Chapter 2

Process Observers and Data Reconciliation
Using Mass and Energy Balance Equations

Daniel Hodouin

Abstract This chapter is devoted to data reconciliation for process audit, diagno-
sis, monitoring, modeling, advanced automatic control, and real-time optimization
purposes. The emphasis is put on the constraints of mass and energy conservation,
which are used as a foundation for measurement strategy design, measured value
upgrading by measurement error filtering techniques, and unmeasured process vari-
ables estimation. Since the key variables in a mineral processing unit are usually
flowrates and concentrations, their reconciliation with the laws of mass conserva-
tion is central to the discussed techniques. Tools are proposed for three different
kinds of operating regimes: steady-state, stationary and dynamic. These reconcilia-
tion methods are based on the usual least squares and Kalman filtering techniques.
Short examples involving grinding, flotation, leaching and thermal processes are
presented to illustrate the problems of data reconciliation, sensor placement, fault
detection and diagnosis. Strategies for coupling data reconciliation with real-time
optimization and automatic control techniques are also proposed. A nomenclature
section is included at the end of the chapter

2.1 Introduction

The production goal of a mineral or metallurgical plant (MMP) is ideally to maintain
complex unit operating conditions at values where some plant performance index is
optimized. The performance index could be expressed either by technical factors,
such as the tonnage of valuable material produced, or by the quality of the material
produced (e.g., concentrate grade or metal purity). More globally, since a trade-off
between the productivity, the material quality, and the production costs is required,
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the performance is frequently expressed as an economical index which embeds all
these aspects. When the operating conditions drift away from the range of optimal
performance, the plant experiences economic losses. The ability of a plant to remain
in the vicinity of its optimum operation is related to real-time decision making pro-
cesses, I.e., to production supervisory systems, real-time optimization systems, and
automatic control strategies. Regardless of the strategy used for maintaining a plant
close to an optimum performance, the variability around the optimum value relies in
the first place upon an efficient evaluation of the performance index—in other words
upon the variance of its estimate. The lower the variance, the better is the plant
performance.

A plant performance index observer uses the available measurements of the pro-
cess variables. Typically, in a metallurgical plant, these variables are overall mate-
rial, phase, and metal flowrates, material chemical compositions, energy flowrates,
temperatures, consumed power, efc. As any other observer, the plant performance
observer simultaneously uses measured values and process models. These models
are required to cope with common data processing problems such as measurement
uncertainties — which are quite large in a metallurgical operation — lack of measure-
ment availability for critical variables (obviously a performance index is usually not
directly measurable), limited knowledge of the process behavior (a difficult prob-
lem, particularly in extractive metallurgy), and information redundancy in the avail-
able measurements and prior process knowledge. As the process model uncertainties
are very large in metallurgical industries, it i common practice to use only con-
straints, i.e., sub-models — in the sense that they are not causal models as assumed
in traditional model-based control and observation. Since the level of confidence in
these sub-models must be high to prevent distorting the data set information con-
tent by uncertain models, the selected constraints are essentially laws of mass and
energy conservation. In the metallurgical, and more generally chemical industries,
these observation methods are called reconciliation methods, in the sense that they
reconcile the measurement data with the laws of mass and/or energy conservation.

Estimation of process states is required for process performance audit, process
modeling, monitoring, supervision, control, and real-time optimization. Whatever
the process scale, laboratory, pilot, or full industrial scale, the first step of state esti-
mation is to collect experimental data. Unfortunately, and this is particularly true at
the industrial scale, measurements are extremely difficult and inaccurate in the met-
allurgical engineering field. Production units treat materials that are multi-phase and
usually contain extremely heterogeneous particulate phases [1]. The data is highly
inaccurate and incomplete, and requires to be improved before being used in the
above mentioned applications. The usual statement “Garbage in, garbage out” is
particularly true in this context, use of poor data leading invariably to poor models,
poor decisions, and improperly designed and operated systems. Therefore, using ad-
ditional information to the experimental data through process prior knowledge leads
to better state estimates. Mathematical models are usually the most efficient way to
encapsulate process behavior knowledge. Unfortunately, in metallurgical processes,
the knowledge is frequently fuzzy and less accurate than in mechanical and chemi-
cal industries.
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Figure 2.1 summarizes the concept under discussion in this chapter. The core of
a data reconciliation procedure is a mathematical algorithm that can be called either
an observer, or an estimator, or a filter. It is an observer in the general sense that it
allows the process state observation, i.e., the observation of the variables upon which
the process behavior and performance are qualified. It is an estimator in the sense
that it estimates numerical values of state variables which may not necessarily be
measured or measurable. It is a filter in the sense that, if a state variable is measured,
it will correct the experimental value of this process state variable. In this chapter the
words observer, estimator and filter, as well as data reconciliation, will be commonly
used, without strict meaning differences. Generically, Y is the measurement vector,
X the state vector, and X its reconciled (or estimated, or filtered, or observed) value.
The constraint equations f(X) = 0, normally a sub-model as mentioned earlier, are
here mainly mass and energy conservation equations. Figure 2.1 presents a steady-
state reconciliation (SSR) procedure, but it will be seen later on that stationary and
dynamic reconciliation methods can also be considered when the process is not
operating in steady-state conditions.

Measurement
vector ¥ Ob_server Reconciled
(estimator, 2
Constraints filter...) states X'
—_
(sub-model)
JX) =0

Figure 2.1 Scheme of a data reconciliation procedure using mass and energy conservation con-
straints

An introductory example. Before going into deeper and more rigorous defini-
tions of the concepts used in data reconciliation, let us give a simple example for
qualitatively introducing the key words used in this chapter. The considered plant
is the flotation unit of Figure 2.2, and the corresponding data is given in Table 2.1:
measured value, measured value standard deviation, as well as reconciled values as
explained in Section 2.8.2.

> —>

Feed (stream 1) Tail (stream 3)

Concentrate (stream 2)

Figure 2.2 A flotation unit
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Table 2.1 Measured and reconciled values for the flotation unit of Figure 2.2

Process Flowrates F (¢ /h) % Cu (100c) % Zn (100z)

variable

Stream Meas. |error Reconc. |[Meas. |error Reconc. [Meas. |error Reconc.
values |s.d. values |values [s.d. values |values |[s.d. values
Y X Y X Y X

Feed 100 1 100.0 [2.39 0.05 2.36 8.53 0.19 8.57

Concentrate 0 9.25 23.2 1,11 2436 [7.54 0.34 7.53

Tail 0 90.75 [0.12 0,01 0.12 9.65 0.98 8.68

The nine state variables X are the three ore mass flowrates F' and the six copper
and zinc mass fractions ¢ and z. The measured process variables are a subset of the
state variables. The measurement vector Y contains the measured values of the ore
feedrate and of the six metal mass fractions. The measurement values are assumed
to give an image of the process steady-state behavior. Hence, the constraints of mass
conservation f(X) = 0 are

FI—F—-F=0, 2.1
F1C1 — F2C2 — F36’3 = 0, (2.2)
Fizi — b — B =0. (2.3)

Considering this selection of Y and X, the constraints have a bilinear structure. The
information content (measurements + constraints) is said to be redundant since it
contains two unknown state variables (F; and F3) and three equations. The system
is said to be observable since F, and F3 could be estimated by resolving Equations
2.1 and 2.2 or 2.1 and 2.3. The first case leads to

F,=9.83t/h; F;=90.17t/h
and the second one to

F,=53.1t/h; F;=47.9t/h.

The conflict between these two possible solutions explains why there is a need
for reconciling the measurements with the constraint equations. Eliminating unmea-
sured process states from Equations 2.1 to 2.3 gives

€123 — 122 + 221 — 223 — 321 + 220 = 0. 2.4)

This equation is called a redundancy equation because it contains only measured
quantities. Since there is only one redundancy equation in this case, the redundancy
degree of the system is 1. In (2.4), the substitution of the process variables by their
measured values gives a value different from zero (2.1 x 10~3) because of the con-
flict existing between constraints and measurements. This residual variable gener-
ates the parity space of the system. When using reconciled values, Equation 2.4 is
exactly verified, as obviously are also the constraints (2.1) to (2.3). The application
of a reconciliation procedure to this system generates the following advantages:
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* Unmeasured process variables F, and F3 are estimated.

* Process variable measured values are corrected.

* Reconciled values are consistent with the law of mass conservation.

» Plant performance, such as copper recovery, calculated with reconciled data be-
comes independent of the calculation path (using copper data to estimate the
flowrates gives a recovery of 95.4%, and, using zinc data, gives an absurd value
of 515%, whereas the reconciled value gives 95.9%). Furthermore results are
more accurate than values calculated by any other methods.

* Models that are subsequently estimated from reconciled data (for instance flota-
tion kinetic models) are much more reliable.

* Decisions made from reconciled data are necessarily more efficient than deci-
sions made from raw data.

Reconciliation of mass and energy balance with raw data is a technique which
has been known for a long time in mineral processing (see, for instance, [2—4]), but
it was already mentioned in chemical engineering as early as 1961 [5]. Crowe wrote
a good survey paper in 1996 [6], but the first organized books addressing the chem-
ical process reconciliation topic appeared only at the end of the 20th century [7, 8].
However, the contributions of the MMP community to the field of data reconcilia-
tion is mentioned only in the first one. Off-line reconciliation methods for steady-
state processes are now quite mature and various computer packages are available.
For example, in the MMP field, although they are not at all limited to these appli-
cations, one can mention: Bilmat™ and Metallurgical Accountan™! (Algosys) [9],
Bilco™ and Inventeo™?2 (Caspeo) [10], JKMultibal™ 3(JKTech) [11], Movazen™
(Banisi) [12] and more chemical process oriented: Sigmafine™* (OSIsoft) [13],
Datacon (IPS)[14], Advisor™ (AspenTech) [15], and VALI™ 6(Belsim) [16].

The most usual reconciliation techniques are based on the minimization of
quadratic criteria, therefore assuming that uncertainties mainly belong to Gaussian
distributions. This chapter focuses only on this type of approach. However, alter-
native reconciliation methods based on artificial neural networks have also been
proposed. But those do not offer either the same rigorous statistical and physical
background or the same result reliability analytical evaluation tools as in the ap-
proach presented here (see, for instance, [17-20]). Linear matrix inequality (LMI)
methods have also been proposed by Mandel ez al. [21].

Steady-state methods are applied off-line to mineral processes such as com-
minution [22, 23], flotation [59], gold extraction [25-28], hydrometallurgy [29] and
[30], pyrometallurgy [31-33], and cement preparation [34]. On-line applications to
steady-state processes are actively used, while stationary-state methods that make a

! Bilmat and Metallurgical Accountant are registered trademarks of Algosys, www.algosys.com
2 Bilco and Inventeo are registered trademarks of Caspeo, www.caspeo.net

3 JKMultibal is a registered trademark of JKTech, www.jktech.com.au

4 Sigmafine is a registered trademark of OSIsoft, www.osisoft.com

3 Advisor is a registered trademark of AspenTech, www.aspentech.com

6 VALI is a registered trademark of Belsim, 174k rue De Bruxelles, 4340 Awans, Belgium,
www.belsim.com
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trade-off between model uncertainties and measurement errors are well developed
but still not frequently used [24, 35]. Dynamic methods have been proposed and are
being developed [36—40], but applications of those are not documented.

Other topics are related to data reconciliation, such as sampling error and recon-
ciliation criterion weighting factor evaluation [41, 79, 96], reconciled value accuracy
evaluation [44], use of reconciled values to calculate and display plant performance
indices, such as concentrate grade and recovery. Owing to their better reliability,
these indices may improve manual or automatic process performance optimization
[45, 46]. Coupling of dynamic reconciliation with control has also been investigated
[47, 48], as well as gross error detection, fault isolation and diagnosis [49, 50]. Fi-
nally, instrumentation design can be performed on the basis of data reconciliation
methods used as process observers [51, 52].

The chapter includes the following parts. Section 2.2 begins with definitions of
plant process variables and operating regimes that may be considered in reconcil-
iation methods. Then, in Section 2.3, mass and energy conservation equations are
written for different plant operating modes. As is the case for all the sections of this
chapter, strong emphasis is placed on mass balance problems, rather than on energy.
Then, since the basic incentive for reconciling data is the presence of measurement
errors, Section 2.4 covers measurement problems, while Section 2.5 presents the
observation equations. Section 2.6 introduces the general principles of data recon-
ciliation algorithms based on least-squares procedures, while Section 2.7 gives the
steady-state and stationary operating regime solutions for the linear constraints case.
Section 2.8 briefly discusses the non-linear reconciliation cases. Section 2.9 is de-
voted to the reliability of reconciled data analysis. Section 2.10 presents some rec-
onciliation methods for plants operating in the dynamic regime, while Section 2.11
briefly addresses the issue of how reconciliation methods can help to improve met-
allurgical plant instrumentation design strategies. Section 2.12 explores how mass
and energy conservation constraints can also be used for detecting abnormal pro-
cess behaviors or measurement problems. Finally Section 2.13 makes way for the
integration of reconciliation techniques into optimization or control loops.

2.2 Process Variables and Operating Regimes

Variables involved in mineral processing units characterize process states relatively
to material quantities (extensive properties) or qualities (intensive properties). Mass
or volume flowrates and hold-ups of solid, liquid, slurry and gas phases (or of given
species within these phases) belong to the first category, as well as other related
variables such as levels and flowrates. The second category frequently includes the
following variables:

* concentrations of chemical species or minerals in solid, liquid and gaseous
phases;

* solid percentage in slurries;

* particle size and density distributions;
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* concentrations of chemical species or minerals in particle size or density classes;
* pressures, temperatures.

Process variables may or may not be directly measured by sensors or analyti-
cal devices. For instance, ore flowrates may be obtained through the information
given by a slurry volume flowmeter, a density gauge, and ore specific gravity mea-
surement. Metal flowrates are other examples of process variables that are obtained
through a combination of measurements (flowrates and concentrations).

There is no unique way to select the set of variables X that characterize process
states. The structure of the models and constraints describing a process behavior
depends upon variable selection. This will have an impact on the observation or
data reconciliation method, although the resulting values of reconciled states should
not rest upon the problem formulation, if consistent information processing methods
are used. Similarly, the measured values Y of the Z process variables used as input
to the reconciliation procedure may or may not be raw measurements of the process
states X. Furthermore, they can be obtained by combining several sources of raw
measurements. The structure of the database Y and of its uncertainties may have
a significant impact on the reconciliation method and sometimes on the reconciled
results.

