
Tutorial: Structure-Preserving Representation
of Euclidean Motions Through Conformal
Geometric Algebra

Leo Dorst

Abstract A new and useful set of homogeneous coordinates has been discovered
for the treatment of Euclidean geometry. They render Euclidean motions not merely
linear (as the classical homogeneous coordinates do), but even turn them into or-
thogonal transformations, through a clever choice of metric in two (not one) addi-
tional dimensions.

To take full advantage of this new possibility, a good representation of orthogo-
nal transformations is required. We find that multiple reflections, while classically
giving unwieldy expressions involving the dot product, become practical by intro-
ducing the more fundamental geometric product (which has the dot product merely
as its symmetric part). We obtain a sandwiching operation between products of vec-
tors as our representation of motions, which is not only easily concatenated, but also
incorporates the computational advantages of complex numbers and quaternions in
a real manner. The antisymmetric part of the geometric product produces a spanning
operation that permits the construction of lines, planes, spheres and tangents from
vectors. Since the sandwiching operation distributes over this construction, ‘objects’
are fully integrated with ‘motions’, in a structure preserving manner.

Additional techniques such as duality (permitting a universal intersection opera-
tion), and the rewriting of operators logarithmically (to obtain quantities that can be
interpolated linearly) complete the techniques of what is ultimately a very conve-
nient geometric algebra. It easily incorporates general conformal transformations,
and can be implemented to run almost as efficiently as classical homogeneous coor-
dinates. The resulting high-level programming language naturally integrates quan-
titative computation with the automatic administration of geometric data structures.

Rather than the usual introductions which plow through Clifford algebra before
they reach this very useful ‘conformal model’ (if they do at all), this tutorial does
the reverse. It structures the new concepts in a manner that shows how each ad-

L. Dorst (�)
Intelligent Systems Laboratory, University of Amsterdam, Science Park 107, 1098 XG,
Amsterdam, The Netherlands
e-mail: L.Dorst@uva.nl

E. Bayro-Corrochano, G. Scheuermann (eds.), Geometric Algebra Computing,
DOI 10.1007/978-1-84996-108-0_2, © Springer-Verlag London Limited 2010

35

mailto:L.Dorst@uva.nl
http://dx.doi.org/10.1007/978-1-84996-108-0_2


36 L. Dorst

ditional sophistication is related to what went before, and how it extends its ex-
pressive and computational power. Throughout, the concepts and techniques will
be illustrated by interactive visualization software (GAviewer, freely available at
www.geometricalgebra.net).

1 Introduction

“Doing geometry” in computer science or engineering requires at least the following
ingredients in a practical computational framework:

• descriptive primitives: such as points, lines, planes, circles, spheres, tangents
• basic constructions: connections, intersections, parametric specification
• motions: translation, rotation, reflection, projection
• properties: size, location, orientation
• practical numerics: approximation, estimation, interpolation, linearization

These ingredients should interweave seamlessly. Notably, the framework should be
structure preserving, in the sense that constructions and properties of primitives
should be covariant under motions. For instance, when moving a circle determined
by three points, it should not be necessary to decompose the circle back into the
points, move those, and then reconstruct; rather, the circle should be a basic element
of computation with an associated motion operator (which should moreover prefer-
ably be identical to that for points). Also, all ingredients should be specifiable in a
sufficiently high-level programming language, which avoids coordinates as specifi-
cation level though it may revert to them when executing the operations. The usual
linear algebra tools have neither of these desirable properties, not even when us-
ing homogeneous coordinates. Yet a practical computational framework exists that
can do all of the above. It is called “conformal geometric algebra” (CGA), and this
chapter briefly exposes its essential structure. We will explain all elements of Fig. 1,
and more.

