
Chapter 2
Semantic Web Technologies and Artificial
Neural Networks for Intelligent Web Knowledge
Source Discovery

M.L. Caliusco and G. Stegmayer

Abstract This chapter is focused on presenting new and recent techniques, such as
the combination of agent-based technologies and Artificial Neural Network (ANN)
models that can be used for intelligent web knowledge source discovery in the new
and emergent Semantic Web.

The purpose of the Semantic Web is to introduce semantic content in the huge
amount of unstructured or semi-structured information sources available on the web
by using ontologies. An ontology provides a vocabulary about concepts and their
relationships within a domain, the activities taking place in that domain, and the
theories and elementary principles governing that domain. The lack of an integrated
view of all sources and the existence of heterogeneous domain ontologies, drives
new challenges in the discovery of knowledge sources relevant to a user request.
New efficient techniques and approaches for developing web intelligence are pre-
sented in this chapter, to help users avoid irrelevant web search results and wrong
decision making.

In summary, the contributions of this chapter are twofold:

1. The benefits of combining Artificial Neural Networks with Semantic Web Tech-
nologies are discussed.

2. An Artificial Neural Network-based intelligent agent with capabilities for dis-
covering distributed knowledge sources is presented.

2.1 Introduction

The web grows and evolves at a fast speed, imposing scalability and relevance prob-
lems to web search engines. Moreover, another ingredient is being recently added to
it: data semantics. The new Semantic Web allows searching not only information but
also knowledge. Its main purpose is introducing structure and semantic content in

M.L. Caliusco (�)
CONICET, CIDISI-UTN-FRSF, Lavaise 610, Santa Fe, Argentina
e-mail: mcaliusc@frsf.utn.edu.ar

Y. Badr et al. (eds.) Emergent Web Intelligence: Advanced Semantic Technologies,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-077-9_2, © Springer-Verlag London Limited 2010

17

mailto:mcaliusc@frsf.utn.edu.ar
http://dx.doi.org/10.1007/978-1-84996-077-9_2


18 M.L. Caliusco and G. Stegmayer

the huge amount of unstructured or semi-structured distributed knowledge available
on the Web, being the central notion behind the Semantic Web that of ontologies,
which describe concepts and their relations in a particular field of knowledge [1].

The knowledge source discovery task in such an open distributed system is a new
challenge because of the lack of an integrated view of all the available knowledge
sources. Therefore, if a part of the system wants to initiate, for example, a dynamic
collaborative relationship with another one, it is difficult to know who to contact
and where to go and look for the required knowledge. Besides that, the distributed
development of domain-specific ontologies introduces another problem: in the Se-
mantic Web many independently developed ontologies, describing the same or very
similar fields of knowledge, co-exist. Those ontologies are not identical or present
minor differences, such as different naming conventions, or higher level differences
in their structure and in the way they represent knowledge. These problems can be
caused, among other things, by the use of different natural languages, e.g. Paper
vs. Artículo, different technical sublanguages, e.g. Paper vs. Memo, or use of syn-
onyms, e.g. Paper vs. Article. Therefore, ontology-matching techniques are needed,
that is to say, semantic affinity must be identified between concepts that, appearing
in different ontologies, are related.

The web of the future will be composed by small highly contextualized ontolo-
gies, developed with different languages and different granularity levels. A simpler
document in the Semantic Web will be composed by the website, the metadata that
describe it and a domain ontology that represents the metadata semantics [16]. The
websites will have, besides an ontology domain to describe the knowledge they
can provide, an adequate structure to receive mobile software agents (i.e. an agent
server) that will travel the net, for example looking for knowledge required by an
end-user [2]. Considering that these agents will have their own ontology for com-
munication, in this future context the main challenge will be how to go to the most
relevant sites (avoiding waste of time) and how to communicate with them.

In addition, there must be a mechanism for defining ontology-matching, a key
issue that agents have to deal with in the Semantic Web. Virtually any application
that involves multiple ontologies must establish semantic mappings among them,
to ensure interoperability. Examples of such applications arise in many domains,
including e-commerce, knowledge management, e-learning, information extraction,
bioinformatics, web services, and tourism, among others [9].

This chapter is focused on presenting new and recent techniques that can be
used for improving web knowledge source discovery in the Semantic Web, such as
the combination of agent-based technologies and Artificial Neural Network (ANN)
models, which can be used for defining the matching operation between ontologies.

The structure of this chapter is the following: Sect. 2.2 introduces some basic
concepts regarding the Semantic Web, Ontologies, Software Agents, and Artificial
Neural Networks (ANNs). Section 2.3 discusses related work with knowledge dis-
covery on the web. In Sect. 2.4, the web knowledge discovery task is explained in
detail and some motivating scenarios are introduced. Section 2.5 presents a proposal
for an ANN-based ontology-matching model inside a knowledge source discovery
agent and a related performance evaluation. Finally, Sect. 2.6 presents the conclu-
sions of this chapter.



2 Semantic Web Technologies and ANNs 19

2.2 Foundations

Semantic Web uses ontologies and a number of standard markup languages to for-
mally model information represented in web resources so that it is accessible to
humans and machines working co-operatively, perhaps with the assistance of intelli-
gent services such as software agents, which use artificial intelligent (AI) techniques
and models.

The purpose of this section is to provide an introduction to some concepts that are
used along the chapter, regarding Ontologies, Ontology-matching, Software Agents
and Artificial Neural Networks.

2.2.1 Ontologies and Ontology-Matching

Since ontologies have been used for different purposes in different disciplines,
there are different definitions about what an ontology is, most of them contradic-
tories [13].