The variation of the process states X as a function of time depends on the intrinsic
dynamics of the process, on the variations of the operating conditions applied to the
process, and on the disturbance dynamics. The process operating regimes can be
classified into six types:

 the steady-state regime, when all the process input and state variables are con-
stant;

 the stationary regime, when the process dynamics are limited to random varia-
tions around a steady-state regime;

* the transient regime, where the process evolves from one steady-state to another
one;

 the quasi-stationary regime, which corresponds to stationary random variations
around persistent mean value changes;

* the cyclic regime, when the process operates cycles of production, such as in
the carbon-in-pulp process where the carbon transfer is cyclic, or in smelting
processes where the material is cyclically cast;

* the batch regime, when the states evolved according to a trajectory from an initial
state to a final state.

Figure 2.3 illustrates process state variations for four different operating regimes.
Local stochastic state variations are mainly due to input disturbances (ore grade vari-
ations for instance), while the trends are mainly the results of deterministic changes
of the manipulated variables. Since in real processes it is impossible to maintain
strictly constant conditions, the steady-state regime corresponds to virtual operating
conditions.

The statistical properties of any stationary process variable, a scalar or a vector
x (either input disturbances and/or process states and/or process outputs), can be
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Figure 2.3 Typical variations of process variables for various operating conditions

described by the usual statistical features: the mean L, the variance V,(0) and the
autocovariance Vy (k) (or autocorrelation p (k) if normalized by the variance):

E(x) = W
E((x(t) = ) (x(r — k) — )" = Vi (k).

The nature of the reconciliation procedure to be applied to filter industrial data
must be adapted to the operating regime that was prevailing during data gathering,
and to the measurement strategy then applied. There is no systematic method to
decide whether a steady-state, stationary or dynamic filter must be applied, but some
hints can be helpful. Some of the conditions for the application of a steady-state
observer are:

2.5)

* The process deviation from a theoretical steady-state is of low magnitude com-
pared with measurement error amplitudes (variance matrix V). In other words,
the diagonal terms of V are large in comparison with the diagonal terms of V;(0).

* The process deviation from a theoretical steady-state is significant with respect
to the measurement errors, but the dynamic variations are produced by stationary
disturbances of high frequency spectra in comparison with the natural process
dynamics — in other words, the process variable autocorrelogram time widths
are small in comparison with the width of the cross-correlation between process
inputs and outputs. However, instantaneous measurements data set could be pro-
cessed by the steady-state method providing that the high frequency disturbance
variances are added to the measurement error variances.
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* The process is operating in a stationary regime while the frequency of the varia-
tions around the steady-state is of the same range as the process natural dynamics
and of significant amplitude. The steady-state method could be applied to aver-
aged measurements in a time window sufficiently large to significantly dampen
the dynamics of the variations around the steady-state values. The time window
must be at least two times larger than the process time constants. Measurement
variances should be augmented to take account of the residual dynamics of the
variations around the steady-sate values.

Obviously, stationary methods could be applied to instantaneous measurements
when the process is stationary, i.e., when the process is not operating during sig-
nificant changes of the underlying steady-state values. In other words, the process
must be sampled at a time sufficiently far from a deterministic change of the average
operating conditions. When the process is clearly in a transient regime or cyclic or
batch, a dynamic reconciliation method should be used to take account of the lags
occurring between the various process states.

2.3 Models and Constraints

The component stream networks, where the material components (or enthalpy) are
flowing through the industrial unit, are described as oriented graphs, made of p
branches representing streams, and n,, nodes representing accumulation equipments.
In the following, emphasis is placed on mass balance to alleviate the presentation.
Energy balance equations have the same structure as mass balance equations, en-
thalpy (or heat) being added to the list of the n+ 1 components (including total
mass) that must be conserved. Since reconciliation techniques are quite similar
when energy balances are considered, there is no need to repeat the expression
“mass and/or energy balance” throughout the text. The selected components used
for writing balance equations can be either phases, or species as minerals, metals,
atoms, molecules, ions, or classes of physical properties (size, density), and en-
thalpy. Each component may have its own network characterized by an incidence
matrix M;, whose entries 1, —1, and O represent either a node input, or output, or a
not connected stream. The process states used to write the mass conservation con-
straints are usually mass flowrates and mass fractions, therefore leading to bilinear
equations. When considering component flowrates — instead of total flowrates and
component mass fractions — the state equations can be kept linear. This case will be
considered first.

2.3.1 The Dynamic Linear Mass Balance Equation

The dynamic mass conservation equations for any i component (including phases,
species, properties and the total material flowing in the various streams) are
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dm,-
dt

=M;fi+P —¢;, fori=0ton+1, (2.6)

where m; is the component i mass vector (including the total mass) accumulated
at the network nodes, f; the stream mass flowrate vector, P; the component i pro-
duction rate vector at the various nodes (for the total material Py = 0), and finally
& an uncertainty vector providing for structural errors such as forgotten secondary
streams or intermittent streams, or errors in the production rates evaluation.

Usually rates of production are unknown and cannot be measured independently
from other states. There are three possible situations:

1. the component i is transformed, and the conservation equation must not be writ-
ten at the corresponding node;
2. the transformation is of very low magnitude and is simply incorporated into &;:

dm,-
dt

=M;f; — ¢, fori=0ton; 2.7)

3. the component i is not transformed at a given node, and P, = 0. Therefore, in the
absence of structural uncertainties, this leads to the exact dynamic conservation

constraint:
d m;

dt

Defining the state vector as x; = (m!, f1)T, Equation 2.8 can be written in the
generic form:

= M;f;, fori=0 ton. (2.8)

dx; .
E,-d—); — Dy, fori=0ton+1. 2.9)

Rather than a model allowing process simulation, this is a singular model, i.e., a
set of constraints linking the state variables. Its discrete version is

Eixi(t+1)=Fx;(t), fori=0ton+ 1. (2.10)

Example. In a complex ore comminution or separation plant, the conservation con-
straints could, for instance, be written for the following components: slurry, water,
ore, copper, lead, zinc, gold, particle size classes, and gold in particle size classes.
If ten size classes are defined, the number of component conservation equations is
27 (n+1 = 27). As will be discussed in Section 2.3.5, the component definition
selected here will create additional constraints since, among others, the gold species
is selected at two different levels of the mass balance equations.

2.3.2 The Linear Stationary and Steady-state Cases

When the process is in a stationary operating regime, i.e., a regime randomly fluc-
tuating around a steady-state, the rate of accumulation dm;/dt can be omitted and
incorporated into the uncertainties &;:
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M;fi=¢;, fori=0ton+1, (2.11)

where &; is interpreted as a stochastic term containing the neglected accumulation
rate, production rate and structural uncertainties. When the process is strictly op-
erating in a stationary mode, as defined in Section 2.2, ¢ can be interpreted as a
stationary random signal with the following statistical properties deduced from the
statistical variations of the component flowrates that are usually assumed to behave
as normal random variables. If V; is the covariance matrix of f, the stacked f; vec-
tors, then the stacked vector € of the &;s has the following properties:

£ ~N(0,Ve), with Ve =MVM", (2.12)

where M is the block diagonal matrix of the M;s.
The steady-state case is then a particular case of the stationary equations, when
Ve has a zero value.

2.3.3 The Bilinear Case

Instead of using, as state variables, the component flowrates (including the total
mass flowrate), one can use the total mass flowrates and the phase or species mass
fractions. Obviously the models are strictly identical, but the selection of these more
usual variables changes the structure of the equations with respect to the state vari-
ables. For the total mass conservation, the equations are now

dmo
T = Mo fo — &o, (2.13)
t
where M, is the total mass incidence matrix. For the phases or species mass fractions

¢; in the streams, and #; in the node loads, the equations are

dmo [ ] h,‘

o =M;(foeci))+P—¢, fori=0ton, (2.14)

where e is Hadamard’s product. One can also incorporate Equation 2.13 into (2.14)
which becomes

dh;
mge d_tl :M,-(fooc,-) —hl‘. (Mofo — 80) —l—P,‘— & fori=0ton. (215)

Dynamic equations similar to (2.7) and (2.8) can also be obtained. More particu-
larly the stationary case becomes

Mo fo = &, (2.16)
M,'(fo OC,‘) =g, fori=1ton, (2.17)
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where it is clear that these equations contain flowrates and mass fractions cross-
products, thus giving a bilinear to the equation set.

Example. For the same example as in Section 2.3.1, fy would be the ore flowrate, and
¢; would correspond to copper, lead, zinc, gold and the 10 size class mass fractions.
To keep the bilinear structure, it is necessary, in this particular case, to ignore the
data levels corresponding to slurry and gold content in size classes.

2.3.4 Multi-linear Constraints

Process measurements usually concern flowrates and material compositions. In that
case, process states are defined with two levels of properties as depicted in the bi-
linear case above. Unfortunately, when the performances of a mineral or metallurgi-
cal processing plant must be deeply assessed, more than two levels of material prop-
erties need to be handled [53]. Material streams may contain various phases (ore,
carbon, aqueous, organic, and gas phases) which are characterized by many prop-
erties such as flowrates, particle density and size distributions, as well as mineral
and chemical compositions of each phase and particle class. The mass conservation
equations complexity can rapidly increase with the level of detail needed for process
analysis.

Example. Gold ore processing plants involve different phases (slurry, water, carbon
and ore) that are characterized by various properties (size distributions, along with
chemical and mineral compositions), as well as mineral and chemical compositions
of ore and carbon size classes. Only a few studies on data reconciliation in the
gold ore processing industry are available [25-27],[54]. Figure 2.4 shows a possible
multi-level representation of the stream materials. First, the slurry phase is divided
into liquid, ore and carbon phases. Then, each phase is subdivided into its specific
components:

¢ the liquid phase into chemical reagents (CN~, O;) and leached species (Au, Ag,
Cuw);

» the ore phase into populations of particles (such as coarse and fine) which are
subsequently split into classes of particles (such as —38um, +38/ — 53um,
+53/ —75um), each particle size class being characterized by its mineral (na-
tive gold, pyrite, hematite) content, and, subsequently, the mineral metal contents
(Au, Ag, Cu);

» the carbon phase into size classes, each class being characterized by its metal
content.

In such a complex system with six different levels of information, the mass con-
servation system becomes 6-linear. In addition, various components are simultane-
ously considered at various levels, thus creating a complex set of additional con-
straints that are necessary to ensure gold conservation is consistent between the
different levels. This case study is discussed in [28], and the next section gives some
more information on the additional constraints that are usual in MMP plants.
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Figure 2.4 Multi-level representation of stream matter for a generic gold ore processing plant

2.3.5 Additional Constraints

In addition to the above basic mass conservation constraints, one may have to add
equations that represent either additional structural constraints, or stoichiometric
constraints, or process behavior modeling assumptions (mass or energy transfer and
rate equations). In the first case, the most frequent constraint arises when an ex-
haustive species analysis is available. Then the species mass fractions must sum to

1’
Nei=1 (2.18)

for i values corresponding to exhaustive analyses. Alternatively, the constraint may

be expressed by writing that the sum of some component flowrates must be equal to
the total flowrate:

fo=2 1 (2.19)

In the above example, these constraints are valid for carbon, water and ore com-
ponents, and also for particle size classes.

A stoichiometric constraint may arise for instance when minerals are assumed
to have fixed composition, such as FeS, or CuFeS;. When both sulfides are present
and are the only sulfur, copper, and iron carriers, there is a relationship between
sulfur, copper, and iron contents that must be verified. Another possible constraint
arises when there are stream splitting systems where an equal share of the streams is
assumed. Another possibility is that a species production rate has a prior estimated
value that must be obeyed with some level of uncertainty.

Other constraints may arise in multi-phase systems, when a species transfers
from one phase to another one. This is obviously the case in leaching, elution, ad-

27
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sorption and solvent extraction processes when a metal transfers from a solid to a
liquid phase or from a liquid phase to another one.

When the same species is analyzed at two different levels, for instance in ore and
particle size classes, the species content in the ore must be simultaneously consistent
with particle size distribution and species assays in size classes. The example of
Section 2.3.1 shows a case study for gold, while Hodouin and Vaz Coelho [53]
show another example for processing of a uranium ore. In the example of Section
2.3.4 there are many such additional constraints.

Also, when chemical equilibrium between phases is assumed, the thermodynamic
equilibrium conditions must be satisfied [29]. Finally, inequality constraints may
also be in force. For instance, species mass fractions must have values between 0
and 1, and flowrates must be positive.

2.3.6 Summary of Stationary Conservation Equations

Equations 2.11 or 2.16 and 2.17 coupled to specific additional constraints can be
gathered into the following form:

f(X)=¢, (2.20)

where X is a vector which gathers all the ny state variables and f the g conservation
equations. In the linear case all the equations are gathered into

MX =¢, 2.21)

where M is a matrix of coefficients containing blocks such as My and M; and pos-
sibly other terms depending upon the additional constraints. It may happen that
constant terms are also present in the constraints; Equation 2.21 would then become

MX =K +e. (2.22)

To simplify the presentation, this case will not be covered in the following devel-
opments. If this is required, the modification of the formulae to take account of K
would not be complex.

2.4 Sensors, Measurement Errors and Observation Equations

Measurement errors play a central role in data reconciliation, since one important
feature of the technique is to correct data that is contaminated by measurement in-
accuracies. This section proposes a description of the statistical properties of mea-
surement errors, with some emphasis on particulate material sampling and analysis.
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2.4.1 Statistical Properties of Measurements and Measurement
Errors

The measurement error statistical properties, as well as the methods used to process
them, depend upon the category they belong to. Measurements can be classified into
the following categories:

* On-line or off-line measurement. For instance, flowmeters or density gauges are
on-line while chemical or physical analysis of a sample in a laboratory is off-
line. Automatic sampling followed by centralized X-ray fluorescence analysis is
considered an on-line analysis.

* Measurement either on part of the material, for instance, chemical analysis of
an ore sample, or on the whole material, as performed by a flowmeter installed
around a pipe.

