing range as its working sensing range [4, 22, 33]. For
example, Fig. 2.3(b) illustrates a sensor with two sensing ranges, Rs1 and Rs2. The
space point marked by the star is not covered if the sensor uses Rs1 as sensing range;
it is covered if the sensor uses Rs2 as sensing range. It is generally assumed that a
sensor consumes more energy when it uses a larger sensing range.

A space point may be located within more than one sensing disks. Under the disk
coverage model, the coverage measure of a space point relative to a set of sensors
can be the addition of the coverage measure of the point relative to each individual
sensor. Formally, the coverage function can be defined as

f (dn) =
n∑

i=1

fi

(
d(si, z)

)
, (2.6)

where fi(·) is the coverage function of a sensor si and is given by (2.5). If
f (dn) = k, then we say that the point is k-covered. Obviously, if a point is
k-covered, it is also (k − 1)-covered. Figure 2.3(c) illustrates an example of space
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point being 3-covered, where the space point marked by the star is within the sensing
disks of sensors s2, s4, and s5.

2.2.3 Attenuated Disk Coverage Models

Some researchers argue that the sensing quality of a sensor reduces with the increase
of the distance away from the sensor [13, 19]. An attenuated disk coverage model is
used to capture such attenuated sensing qualities. An example of an attenuated disk
coverage model is given by

f
(
d(s, z)

) = C

dα(s, z)
, (2.7)

where α is the path attenuation exponent, and C a constant. Since it is a nonnega-
tive function, a single sensor enforces its coverage measure to any point in the space.
Figure 2.4(a) illustrates such an attenuated disk coverage model. The coverage mea-
sure of z1 is larger than that of z2, as it is closer to the sensor.

There may be more than one sensor in a sensor field. Under the attenuated disk
coverage model, the coverage measure of a space point relative to a set of sensors is
the addition of the coverage measure of the point relative to each individual sensor.
Formally, the coverage function is modified as

f (dn) =
n∑

i=1

C

dα(si, z)
. (2.8)

In some cases, only the sensors close to a space point are included in the computa-
tion of the above equation for simplification.

Fig. 2.4 Illustration of (a) an attenuated disk coverage model; (b) a truncated attenuated disk
coverage model; (c) a truncated multilevel attenuated disk coverage model
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2.2.4 Truncated Attenuated Disk Models

In the attenuated disk coverage model, the coverage measure becomes very small
when the distance between a space point and a sensor becomes very large. In such
cases, the coverage measure might be neglected, and some approximations can be
made by truncating the coverage measure for larger values of distance. For exam-
ple, Zou and Chakrabarty [32] propose the following truncated attenuated coverage
function:

f
(
d(s, z)

) =
{
Ce−αd(s,z) if d(s, z) ≤ Rs,

0 otherwise,
(2.9)

where α is a parameter representing the physical characteristics of the sensor unit,
and Rs the sensing range. Figure 2.4(b) illustrates such a coverage model.

Another truncated attenuated disk model [31] is defined as follows:

f
(
d(s, z)

) =
⎧⎨
⎩

1 if d(s, z) ≤ Rs − Ru,

e−α(d(s,z)−(Rs−Ru))β if Rs − Ru < d(s, z) ≤ Rs,

0 if Rs < d(s, z),

(2.10)

where Rs is the sensing range, Ru is called the uncertain range, and α and β are
constants. The use of Ru is to capture the reducing but not yet vanishing of the
sensing quality when the distance between a sensor and a space point increases.
Figure 2.4(c) illustrates such a coverage model.

Figure 2.5 illustrates the relation between the coverage measure and sensor–point
distance for the aforementioned disk coverage models.