In this chapter, an ontology is considered as an explicit representation of a shared
understanding of the important concepts in some domain of interest. Ontologies
usually are referred as a graph structure consisting of [8]:

1. a set of concepts (vertices in a graph),
2. a set of relationships connecting concepts (directed edges in a graph), and
3. a set of instances assigned to a particular concept (data records assigned to con-

cepts or relations).

In order to define the semantics for digital content, it is necessary to formalize the
ontologies by using specific languages as Resource Description Framework (RDF)
and Web Ontology Language (OWL). On the one hand, RDF is a general-purpose
language for representing information about resources in the Web. It is particularly
intended for representing metadata about web resources, but it can also be used to
represent information about objects that can be identified on the Web. On the other
hand, OWL describes classes, properties, and relations among these conceptual ob-
jects in a way that facilitates machine interoperability of web content[3].

Ontologies provide a number of useful features for intelligent systems, as well as
for knowledge representation in general and for the knowledge engineering process.
However, in open or evolving systems, such as the Semantic Web, different parties
could, in general, adopt different ontologies. Thus, merely using ontologies does not
reduce heterogeneity: it raises heterogeneity problems at a higher level. Ontology-
matching is a plausible solution to the semantic heterogeneity problem [8].

Ontology-matching aims at finding correspondences between semantically re-
lated entities of different ontologies. These correspondences may stand for equiva-
lence as well as other relations, such as consequence, subsumption, or disjointness,
between ontology entities.

Ontology-matching results, called alignments, can thus express the relations be-
tween the ontologies under consideration with various degrees of precision [12].



20 M.L. Caliusco and G. Stegmayer

Alignments can be used for various tasks, such as ontology merging, query answer-
ing, data translation or Semantic Web browsing.

Technically, ontology-matching, can be defined as follows [12]:

The matching process can be seen as a function f which, from a pair of ontologies
to match OA and OB , an input alignment A1, a set of parameters p and a set of
oracles and resources r, returns an alignment A2 between these ontologies.

An alignment can be defined as:

Given two ontologies OA and OB , an alignment is made up of a set of corre-
spondences between pairs of entities belonging to them.

Despite its pervasiveness, today ontology-matching is still largely conducted by
hand, in a labor-intensive and error-prone process. The manual matching has now
become a key bottleneck in building large-scale information systems. Hence, the
development of tools to assist in the ontology matching process has become crucial
for the success of a wide variety of applications [9].

There are different algorithms for implementing the matching process, which can
be generally classified along two dimensions [8]. On the one hand, there is a distinc-
tion between schema-based and instance-based matching. A schema-based matcher
takes different aspects of the concepts and relations in the ontologies and uses some
similarity measure to determine correspondences. An instance-based matcher takes
the instances which belong to the concepts in the ontologies and compares them
to discover similarity between the concepts. On the other hand, there is a distinc-
tion between element-level and structure-level matching. An element-level matcher
compares properties of the particular concept or relation, such as the name, and
uses them to find similarities. A structure-level matcher compares the structure of
the ontologies to find similarities. These matchers can also be combined.

In Sect. 2.5, a proposal for an ontology-matching model that combines several of
these elements is presented. In this chapter, the ontology-matching model is defined
formally as:

• ontology-matching : c → Oi ,
• ontology-matching(c) = {OX,OY }, where c is a concept (it could be not only

one concept, but more than one), OX and OY are domain ontologies related to
the same field than c.

2.2.2 Software Agents

Besides ontologies, software agents will play a fundamental role in building the
Semantic Web of the future [16]. When data is marked up using ontologies, software
agents can better understand the semantics and therefore more intelligently locate
and integrate data for a wide variety of tasks.

Several authors propose different definitions for an agent [21, 31]. According
to [27], an agent is everything that senses and acts on its environment, modifying it.



2 Semantic Web Technologies and ANNs 21

A software agent can therefore be considered as an autonomous software entity that
can interact with its environment.

There are different types of agents such as [18]:

• Autonomous agent: it has the ability to decide when action is appropriate without
the need of human intervention.

• Cooperative agent: it can interact with other agents or humans via a communica-
tion language.

• Mobile agent: it is able to migrate from one computer to another autonomously
and continue its execution on the destination computer.

• Intelligent agent: it has the ability to learn the user preference and adapt to exter-
nal environment.

A new emergent category, intelligent web (or personal) agents, rather than doing
everything for a user, would find possible ways to meet user needs and offer the
user choices for their achievement. A web agent could offer several possible ways
to get what a user needs on the Web. A personal software agent on the Semantic
Web must be capable of receiving some tasks and preferences from a user, seeking
for information from web sources, communicating with other agents, comparing
information about user requirements and preferences, selecting certain choices, and
finally providing answers to the user [3].

An important distinction is that agents on the Semantic Web will not act in a
completely autonomous way, but rather they will take care of the heavy load in the
name of their users. They will be responsible for conducting the investigation, with
the obligation to present the results to the user, so that he or she can make his or her
decisions.

2.2.3 Artificial Neural Networks

There is no universally accepted definition of what Artificial Neural Networks
(ANNs) are, or what they should be. They can be loosely defined as large sets of
interconnected simple units which execute in parallel to perform a common global
task. These units usually undergo a learning process which automatically updates
network parameters in response to a possibly evolving input environment.

ANNs are information processing systems inspired by the ability of the human
brain to learn from observations and to generalize by abstraction [14], according to
the following characteristics:

• Knowledge is acquired by the network through a learning process.
• Connection strengths between neurons, known as synaptic weights, are used to

store the knowledge.