* Continuous or discrete measurement. A flowmeter or a particle size analyzer
delivers a continuous signal, while the analysis of a sample of material taken at
constant time intervals is delivered at a given frequency.

* Averaged measurement value or instantaneous measurement. The reading of a
flowmeter can be averaged in a given time window, or a sample made of com-
posite increments can be analyzed for its physical or chemical properties. On the
contrary a sampled flowmeter signal gives an instantaneous value.

* For discrete measurements, averaged or instantaneous samples can be taken at
constant time periods (systematic sampling), or randomly (random sampling), or
randomly within constant time intervals (stratified sampling).

Moreover, one can distinguish three main types of measurement errors that must
be processed differently by the process observers:

* Systematic errors, or biases, are the consequences of sensor calibration drifts,
interaction effects — such as the interaction of foreign chemical elements on the
analyzed species — or biases in sampling procedures.

* Random centered errors. They results from many independent sources of noise
due to the heterogeneous nature of the material to be analyzed and to the inherent
fluctuations of the analytical devices. They have a zero mean value and are usu-
ally considered as obeying normal distributions, unless the error variance is large
compared with the nominal value of the process variable, in which case the nor-
mal distribution might mean that a process variable could have negative values,
an unacceptable property for inherently positive variables such as concentrations
or flowrates.

* Accidental gross errors, due, for instance, to contamination of samples, tagging
mistakes, transmission faults.

For correct use of measurements, systematic errors must be detected, corrected,
and their sources eliminated, for instance by maintenance and calibration of sen-
sors, or by redesigning sampling procedures. Accidental gross errors must also be
detected, using fault detection and isolation (FDI) techniques, and the corresponding
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data eliminated or replaced by interpolation techniques. Random errors are filtered
by observers.

The quality of a measured value is characterized by its accuracy, i.e., the absence
of bias, and by its reliability, quantified by random error variances. In the following,
the statistical properties of any measurement error e will be defined by

e~ N(b,V), (2.23)

where N stands for the normal law, b for the bias and v for the variance. For multiple
unbiased measurements (vector e), the statistical properties are

e~N(0,V), (2.24)

where, most frequently, V is a diagonal matrix. However, it may happen that the
measurement errors of different process variables are correlated. In these conditions
V contains non-zero off-diagonal terms. This may arise when a common sample
or a common measuring device is used to measure different process variables. The
following situations are examples of such correlated errors:

» Particle size analysis by sieving. Particles that are not on the right sieve are nec-
essarily present on another one, thus creating a negative correlation between the
errors of fractions belonging to different size intervals [55].

* Measurement systems involving a common sensor, such as an X-ray fluorescence
analyzer used at different sampling locations, create correlation between the er-
rors.

* Matrix effects in X-ray fluorescence analysis might correlate concentration mea-
surement errors of different metals.

* Synchronous incremental sampling of different streams may induce error corre-
lation due to intercorrelation of the streams dynamics, which is created by the
process itself (see integration error in the following section).

It is important to point out common misinterpretation of error correlation. Even
if two process variables are correlated, e.g., concentrations of two different metals in
an ore, their measurement errors are not necessarily correlated. If the sampling and
analysis steps are uncorrelated, the measurement errors are usually uncorrelated,
even when the process variables are correlated.

2.4.2 Measurement Errors for Particulate Materials

Since they are made of randomly organized grains of various minerals, ores are
heterogeneous materials. Also, as these grains take random shapes and sizes, lo-
cal properties of ores may not be representative of their overall average properties.
Breakage of ores into smaller particles may help ore homogenization. However, if
the particles are not perfectly mixed, local properties of a batch of particles may not
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be representative of the average whole batch properties. Based on Gy [56] and Pitard
[57], the main error sources for particulate materials are now briefly presented.

Fundamental error. Unless the material is perfectly homogeneous at a micro-
scale level, sampling a limited number of particles to characterize the whole prop-
erties of an ore batch inherently leads to measurement errors. According to Gy, the
errors induced in a sample by ore constitution heterogeneity will be called a fun-
damental error. It cannot be eliminated. However, it can be evaluated. It has a zero
mean and a variance that can be estimated by

2
Xy —x* 1 dlih
oz =E (3)6* ) :ﬁsq/ y fgd?, (2.25)

where x; and x* are the mineral contents, respectively, of the ore sample and the
ore batch, M; the sample mass, dj;;, the liberation particle size, d the sieve opening
retaining 25% of the particles, f the shape factor, g the size distribution factor, and
¢ the composition factor defined as

c=((1=x")/x")((1 = x*) Oin + X" Pgan) (2.26)

where p denotes the mineral or gangue density.

Integration error. This error is induced by the particle distribution heterogeneity,
either spatially distributed for a fixed batch of ore, or as a function of time for a
flowing material. Hybrid integration errors may also occur when a sample is taken
from a given location of a flowing stream, rather than from all the possible locations
in the stream (using, for instance, a cross-stream cutter). This error can be evalu-
ated if the signal heterogeneity statistics, such as mineral content autocovariance, or
geostatistical variograms of the particle batch, are known. For a time related con-
centration of a stream sampled in a time window of width 7', the definition of the
integration error is simply

composition average  stream
e = ¢ of the incre- » — < composition over p . (2.27)
ment reunion time window T

The variance of e; can be calculated from the sampling strategy parameters and
the autocovariance of ¢;. This calculation can be extended to a composition vector
of several streams [79].

Materialization error. This arises when extracting the sample from the ore batch
to be characterized, i.e., when executing the designed sampling scheme. For exam-
ple, when cutting a stream flow with a moving sampler, errors may occur if all the
particles do not have the same probability of entering into the sampler, either be-
cause the sampler opening is too tight or its speed too high or not uniform. Other
materialization errors may arise if the sampler is overflowing or when gathering the
various sampling increments to generate a composite sample. Spillage and contam-
ination are also materialization error sources. Careful design of sampling devices
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and sampling execution allows elimination of this type of error, which is usually
almost impossible to quantify.

Preparation errors. They are related to the operations that condition the final
sample to be analyzed by the measuring equipment (X-ray fluorescence device for
instance). The preparation involves secondary sampling, and thus induces new fun-
damental and integration errors. Drying, grinding are also operations that may in-
duce contamination or transformation of the phases, by oxidation for example.

Analysis error. Finally, as the analytical method is based either on mechanical
methods (sieving for instance) or chemical principles (titration) or spectral analy-
sis (X-ray fluorescence, atomic adsorption), the analyzing device itself necessarily
induces errors. Usually, these errors can be quantified but cannot be avoided.

Total measurement error. The variance of the resulting measurement error is ob-
tained by summing the variances of all the contributing errors.

2.5 Observation Equations

The general form of a process observation equation is

Z =g(X),

Y = g(X)+e, (2.28)

where X is the vector of state variables, Z the measured process variables and Y the
measurement value of Z. There are two different ways to define the measurements.
Logically, the measured variables should be selected as the process variables that are
directly measured by on-line sensors or laboratory analytical instruments. However,
there is frequently some raw measurement preliminary processing. For instance the
particle masses retained on sieves are converted to mass fractions [58], or slurry
volume flowrates and densities converted to ore flowrates, thus assuming that the
ore specific mass is a known parameter. The propagation of the measurement errors
through the preliminary processing must be evaluated properly, since the calculation
process may not only increase the variance, but also create covariance terms in the
V matrix. These covariance terms structure the reconciliation results and should not
be ignored, as shown for instance by Hodouin et al. [103]and Bazin and Hodouin
[55] for particle size distributions.

Moreover, when the measured variables are not state variables, one may find it
easier to combine measured variables in such a way to obtain state variable measure-
ments even if those have not been directly measured. An advantage of this procedure
is that the observation equation becomes linear and can be written as

Z=CX,

Y =CX +e, (2.29)

where C is a matrix of coefficients with values pointing at measured state variables.
A possible drawback of the method is that the covariance of the pseudo-measured



2 Process Observers and Data Reconciliation 33

states should be calculated from the variance of the measurement errors of the source
measured variables.

Alternatively, as the state variable selection is not unique, one may also select
the state variables in such a way that they are confounded with directly measured
variables. The drawback of this procedure is that it usually does not allow state
equations to be linear. In summary, selection of the X and Y sets is not unique, but it
must be made such that the functions f and g and the X and Y uncertainties covari-
ance matrices be the least complex possible. Obviously, there is no perfect selection,
since simplifying one function necessarily implies that the other one becomes more
complex.

2.6 General Principles of Stationary and Steady-state Data
Reconciliation Methods

The core of a data reconciliation procedure is a model-based observer that makes
use simultaneously of process models (stationary regime constraints as defined in
Section 2.3.6) and measurements as defined in Section 2.5. It optimally estimates
unmeasured process variables in such a way that the data is reconciled with the pro-
cess model, while respecting the measurement and model uncertainties (see Figure
2.5). The observer is based on the minimization of a reconciliation criterion, which
usually consists of a quadratic sum of residuals J(X) containing both the node im-
balances € and the measurement errors e. The reconciliation problem is formulated
as

X = argmink[(Y —Z)TV- 1Y - Z)+ TV e

Z = g(X)

Y=2Z+e; e~N(0,V) 2.30)
e = f(X); e~N(0,Ve)
subject to
Xin <X < Xma)m (231)

where X are the plant states, ¥ the measured values of Z, e the measurement er-
rors assumed to have zero mean values and known variance matrix V, and € the
constraint uncertainty values assumed also to have zero mean values and known
variance matrix V. State equation f(.) consists of mass conservation constraints
and additional constraints (as well as energy constraints when needed), while obser-
vation equation g(.) relates measured variables to state variables. Finally, estimated
plant states X have to be within physically meaningful intervals. For instance, mass
fractions have to be between 0 and 1 and flowrates should have positive values.
The criterion in Equation 2.30 can be viewed as an empirical least-squares pro-
cedure or as the maximum likelihood solution of the state estimation problem if
measurement errors and model uncertainties are Gaussian. The latter might be not
strictly verified since model structure, parameters, and neglected dynamics may not
be Gaussian, as well as measurement error uncertainties, which, obviously, can-
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Measurement equations
Y=g(X)+e
e~ N(0,7) I Minimization Reconciled
of J(X) > States
State constraints: X5 v e
F(x)=s _—
e~ N(OV,)
> 1=R(Y)=S(e)+T(e)#0 R Fau(llt ‘de;ec'tion
P (redundancy equations) and 1solation
(FDI)

Figure 2.5 General scheme for stationary data reconciliation and fault detection and isolation (FDI)

not be anything between minus and plus infinity, because of physical inequality
constraints. Without pretending that this is a statistically correct statement, it is in
practice observed that this criterion is sufficiently powerful for improving data at
industrial or even lab scales. Alternative techniques such as LMI [21], robust esti-
mators [60], and artificial neural networks have also been proposed [17-20],[61].

In parallel with the reconciliation procedure, Figure 2.5 also shows optional FDI
procedures. Redundancy equations R are obtained by elimination of X between the
measurement equations and state constraints. Because of the conflict generated by
the uncertainties e and &, these equations generate residual values that are not zero
but functions of e and €. These residuals can be used to detect measurement biases
or abnormal deviations to mass and energy conservation laws. These concepts will
be discussed later on in Section 2.12. In Figure 2.5, the term Vy is the variance
matrix of the reconciled values that will be discussed in Section 2.9.

The stationary optimization problem defined by Equation 2.30 degenerates into
two limit reconciliation problems when e or € are assumed to have null values: the
steady-state case and the node imbalance case.

Steady-state data reconciliation. The SSR case is obtained by setting V; to zero,
thus removing the second term of the criterion. As already said the steady-state case
is an ideal situation. There is a continuum between the stationary and the steady-
sate case, and one can superficially say that SSR is legitimate when V; is small in
comparison with V.

Node imbalance data reconciliation. At the other end of the relative values of
V and V; spectra, one may consider the case where the measurement values are
much more accurate than the conservation constraints. In other words V is small
in comparison with V. The first term of the reconciliation criterion disappears and
only the residuals € are estimated. These estimates are called the reconciled node
imbalances.

The feasibility of reconciliation procedures is governed by process observability
[62, 63] and, its corollary, information redundancy. These two concepts are now
discussed briefly.
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2.6.1 Observability and Redundancy

A process state x; is said to be observable or estimable if it can be calculated using
simultaneously the measurement values and the conservation constraints, or part of
them. Therefore the problem is to find a unique estimate of the variables x; of the
vector X that satisfies the following system:

f(X) =0,
2(X) = Z, (2.32)
where Z is known and is the exact value of the measured variables. Equation 2.32
represents the constraint and observation equations of (2.30) where the uncertainty
variables are set to their most probable values, i.e., zero. A state variable, such as a
metal concentration, which is directly measured, is obviously observable since one
possible estimate is its measured value. Hence, the concept of observability is only
important for state variables that are not directly measured.

When, in system (2.32), there is at least one of the equations (state or measure-
ment equation) that cannot be removed without losing x; observability, x; is said to
be non-redundant. When there is more than one possible way to estimate the value
of a state, using different equations of the system (2.32), this state variable is said
to be redundant. When the state is directly measured, it is redundant when it is still
possible to estimate its value in the case the measurement is unavailable. Because
of the inherent uncertainties of the Y values, the estimate value obtained from the
following system for a redundant state x;:

07
2(X) =Y. (2.33)
depends on the subset of equations that is kept for calculating the state variable.

When all the state variables are estimable, the process is said to be observable.
When at least one state variable is redundant the process information is said to be re-
dundant. When all the state variables are observable and non-redundant, the system
is said to be of minimal observability.

One can define the process information overall degree of redundacy as the largest
number of equations that can be eliminated from the system without losing process
observability. Usually it is related to the number of equations minus the minimum
number of required equations to obtain minimal observability. Redundancy degrees
for individual states can also be defined [64].