2 Conformal Geometric Algebra

2.1 Trick 1: Representing Euclidean Points in Minkowski Space

Let us focus on a 3D space in which we want to perform Euclidean motions. We
can consider it as a 3D vector space and use a position vector x to denote a point
X relative to an (arbitrary) origin. This is naive practice, and not very convenient,
since Euclidean motions are then not even linear transformations. A commonly used
improvement is the homogeneous model, in which the space is augmented with an
extra dimension eo, and the point X at x represented as eo + x. Now Euclidean mo-
tions are linear transformations but still not structure preserving. More is required.

http://www.geometricalgebra.net


Structure Preserving Motions Through CGA 37

Fig. 1 An example of the ease of CGA (from [2]). A circle C is generated from three points c1,
c2, c3 as C = c1 ∧ c2 ∧ c3. A line is given as a 3-blade L. The circle C is to be rotated around the
line L, producing RCR−1, with R specified as R = exp(L∗φ/2). The rotation is interpolated in
k steps using R1/k . Then the whole scene is reflected in the plane π given by a normal vector n
and a point p on it as π = p · (n ∧ e∞); any element X is reflected as X �→ (−1)grade(X)πXπ−1.
In appropriate software such as [3], these coordinate-free formulas are the literal specification of a
computer program producing the scene

In CGA, we introduce two extra dimensions for representational purposes, thus
constructing a five-dimensional space. We introduce two basis vectors for these extra
dimensions, eo and e∞, and the specific metric given below. As we will see, the
null vectors in this extended space (i.e., the vectors x satisfying x · x = 0 in the
chosen metric) represent weighted points in the Euclidean space (though one usually
employs unit weight points satisfying x · e∞ = 0). Such vectors representing points
have algebraic properties to construct other elements in a coordinate-free, invariant
manner, as explained in the paper by Hestenes [5] elsewhere in this volume.

In the present introductory paper, we mostly prefer to use an explicit expression
for such a vector x representing a point X, relating it to the “classical” Euclidean
position vector x of the point relative to the chosen origin through

x = eo + x + 1

2
‖x‖2e∞. (1)



38 L. Dorst

Table 1 · eo x e∞

eo 0 0 −1

x 0 x · x 0

e∞ −1 0 0

If we ignore the component for e∞, we recognize in eo + x just the homogeneous
model. In that model, the extra dimension eo represents the point at the origin; and
the same interpretation holds in CGA (set x = 0). We see that the term with e∞
dominates as x gets large. In fact, e∞ can be interpreted consistently as the point
at infinity which is used in mathematics to “compactify” Euclidean space to remove
special cases from its algebra.

The Big Trick of CGA is the choice of a specific metric for the 5D represen-
tational space. We extend the dot product x · x for Euclidean vectors to the new
dimensions according to the multiplication table (Table 1), where the bold elements
are purely Euclidean and borrow the 3D Euclidean dot product. This table shows
that the usual Euclidean metric holds for the bold vectors, but a strange metric ap-
plies to the two additional dimensions eo and e∞, which are moreover “orthogonal”
to the Euclidean part of the representational space since they have dot product zero
with Euclidean vectors. (In fact, the full 5D space now has a Minkowski metric,
as can be seen by considering the alternative basis vectors σ+ = eo − e∞/2 and
σ− = eo + e∞/2 that have squared norms of +1 and −1, respectively. For more on
this basis, see [5].)

This metric is introduced to give a sensible real world meaning to the dot product
of two point representatives x and y:

x · y =
(

eo + x + 1

2
‖x‖2e∞

)
·
(

eo + y + 1

2
‖y‖2e∞

)

=
(

0 + 0 − 1

2
‖y‖2

)
+ (0 + x · y + 0) +

(
−1

2
‖x‖2 + 0 + 0

)

= −1

2
(x − y) · (x − y) = −1

2
‖x − y‖2. (2)

The dot product in conformal space therefore encodes the (squared) Euclidean dis-
tance of the original points! Since points have distance zero to themselves, they are
represented by null vectors; and since Euclidean transformations should preserve
the inter-point distance, they should preserve the dot product.