Neural models have certain common characteristics. They are given a set of
inputs x = (x1, . . . , xn) ∈ �n and their corresponding set of target outputs t =
(t1, . . . , tm) ∈ �m for a certain process. The assumption of an ANN model is that



22 M.L. Caliusco and G. Stegmayer

the process that produces the output response is given by some unknown mathe-
matical relationship t = G(x) for some unknown, generally nonlinear, function G.
Therefore, a candidate activation function AF (for G) is chosen and the approxima-
tion is performed using a given set of examples, named patterns; that is to say, a
pattern consists of some inputs x and their associated target outputs t . The patterns
are used to feed the ANN model, which contains a set of processing elements (called
neurons) and connections between them (called synaptic weights). Each neuron has
an activation function AF, which process the incoming information from other neu-
rons.

Neural models may be considered as a particular choice of classes of functions
AF(x,w) where w are the parameters and specific procedures for training the net-
work [25]. Training is similar to an optimization process where internal parameters
of the neural model are adjusted, to fit the training data.

Training a neural network means adapting its connections so that the model ex-
hibits the desired computational behavior for all input patterns. The process usually
involves modifying the weights. Selection of training data plays a vital role in the
performance of a supervised ANN. The number of training examples used to train
an ANN is sometimes critical to the success of the training process.

If the number of training examples is not sufficient, then the network cannot cor-
rectly learn the actual input–output relation of the system. If the number of training
examples is too large, then the network training time could be too long. For some
applications, training time is a critical variable. For others, the training can be per-
formed off-line and more training data are preferred over using insufficient training
data to achieve greater network accuracy. Generally, rather than focusing on vol-
ume, it is better to concentrate on the quality and representational nature of the data
set. A good training set should contain routine, unusual and boundary-condition
cases [14].

2.3 ANNs and the Semantic Web: Literature Review

In this section, a review of current related work is presented, divided into two main
research areas: searching and query answering on the Web, and proposals for ontol-
ogy-matching using neural network models.

2.3.1 Searching and Query Answering on the Semantic Web

Considering the existence of webpage metadata, the problem of dynamic knowledge
discovery in open distributed contexts has been addressed in the Helios Project [4].
Examples of open distributed contexts are Semantic Grids and Peer-based systems,
where a set of independent peer nodes without prior reciprocal knowledge and no
degree of relationship, dynamically need to cooperate by sharing their resources
(such as data, documents or services). In the Helios Project, the authors assume that



2 Semantic Web Technologies and ANNs 23

no centralized authority manages a comprehensive view of the resources shared by
all the nodes in the system, due to the dynamics of the collaborations and variability
of the requirements.

On the web, information is not described by a global schema and users used
to query the web using their own terminology. Then, a semantic query answering
system on the web has to rewrite the query with respect to available ontologies in
order to use reasoning for providing answers. An example of this system is Pow-
erAqua [20]. This system was developed to exploit the availability of distributed,
ontology-based semantic markup on the web to answer questions posed in natu-
ral language. It does not assume that the user has any prior information about the
semantic resources.

The problem of answering queries considering metadata has been studied also in
Peer-based systems, mainly addressing the problem of routing queries over a net-
work. For example, Edutella [23] provides an infrastructure for sharing metadata
in RDF format. The network is segmented into thematic clusters. In each cluster,
a mediator semantically integrates source data. The mediator handles a request ei-
ther directly or indirectly: directly, by answering queries using its own integrated
schema; indirectly, by querying other cluster mediators by means of a dialog-based
query processing module.

2.3.2 Ontology-Matching and ANN Models

In response to the challenge of ontology-matching on the Semantic Web and in
numerous other application contexts, several proposals have appeared lately, which
apply machine learning techniques to create semantic mappings.

In a recent ontology matching state-of-the-art review [11], some tools based on
ANNs are addressed that using information regarding ontology schemas and in-
stances, produce rules for ontology integration in heterogeneous databases.

Several types of ANNs have been used for various tasks in ontology matching,
such as discovering correspondences among attributes via categorization and classi-
fication, or learning matching parameters, such as matching weights, to tune match-
ing systems with respect to a particular matching task [12].

Given schema-level and instance-level information, it is sometimes useful to
cluster this input into categories in order to lower the computational complexity of
further manipulations with data. The self-organizing map network can be used for
this purpose where the neurons in the network are organizing themselves according
to the characteristics of given input patterns. This kind of neural model is used in the
X-SOM ontology mapper [7] which uses a neural network model to weight existing
matching techniques, combined with reasoning and local heuristics aimed to both
discover and solve semantic inconsistencies.

ANNs have been used to automatically recognize the connection between web
pages with similar content and to improve semantic information retrieval together
with synonyms thesaurus [33], or based on text documents [30]. SEMantic INTe-
grator (SEMINT) is a tool based on neural networks to assist in identifying attribute



24 M.L. Caliusco and G. Stegmayer

correspondences in heterogeneous databases [19]. It supports access to a variety of
database systems and utilizes both schema-level and instance-level information to
produce rules for matching corresponding attributes automatically.

During matching, different semantic aspects such as concept names, concept
properties, and concept relationships, contribute in different degrees to the matching
result. Therefore, a vector of weights has to be assigned to these aspects, which is
not a trivial task and current research work depends on human heuristics. In [17],
an ANN model learns and adjusts those weights, with the purpose of avoiding some
of the disadvantages in both rule-based and learning-based ontology matching ap-
proaches, which ignore the information that instance data may provide. Similar to
this idea, the work of [5] uses instances to learn similarity between ontology con-
cepts to create then a newly combined ontology.