The redundancy degree is strongly coupled to the data reconciliation perfor-
mance: the higher the redundancy, the higher the reconciled value reliability (for
state estimate reliability, see Section 2.9). Moreover, the higher the redundancy, the
higher the robustness of the observer. This means roughly that the number of possi-
ble sensor failures that do not hinder process observability increases with the degree
of redundancy [64]. Assuming that all the variables are observable, a redundancy
degree can be defined as
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0y = m7 (2.34)
q

where g and m are, respectively, the number of state equations and observation equa-
tions, and ny the number of state variables. This index varies between 0 and 1 from
the overall minimal observability to the case where all the states are measured di-
rectly or indirectly. The determination of an unmeasured state observability may be
a difficult task for non-linear f and g functions. Let’s have a look at the linear case.
The linear case. The system of equations containing the plant information is

MX =0,

ox — 7 (2.35)

It can be globally rewritten as
YX = QZ. (2.36)

A state variable x; is observable if there is at least a subset of equations in (2.36)
that allows the calculation of x; when Z is known. The state vector would be observ-
able if the rank of the matrix ¥ is ny, the number of state variables. If the process
is globally at minimal observability, then ¥ is an invertible matrix (regular matrix).

Redundancy equations. Another way of looking at redundacy is to eliminate the
state variable X from the system (2.32) (or (2.35)) in the linear case). The remaining
set of equations is

R(Z,) =0 or RZ, = 0 in the linear case. (2.37)

R(.) is the set of redundant equations, and Z, is here the generic vector of the mea-
sured process variables which are redundant (Z or a subset of Z). The number of
equations it contains is usually m + g — nx, where nxy = (n+ 1) X p in the linear
case with (n+ 1) components and p streams. The number of redundant equations is
thus directly related to the redundancy degree of the reconciliation problem . When
replacing Z, by the measurement values Y., the system (2.37) is no longer verified
because of the unavoidable measurement errors. The resulting vector is a residual,
that is a vector of a space called parity space, physically related to nodes or joint
nodes imbalances. It is a function of the measurement errors and model uncertain-
ties insofar as stationary conditions are assumed. It vanishes when the uncertainties
have zero values:

R(Y,) =r=_S(e;)+T(g) or RY, = Re, + T¢ in the linear case. (2.38)

The linear stationary case with Z = X,,,. Let us consider, as an illustrative case,
the situation where the measured variables are state variables (X,,), and the station-
ary conservation constraints are linear, and gathered into

MX =¢. (2.39)

The vector X can be reorganized as
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X
X = ( o ) , (2.40)

where X, is the set of measured variables, i.e., the vector Z of this particular case,
and Xy, the set of unmeasured variables. The matrix M can also be decomposed
into two sub-matrices, one for X,,, and the other one for X,

M= (My,Myp,). (2.41)
This allows Equation 2.39 to be written as
My X + MymXum = €. (2.42)

Providing that the system is at minimal observability, i.e., that the measured val-
ues are properly placed on the state vector, M,,, is invertible and X, calculable
as

Xum = (Mum)_l (8 - Mme)~ (243)

This last situation corresponds to ny —m = ¢, and X, is estimated by setting
e=0and X, =Y.

When ny —m > g, there are more unmeasured variables than conservation con-
straints. The process is not fully observable (some states or even all states are non-
estimable).

When ny —m < g, there are more equations than unmeasured states. It is highly
improbable that, due to the measurement uncertainties, a value of X, that would
simultaneously satisfy all the conservation constraints could exist. Since the number
of equations in ¥, m + ¢, is larger than the number of states to be estimated ny, the
observation system is redundant. The elimination of X, from (2.42) leads to the
linear redundancy equations:

RX,r =Te, (2.44)

where X, is the vector of the redundant measured states. By replacing X, by the
measurement Y;,, one obtains the values of the parity vector:

r=RY,=Re,+Te¢. (2.45)

This equation clearly shows that the redundancy equations residuals are not zero
because of the uncertainties prevailing in the measurement and mass conservation
constraints. To manage this problem, one possibility could be to remove redundant
measurements. But this is the wrong approach, since experimental information is
lost and, furthermore, the estimate values would depend upon the data that would
have been removed. The right approach is to reconcile the information by the pro-
cedures discussed in this chapter.

Classification of the process variables:. The condition n, —m < q is not sufficient
to ensure process observability. It may happen that the process observability is only
partial, i.e. that some states are non-observable. It may also happen that, though the
system is not redundant, some variables are observable redundant, while, as a conse-
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quence, others are non-observable. In fact any system of observation as depicted by
Equation 2.32 or 2.35 can be decomposed into unobservable and observable parts.
Moreover, the observable states can also be classified into minimal observability and
redundant observability classes. Figure 2.6 shows the classification tree that can be
drawn for the measured Z variables and the process states. The particular case where
measured process variables are state variables (Z = X,,, ) is given within brackets.

The classification of the process variables and the decomposition of the equation
system (2.32), or (2.35) in the linear case, into its redundancy part of Equation 2.37
are two related problems. The initial Equation 2.32 can be rewritten as

R(Z,) =0,
Q(Xo) = Q/(Zr) + QU(an)a (246)
X0,

where the second equation corresponds to the deductible part of the system, al-
lowing calculation of the observable states X,,. Various methods are available for
this decomposition of the initial system and the classification of the process vari-
ables. They have been developed mainly for linear systems, but also extended to
multi-linear systems. The graph theory is used in [65] and [66]. The Gauss Jordan
elimination technique is used in [67], projection matrices in [68] and [69], a mix-
ture of graph theory and linear algebra in [70], and the QR factorization in [71].
Using adapted process variable combinations, these methods have been extended to
bilinear systems and even to multi-linear systems [72].

| Measured variables Z (or X,,) | State variables X

N

Redundant Z, Not redundant Z,,,. Observable X, Unobservable
(or Xom) (or X,) o
Measured Measured Redundant X, | | Not redundant X,
value Y, value V.

Figure 2.6 Scheme showing the status of the various process variables

2.6.2 General Principles for State Estimate Calculation

The data reconciliation problem to be solved is schematically represented in Figure
2.5, where the known information is given at the reconciliation procedure input
and the process states to be estimated at the procedure output. When f and g are
linear functions and inequality constraints are inactive, the solution to this problem
is analytical. This occurs when the measured process variables are plant states or
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linear combinations of them, and represent component flowrates. From the state
estimates, one can subsequently correct the values of the measured variables and
estimate the unmeasured process variables.

The optimization method that can be used to solve the unconstrained problem
defined by (2.30) is the usual approach where the reconciled states are the X values
that cancel the derivatives of J with respect to X. The resolution methods are slightly
different for the degenerate cases when either € or e is zero.

When ¢ = 0, the optimization problem

n}(inJ(X) subject tof(X) =0 (2.47)

can be processed by one of two main approaches. The substitution method consists
in exploiting the equality constraints to decrease the number of variables the crite-
rion has to be minimized with respect to. The Lagrange method, on the contrary,
increases the number of search variables to optimize the criterion by incorporating
the equality constraints into it. New variables A, called the Lagrange multipliers, are
associated to these constraints.

* The substitution method consists of the following steps:

1. Select a set of independent variables among X. Such a set is composed of the
smallest number of variables X, that, if they were measured, would allow the
remaining variables from the system f(X) = 0 (the dependent ones X, to
take unique values. In other words, the ny — g independent variables X;,,; are
selected in such a way that the g variables X, are at minimal observability.

2. Express Xy, as a function of X, by solving

f Xina, Xaep) =0 (2.43)
with respect to Xy,
Xaep = h(Xina)- (2.49)

3. Replace X in the criterion J by its expression as a function of Xj,,;. The initial
constrained minimization problem with respect to X is thus transformed into
an unconstrained minimization problem with respect to Xj,4:

minJ (X;,q)- (2.50)

Xina

4. Find the X;,4 value and calculate X'dep from (2.49).

» The Lagrange method consists in integrating the constraint f(X) = 0 into the J
criterion to form a new function, the Lagrangian .#, which has to be optimum
with respect to the variables X and A , the latter being the Lagrange multipliers:

z:J(X)JrZA,-ﬁ(X), (2.51)
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where f; stands for the ith conservation constraint in the system f(X), fori =1
to g. The initial constrained problem has been replaced by a new optimization
problem with ny 4+ g unknown parameters.

These optimization problems can be solved by classical numerical techniques.
When J is quadratic and the constraints are linear, an analytical solution can be
obtained by resolving the system expressing that the derivatives of the reconciliation
criterion, or the Lagrange function, have zero values. In other cases, either non-
linear programming methods can be used to minimize the criterion, or numerical
methods used for solving the non-linear equations expressing that the derivatives of
the criterion are zero.

When e = 0, the optimization problem

minJ(X) = FX)TVLF(X) subjectto g(X) =Y (2.52)
can again be processed by one of the two above approaches: substitution and La-
grange methods. This reconciliation method is common practice in the bilinear case.
It allows to estimate unmeasured flowrates through the use of species concentrations
in the ore streams. It is called the node imbalance method.

2.7 The Linear Cases: Steady-state, Stationary and Node
Imbalance Data Reconciliation Methods

2.7.1 The Steady-state Case

The unconstrained SSR problem can be formulated as the following particular case
of (2.30):
X = argmink[(Y — CX)TV~1(Y — CX)],

Y =CX+e; e~N(0,V). (2.53)

In the substitution method, ny — g independent variables are selected using either
heuristic or systematic methods, and the X vector is restructured as (Xuq, Xdep)s
while the matrix M is partitioned into compatible blocks, such that the conservation
constraints can be rewritten as

Xina
(Mina Maep ) < Xdp> =0. (2.54)
or
MinaXina +Mderdep =0. (2.55)

The dependent variables X, can then be expressed as functions of Xj,:

Xd"l’ = _(Mdep)_lMindXind (2.56)
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assuming that the independent variables have been selected to ensure My, invert-
ibility. Therefore X can be expressed as

Xind Xind
X = = ! = LXjna, 2.57
<Xdep ) < _Mdei)Xi”d ) nd ( )

T
with L= (1 =M, )
The linear reconciliation criterion:
J=(Cx-Y)'vi(cx-vY) (2.58)
can then be written as a quadratic expression of Xj;,4:

J(Xing) = XL, LTCTVICLX g — 2YTV I CLX g + YTV Y. (2.59)

1N

J is minimized with respect to Xj,; by writing that the derivatives of J with respect
to X;,q have zero values. One obtains a system of ny — g equations system with
nx — g unknown states, which has the following solution:

Xia = (LTCTv L)~ cTy 1y, (2.60)

Knowing X;,,4, the dependent variable estimates can be calculated from Equation
2.56:
Xd@l’ = _(Mdep)_lMindXind~ (2.61)

The Lagrange method can also be applied to solve the linear SSR problem. The
Lagrangian function is

Z=Cx-v)'vi(cx-v)+ATmx. (2.62)
The & stationarity conditions are

A<

X 2cTv-lex —2cTv-ly+ MTA =0, (2.63)
d<

= —MX=0. 2.64
7 (2.64)

The X solution of this nx + g equation system with ny + g unknown variables is
X=mm'1—M' M 'M")'mrYHclv-ly, (2.65)

where
n=clv-lc. (2.66)

There are other alternatives to the solution of the reconciliation problem. Two of
them should be mentioned, in the particular case where the measured variables are
states (Z = X,,,):
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* The simplest one, for software development, consists in selecting C =1, i.e., as-
suming that all the states are measured. For states that are not actually measured,
corresponding variances of measurement errors are simply given very large val-
ues. The solution is thus directly obtained from (2.65) as

X=-vM' (MvM")"'Mm)y. (2.67)

This method is used in the BILMAT™ algorithm [22], and has never numerically
failed.

* The system of conservation constraints can be partitioned using the redundancy
equations as follows (linear version of Equation 2.46):

{ RXyr = Oa

Q 0o = Q/er + Q//Xmm“ (268)

The solution is then obtained in two steps. First, the reconciled values of the
measured redundant states are estimated by

A

Xy = (I_ erRT (RerRT)ilR)Ymrv (269)

where V, and Y, are formatted to match with X,,. Second, the following equation
is solved for X,, :
QX() = Q/er + Q//an~ (2.70)

Tuning of the measurement error matrix covariance. Before using the steady-
state method, it is always necessary to test: (1) that the main contribution to the
variability of the process variables is related to the measurement and sampling er-
rors; and (2) that there is an underlying steady-state regime during the period of time
corresponding to the measurement and sampling process. In this case, the measure-
ment errors due to the process time variations, such as the integration error, should
be incorporated into the measurement error. In other words data obtained during
a transient regime of large magnitude in comparison with the measurement errors
should not be used for SSR. Methods to find the measurement variance matrix have
been discussed by [41],[73-78].

Four methods are proposed to estimate the V covariance matrix:

» Estimation from the properties of the equipment involved in the measurement
process and the properties of the material flowing in the stream. For instance
the theory of particulate material sampling [56, 79, 80] can be applied as seen
in Section 2.4, in conjunction with a statistical analysis of the reliability of the
measuring devices for the measured specific material property.

* Direct estimation of the variance of the measurement Y from a large set of data
for the same plant operated under the same operating conditions. In this case, the
estimate of V is obtained from the Y records by standard statistical estimation
techniques, and is noted Var(Y). This estimate of V does not strictly consist of
measurement errors, since it also includes some process dynamic disturbances,
such as the integration error. However, this is the right approach, since the recon-
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ciled values are expected to give an estimate of the underlying plant steady-state
(i.e., average) behavior.

e Indirect estimation from the constraint residuals (the node imbalances) in the
particular case where C = I (the identity matrix). The constraint residuals r are
calculated for each Y value of the data set and their variance estimated:

{r:MYzMX—i—Me7 @271

Var(r) = MVMT .

Techniques have been proposed [77] for extracting V from this last equation. The
main advantage of this technique is that it takes account of the mass conservation
constraints.

* Simultaneous estimation of V and of a rough model of the plant. For instance,
a mineral separation plant can be simply modeled by mineral separation coeffi-
cients at each separation node of the flowsheet. The plant model is then expressed
as

X =B(s)Xy (2.72)

where X is the state vector of the feed streams and s the separation coefficient
vector. The variance of Y estimated from a measurement data set is then

Var(Y) = B(s)Var(X;)B(s)" +V. (2.73)

From Equation 2.73, variance V can be extracted simultaneously to s and Var(Xy)
by a least-squares procedure [78].

2.7.2 The Stationary Case

The unconstrained stationary reconciliation problem is formulated as the following
particular case of (2.30):

X = argmin[(Y — cx)'v iy —cx)+eTv e,
Y=CX+e; e~N(0,V), (2.74)
€ =MX; e ~N(0,Vg).