Fig. 2.5 Illustration of the
relation between the coverage
measure and sensor–point
distance for (a) Boolean disk
coverage model;
(b) attenuated disk coverage
model; and (c) and (d)
truncated attenuated disk
coverage model (for the color
version, see Color Plates on
p. 207)
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2.2.5 Detection Coverage Models

An important application of sensor networks is to detect some event occurred at
some location. In the context of detection application, the sensing quality of a sen-
sor can be represented by its detection probability. The detection probability of a
space point by a single sensor is also related to, among other factors, the distance
between them. However, the detection probability of a space point relative to a set of
sensors is no longer simply computed as the addition of the detection probability of
the point relative to each individual sensor (otherwise, it might be larger than one).
Instead, a value fusion or decision fusion can be used to derive the detection proba-
bility. Based on different event scenarios and detection techniques, many detection
coverage models have been proposed in the literature [1, 5, 8, 15, 17, 18, 26, 28–30].

Let us consider a general signal propagation model where the signal parame-
ter θ (e.g., the sound pressure of a sound source) attenuates along with the signal
propagation. Depending on the hypothesis of whether the target is present (H1) or
not (H0), the readings at the sensor sk are given by

H0 : xk = nk, (2.11)

H1 : xk = θ

dα
k

+ nk, (2.12)

where α is the attenuation exponent, dα
k = dα(sk, z) is the Euclidean distance be-

tween the sensor sk and the space point z, and nk is the measurement noise (e.g.,
circuity thermal noise). It is often assumed that the noise follows a Gaussian distri-
bution with zero mean and variance σ 2

k , denoted by N (0, σ 2
k ).

Given the threshold A, a sensor makes its detection decision of whether a target
is present by

xk

H1
≷
H0

A. (2.13)

That is, if the measurement is larger than A, it decides that a target is present, and if
the measurement is less than A, it decides that a target is not present. When a target
is present at the space point z, the detection probability P d

k of the sensor sk is given
by

P d
k = Pr

[
θ

dα
k

+ nk ≥ A

]
= Q

(A − θ
dα
k

σk

)
, (2.14)

where Q(·) is the Q-function defined by

Q(x) =
∫ ∞

x

1√
2π

e− t2
2 dt. (2.15)

Since Q-function is a decreasing function, the detection probability P d
k decreases

when the distance dk increases. Indeed, (2.14) defines an attenuated disk coverage
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model. Furthermore, if we define a threshold for detection probability, P d
th, and only

those points with detection probability equal to or larger than such a threshold, i.e.,
P d

k ≥ P d
th, are considered as covered by this sensor, then we actually define a trun-

cated attenuated disk coverage model. If we do not discriminate the points with de-
tection probability not less than the detection threshold and simply call these points
being covered by the sensor, then finally we get a Boolean disk coverage model. In
such a case, the points with the detection probability equal to the threshold consist
of a circle, and their distances to the sensor are also equal and often regarded as the
sensing range Rs . That is,

Q

(A − θ
Rα

s

σk

)
= P d

th �⇒ Rs =
(

θ

A − σkQ−1(P k
th)

) 1
α

, (2.16)

where Q−1(·) denotes the inverse function of Q(·).
When K sensors are used to cooperatively detect an event, the value fusion tech-

nique can be used to compute the detection probability of a space point by these
sensors. Let xk , k = 1,2, . . . ,K , denote the readings of the kth sensor. With the
value fusion, we compare the sum of xk and a threshold to make a decision whether
or not a target is present. We assume that all the noises nk (k = 1,2, . . . ,K) are inde-
pendent Gaussian noises with zero mean and variance σ 2. When a target is present
at the space point z, the detection probability by these sensors is given by

P d
K = Pr

[
K∑

k=1

(
θ

dα
k

+ nk

)
≥ √

KA

]
= Q

(√
KA − ∑K

k=1
θ
dα
k√

Kσ

)
, (2.17)

where
√

KA is the value fusion threshold. Again, we can use the threshold of de-
tection probability P d

th, and the points with detection probability not less than the
detection threshold are called covered by these sensors. In such a case, the covered
points by K sensors satisfy the following distance inequality:

K∑
k=1

1

dα
k

≥
√

K

Rα
s

, (2.18)

where dk is the distance between a point and a sensor sk , and Rs given by (2.16).
Indeed, (2.18) defines a Boolean detection model for K sensors, that is,

f (dK) =
{

1 if
∑K

k=1
1
dα
k

≥
√

K
Rα

s
,

0 otherwise.
(2.19)