In the GLUE system [9], learning techniques are used to semi-automatically cre-
ate semantic mappings between ontologies, finding correspondences among the tax-
onomies of two given ontologies: for each concept node in one taxonomy, the GLUE
system uses a machine-learning classifier to find the most similar concept node in
the other taxonomy.

Differently from the previous cited works, in [28] it is considered that labels at
ontologies are human identifiers (names) for instances, normally shared by a com-
munity of humans speaking a common language inside a specific field of knowl-
edge. It can be inferred that, if labels are the same, the instances associated to them
are probably also the same or are semantically related [10]. A concept, on the other
hand, can also be defined as representative of a set of instances. We can, therefore,
infer that concepts that have the same instances are the same. And vice versa, in-
stances that have the same mother concept (label) are similar. The assumption is
that, to perform its tasks efficiently, an agent should be specialized in a specific
domain context where it is assumed that different ontologies will manage similar
concepts and content.

Those facts, combined with supervised learning by example (i.e. ANNs), can be
better used by an agent to provide a more effective and more efficient response,
compared to traditional retrieval mechanisms. This way, a mobile agent responsible
for searching the web would not loose time and would only visit domains that could
provide an answer and total response time would diminish because the knowledge
would be available just-in-time for the system users. A proposal for the ontology-
matching task using an ANN-based model is presented in detail in Sect. 2.5.

2.4 Web Knowledge Source Discovery

The simplest knowledge discovery mechanism is based on the traditional query/
answer paradigm, where each part acts as both client and server, interacting with
other nodes directly sending queries or requests, and waiting until receiving an an-
swer. This is only possible if the domains are previously known to each other or if
a collaboration relationship has already been established between them. When this



2 Semantic Web Technologies and ANNs 25

is not the case, the discovery of knowledge is affected by the dynamism of the sys-
tem. Some nodes join and some nodes leave the network, at any time. Besides, each
domain is responsible for its own knowledge representation and management, be-
cause there are no a-priori agreements regarding ontology language nor granularity.
A typical example of such a system is the Semantic Web [3].

In open distributed systems, several nodes (domains), probably distributed
among different organizations, need resources and information (i.e. data, docu-
ments, services) provided by other domains in the net. Therefore, an open distributed
system can be defined as networks of several independent nodes, having different
roles and capacities. In this scenario, a key problem is the dynamic discovery of
knowledge sources, understood as the capacity of finding knowledge sources in the
system about resources and information that, in a given moment, better response the
requirements of a node request [4].

When data is marked up using ontologies, software agents can better understand
the semantics and therefore more intelligently locate and integrate knowledge for a
wide variety of tasks. The following examples show two motivating scenarios for
knowledge discovery on the Semantic Web:

• Scenario 1 (adapted from [9]):

Suppose a researcher wants to find out more about someone met at a confer-
ence, whose last name is Cook and teaches Computer Science at a nearby (un-
known) university. It is also known that he just moved to the US from Australia,
where he had been an associate professor. On the web of today, it will be diffi-
cult finding this person, because the above information is not contained within
a single webpage, thus making keyword search ineffective. On the Semantic
Web, however, one should be able to quickly find the answers. A marked-up
directory service makes it easy for a personal software agent to find nearby
Computer Science departments. These departments have marked up data us-
ing some ontology, that includes courses, people, and professors. Professors
have attributes such as name, degree, and institution. Such marked-up data
makes it easy for the agent to find a professor with the last name Cook. Then
by examining the attribute institution, the agent quickly finds the CS depart-
ment in Australia. Here, the agent learns that the data has been marked up
using an ontology specific to Australian universities and that there are many
entities named Cook. However, knowing that associate professor is equivalent
to senior lecturer, it can select the right subtree in the departmental taxonomy,
and zoom in on the old homepage of the conference acquaintance.

• Scenario 2 (adapted from [28]):

A researcher from an European university wants to identify potential partners
in some American universities to collaborate on a project answering from the
calling of the European Union Framework Program.1 The main topic for the
project is the Semantic Web, which is an unknown topic for the researcher and

1http://cordis.europa.eu/fp7.

http://cordis.europa.eu/fp7


26 M.L. Caliusco and G. Stegmayer

therefore he knows no colleague who can help in the research. In addition,
due to the project requirements, a senior researcher has to be contacted. Sim-
ilarly to the previous scenario, this problem could be more easily solved in
the Semantic Web by an agent capable of dynamically discovering the appro-
priate sources of knowledge, by dynamically matching ontologies belonging
to different universities in Europe and America, looking for researchers in the
Semantic Web topic.

Searching on the Semantic Web differs in several aspects from a traditional web
search, specially because of the structure of an online collection of documents in
the Semantic Web, which consists of much more than HTML pages. The semantics
associated to the languages for the Semantic Web allows the generation of new facts
from existing facts, while traditional databases just enumerate all available facts.

Traditional search machines do not try to understand the semantics of the indexed
documents. Conventional retrieval models, in which the retrievals are based on the
matching of terms between documents and the user queries, is often suffering from
either missing relevant documents which are not indexed by the keywords used in
a query, but by synonyms; or retrieving irrelevant documents which are indexed by
unintended sense of the keywords in the query.

Instead, search agents for the Semantic Web should not only find the right infor-
mation in a precise way, but also should be able to infer knowledge and to interact
with the target domain to accomplish its duty [24]. In the next subsection, a proposal
for a knowledge source discovery agent is presented.

2.4.1 A Knowledge Source Discovery Agent

In [28], an architecture for discovering knowledge sources on the Semantic Web
was proposed. This architecture is shown in Fig. 2.1. The main components of the
architecture are: the mobile agents, the Knowledge Source Discovery (KSD) agent,
and the domains.