Euclidean transformations are represented as orthogonal transformations

in CGA.1 This is more specific than their representation as a certain strange class of
linear transformations in the usual homogeneous model, and it permits us to design

1We have simplified slightly; the general representation of a point at x in CGA is a scalar multiple
of x in (1); the scalar factor is the scalar −e∞ · x (as you may verify), and this can be consistently



Structure Preserving Motions Through CGA 39

a more effective computational framework tailored to this property. Matrices are
actually not that great for representing orthogonal transformations, but fortunately
there is something better, as we will see in the next section.

First, let us determine what the vectors in the 5D representation space signify
geometrically. Suppose that we want to represent a sphere with center C and radius
ρ in Euclidean space. A point X on such a sphere would satisfy ‖x − c‖2 = ρ2

(using Euclidean vectors). Using (2), this can be written in terms of the dot product
of the representative vectors x and c as x · c = − 1

2ρ2; and using −e∞ · x = 1, we
can even group into x · (c − 1

2ρ2e∞) = 0. The vector σ = α(c − 1
2ρ2e∞) is the most

general vector we can make in the conformal space (it has five parameters), and
written in this form we recognize it as representing a sphere with center c, radius
ρ, and “weight” α through the equation x · σ = 0. You may verify that ‖σ‖2 =
α2ρ2 (even “imaginary spheres” with ρ2 < 0 are included) and that a point is just a
sphere with radius zero, represented by a null vector (for which ‖x‖2 = 0). A plane
is the degenerate case of a sphere, and it is represented by a vector of the form
π = α(n + δe∞) (which has no eo-component and therefore satisfies π · e∞ = 0).
Here n is the unit normal vector of the plane, δ is its oriented distance from the
origin, and α a weight. So:

the vectors in conformal space represent weighted spheres and planes.

In this tutorial, we will mostly use unit weights, focusing on the merely geometrical
aspects of the representation. In our notation, we will use bold for the elements of the
conformal model that are in its n-D Euclidean subspace, and nonbold for elements
residing in the full (n + 2)-D representational space or its geometric algebra. Since
there is a clear correspondence between elements of Euclidean geometry and their
conformal representation, we will drop the distinction between X and x, and talk
about a point x at location x.

2.2 Trick 2: Orthogonal Transformations as Multiple Reflections
in a Sandwiching Representation

In mathematics, the Cartan–Dieudonné theorem states that all orthogonal transfor-
mations can be represented as multiple reflections. In linear algebra, this fact is not
used much, since reflections are represented awkwardly and therefore unsuitable as
atoms of representation. If we want to reflect a Euclidean vector x in a plane through
the origin with normal vector a, this is the linear transformation

x �→ x − 2(x · a)a/(a · a). (3)

interpreted as the weight of the point. The squared distance between weighted points is computed
by normalizing first as (x/(−e∞ · x)) · (y/(−e∞ · y)). Euclidean transformations should then not
affect this formula; this implies that they are the specific orthogonal transformations that preserve
the special vector e∞.



40 L. Dorst

It does not look elementary at all, and within linear algebra the dot products cannot
be simplified.

We now introduce a clever trick: we consider the dot product (which is symmet-
ric) as merely the symmetrical part of a more fundamental product between vectors.
That product (invented by Clifford in 1872) is called the geometric product and
denoted by a space. So we rewrite:

a · x = 1

2
(ax + xa). (4)

This more fundamental product is defined to be bilinear and associative but not
necessarily commutative. We see that ‖x‖2 = x · x = xx = x2, so that the square of a
vector under the geometric product is a scalar. We extend the geometric product to
scalars (and later to other elements). Scalars commute under the geometric product,
so αx = xα for vector x and scalar α. A vector x has a unique inverse x−1 under the
geometric product, defined through xx−1 = 1 = x−1x and therefore found explicitly
as

inverse of a vector: x−1 = x/
(
x2).

Now we see how this simplifies the reflection representation:

reflection in origin hyperplane with normal a: x �→ x − 2(x · a)a/(a · a)

= x − (xa + ax)a−1

= −axa−1. (5)

The reflection of x in the origin hyperplane with normal vector a is therefore simply
a “sandwiching” of x by a and a−1 (with a minus sign). In this form, the fundamental
nature of reflections for the representation of transformations is more obvious.