The solution is obtained by canceling the derivatives of J:

5—; =2cTv-lcx —2c"vly +2M"v ' Mx =0, (2.75)

which leads to
X=(Tvic+Mv.'m)~'cTv-ly (2.76)

or alternatively, using a matrix inversion lemma,

X=m ' 1—M" (Ve +MIT'MT)"'MIT- )TV Y, (2.77)
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where I1 is defined in Equation 2.66. Equation 2.77 gives Equation 2.65 when V is
set to 0.

Tuning of the accumulation rate covariance matrix. Three methods are proposed
to estimate the V, covariance matrix:

* Measurement of the state variables by a suitable combination of instrumentation
for a sufficiently long period of time. This may require transient installation of
instruments on the streams. Since it may happen that not enough sensors are
available to simultaneously measure all the state variables, the different parts of
the circuit may be sequentially studied, assuming that the statistical properties of
the operation do not change much from a test on a plant sub-network to a test on
another sub-network. For such a subset of X, the measurement equation is

Y=X+e. (2.78)

Multiplying Equation 2.78 by the incidence matrix M of the sub-network corre-
sponding to the fully instrumented part of the plant, one obtains

MY = MX +Me = € + Me. (2.79)

Assuming that there is no correlation between the state variables and their mea-
surement errors, the variance-covariance matrix is given by:

MVar(Y)M" =V, + MVM" (2.80)

where Var(Y) is the measurement variance—covariance matrix of ¥, the elements
of which can be evaluated by the usual statistical estimation methods. V can then
be calculated by

Ve = MVar(Y)MT —MVMT. (2.81)

The total V; matrix can therefore be constructed by consistently assembling the
various terms of the partial variance matrices. Obviously some covariance terms
will not be evaluated, but since they necessarily correspond to distant streams in
the plant, they can be neglected.

* Alternatively, one may evaluate the V; matrix by an approximation of the plant
dynamics, using for instance first order transfer functions with rough evaluation
of their time constants. The process dynamics are subsequently gathered into a
plant state-space model (see Section 2.10 for more detailed explanations). This
model allows an estimation of V,, the state variable variance characterizing the
underlying unknown random dynamic variations of the process. V; can finally be
estimated by

Ve =MV M. (2.82)

* A third option is to use V; as a tuning factor that can be adjusted heuristically fol-
lowing an evaluation of the data reconciliation performance in comparison with
a desired behavior. In fact, this is the subjective method that is mostly adopted,
for example, when tuning model uncertainty relative variances and measurement
uncertainties in Kalman filtering techniques.
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Example. Figure 2.7 shows a standard flotation circuit arrangement.

1 2 Il
4 v

: :
[

Figure 2.7 A flotation mineral separation circuit

\4
\ 4

The state vector X consists of the valuable mineral flowrates in the eight streams.
There are four nodes, two recycling streams and two plant outputs, the concentrate,
which contains the valuable mineral to be sold for metal extraction, and the reject.
Table 2.2 gives the measured values Y of the flowrates of the mineral to be con-
centrated, as well as their reliability o, (standard deviations of e). Table 2.2 shows
also the values of the reconciled values X. The reconciled values do not exactly sat-
isfy the steady-state mass conservation equations since the plant is assumed to be
operated in a stationary dynamic regime where V; is different from zero.

Table 2.2 Data for the circuit of Figure 2.7 (fifth column will be explained in Section 2.9)

Stream|Y (r/h)| 0. | X | og

1 15,8 10,6|14,86(0,44
22,2 10,8(23,08(0,45
- oo (14,19(0,47
8,3 (0,3 8,18 10,27
1,4 10,2| 1,47 10,19
6,3 10,3| 6,23 (0,23
11,3 10,5|11,62(0,46
2,5 10,22,45(0,2

[c RN I NNV, BE-NRUVE ]

2.7.3 The Node Imbalance and Two-step Methods for Bilinear
Systems

In bilinear constraint cases, when either flowrates or species concentrations are as-
sumed to be exactly measured, the reconciliation procedure degenerates into a LQ
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(linear-quadratic) optimization problem. The node imbalance for the component i is
defined as the mass flowrate residuals at the network nodes that are obtained when
using the measured values of the component i concentrations:

& = M;(foeci) = MiC{ fo, (2.83)

where Cid is the diagonal matrix of ¢;. In the node imbalance method, it is assumed
that component concentrations are known, and that flowrates only have to be esti-
mated. The optimal flowrate estimates are those that minimize

25 Ve et (Yr—Crfo) Ve (Y = Crfo), (2.84)

where the first term of J corresponds to the node imbalances and the second term to
the flowrate measured values, if any:

Yy =Cyrfo+es; ef ~N(0,Vy). (2.85)
The node imbalance estimates of the flowrates are therefore
f=@Em+cpveienT vy, (2.86)
where
v =CI MV, 1M, Ce. (2.87)

When the flowrates have been estimated by the node imbalance method, species
concentrations can be estimated in a second step. When the flowrates are assumed
to be known, the species concentration constraints become linear, as shown in this
expression:

M;(foec;) = MiFici =0, (2.88)

where F(fl is the diagonal matrix of the known f; values. The quadratic criterion to
be minimized, subject to (2.88), is

J(osciy) = Y (Y= Cic)TVi (Y — Cicy), (2.89)

M=

i=1

where C; is the observation matrix of the component i concentration, and V; its cor-
responding measurement error variance matrix. The solution is given by the same
equations as (2.65) and (2.66), providing that there are no additional constraints that
couple the mass balance equations of the various components:

= o4l — F{M] (M;F{ oy F¢M] ) " MiF] os)CT V1, (2.90)

where
=(lv ') 2.91)
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When the node imbalance estimation of the flowrates is followed by the recon-
ciliation of the species concentrations for these flowrate estimates, the method is
a sub-optimal two-step LQ method [34]. The next section shows that a similar hi-
erarchical technique can be used to find the true optimal solution to the bilinear
reconciliation problem.

2.8 The Non-linear Cases

As discussed above, when the constraints and the measurement equations are linear,
the solution of the reconciliation problem can be developed analytically. However,
in non-linear cases, it is normally impossible to derive an explicit expression for the
reconciled states. Several methods (for instance [26], [81-86]) are possible depend-
ing upon the approach selected to handle the constraints (substitution or Lagrange
multipliers techniques), and the optimization technique that is used to minimize the
criterion. The following optimization techniques are possible options:

* Any Nnon-linear programming (NLP) method, involving a search algorithm to
iteratively approach the optimal values. The substitution method is well adapted
to these procedures since it decreases the number of search variables to be ma-
nipulated by the NLP algorithm.

* A hierarchical minimization method where the criterion and the search variables
are split into blocks. These approaches allow hybrid minimization methods, in
which some parts are optimized by analytical methods, others by NLP algo-
rithms.

* Iterative numerical resolution of the system of equations expressing that the La-
grange criterion derivatives have zero values.

It would be too long to detail all the possible options for solving non-linear rec-
onciliation problems, but examples may help to illustrate some possible approaches.

2.8.1 An Example of Substitution Methods: Mass and Heat
Balance of a Thermal Exchanger

Let us consider the mixer-exchanger of Figure 2.8 [87], which heats an electrolyte
solution containing dissolved copper and nickel subsequently fed to an electro-
refinery plant. Part of the solution is directly recycled to the mixer-exchanger, and
another part is cleaned from impurities before being recycled. Data collected and
averaged for a time period of 3 h are presented in Table 2.3, together with an esti-
mation of their standard deviations. The process variables are the solution flowrates
F, densities p, temperatures T, copper and nickel concentrations ¢ and n for the
streams 1, 2 and 3, and heating power P. The system parameters are the specific
heats of the solutions C, respectively 4400, 4210, 4350 J/(kg.K) for streams 1, 2
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and 3. They are assumed to be constant and perfectly known. The data are assumed
to reasonably represent a steady-state operating regime of the plant. The thermal
losses are neglected.

Electro ~

refinery

Stream 1

R

Mixer-heat
exchanger

Heating ﬁ

power

Stream 2

Cleaning

Figure 2.8 Mixer-exchanger for conditioning an electrolyte

Table 2.3 Data for the plant of Figure 2.8

Variable|T (°C) F (m>/min p (kg/1) c(g Cu/l) n(g Ni/l)
Stream |Y (o (X |Y [ |X |Y |o |X |Y |o |X |Y |o |X
1 46 |2 453 (20 |4 20.4 |1.31 |0.12 [1.25 |40 |3 41.1 {10 (2.0 [10.1
2 27 |2 26.7 9.6 |1.15]0.06 |1.15 |10 |2 10.2 |1 0.3 (1.0
3 42 |3 42.1 27.211.28 |0.12 |1.34 |37 |4 344 |8 2.0 (7.9
Power data (kJ/s) P : Y = 6000; 0 = 500;X = 5978

The mass balance constraints around the mixer-exchanger are written as

and the heat balance as

Fip1Ci Ty + B0:G T — F3p3CG3T3+P =0

The least-squares criterion is

Fip1+ k02— F303=0
Fici +Fycp —Fzc3=0
Finy+ Fny—Fny =0

(2.92)

(2.93)
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L m)2 . my2 . m)2 . nm)2
J(X) _ 2?:1 (7 72"1 ) + (ci gz ) + (ni Z, ) + (pi 2’ )
o " o i (2.94)
(F=F")? | (P—Pm)? ’
+ o2 o2 i
F P

where the superscript m stands for the measured value of the process variable (Y)
and the subscript i for the stream number. The minimization of J(X) subject to
the bilinear and trilinear constraints (2.92) and (2.93) can be performed with a PNL
algorithm applied to the substitution method. The independent variables are selected
as
T
Xpa=(FIB, 3TV L T3 prpycicaniny) . (2.95)

The dependent variables are then

Xgep=(p3 c3n3 P)" . (2.96)

The minimization algorithm is depicted in Figure 2.9. It requires an initialization
of the independent variables, which can be estimated from the conservation con-
straints and the measured values, using, for instance, the node imbalance method.

Initialization of the
independent process
states
l¢
¢
Calculation of the

dependent process states
l New values of

independent flowrates

Conservation

constraints Calculation of J(X) 7y \

| NLP
strategy
Is J No
minimum?
L Yes
A
Solution

Figure 2.9 Algorithm for the calculation of the reconciled values by the substitution/PNL method

The results of the reconciliation procedure appear in Table 2.3. The simultane-
ous negative and positive corrections of, respectively, power and stream 3 temper-
ature indicate that thermal losses should be taken into account. Repetition of the
measurement campaign as well as application of FDI techniques (see Section 2.12)
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could confirm this assumption. In that case a model for estimating the losses could
be used to generate a virtual measure of the heat loss that can be added to the rec-
onciliation problem.

2.8.2 An Example of Hierarchical Methods: BILMAT™ Algorithm

The BILMAT™ algorithm has been developed mainly for bilinear problems [22]
but it can be extended to trilinear systems [53, 59]. The basic principle is that, when
the main phase flowrates are known (upper level of the hierarchy), the species mass
conservation constraints become linear functions of the species mass fractions (see
Section 2.7.3). Therefore the idea is to define a lower level reconciliation problem
where the criterion contains the mass fraction part of the data, and the constraints
are written only for the species conservation. This problem, being LQ, has a direct
analytical solution (see Section 2.7.3). At the upper level, only the flowrate variables
are manipulated to minimize the overall criterion. Formally the problem is thus split
into two minimization problems defined by

)gjf»l.ixr,l,,J(Xf’Xm) = rr)}}n (rgrinnJm(Xme) +Jf> , 2.97)

where Xr and X, are, respectively, the flowrate state variables and the species mass
fractions variables, and J,, and J; the J parts containing the measured mass fractions
and flowrates, respectively. Since the upper minimization level is non-linear, one can
apply the substitution/PNL method to decrease the number of search variables. This
method is depicted in Figure 2.10.

To illustrate the method, let us again consider the introductory example of Sec-
tion 2.1.1. Flowrates Fj and F; can be selected as independent flowrates of the upper
level, since F3 can be deduced from

BE=FN-F5. (2.98)

Giving values to these three variables leads to a linear structure for the copper
and zinc mass conservation equations:

Fici1 — Fcp — F3c3 = 0;

2.
Fizi — Bz — F3z3 =0. (2.99)

The calculation of the reconciled metal mass fractions is then a LQ problem given
the values of the flowrates. The solution to this problem is obtained by forming the
Lagrange function:

L = JC + 216(17101 — F26’2 — F3C3) + ZAZ(Flzl - F2Z2 - F3Z3), (2.100)

where J, is the part of the criterion which contains the metal assays:
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Initialization of the
independent flowrates

[«
¢
Calculation of the
dependent flowrates
l New values of
independent flowrates

Minimization of 7'y
/ J, (X, | X,) flowrates \
Lagrange’s l NLP
solution strategy

Calculation of
J(X,, X,)

Is J No

minimum?

Yes

A\ 4

Solution

Figure 2.10 BILMAT™ reconciliation algorithm

(2.101)

Then the Lagrange function is derived with respect to the six metal mass fractions
and the two Lagrange multipliers, and the derivative equations set to 0. The solution
of this system of eight unknown variables into eight equations leads to

51 = Crln — )thl 0'31
&y =l — AFr 0}, (2.102)
A P
c3 = an — )tCF3 O'c3
with ” ” ”
_ Ficl' — Facy — F5c%
~ 722 22 22
Fi o;, + F; o, +F; o,

c (2.103)
for copper, and similar expressions for zinc. The reconciled values obtained from
Equations (2.102) are optimum only for the selected particular values of the flowrates.
To minimize the overall criterion

3 F.—Fm
J=J+ ¥ L1, (2.104)
j=1

Fj
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a NLP is required to find the optimal values of F; and F;, as shown in Figure 2.10.
The optimal values are given in Table 2.1.

This hierarchical technique has been extended to trilinear and quadrilinear prob-
lems, i.e., problems involving slurry, ore and water, particle size distributions, and
chemical assays within particle size classes. Sub-optimal solutions have been ap-
plied to investigate the path followed by precious metals in a base metal sulphide
plant [59], in a uranium ore grinding circuit [59], and in gold ore comminution and
leaching circuits [28].