The mobile agents receive the request from the user and look for an answer vis-
iting the domains according to a list of possible domains generated by the KDS.
An example of a request for the previously described Scenario 2 could be: Which
researchers from Latin American universities work on the field of ontologies and
neural networks?

The KSD agent has the responsibility of knowing which domains can provide
knowledge inside a specific thematic cluster [23] and to indicate a route to mobile
agents on the web carrying a user request. The KSD agent just knows the loca-
tion (i.e. the url) of domains that can provide knowledge, but it does not provide
the knowledge, nor the analysis what the domain contains (i.e. files, pictures, docu-
ments, etc.).

The KSD agent is specialized in a determined field of knowledge. It has to
be aware of all the domains related to this field. To do that, it periodically sends



2 Semantic Web Technologies and ANNs 27

Fig. 2.1 A reference architecture for discovering knowledge sources [28]

crawlers to index websites (Google-search engine style), or the domains can reg-
ister with the KSD agent when they want to be reachable (Yahoo-directory style).
This task is carried out by the Registration Service.

Finally, the last components of the architecture are the domains. Each domain has
its own ontology used to semantically markup the information published in its web-
sites. An example of the domain content is shown in Fig. 2.2. Let us suppose that
there are three domains (A, B , and C) which belong to the Research & Development
(R + D) field of knowledge. The domain A uses the KA-ontology2 provided by the
free open source ontology editor Protege. The domain B uses the SWRC-ontology,3

Semantic Web for Research Communities, which is an ontology for modeling enti-
ties of research communities and their relationships. Finally, the domain C uses an
own-highly-specialized ontology model. All of these ontologies are implemented in
Web Ontology Language (OWL).

In addition, RDF is used to define an ontology-based semantic markup for the
domain website. Each RDF-triple assigns entities and relations in the text linked
to their semantic descriptions in an ontology. For example, in the domain A, the
following RDF-triples: (O.C., interest, Semantic Grid), (O.C., interest, Semantic
Web) and (O.C., interest, Ontological Engineering) represent the research interests
of O.C. described in the text (see the bottom area of Fig. 2.2). As can be seen in
the figure, each domain may use a different ontology to semantically annotate the
provided information even if they belong to the same field of knowledge.

The KSD agent is capable of identifying dynamically which domains could sat-
isfy a request brought to it by a mobile agent. This dynamic knowledge discovery

2http://protege.cim3.net/file/pub/ontologies/ka/ka.owl.
3http://ontoware.org/projects/swrc/.

http://protege.cim3.net/file/pub/ontologies/ka/ka.owl
http://ontoware.org/projects/swrc/


28 M.L. Caliusco and G. Stegmayer

Fig. 2.2 Domains belonging to the R + D field and their corresponding annotated ontologies



2 Semantic Web Technologies and ANNs 29

requires models and techniques that allow to find ontology concepts that have se-
mantic affinity among them, even when they are different syntactically. In order to
do its responsibility efficiently, the KSD agent has to be able to match (probably dif-
ferent) domain ontologies. To face this ontology-matching problem, we propose the
use of a machine learning approach, in particular an ANN model with supervised
learning which is trained (and re-trained periodically) off-line with the data retrieved
as previously stated. The ANN-based matching model is stored in the KSD agent
Knowledge Base (KB) and it is explained in detail in the next section.

2.5 The ANN-Based Ontology-Matching Model Inside the KSD
Agent

This section of the chapter presents an ANN-based model that can be used for on-
tology-matching purposes in the Semantic Web.

An ANN model can be classified according to the type of connections among
their neurons. A network is named feedforward if the flow of data is from inputs to
outputs, without feedback. Generally this topology has distinct layers such as input,
hidden and output, with no connections among neurons belonging to the same layer.
Inside the feedforward models, which are the most widely used, there is a model
named multi-layer perceptron (MLP).

The MLP model consists of a finite number of units called perceptrons (Fig. 2.3),
where each unit of each layer is connected to each unit of the subsequent/previous
layer. These connections are called links or synapses and they only exist between
layers. The signal flow is unidirectional, from the inputs to the outputs, from one

Fig. 2.3 MLP neuron model



30 M.L. Caliusco and G. Stegmayer

layer to the next one, thus the term feedforward. The rules for the MLP model are
the following:

– The j th neuron of the kth layer receives as input each xi of the previous layer.
Each value xi is then multiplied by a corresponding constant, called weight wji ,
and then all the values are summed.

– A shift θj (called threshold or bias) is applied to the above sum, and over the
results an activation function σ is applied, resulting in the output of the j th neuron
of the kth layer. The MLP neuron model is the following:

yj = σ

(
N∑

i=1

wjixi + θj

)
(1)

where i = 1, . . . ,N , j = 1, . . . ,M , and some common choices for σ can be one
of the following: the logistic sigmoid (equation (2)), the hyperbolic tangent (equa-
tion (3)) or the linear function (equation (4)).

σ(x) = 1

1 + e−x
, (2)

tanh(x) = ex − e−x

ex + e−x
, (3)

y(x) = x. (4)

The number of layers and neurons in each layer are chosen a-priori, as well as the
type of activation functions for the neurons. The number of neurons in the hidden
layer is usually determined by trial-and-error in order to find the simplest network
that gives acceptable performance. Then, the values of the weights wji and bias θj

are initialized. These values are chosen so that the model behaves well on some set
(named training set) of inputs and corresponding outputs. The process of determin-
ing the weights and thresholds is called learning or training.