You may rightly object that we have not really reflected a point x, but only
its Euclidean part x. Let us try to extend the formula to the point x, using the
explicit representation (1). Postulating distributivity of the geometric product, we
get −axa−1 = −a(eo + x + 1

2‖x‖2e∞)a−1 = −aeoa−1 − axa−1 − 1
2‖x‖2ae∞a−1.

Evaluating this requires computing what −aeoa−1 and −ae∞a−1 are. We real-
ize from definition (4) and the dot product table that −aeoa−1 = −(aeo)a−1 =
−(2a · eo − eoa)a−1 = 0 + eoaa−1 = eo. Of course, you would expect this geo-
metrically: the point at the origin does not change after the reflection. Similarly for
e∞, as you may verify. Further realize that ‖ − axa−1‖2 = (−axa−1)(−axa−1) =
axxa−1 = x2(aa−1) = ‖x2‖—obviously, since reflection is an orthogonal transfor-
mation. Combining all this, we find −axa−1 = eo − axa−1 + 1

2‖ − axa−1‖2e∞,
which is precisely the representation of a point at the reflected location. Therefore a
point x is reflected by transfer of the Euclidean formula (3), as x �→ −axa−1. This



Structure Preserving Motions Through CGA 41

structural principle may be illustrated as the commutative diagram

position x
normal vector−−−−−−−→ a

as reflector−−−−−→ position −axa−1

embed in CGA

⏐⏐� embed in CGA

⏐⏐� embed in CGA

⏐⏐�
point x

origin plane−−−−−−−→ a
as reflector−−−−−→ point −axa−1

If we perform a second reflection in another origin hyperplane, with normal vec-
tor b, this should be the mapping

x �→= −b
(−axa−1)b−1 = (ba)x(ba)−1,

using the associativity of the geometric product in the rewriting. Geometrically,
a double reflection is a rotation (see Fig. 2), so the operator (ba) represents a ro-
tation operator (in an axis through the origin, determined as the intersection of the
planes a and b). In this manner, we can generate all orthogonal transformations as
sandwiching products by elements that are themselves the geometric product of vec-
tors. These elements are called versors. A delightful property of versors is that they
do not only apply to vectors, but also directly to other geometric elements like lines
and circles. Let us first make those geometric elements part of our algebra.

Fig. 2 A reflection in two successive planes is equivalent to a rotation over double their separating
angle, around the line of their intersection (in 3D)



42 L. Dorst

2.3 Trick 3: Constructing Elements by Anti-Symmetry

When we introduced the geometric product for vectors, we used only its symmetric
part (that was the dot product). But of course there is an anti-symmetric part as well.
Let us denote that by ∧ and call it the outer product. For vectors, it is defined as

x ∧ a = 1

2
(xa − ax).

It is clear that x ∧ a = −a ∧ x, so that x ∧ x = 0.
To interpret this new element x ∧ a geometrically, let us use some classical linear

algebra and take x and a as direction vectors. If we take an orthonormal basis {e1, e2}
in the plane spanned by x and a, and choose it such that x = ‖x‖e1, then a can be
written as a = ‖a‖(cos(φ)e1 + sin(φ)e2) with φ the angle from x to a. We evaluate:

x ∧ a = (‖x‖e1
) ∧ (‖a‖(cos(φ)e1 + sin(φ)e2

))
= ‖x‖‖a‖(cos(φ)e1 ∧ e1 + sin(φ)e1 ∧ e2

)
= ‖x‖‖a‖ sin(φ)e1 ∧ e2,

for being the sum of two bilinear products, the outer product is itself bilinear. We
recognize in ‖x‖‖a‖ sin(φ) the signed area of the oriented parallelogram spanned
by x and a (in that order) and can therefore interpret e1 ∧ e2 as the algebraic speci-
fication of the unit area element in the (e1, e2)-plane. We call this a unit 2-blade.We
then interpret the 2-blade x ∧ a of direction vectors as the full specification of the
geometric area element spanned by x and a (in that order) in terms of its magnitude,
orientation, and geometrical attitude (i.e., spatial stance). Only the shape is not de-
termined, for you can easily verify that, for instance, x ∧ (a + λx) = x ∧ a so that
x and a + λx span the same element as x and a. For parallel direction vectors x
and a, the outer product x ∧ a is zero, so the commutativity relationship xa = ax is
the algebraic way of expressing parallelness of vectors. Orthogonality of vectors is
expressed as xa = −ax, or x · a = 0.