2.9 Performance of Data Reconciliation Methods

When the reconciliation calculation is achieved, it is worthwhile to estimate the
reliability of the results in comparison with those of the raw measurements. This
is performed by a sensitivity analysis of the propagation of the measurement errors
and rate of accumulation uncertainties through the reconciliation process [34] and
[44, 88]. In other words, the variance—covariance matrix of the reconciled states has
to be calculated for an assessment of the reconciliation procedure benefits.

There are two approaches to calculate the variance matrix of the reconciled states,
Vg, i.e., the variance of the estimation error. One can explicitly formulate the rec-
onciled states as functions of ¥ and then calculate the variance Vy as a function of
V and V.. When the reconciliation method leads to a linear estimator, i.e., when the
reconciled states are linear functions of Y, then the usual linear algebra of variance
calculation can be applied. Otherwise, one can linearize the expression around the
process steady-state values and apply linear variance algebra. The second method
consists in randomly generating synthetic values of Y according to a normal distribu-
tion N(¥,V) and repeating the reconciliation procedure. If this is done a sufficiently
large number of times, the statistical properties of X can be subsequently estimated.
This method is known as a Monte-Carlo sensitivity analysis.

When the X estimator is linear, one can calculate the variance of X using the
relationship between X and Y. For instance, in the linear steady-state case, Equation
2.65 gives

X=ry, (2.105)
where I is given by
r=1m'[1-mMmmm M)y 'mMrr—ctv-", (2.106)
Therefore X variance is
Ve=IVvrT, (2.107)

Since X, in the assumed Gaussian context, is a maximum likelihood estimate, it
is obvious that this estimate is such that necessarily the diagonal terms of Vy are
lower than the diagonal terms of the variance of reconciled values obtained by any
other estimator. It has been shown [44] that the variance of the reconciled measured
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variables is
Vi =V = Vi, (2.108)

where V;, is the variance of the innovations in, which are residuals of the observer,
i.e., the differences between the measured and reconciled values:

in=Y—-Y=Y-CX. (2.109)
Since V;, has, by definition, positive diagonal terms, one obtains
Vi (i,i) <V (i,i) fori=1tom, (2.110)

an inequality showing the variance reduction due to data reconciliation. A global
variance reduction factor p, can be defined and calculated for the case where a sub-
set of states is measured (Z = X,,)):

i”%l)(”):n%[ﬁm—nx]. 2.111)
i=1

This equation shows that the reduction factor is directly related to the degree of
redundancy p, of the information on the system (see Equation 2.34). The expression
(2.111) is valid also for bilinear SSR problems, providing that the mass conservation
constraints are linearized around the reconciled states [44].

In addition to this difference between the variances before and after reconcili-

ation, there is a strong difference that appears in the covariance terms. It is here
assumed that the measurement errors are not correlated. However, the estimation er-
rors are now correlated because of the correlation induced by the conservation equa-
tions. Thus, matrices Vy and Vj exhibit covariance terms that correspond to the state
consistency induced by the reconciliation procedure. This last property has a strong
impact on the reliability of the process performance indicators or process model
parameters subsequently calculated using reconciled states instead of raw measure-
ments [89, 90]. When the stationary reconciliation method is used rather than the
steady-state method, the covariance terms are usually smaller since the conserva-
tion equations are given more flexibility by relaxing these constraints through the
tuning of V.
Example 1. The impact of the variance reduction and the role of the covariance terms
have been illustrated for the calculation of separation plant recoveries in [89]. Fig-
ure 2.11 shows a separation node whose separation efficiency of component i can
be calculated by one of the two possible formulae:

Foxo;
Ry = 220 (2.112)
Fixy;
R, = DX (2.113)
X3; — X2i X1i

This last formula is known as the two-product formula. When using raw data,
one obtains quite different results depending on the expression used to calculate the
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efficiency (for complex plants and data sets there is a very large number of paths to
calculate separation efficiencies or recoveries, Equations 2.112 and 2.113 being just
two simple examples). A major advantage of using reconciled data is that there is
a unique efficiency value whatever the formula used for calculation. Moreover, its
estimate is more reliable.

Feed (stream 1)
Separation
—_— . —
unit
Tail (stream 3)
F; = flowrate in stream j
x;; = mass fraction of
species 7 in stream j Concentrate (stream 2)

Figure 2.11 A separation unit

Example 2. Let us consider again the flotation circuit of Figure 2.7. Table 2.4 com-
pares the standard deviations of the experimental and reconciled values of the min-
eral flowrates. The results show that reconciled data is more accurate than raw data.
In addition to this positive effect and to the estimation of unmeasured variables, a
drastic improvement of the process performance evaluation is usually brought on
by the reconciled data. In this example, the relative standard deviation of the metal
recovery (ratio of metal in the concentrate to metal in the feed) goes from 15% down
to 6%, an improvement that would allow much more efficient decision for plant op-
timization.

Table 2.4 Reliability of measured and reconciled values (error standard deviations) for the plant of
Figure 2.7

Stream [s.d of measured value|s.d. of reconciled value
1 0.6 0.44
2 0.8 0.45
3 ) 0.47
4 0.3 0.27
5 0.2 0.19
6 0.3 0.23
7 0.5 0.46
8 0.2 0.2

Example 3. Table 2.5 shows the results obtained for part of a copper—lead-zinc flota-
tion plant as depicted in Figure 2.12 [90]. Clearly, when using raw data, one finds
different values of the recoveries depending upon the formula used. Furthermore
some calculations are very unreliable (standard deviations of 31 and 38%). The role
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of the V variance and covariance terms is considerable in the drastic increase of the
precision when using reconciled data.

Cu-Pb

concentrates

from 3 Cu-Pb —

flotation
S Pb concentrate
circuits

l l

| Cu concentrate | | 7n-Ph bulk concentrate |

\ 4

Figure 2.12 Copper—lead—zinc flotation plant

Table 2.5 Recoveries R and their reliabilities (standard deviations o) as calculated with reconciled
and raw data

Method Steady-state |Raw data and|Raw data and
reconcilation [(2.112) (2.113)

Recovery of R(%) 0g (%) |R(%) 0g (%) |R(%) 0OR (%)

Copper in copper concentrate (78.0 |4.0 59.4 131 79.8 |7.2

of copper circuit

Lead in lead concentrate of(95.3 |3.0 89.3 (13 79.0 |38

bulk circuit

Zinc in bulk concentrate of|56.0 |7.0 29.6 |13 77.8 |10

bulk circuit

Example 4. Another use of reconciled data is the estimation of model parameters
[91] such as grinding, leaching, and flotation rate constants [58], and hydrocyclone
selectivity. For example, the confidence intervals of the estimated rates of breakage
in an industrial ball mill of a closed circuit are presented in Figure 2.13 as func-
tions of particle size [90]. Using reconciled values instead of raw data drastically
improves the model reliability, particularly in the fine size range where the sensitiv-
ity of the rate of breakage is extremely high, because of the typical structure of the
breakage phenomena, which involves chain reactions.

2.10 An Overview of Dynamic Reconciliation Methods

Steady-state data reconciliation is frequently used to enhance process information
quality. However steady-state operating conditions do not exist in practice and cor-
responding methods cannot fulfill the need for reliable dynamic state estimation,
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Figure 2.13 Standard deviation intervals for grinding rate parameters calculated from either raw
or reconciled data

particularly when the state variable amplitude variations due to process dynamics
are larger than the inherent measurement errors.

Various options are available to tackle the dynamic data reconciliation problem
[40]. On-line application of SSR is the first option [54, 92], but it usually generates
estimation errors larger than the measurement errors [76]. Averaging techniques
coupled to steady-state data reconciliation can be used to compensate dynamic vari-
ations. However, this usually induces phase lags that deteriorate the process control
performances [93], and tuning problems of the time window [65, 94]. Dynamic rec-
onciliation is obviously required for batch or semi-batch processes [31, 95].

Mass conservation constraints incorporating material accumulation terms can be
used [36, 37], but usually metallurgical inventories are not measurable or extremely
inaccurate. Furthermore, the observability of these inventory variables, when un-
measured, is quite problematic. Treatment of accumulation rates as stochastic ele-
ments, as in the stationary method presented in Section 2.7.2, is a powerful alter-
native to the explicit use of inventories. However, the tuning of the variance of the
uncertainties related to the neglected dynamics is a difficult task [96] for on-line
application of stationary reconciliation methods [97].
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Full model observer (FMO) based on phenomenological or empirical [121] pro-
cess models can also be constructed, but the parameters are frequently so inaccurate
and time varying that the observer performances are poor, therefore justifying the
use of sub-models, more reliable than full models [98]. A number of intermediate
methods between the SSR procedure and the full model-based observer have been
experimented with and deserve to be clarified, since they are, in practice, usually
more efficient than SSR or FMO approaches.

The objective of this section is to make a short survey of the possible dynamic
data reconciliation methods, classified according to the models and reconciliation
criteria used.

Two main classes of data reconciliation models will be considered: full (or
causal) models, i.e., models that can simulate process states and outputs from in-
put variables and initial states, and sub-models that express mass or energy conser-
vation constraints to be obeyed by the process variables. In both types of models,
uncertainties and disturbances are considered since the observers to be designed
must have the ability to process the uncertainties about the process behavior. The
full model can be phenomenological or empirical, or a mixture of both approaches.
The minimal sub-model necessarily contains phenomenological mass conservation
constraints, but it can be augmented by other modeling considerations that may be
phenomenological or empirical.

2.10.1 Phenomenological Causal Models

Although phenomenological models are obviously specific to a given metallurgical
process, they nevertheless contain ingredients that are common to most chemical
reactors (mixing and transport properties, reaction kinetics and equilibrium, material
or energy balance equations). The flowing material is divided into 7+ 1 components
i (i=0ton+1), and the process variables are the component flowrate vectors f;,
in the p plant streams, stacked into the vector f, and the n, unit process inventory
vectors m;. The mass conservation constraints are then (see Equation 2.6 where the
structural uncertainty terms have been omitted):

dmi
dt

=Mifi+P ic€{0...n}, (2.114)

where M; is the incidence matrix for species i, and P; the vector of production rates.
The flowrates and production rates are usually related to the equipment invento-
ries through kinetic parameters (such as breakage, flotation, leaching, reducing rate
constants), and through the mixing and material transport properties:

vf=q@(m), (2.115)

where V¥ is a matrix that extracts the node output steams, and ¢ expresses the rela-
tionship between the flowrate and the equipment load. Finally, the disturbances or
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model uncertainties must be modeled. The plant feed stream variations are modeled
by the following linear stochastic equations:

Z2(t+1)=Az(t)+ &), (2.116)
Qf(1) = Bz(t) + 2, (2.117)

where A is a state matrix, £(r) a white noise of variance V;, Q the matrix that
extracts the component feed rates from the plant stream flowrates stacked into f, f
the mean value of f, and B the matrix defining the feed rates from the state variable
z. Parameter and model disturbances in Equations 2.114 and 2.115 are represented
by additive uncertainties 8 (¢) that can be modeled by equations similar to Equations
2.116 and 2.117 driven by a white noise &g () of variance V.

The model described by Equations 2.114 to 2.117 is a causal model since it
can be used to simulate the process from the known inputs Qf, &5(z), and & (7).
However, it contains a very large number of parameters (rate constants and feed
coefficients, parameter and model disturbances), and is non-linear. An alternative to
this approach is to construct empirical causal models.

2.10.2 Empirical Causal Model

To illustrate an example of an empirical model, let us consider any mineral pro-
cessing plant flowsheet, linearized around nominal stream flowrates f . It can be
modeled by a network of connected basic units including (see Figures 2.14 and
2.15):

e stream junctions, i.e., zero dynamics elements that combine flow streams;

e stream separators, i.e., zero dynamics elements characterized by separation co-
efficients sy; representing the split of component i between the two products of
node k;

* unit gain transfer functions (usually pure delays or low order transfer functions)
representing the dynamic relationships that exist between the node feed and its
output streams;

* feed disturbance generators driven by white noise signals &;, as considered in
Equation 2.116;

* internal disturbance generators, driven by white noise &(¢) used to model the
separation efficiency disturbances. They are designed to preserve material con-
servation by adding to one stream the same amount of material that is removed
from the other one.

The various connected elements can be gathered into a generic linear state space
model:

2t +1)=A'(t) + &), (2.118)
f(t)=B'z(1)+ f. (2.119)
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Figure 2.14 Basic elements of an empirical model of a mineral separation plant

This empirical full model implicitly contains the mass conservation Equations
2.8, in the absence of component transformation as assumed in the operating condi-
tions defined by the previous selected basic units. Mass conversation for component
i is written

dm; = .
;’Z = Mf; = Mi(fi— f;) = MiBlz(t) fori=0ton+1 (2.120)

since the constraint M; f; = 0 is valid for the nominal state values. A representation
of the model for a single flotation cell is given in Figure 2.15. The same structure
can be used for all the stream components and for all the nodes of a complex plant.

The model requires, in addition to the steady-state values f , the knowledge of
the separation coefficients sy ;, the transfer function coefficients, and the variance of
the driving white noise vector &’ including &; and &. Both the empirical and the
phenomenological models contain numerous parameters to be calibrated. This is
why it is interesting to look at sub-models for dynamic data reconciliation.
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C

Figure 2.15 An empirical model of a flotation single unit (F, R and C stand for feed, concentrate
and reject streams, and G for transfer functions, s is species separation coefficient, and £s are white
noise)

2.10.3 Sub-models

The minimal set of equations that can be used for designing model-based data fil-
tering methods is the mass conservation constraints of Equations 2.114 written for
components that are not transformed:

dm; .
CZZ =Mif, i€{0..n+1} (2.121)
or d
m
M 2.122
7 f ( )

using the stacked vectors f and m, and the block-diagonal matrix of the M;s. This
equation does not contain any parameters to be calibrated or uncertainties to be es-
timated. Obviously these would be ideal conditions for data reconciliation. Unfor-
tunately the number of equations g (= n,(n+ 1)) is low compared with the number
nx (= (p+ny)(n+1)) of variables to be estimated. Hence — even if all the process
variables are measured — this creates a low redundancy level, which in turn leads to
limited improvements of the process variable reliability. In addition, the inventories
m; are usually not available for measurement.