In the MLP model, the learning is supervised and the basic learning algorithm
used is called backpropagation [26, 29] which uses gradient descend to minimize
the cost function (the error E) of the ANN model, generally defined as the mean
square error (mse) between the desired output (targets) and the actual network out-
put. During learning, the mse propagates backwards through the network, hence the
term backpropagation, across the layers of the network model and the weights are
changed accordingly to the error mismatch between the actual network outputs y

and the target outputs t over all the training patterns [14].
A major result regarding MLP models is the so-called universal approximation

theorem [6] which states that given enough neurons in the hidden layer, an MLP
neural model can approximate any continuous bounded function to any specified
accuracy; in other words, there always exists a three-layer MLP neural network
which can approximate any arbitrary nonlinear continuous multidimensional func-
tion to any desired accuracy, provided that the model has enough neurons [15]. That
is why this model has been more extensively studied and used during last years. It is
worth noting, however, that the theorem does not say that a single-layer network is



2 Semantic Web Technologies and ANNs 31

Fig. 2.4 ANN-based
ontology-matching model for
a KSD agent

optimum in the sense of learning time or ease of implementation; moreover, the the-
orem does not give indications about the required number of hidden units necessary
in order to achieve the desired degree of accuracy.

For neural networks, a matching problem can be viewed as a classification prob-
lem. The input to our problem includes RDF-triples instances belonging to the RDF
annotations of the A KA-ontology domain, and similarly for domain B and C. We
address this problem using machine learning techniques as follows: our ANN-based
matcher uses schema-level information and instance-level information inside the A
ontology to learn a classifier for A, and then it uses schema-level information and
instance-level information inside the B ontology to learn a classifier for B. It then
classifies instances of B according to the A classifier, and vice-versa. Hence, we
have a method for identifying instances of A ∩ B. The same idea is applied for more
than two domains. Our approach just indicates which domains may be able to re-
spond to a query, but it does not provide a similarity measurement for the analyzed
ontology terms, differently from [10] where an ANN model is used for providing or
combining similarity measures among heterogeneous ontology terms.

Applying machine learning to this context raises the question of which learning
algorithm to use and which types of information to use in the learning process. Our
model (a schematics representation of the general ANN-based ontology-matching
model can be seen in Fig. 2.4) uses the standard backpropagation algorithm for
supervised learning, which means that, for each input data point presented to the
ANN model, there must be a corresponding matching output or target to be related
with [32]. These {input/output} pairs are named training patterns.

Given a number of ontologies and their instances (belonging to the same field of
knowledge), i.e. ontology X and ontology Y, training patterns are formed to train the
proposed ANN-model by analyzing the RDF-triples belonging to the annotations of
the ontology domains, as follows:

Input pattern: 〈rdf:subject; rdf:predicate; rdf:object〉,
Target pattern: 〈DomainXvalue;DomainYvalue〉

where the target pattern is a vector: the first position stands for ontology domain X
and the second position stands for ontology domain Y. The value of each position
in the vector indicates whether the input RDF-triple exists in the corresponding
ontology domain (1) or not (0). This is better explained with a example in the next
subsection.



32 M.L. Caliusco and G. Stegmayer

Fig. 2.5 ANN-based
ontology-matching model:
training patterns example

2.5.1 ANN-Based Ontology-Matching Model: Training Phase

Using the available data from all the domains (label names and associated instances
from the RDF-triples used as semantic markup of the websites, as shown in Fig. 2.2),
the ANN-based ontology matching model training patterns are formed.

Each output neuron is specialized in recognizing RDF-triples belonging to the
domain ontology that the neuron represents. The label and instance strings are cod-
ified using the standard ASCII code and are then normalized into the activation
function domain of the hidden neurons, before entering the model, because this sig-
nificantly improves training time and model accuracy. A simple example of two
training patterns is presented in Fig. 2.5.

For example, considering all three ontologies presented in Fig. 2.2, a training
pattern indicating that the RDF-triple 〈fellow; interest;SemanticWeb〉 can be found
on the Domain A ontology but not on B nor C would be:

Input pattern: 〈fellow; interest;SemanticWeb〉,
Target pattern: 〈1;0;0〉.
This means that given the fact that there are fellows in the domain A whose

research interest is the Semantic Web, its corresponding RDF-triple would be
〈fellow; interest;SemanticWeb〉 and its corresponding output target would be
〈1;0;0〉: only the first vector value (that represents Domain A is equal to 1) in-
dicating that this triple can be found on domain A ontology. The second training
pattern indicates that the RDF-triple 〈project; is-about;ontologies〉 can be found on
domain B (〈0;1;0〉), because the second value of the target vector is equal to 1.

The MLP model parameters are set according to typical values, randomly initial-
ized. The number of input neurons for the MLP model is set to a standard RDF-
triple. The hidden layer neurons number is set empirically, according to the training
data and a desired accuracy for the matching. At the output, there is a specialized
output neuron in the model for each domain, that recognizes when a domain ontol-
ogy label or instance is presented to the model. The allowed values for each output
neuron are 1 or 0, meaning that the neuron recognizes/does not recognizes a concept
belonging to the domain it represents.

The good generalization property of an ANN model means the ability of a trained
network to correctly predict a response to a set of inputs not seen before. It says that
a trained network must perform well on a new dataset distinct from the one used for
training.



2 Semantic Web Technologies and ANNs 33

The ANN-based ontology-matching model here proposed is trained with each
domain ontology RDF-annotations and their corresponding instances. Our basic as-
sumption is that knowledge is captured in an arbitrary ontology encoding, based on
a consistent semantics. From this, it is possible to derive additional knowledge such
as, in our case, similarity of concepts in different ontologies. Understanding that
labels describe concepts in natural language one can derive that concepts/instances
having the same labels are similar. This is not a rule which always holds true, but
it is a strong indicator for similarity. Other constructs as subclass relations or type
definition can be interpreted similarly.