Figure 2.6 marks out the space points that are considered as being covered when us-
ing (2.19) (α = 1.0) as the coverage model. The points within a disk are considered
as being covered when only one sensor is used. They are also considered as being
covered when more than one sensor is used. Furthermore, those points colored by
yellow (and outside the disks) are not covered by only a single sensor but are con-
sidered as being covered by more than one sensor. These additionally covered space
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Fig. 2.6 Illustration of the space points covered by using the detection coverage model of (a) 2 sen-
sors, (b) 3 sensors, and (c) 4 sensors (for the color version, see Color Plates on p. 208)

points can be regarded as a kind of cooperation gain by using more than one sensor
for a same sensing task.

There are also many decision fusion techniques that can be used to derive the
detection probability by a set of sensors. For example, the following decision fusion
computes the overall detection probability by a set of sensors:

P d
K = 1 −

K∏
k=1

(
1 − P d

k

)
, (2.20)

where P d
k is given by (2.14). Note that P d

k depends on the distance between a sensor
and the space point. Equation (2.20) can also be used to define a coverage model
(It has been called as probabilistic coverage in some papers [1, 8, 17].) Again, we
can set a threshold and define that a point is covered by K sensors (s1, . . . , sK ) if its
overall detection probability is not less than such a threshold.

Another commonly used decision fusion technique is the majority voting. Sup-
pose that there are K sensors, each independently making a local binary decision δk .
If xk ≥ A, then a sensor decides that a target is present, and δk = 1; otherwise, a sen-
sor decides that a target is present, and δk = 0. Note that δk is dependent on the
distance between a sensor and a space point. The consensus decision rule is given
by

K∑
k=1

δk

H1
≷
H0

⌈
K

2

⌉
. (2.21)

That is, if more than a half of sensors decide a target being present, then the overall
decision fusion result is that a target is present; otherwise, the final result is that a
target is not present. The consensus detection probability hence is given by

P d
K = Pr

[
K∑

k=1

δd
k ≥

⌈
K

2

⌉]
=

K∑
j=
 K

2 �

∑
permutation

j∏
k=1

P d
k

K∏
k=j+1

(
1 − P d

k

)
, (2.22)
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where P d
k is given by (2.14). The second sum term is to add up the product of de-

tection probabilities and missing probabilities over all possible permutations over k.
Equation (2.22) can also be used to define a coverage model. Also, we can set a
threshold and define that a point is covered by K sensors (s1, . . . , sK ) if its overall
detection probability is not less than such a threshold.

2.2.6 Estimation Coverage Models

Another important application of sensor networks is estimating signal parameters.
In the context of estimation application, the sensing quality of a sensor can be rep-
resented by its estimation errors. The estimation error of a space point by a single
sensor is also related to, among other factors, the distance between them. However,
when multiple sensors are used in estimation, the estimation error of a parameter
of some signal at a space point is no longer simply computed as the addition of the
estimation error of the point relative to each individual sensor. Instead, different esti-
mation techniques can be used, and their estimation errors are also different. Based
on different event scenarios and estimation techniques, some estimation coverage
models have been proposed [11, 20, 21, 23, 25].

We use a simple signal estimation scenario to illustrate an estimation coverage
model. We assume that a signal occurs at some space point z and that its signal
parameter θ attenuates along with the signal propagation. For example, θ can be
the acoustic amplitude due to a motor engine or due to a leakage of gas barrel. For
magnetic wave such as acoustic wave, its amplitude is attenuated when propagating.
The measurement of the signal parameter by a sensor sk is given by

xk = θ

dα
k

+ nk, (2.23)

where α is the attenuation exponent, dα
k = dα(sk, z) is the Euclidean distance be-

tween the sensor sk and the space point z, and nk is the measurement noise (e.g.,
circuity thermal noise). It is often assumed that the noise follows a Gaussian dis-
tribution with zero mean and variance σ 2