To cope with the problem of inventory unavailability, it is possible to consider the
stationary model described in Section 2.7.2 for instantaneous data reconciliation,
while adding time correlation through the statistical behavior of the accumulation
rates (node imbalances):

Mf=¢ &~N(0,Ve(1)), (2.123)

where 7 is the time lag used for calculating V(7) which is the autocovariance of
€. This stationary dynamic model degenerates into the stationary model of Section
2.7.1 when Vg () = 0 for 7 > 0, or into the steady-state mass balance when V; = 0.
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To add time links between successive values of stream variables included in
Equations 2.122, it has been proposed to add empirical evolution models for each
flowrate [36]. Random walk, for instance, can be used:

fe+ 1) =f()+o@F) o~NO,Vy), (2.124)

where V, is considered to be a diagonal matrix. This model is rather a rough and
arbitrary approximation since it does not take account of the physical links that must
exist between the input and output flows of a process. Stationary autoregressive
models should be preferred for describing the time evolution of the variables.

Instead of adding empirical information to the mass conservation constraint of
Equation 2.122, one may add parts of the phenomenological model. For instance,
the assumption of perfect mixing creates a link between the outlet streams and the
inventories, therefore limiting the problems generated by the difficulties measuring
inventories.

The various models and sub-models presented above must now be coupled with
measurement values to subsequently perform data reconciliation. The next section
describes some of the options for on-line and dynamic data reconciliation.

2.10.4 Reconciliation Methods

The state variables are usually not directly measurable. As in the steady-state and
stationary methods, two main options can be used: either reconstructing pseudo-
measurements of state variables by combining primary measured variables, or using
the actually measured variables and expressing them as functions of the state vari-
ables. The second approach has the drawback of generating non-linear observation
equations but the merit of using directly the raw information. As usual the measure-
ment equation is

Y(t)=g[X(t)]+e e~N(0,V), (2.125)

where e is the measurement error and X the state variables, either f; and m; in the
linear state equation case, or fj and c;, total mass flowrates and component concen-
trations, in the bilinear case.

A variety of reconciliation methods are possible depending on the model and cri-
terion used in the filter. The process equations can be those of a full model or a sub-
model, empirical or phenomenological, steady-state, stationary, or fully dynamic.
The reconciliation criterion usually contains weighted quadratic terms derived from
the maximum likelihood estimation of the state variables X from the measurement
Y, in a Gaussian context for model uncertainties, measurement errors, and driving
white noise. The criterion can be instantaneous, or expressed in a finite time win-
dow, or launched at time zero. Depending on the consistency between the modeling
assumptions and the criterion formulation and resolution, the resulting filter can be
optimal or sub-optimal.
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Let’s now define the possible terms of a reconciliation criterion. They are written
below at time ¢ only, but can be extended in a finite size window, or a window
beginning at time zero, thus usually leading to optimal observation. First, there are
terms representing measurement errors, i.e. squared residuals according to

Jult) = [¥ (1) = g XNV ¥ (1) — g[X ()] (2.126)
Squared node imbalances can be put into the criterion when appropriate. They are
Je(t) = fFO)TMTV L 0)MF(r). (2.127)

When time correlation between the node imbalances (V¢(T) # 0 for T > 0) is to
be taken into account, the vector f is replaced by the stacked values of f at previous
times, and the weighting matrix accordingly augmented with the autocovariance
terms.

The model uncertainties § and the driving white noise signals, either &, &’ or ,
which are functions of the nature of the state variables to be estimated, should also
be part of the reconciliation criteria and lead to the following quadratic terms:

Jo(t) = s()"V: s (1), (2.128)

where ¢ is either 8, &, &', , depending upon the model used. Moreover, if a smooth-
ing horizon is considered in the criterion formulation, past terms can also be used.

Table 2.6 summarizes some of the possibilities of coupling state equations, obser-
vation equations and quadratic reconciliation criteria. It gives the models and mea-
surements that are used as well as the quadratic criteria. The methods are optimal or
sub-optimal depending on the consistency between the modeling assumptions and
the reconciliation criterion used. For instance, when the time correlation is quanti-
fied in the model while the criterion contains only present information (thus freez-
ing past estimates) the method is sub-optimal. On the contrary, when the smoothing
horizon is extended to all past information, the methods are optimal.

The criterion minimization may be a LQ optimization problem, but most fre-
quently it is a non-linear optimization problem that requires using non-linear pro-
gramming methods (see for instance [38]) or sequentially linearizing the observa-
tion equations. In the case where the estimation horizon starts at time zero and a full
model is used, one could apply either the Kalman filter in the LQ case [99], or the
extended Kalman filter (EKF) in the non-linear case. When a sub-model is used the
generalized version of the Kalman filter (GKF) can be used [37, 96, 100].

It is also possible to use sub-models for the steady-state part of the model (thus
ignoring the process gains) and a full model for its dynamic part [93]. This allows
some kind of synchronization of the data, while avoiding constructing a complete
model of the process. This technique has been used to deal with processes exhibiting
large pure delays, as those occurring in pipe-lines [101].

There are also methods that keep the bilinear structure of the mass conserva-
tion equations (products of flowrates and concentrations), instead of using species
flowrates as above, thus leading to linear observation equations. Estimation algo-
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Table 2.6 Some of the possible dynamic reconciliation methods (& = smoothing horizon)

Method Model (State Criterion |Time |References

equa- window

tions
On-line steady-state [Sub- (2.123), [(2.126)  [(t — h,t)|Makni and Hodouin, 1994
mass balance constraints [model [V, =0 ort [92]

On-line stationary mass|Sub- (2.123), [(2.126), |(t —h,t)|Bazin et al. 1995 [102],
balance constraints (also|model [V, (0) #[(2.127) |ort Hodouin and Makni
called node imbalance 0 1998[24], Makni et al.
method) 1995 [104], Lachance et al.
2006, 2007 [43, 76]

Idem with correlated |Sub- (2.123) [(2.126), |(r —h,t)|Hodouin (unpublished)

node imbalances model [V, (k) #|(2.127) |ort

0
Dynamic mass balance |Sub- (2.122) |(2.126) |(0, t) Almasy 1990 [36], Darouach
constraints model and Zasadzinski 1991 [37],

Lachance et al. 2006 [100]
Dynamic mass balance|Sub- (2.122), [(2.126), {(0,7) Almasy, 1990 [36], Lachance

constraints plus empiri-{model [(2.124) |(2.127), et al. 2006 [100]
cal dynamics (2.128)
Full phenomenological |Full-  |(2.114) [(2.126), |(0,7) |Liebman er al. 1992 [38]
model model [to (2.127)
(2.117)
Full empirical model Full- (2.118) [(2.126), |[(0,7) |Bai et al. 2006 [39], Hodouin
model [(2.119) |(2.128) and Makni 1996 [93], Makni

etal. 1995 [97]

rithms derived from the BILMAT™ steady-state method [4, 92] can be used, which
hierarchically decompose the optimization problem. The state variables are esti-
mated in two steps. At the upper level the flowrates are estimated by minimizing
the node imbalances calculated with the measured values of the concentrations. At
the lower level, flowrate estimates are frozen, thus leading to a LQ problem, and
the concentrations are reconciled. The procedure can be iterated between the two
levels to improve the minimum localization. These techniques have been illustrated
by numerical tests based on simulated or industrial data [46] and their drawbacks
and advantages discussed [42].

The stationary method (node imbalance method) is recommended for industrial
applications since it does not require any model parameter calibration, does not
rely on inventory measurement, and allows reasonable adjustments of the dynamic
(Vi) and measurement error (V) variances (see, for instance, [43, 78], and [96]),
which gives sufficient filtering performances to the method with respect to practical
industrial needs.
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2.10.5 An Example of Dynamic Reconciliation for a Simulated
Flotation Circuit

A Pb—Cu—Zn flotation plant is depicted in Figure 2.16. It produces four different
concentrates. On-stream analyzes (OSA) for lead, copper and zinc are available for
the main streams of the plant (all the streams of Figure 2.16), but only the plant
ore feedrate is measured. The plant is simulated using a phenomenological kinetic
model [40] and random variations of the process variables are imposed as well as
measurement errors. For data reconciliation a sub-model is considered that involves
an empirical transfer function to describe the feed-to-concentrate and feed-to-reject
dynamics for the ore and the three metals (only the ore flow model is given in Figure
2.17 but the flow models for the three metals have similar structures). However, the
separation coefficients for the ore and the three strategic metals are not modeled.
Consequently the model is incomplete.

Feed a2 CuPb tails =2Zn rghr tails Pt tails
A 14
CuPb conc.
Cu conc. Zn rghr conc. ®
Cu circuit tails Zn conc. 12

Pb circuit tails Bulk PbZn circuit tails

Bulk PbZn conc.

® OSA Samples

Figure 2.16 Flowsheet of a lead—zinc—copper flotation plant

The reconciliation procedure has a hierarchical structure (see Figure 2.18). At the
upper level, metal assays are used to estimate flowrates in order to minimize model
equation residuals at time ¢ (this is a one-step method using criterion J of Equation
2.127). Assuming that ore flowrates are set at their estimated values, metal assays are
reconciled at the lower level by minimizing squared residuals of the measurement
equations and squared residuals of metal flowrate dynamic models. This is again
a one-step method. There is also a possibility of refining flowrate estimation by
iterating between the two levels, but this is usually unnecessary since the process
variables do not vary much between two subsequent sampling times. Some results
are given in Figures 2.19 to 2.22. The first one shows the estimated values of the
unmeasured flowrates compared with the simulated values (“true values”). The other
figures show the reconciled values of the metal assays for selected streams.
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Figure 2.17 Empirical sub-model of the ore flow dynamics in the plant (z~! in transfer functions
is the backshift operator)
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Figure 2.18 Computation scheme for reconciliation of Figure 2.17 plant data
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Figure 2.19 Comparison of estimated (dotted line) and simulated (continuous line) ore flowrates
in six different streams
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Figure 2.20 Comparison of measured (crosses), estimated (dotted line) and simulated (continuous
line) lead grades in two selected streams
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Figure 2.21 Comparison of measured (crosses), estimated (dotted line) and simulated (continuous
line) zinc grades in two selected streams
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Figure 2.22 Comparison of measured (crosses), estimated (dotted line) and simulated (continuous
line) copper grades in two selected streams
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2.11 Instrumentation Strategy Design

If raw data delivered by sensors is to be updated by a reconciliation procedure,
which at the same time generates estimates of unmeasured variables, the sensors,
or more generally the variables to be measured, must be selected in a way to maxi-
mize the reconciliation procedure performance [51, 105-107]. The instrumentation
placement or measurement strategy design problem is defined as [64, 108-110]:

Knowing the state equation f(X) = ¢, or CX = ¢, and V¢ (usually =0
at the instrumentation design stage), find g(.), or C, and V, in such a
way that the following properties of the data reconciliation procedure
are obtained, subject to the constraints that states X are observable:

o maximum accuracy of the estimated states and of the process perfor-
mance indices that are subsequently calculated with these estimates;

o Minimum instrumentation cost (capital investment, labor and mainte-
nance costs);

o maximum reliability of the process observer (maximum operating life
without loss of observability, in the presence of possible total failures
of sensors).

This is a multi-criterion discrete optimization problem since the properties of the
variables to be measured (type of sensor, accuracy of sensor, and sensor position in
the process network) have to be selected from a discrete set of available instrumen-
tation combinations. It is obvious that there is a necessary trade-off between the cost
of the sensors and the reliability and accuracy of the observer, since increasing the
number and accuracy of the sensors would improve both the observer accuracy and
reliability. The instrumentation design can be processed either as a multi-objective
problem or as a single-objective problem if the economical impact of improving the
process operation control by an accurate and reliable observer can be quantified in
the same units as the investment and maintenance costs. In the most general situ-
ation, there is no other available systematic method to find the best solution to the
design problem than to scan the set of possible combinations. However, for specific
cases such as the minimal cost combination or the minimal estimate variance for
the minimal number of sensors, the optimal design can be found analytically, or the
solution space scanned along paths minimizing the number of tested designs [67].

Table 2.7 illustrates the optimal instrumentation problem for the flotation plant
of Figure 2.7 [52], using two different criteria (the cost and the estimate accuracy)
and different allowed numbers of sensors for measuring the mineral flowrates.
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Table 2.7 Optimal sensor placement for the plant of Figure 2.7 (numbers of the streams to be
instrumented)

Number of available sensors 4
Minimal cost configuration 1 1
Minimal estimate variance configuration|5, 6, 7, 8|4,

2.12 Fault Diagnosis

The above data reconciliation procedures are unbiased insofar as the assumption that
random components e and € of the process model have zero means is valid. In the
absence of such a property, the X estimates become biased and the data reconcilia-
tion, instead of improving the data and the subsequent control actions on the process,
might distort quite significantly the process state observation and consequently de-
teriorate the decision making process involved in the manual or automatic control
procedures [111].

Non-centered rates of accumulation may arise from omitted streams, correspond-
ing either to infiltration of matter into the nodes, or, on the contrary, to material
leakages, or to secondary inputs or intermittently active outputs, or to persistent de-
viations from the stationary operating conditions. Gross errors or accidental errors
are also improbable events that may distort the reconciliation results [49, 112-116].
Either these faults should be first detected and corrected, or the reconciliation pro-
cedure robustified to attenuate their impacts on the reconciled values. Providing for
such faults, in the linear data reconciliation case, Equation 2.21 can be more exactly
rewritten as [70, 117]

MX = e+ LrFy, (2.129)

where Fy is the vector of potential sources of non-centered accumulation rates, and
L the matrix that distributes the impact of these faults on the various nodes. When
Lr is the identity matrix, it is assumed that each node is potentially faulty and that
all the potential faults around a node k are lumped into a single variable Fy (k) .

Non-centered measurements may arise from sensor biases due either to calibra-
tion deficiencies, matter sampling systematic errors, or to sensor misplacement in
the streams to be measured. Providing for such faults, Equation 2.29 in the linear
case can be more exactly rewritten as

Y =CX +e+KrFy, (2.130)

where Kr and Fy have the same meanings for the measurement biases as Lr and Fyx
for the node balance faults. The fault detection problem can be defined as follows:
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Knowing M, C, Y, V, V¢, Lf, and K, decide between the two following
hypotheses:

HO: Fx = Fy =0, i.e., there are no faults in the process;
H1 : either Fx or Fy or both are # 0, i.e., there is at least

one fault in the process.