We have used a small set of patterns (34) for ANN model training, because at the
moment we are working with small domains and with not highly populated ontolo-
gies. For testing model effectiveness, several ANN models have been tested, consid-
ering different number of hidden neurons and performance on training and valida-
tion patterns, using the cross-validation procedure combined with the Levenberg–
Marquardt [22] training algorithm, which is a quasi-Newton method, designed to
approach second-order training speed without having to compute a Hessian matrix.
When the ANN model performance function has the form of a sum of squares (typi-
cal in feedforward networks training), then the Hessian matrix can be approximated
as H = J T J and the gradient can be computed as g = J T e, where J is the Jaco-
bian matrix that contains first derivatives of the network errors with respect to the
weights and biases, and e is a vector of network errors. The Jacobian matrix can be
computed through a standard backpropagation technique that is much less complex
than computing the Hessian matrix [14]. The ANN model is built and trained off-
line, and its parameters are tuned and re-trained periodically when data changes or
new domains are added to the system. However, the time needed for this processes
can be disregarded because the ANN model is used on-line. Examples of model use
for matching are presented in the next subsection.

2.5.2 ANN-Based Ontology-Matching Model: Matching Phase

The Knowledge Source Discovery agent uses the ANN model on-line once the
model has been trained, producing and instant response, each time a mobile agent
carrying a request knocks on its door. The query is expressed in natural language
by an end-user, and it is processed at the mobile agent, until only the keywords re-
main. These keywords, represented as a RDF-triple, are used to consult on the ANN
model, as shown in the example of Fig. 2.6. In the presented example, the ANN
model indicates that the domain ontologies of A and B contain some ontology la-
bels or instances that are similar to the presented request. Therefore, the Knowledge
Source Discovery agent should return to the agent a Domain-list containing the do-
mains A and B to be visited by the mobile agent. According to the ANN model
of the KSD agent, those domains are very likely to be able to provide the required
information.

Because of how neural models work (interpolating data) and the properties asso-
ciated to a three-layer MLP model (generalization ability), the model would always



34 M.L. Caliusco and G. Stegmayer

Fig. 2.6 Querying the
ANN-based
ontology-matching model

Table 2.1 Query RDF-triplets examples

Query RDF-triplets Matching domain ontologies RDF-triplets

(1) 〈fellow, interest, semanticWeb〉 Domain A: 〈fellow, interest, semanticWeb〉
(2) 〈researcher, topic,–〉 Domain B: 〈researcher, topic, semanticWeb〉
(3) 〈miembro, tema,gobierno〉 Domain C: 〈miembro, tema,gobiernoElectronico〉
(4) 〈project, is-about,ontologies〉 Domain A: 〈fellow, interest,ontologies〉,

Domain B: 〈researchProject, is-about,ontologies〉
(5) 〈researcher, topic,web〉 Domain B: 〈researcher, topic, semanticWeb〉
(6) 〈–,–, semanticGrid〉 Domain A: 〈fellow, interest, semanticGrid〉

provide a response [14]. Besides, standard learning algorithms can be used for the
model, for which stability and convergence is guaranteed. If the request contains
concepts totally unknown to the model, it shows that fact answering with values
very different from the training patterns.

The ANN-based ontology-matching model has been tested on six query-
examples, presented in Table 2.1. Note that the query triplet (4) 〈project, is-about,
ontologies〉 has a translation in both domain A and domain B ontologies, therefore
the ANN model should indicate that the domain ontologies of A and B contain
some ontology labels or instances that are similar to the presented request. There-
fore, the KSD agent should return a Domain-list containing the domains A and
B to be visited by the mobile agent carrying the request, because according to
the ANN model of the KSD agent, those domains are very likely to be able to
provide the required information. Another interesting test query is represented by
(3) 〈miembro, tema,gobierno〉 and (5) 〈researcher, topic,web〉, where the matching
model must recognize an instance name which is part of an ontology instance name.
For all of these examples the ANN-based ontology matching model has provided a
satisfactory result.

The number of query triplets is fixed a priori for each query category, however
the final number of ontology triplets for training the ANN-model is dependent on
how populated the ontologies are. Therefore, triplets must be created off-line for
training the model, but it then can be used on-line for query resolution purposes.
Linguistic terms can be mapped into ontology classes (i.e., researcher) or instances
(i.e., semanticWeb, agents).



2 Semantic Web Technologies and ANNs 35

2.6 Conclusions

This chapter has presented some basic concepts and foundations regarding the new
Semantic Web, how it will be populated with ontologies and why ontology-matching
techniques are needed. The idea of software agents that travel the web carrying
query request from users has also been addressed. The web knowledge source dis-
covery task has been explained in detail and some motivating scenarios were intro-
duced.

A condensed literature review on these subjects has been presented, and the ad-
vantages of combination of Artificial Intelligence techniques and models, such as
agent-based technologies and Artificial Neural Networks (ANN), that can be used
for intelligent web knowledge source discovery in the emergent Semantic Web, have
been highlighted.

In summary, this chapter has presented the benefits of combining Artificial Neu-
ral Networks with Semantic Web Technologies, and an ANN-based software agent
with capabilities for discovering distributed knowledge sources has been presented.