k , denoted by N (0, σ 2
k ). We note that this

measurement model is the same as the one in (2.12) when the target is present.
A parameter estimator can be used to estimate θ based on the measurements xk ,

k = 1,2, . . . ,K . Let θ̂ and θ̃ = θ̂ − θ denote the estimate and the estimation error,
respectively. If the estimation error is small, the estimate of the signal parameter
is obtained with high confidence level. We can use the probability that the abso-
lute value of the estimation is less than or equal to a predefined constant A, i.e.,
Pr[|θ̃K | ≤ A], to measure how well a point is monitored (Pr[|θ̃K | ≤ A] is called the
information exposure in [24]). Some standard estimators can be used to perform
the estimation. For example, if the best linear unbiased estimator (BLUE) estima-
tor [14] is used, the estimate θ̂K is given by

θ̂K =
∑K

k=1 d−α
k σ−2

k xk∑K
k=1 d−2α

k σ−2
k

, (2.24)
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and the estimation error θ̃K is given by

θ̃K =
∑K

k=1 d−α
k σ−2

k nk∑K
k=1 d−2α

k σ−2
k

. (2.25)

If we further assume that all noises have the same variances, i.e., σ 2
k = σ 2 for all

k = 1,2, . . . ,K , then we have

Pr
[|θ̃K | ≤ A

] = 1 − 2Q

(
A

σ

(
K∑

k=1

d−2α
k

) 1
2
)

, (2.26)

where Q-function is defined in (2.15).
We can see that (2.26) dependence on the distances between the K sensors and

the space point and can be used as a coverage function to define an estimation cov-
erage model. Now let us consider that only one sensor is used in estimation. In such
a case, (2.26) is given by

Pr
[|θ̃k| ≤ A

] = 1 − 2Q

(
A

σ
d−α
k

)
. (2.27)

Since Q(·) is a decreasing function, Pr[|θ̃k| ≤ A] decreases as the distance dk in-
creases. Indeed, (2.27) defines an attenuated disk coverage model. Furthermore, if
we define a threshold ε (0 ≤ ε ≤ 1) and if only the points with Pr[|θ̃ | ≤ A] equal to
or larger than such a threshold, i.e., Pr[|θ̃k| ≤ A] ≥ ε, are considered as covered by
this sensor, then we actually define a truncated attenuated disk coverage model. If
we do not discriminate the points within such a disk, then finally we get a Boolean
disk coverage model. In such a case, the points with Pr[|θ̃k| ≤ A] = ε consist of a
circle, and their distances to the sensor are also equal and can be regarded as the
sensing range Rs . That is,

1 − 2Q

(
A

σRα
s

)
= ε �⇒ Rs =

(
A

σQ−1( 1−ε
2 )

) 1
α

, (2.28)

where Q−1(·) denotes the inverse function of Q(·).
We can also define a Boolean estimation coverage model of K sensors by com-

paring Pr[|θ̃K | ≤ A] with the threshold ε. In such a case, the covered points by K

sensors satisfy the following distance inequality:

K∑
k=1

1

d2α
k

≥ 1

R2α
s

, (2.29)

where dk is the distance between a point and a sensor sk , and Rs given by (2.28).
Indeed, (2.29) defines a Boolean estimation coverage model for K sensors (which
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Fig. 2.7 Illustration of the space points covered by using the estimation coverage model of
(a) 2 sensors, (b) 3 sensors, and (c) 4 sensors (for the color version, see Color Plates on p. 208)

is called the information coverage model in [23]), that is,

f (dK) =
{

1 if
∑K

k=1
1

d2α
k

≥ 1
R2α

s
,

0 otherwise.
(2.30)

Figure 2.7 marks out the space points that are considered as being covered when
using (2.30) (α = 1.0) as the coverage model. It is also seen that when using more
than one sensor for the same sensing task (estimation in this case), the covered space
points are more than those by only using one single sensor. Again, the increased
coverage area can be seen as a kind of cooperation gain.
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