Most of the time, detection of gross errors is performed after the reconciliation
procedure by testing innovations, i.e., corrections brought to the measured process
variable values. When the statistical tests are sequentially applied to single inno-
vations, these methods are incorrect since they ignore the fundamental correlation
brought to the measured variable estimates by the reconciliation procedure. A gross
error in any process variable usually contaminates the whole set of state estimates,
and therefore might lead to wrong diagnosis. An alternative to the innovation resid-
uals obtained through data reconciliation is to directly use the residuals of the re-
dundancy equations. Various fault detection tests applied to the residuals of the re-
dundancy equations (see Figure 2.5 and Equation 2.38) are available [7, 8]. Only the
parity space approach is presented here. Each residual (element of the parity vector,
[114]) can be tested against a normal distribution, or they can be tested together. The
latter approach, called the global detection test, is applied to the following quadratic
term:

Jo=rTv1r (2.131)

where r represents the residuals of the redundancy equations (Figure 2.5 and Equa-
tion 2.38), hence a normal centred vector in the absence of faults since it depends
only on e and €. V,, the variance matrix of the residuals, is directly calculable, in
the linear case, since r consists of linear functions of e and & (Equation 2.45). This
quadratic term is a fault signature in the most usual case where the set of poten-
tial faults is not specified (no Lr and Kr matrices structuring the fault distribution).
Since the observer uncertainties have been assumed to be normal, J, follows a )(2
statistical distribution with m + g — ny degrees of freedom and a non-central pa-
rameter only depending on Fx and Fy, which are zero when there is no fault in the
process. J; is tested against a given level of false alarms.

When H1 is the conclusion of the fault detection step, the fault isolation step
becomes [118]

Deciding between the two following hypotheses:

HO: Zy=0,%, 40,
Hl: Z,40,7, =0,

where F,, F, are two exhaustive subsets of the .F set of faults (Fx |J Fy ).

By repetitive application of this diagnosis test to various fault subsets, one can
isolate the most probable active faults. The statistical isolation tests are performed
on residuals derived from the redundant equations (Equation 2.45). The generalized
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likelihood ratio test [118] is applied to the residuals of the assumed fault subsets,
and the subset exhibiting the maximum score is assumed to be responsible for the
detected faults [70, 117].

Example. Figure 2.23 gives an illustration of the method of fault isolation for the
plant of Figure 2.7. A bias that has an amplitude of three times the measurement
error standard deviation has been simulated in the sensor of stream 4 (in the data
reconciliation example of Section 2.7.2, the stream 3 metal flowrate was assumed
to be unmeasured; here all the states are measured, thus increasing the redundancy
degree). The set of potential faults consists of the biases Fy(1) to Fy(8) for the
eight streams and the node imbalances faults Fx (1) to Fx (4) for the four nodes. The
diagnosis test is performed by sequentially splitting the fault set into one particular
fault and the remaining potential faults. Knowing the statistical properties of e and €
as well as the fault amplitude, it is possible to calculate the probability of isolation of
the fault. This is what has been done in Figure 2.23, assuming that a 5% level of false
alarms is tolerated. It shows the probability of fault detection (D), while the other
probability bars represent the probability of diagnosing the twelve potential faults
as being the actual fault. It is clear that the assumption that the fault is in sensor
4 has the largest probability. However, wrong isolation decisions are also possible.
The isolation test performance would obviously increase if the bias were of larger
amplitude, or the data acquisition process repeated in a larger time window.

Probability (%)
N 8 &

-
(w]

D K@ KO K@ KE) K@ LE) HE KE) K1) KO TG KO

Fault type
Figure 2.23 Probabilities of detection (D) and isolation of a bias in sensor 4, and of other potential
faults Fy and Fy

Figure 2.24 shows the same bar diagram for a simulated leakage at node number
2 of Figure 2.7. The amplitude of the leakage is three times the standard deviation
of the node imbalance. Again the right diagnosis is the most probable, but wrong
fault isolations are possible.

The same method can be applied to dynamic data reconciliation [116], [119,
120]) increasing the size of the vector Y by adding past state values, or by pre-
filtering the measurements on a given past time horizon such that the node input and
output measurements are synchronized [50].
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Figure 2.24 Probability of detection and isolation of a leakage at node 2

2.13 Coupling Data Reconciliation with Process Control and
Optimization

As discussed in Chapter 2 introduction, data reconciliation has off-line applications
such as process audit, metallurgical inventories, process modeling, plant design or
reconfiguration, and tuning of operating conditions. Applications of on-line data
reconciliation to automatic control and real-time optimization have also an inter-
esting potential in process engineering, since, as in off-line applications, the use
of better information would improve the performance of the methods that requires
experimental data [47, 48, 121, 122]. Figure 2.25 gives a general scheme of the in-
tegration of a data reconciliation procedure into process control and optimization
loops.

Measured
disturbances
,—| Control J—"—| Measured
Contrxl]er“ | actions | Process | outputs
Set-points Reconciled Dynamic or v VY
process stationary Stationarity
outputs reconciliation test and fault
detection and
— Stationary or diagnosis
Optimizer steady-state
Process reconciliation t
states Model
updating

Figure 2.25 General scheme for the integration of data reconciliation techniques into automatic
control and real-time optimization loops
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Data reconciliation techniques are involved at two different levels when auto-
matic control and real-time optimization are simultaneously implemented. The two
observers must be different since the dynamics of the two loops are quite different,
optimization being performed with slower dynamics than automatic control. This
implies that the variances of the measurement errors and of the accumulation rates
(node imbalances) must be tuned differently. Also, the models as well as the state
variable of the two observers may be slightly different. Even if the same stationary
reconciliation structure is used for both observers, the variances in the reconcilia-
tion criterion must be different. As the measured values in the optimization observer
are obtained through an averaging technique involving a moving time window with
several samples, their variances are usually divided by the number of samples in
the window. Also, the accumulation rate variances are necessarily lower because
the averaging process in the time window decreases the magnitude of the node im-
balance variations, by attenuating the signal dynamics. Ultimately, the optimization
observer could be steady-state.

In addition to the two observers, Figure 2.25 shows peripheral tools for data pre-
processing. Sensor failures or abnormal process behavior must be detected before
feeding the reconciled values to the optimizer or the controller. As the optimization
observer is assumed working in stationary regime, it is important to test that the
process variable means are statistically constant before reconciliation. Also when
persistent mean changes are detected, it might be helpful to adapt model parameters,
when, for instance, permanent changes occur to operating conditions such as ore
grindability and grade, tonnage, chemical reagent type. If an adaptation procedure
is integrated into the loops, it should be activated only when permanent changes due
to persistent disturbance means or set-point changes are detected.

Flotation plant example: to illustrate the concept of control- optimization—
reconciliation coupling, a simple example for a flotation plant is depicted in Fig-
ure 2.26. Data reconciliation is performed only at the optimization level and the
control loop limited to a single-input-single-output system, where the collector ad-
dition is the manipulated variable and the concentrate grade the controlled variable.
The grade set-point is supervised through the maximization of an economic index.
Although there is no documented study of the performance of such a real-time opti-
mization strategy, the concept has certainly a potential that should be investigated.

2.14 Conclusion

The objective of this chapter was to point out a problem that faces most metal-
lurgical engineers and mineral processors who are involved with metal production
and willing to understand and optimize the processes they are dealing with: the
available measurements are uncertain, incomplete, and inconsistent with process
behavior prior knowledge. The emphasis is put here on data reconciliation with
mass conservation constraints, however this topic belongs to the universal problem
of matching raw data and prior theoretical knowledge. The subject is superficially
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Figure 2.26 Real-time optimization of a flotation plant (f; = ore flowrate; ¢; = ore grade)

covered but the chapter explores techniques that could be helpful to practitioners
as well as to researchers willing to deepen the concepts. The following issues arise
from this limited presentation:

1.

Measurement error sources are many and their variances are additives. There is
a complex intricacy between the true measurement errors and the true dynamic
variations of the process variables. It is most important to clarify these concepts
at the beginning of a reconciliation procedure, to properly define the pursued
reconciliation objectives.

The reconciliation objectives vary from the estimation of the underlying process
steady-state operating regime to the fast tracking of its real instantaneous dy-
namic state. The method to be used for reconciliation must be adapted to the
subsequent utilization of the reconciled data, which are mainly monitoring, mod-
eling, control, and optimization;.

Assumptions that process variables variations and measurement errors are Gaus-
sian and unbiased are frequently made. This is obviously not exactly true. This
is why it is so important to make a prior detection of abnormal data or process
behavior and a posterior analysis of the reconciliation residuals.

The reconciliation criterion may contain different types of residuals and weight-
ing factors. Its formulation is essential to adequately match the reconciliation
objectives, as well as the structure of data statistical properties. It must be rig-
orously designed, avoiding as much as possible users subjectivity or empirical
tunings.

The reconciliation feasibility must be carefully investigated, by looking at redun-
dancy of data and constraint information content.
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6. As the success of data reconciliation methods strongly depends on the database
structure, it can be used to design measurement strategies that promote estimate
accuracy and reliability.

Nomenclature
The notation that is specific to illustrative examples in the text is not defined below.
Roman letters
A,B,A’, B': matrices of coefficients in a state space stochastic model
b: measurement bias
B(.): matrix function of the separation coefficients for steady-state modeling of a
separation plant
c¢: composition factor
¢; and ¢;: concentration of component i and reconciled value
C: measurement coefficient matrix in the linear case
Cy: measurement coefficient matrix for the total mass flowrates
Ci: measurement coefficient matrix for the component i concentrations
Cfl : diagonal matrix constructed with the vector c;
d: sieve opening retaining 25% of the particles
dy;p: particle liberation size
D;, E;, F;: matrices of coefficients associated to component i
e: integration error
e,: measurement error of the redundant measured variables
ey: measurement error of the total mass flowrates
E(.): mathematical expectation
f(X) : constraints of mass or energy conservation
f: vector of all the component flowrates (or shape factor in Section 2.4)
fi: vector of component i flowrates in the plant network
£i(.): i'" reconciliation constraint
Jo: total mass flowrate vector
fo: fo mean value
f: f mean value
Fod: diagonal matrix of the vector fj
Fx, Fy : Faults in the conservation and measurements equations
F, Fy,Fp: Union of the faults sets Fy and Fy and two complementary subsets of
it.
g: size distribution factor
g(X): expression defining the measured variables
G(z™'): discrete transfer function
h: time window width
h(.): function of the independent variables
h;: component i mass fraction in node hold-ups
i: index of the steam components i
in: innovations of the reconciliation procedure
I: identity matrix
J(X): reconciliation criterion
Jm: part of the reconciliation criterion that contains measurements
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Je: part of the reconciliation criterion that contains node imbalances

J¢: part of the reconciliation criterion that contains driving white noise

KFr: projection matrix of the faults in the measurements equations

k: node index

L: matrix for expressing state variables for independent state variables

LF: projection matrix of the faults in the conservation equations

¢ Lagrangian function

m: number of measured process variables

m;: vector of component i hold-up in the various nodes of the plant network
myg: mass hold-ups of total material

M., and M;,4: matrices associated to dependent and independent state variables
M;: network incidence matrix for component i

M: incidence matrix of the plant network for all the stream components

M, and M,,,,,: incidence matrices for measured and unmeasured state variables
M, incidence matrix for total mass

M;: sample mass

n: number of components in plant streams (total mass not included)

ny: number of state variables

n, : number of plant network nodes

p: number of streams in the plant network

P;: production rate of the component i

g: number of conservation equations

0,0, Q" functions or coefficient matrices in the deductible part of the constraint
equations

r: residuals of the redundancy equations (vector in parity space)

R or R(Y): coefficient matrix or function in the redundancy equations

s: vector of node separation coefficient of a mineral separation plant

Sk;i: component i separation coefficient at node k

S(e): contributions of the measurement errors to the parity vector

T or T (¢): contributions of the constraint uncertainties to the parity vector
Var(.): statistical estimate of the variance of a process variable

Vg variance of the reconciled states

Vi(k), Vy: autocovariance of any process variable x and variance (i.e., V;(0))
V: variance of the measurement errors e

Ve, Vei: variances of € and &

Vy: variance of f

V;: variance of ¢;

Vin: variance of the innovations

V,: variance of Y,

Vy: variance of the reconciled measured variables

Vs, V: variance of white noise §(¢) or w(7)

X: state variable

X,»: measured state variables

Xnr» Xmr: redundant measured state variables and reconciled value

X,, X,r, Xonr: Observable state variables (redundant and non-redundant)
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)2(,: reconciled value of X,

X0: non-observable state variables

Xum: unmeasured state variables

X;: state variable associated to component i

X: any generic process variable (scalar or vector)

Xs: sample mineral content

x*: true value of the mineral content of a sampled batch
X: reconciled state variable

Xiep: dependent state variables

Xinq: independent state variables

Xina: reconciled independent state variables

Xdep: reconciled dependent state variables

Y: measurement values

Yr: measurement values of f

Y;: measurement values of component i mass fractions
Y,.,: measured values of the non-redundant measured variables
Y,: measured values of the redundant measured variables
Z: state space variables of a stochastic system

z~ ! backshift operator

Z: measured variables

Z,r- non-redundant measured variables

Z,: redundant measured variables

Greek letters

¢€: overall conservation constraint uncertainties

£o: uncertainty of the total mass conservation equation

&;: uncertainties in the conservation constraints of component i in the plant network
¥;: auxiliary matrix in the node imbalance solution

O(¢): uncertainties in the process dynamic model

A: Lagrange’s multipliers

&i(1), (1), E'(¢): white noise

&4(): white noise driving uncertainties in the process dynamic model
Uy: mean value of x

0, standard deviation of the measurement error ¢

or: standard deviation of the fundamental sampling error

0y standard deviation of the reconciled states

I': auxiliary matrix in the linear reconciliation case

py: degree of variance reduction

p (k): autocorrelation matrix

Pgan: gangue density

Pmin: mineral density

pr: degree of redundancy

¥ and @: coefficient matrices in the linear case reconciliation information system
W: matrix that extracts the node output streams from the vector f;
¢(.): function defining the node hold-ups
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IT: auxiliary matrix in the expression of X

7: time lag for autocovariance definition

(t): white noise

Q: matrix for the extraction of the feed stream flowrates from the plant stream
flowrates

£(¢): generic name for driving white noise
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