References

1. Baeza-Yates, R.: Web mining. In: Proc. LA-WEB Congress, p. 2 (2005)
2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 5(1), 29–37

(2001)
3. Breitman, K., Casanova, M.A., Truszkowski, W.: Semantic Web: Concepts, Technologies and

Applications. Springer, London (2007)
4. Castano, S., Ferrara, A., Montanelli, S.: Dynamic knowledge discovery in open, distributed

and multi-ontology systems: techniques and applications. In: Web Semantics and Ontology.
Idea Group Inc, London (2006)

5. Chortaras, A., Stamou, G.B., Stafylopatis, A.: Learning ontology alignments using recursive
neural networks. In: Proc. Int. Conf. on Neural Networks (ICANN), Poland. Lecture Notes in
Computer Science, vol. 3697, pp. 811–816. Springer, Berlin (2005)

6. Cybenko, G.: Neural networks in computational science and engineering. IEEE Computa-
tional Science and Engineering 3(1), 36–42 (1996)

7. Curino, C., Orsi, G., Tanca, L.: X-SOM: Ontology mapping and inconsistency resolution. In:
4th European Semantic Web Conference (ESWC’07), 3–7, June 2007

8. Davies, J., Studer, R., Warren, P.: Semantic Web Technologies: Trends and Research in
Ontology-Based Systems. Wiley, London (2007)

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning
approach. In: Handbook on Ontologies in Information Systems, pp. 385–403. Springer, New
York (2004)

10. Ehrig, M., Sure, Y.: Ontology mapping—an integrated approach. In: Proc. 1st European
Semantic Web Symposium (ESWS 2004), Greece. Lecture Notes in Computer Science,
vol. 3053, pp. 76–91. Springer, Berlin (2004)

11. Euzenat, J., Barrasa, J., Bouquet, P., Bo, J.D., et al.: State of the art on ontology alignment.
D2.2.3, Technical Report IST-2004-507482, KnowledgeWeb, 2004

12. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, London (2007)
13. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering—with Ex-

amples from the Areas of Knowledge Management, e-Commerce and the Semantic Web.
Springer, London (2004)



36 M.L. Caliusco and G. Stegmayer

14. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, New
York (1999)

15. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal ap-
proximators. Neural Networks 2(5), 359–366 (1989)

16. Hendler, J.: Agents and the Semantic Web. IEEE Intelligent Systems 16(2), 30–37 (2001)
17. Huang, J., Dang, J., Vidal, J., Huhns, M.: Ontology matching using an artificial neural network

to learn weights. In: Proc. IJCAI Workshop on Semantic Web for Collaborative Knowledge
Acquisition (SWeCKa-07), India (2007)

18. Lam, T., Lee, R.: iJADE FreeWalker—an intelligent ontology agent-based tourist guiding sys-
tem. Studies in Computational Intelligence 72, 103–125 (2007)

19. Li, W., Clifton, C.: SEMINT: a tool for identifying attribute correspondences in heterogeneous
databases using neural networks. Data and Knowledge Engineering 33(1), 49–84 (2000)

20. López, V., Motta, E., Uren, V.: PowerAqua: fishing the semantic web. In: Proc. 3rd Euro-
pean Semantic Web Conference, Montenegro. Lecture Notes in Computer Science, vol. 4011,
pp. 393–410. Springer, Berlin (2006)

21. Maes, P.: Intelligent software. Scientific American 273(3), 84–86 (1995)
22. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM Jour-

nal on Applied Mathematics 11, 431–441 (1963)
23. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér, M., Risch,

T.: EDUTELLA, A P2P networking infrastructure based on RDF. In: Proc. 11th World Wide
Web Conference (WWW2002), USA, pp. 604–615 (2002)

24. Peis, E., Herrera-Viedma, E., Montero, Y.H., Herrera, J.C.: Ontologías, metadatos y agentes:
Recuperación semántica de la información. In: Proc. II Jornadas de Tratamiento y Recu-
peración de la Información, España, pp. 157–165 (2003)

25. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 1,
143–195 (1999)

26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

27. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, New York
(2002)

28. Stegmayer, G., Caliusco, M.L., Chiotti, O., Galli, M.R.: ANN-agent for distributed knowledge
source discovery. In: On the Move to Meaningful Internet Systems 2007: OTM 2007 Work-
shops. Lecture Notes in Computer Science, vol. 4805, pp. 467–476. Springer, Berlin (2007)

29. Werbos, P.: The Roots of Backpropagation. From Ordered Derivatives to Neural Networks and
Political Forecasting. Wiley, New York (1994)

30. Wermter, S.: Neural network agents for learning semantic text classification. Information Re-
trieval 3(2), 87–103 (2000)

31. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, New York (2002)
32. Wray, J., Green, G.: Neural networks, approximation theory and precision computation. Neu-

ral Networks 8(1), 31–37 (1995)
33. Zhu, X., Huang, S., Yu, Y.: Recognizing the relations between Web pages using artificial

neural network. In: Proc. ACM Symposium on Applied Computing, USA, pp. 1217–1221
(2003)



http://www.springer.com/978-1-84996-076-2


	Semantic Web Technologies and Artificial Neural Networks for Intelligent Web Knowledge Source Discovery
	Introduction
	Foundations
	Ontologies and Ontology-Matching
	Software Agents
	Artificial Neural Networks

	ANNs and the Semantic Web: Literature Review
	Searching and Query Answering on the Semantic Web
	Ontology-Matching and ANN Models

	Web Knowledge Source Discovery
	A Knowledge Source Discovery Agent

	The ANN-Based Ontology-Matching Model Inside the KSD Agent
	ANN-Based Ontology-Matching Model: Training Phase
	ANN-Based Ontology-Matching Model: Matching Phase

	Conclusions
	References