The outer product can be extended over more vector terms, always as the anti-
symmetric sum. This is done by permuting the geometric products and endowing
even permutations with a plus and odd permutations with a minus. For instance:

a ∧ b ∧ c = 1

3! (abc − bac + bca − cba + cab − acb)

(but this algebraic equation is a very inefficient way of computing the value of the
outer product; the equivalent a ∧ b ∧ c = 1

2 (abc − cba) is already better). It can be
shown that the outer product thus defined is associative and multilinear. To make
it fully defined over all elements, we can extend it to scalars simply by defining
α ∧ a = αa for scalar α and vector a.

The outer product of k vector factors is called a k-blade, and the number of vector
factors k is called its grade. Geometrically, a k-blade is a quantitative representation
of a weighted, oriented k-dimensional subspace of the space its vectors reside in,



Structure Preserving Motions Through CGA 43

and its signed magnitude is an oriented hypervolume. For instance, if you would
compute the outer product of three direction vectors in 3D space, you would find
that the coordinates of the vectors combine to a familiar signed scalar multiple of
the unit volume: a ∧ b ∧ c = det([[a b c]])e1 ∧ e2 ∧ e3. This volume is zero when
the vectors are co-planar, and therefore x ∧ (a ∧ b) = 0 can be solved for x as
x = λa + μb. Again, the 2-blade a ∧ b is seen to be a single computational element
representing the plane spanned by the direction vectors a and b.

In the conformal model, the outer product of vectors representing points a and
b takes on a different geometric interpretation, even though its algebra is the same.
In CGA, the blade a ∧ b represents an oriented point-pair, in the sense that the
set of points x satisfying x ∧ a ∧ b = 0 is either x = a or x = b. (Comparing to
the derivation just given, we do get x = λa + μb, as before, but to be a point in
CGA, x has to satisfy x · x = 0 by (2), as do a and b. Some algebra then leads to
λμ(a · b) = 0, and this implies λ = 0 and/or μ = 0.) Similarly, a ∧ b ∧ c represents
the oriented circle through the points a, b, and c, and the outer product of four
points a ∧ b ∧ c ∧ d represents an oriented sphere. We call these elements rounds.
If the points are in degenerate positions, or if one of them is the point at infinity e∞,
an oriented flat results (in 3D, these are: a line a ∧b∧ e∞, a plane a ∧b∧ c∧ e∞, or
a “flat point” a ∧ e∞). Showing these facts without too much computation requires
the technique of dual representation, introduced next.

2.4 Trick 4: Dual Specification of Elements Permits Intersection

A subspace can be characterized by the outer product, but it is often convenient
to take a “dual” approach, not specifying the vectors in it but the vectors or-
thogonal to it. We have already seen this for spheres: the orthogonality demand
x · (c − 1

2ρ2e∞) = 0 solves for x lying on a sphere with center c and radius ρ.
Duality is a fundamental concept of geometric algebra and requires no more than
complementation relative to the volume of the vector space, through division.

An n-dimensional vector space cannot have nonzero blades of a grade exceed-
ing n. A nonzero blade of the maximum grade n is called a pseudoscalar for the
space. It is common to normalize this to a unit pseudoscalar and to denote it by
In or In. The choice of the sign of the unit pseudoscalar amounts to choosing
a reference orientation for the space. In a 3D Euclidean space of direction vec-
tors with an orthonormal basis, I3 = e1 ∧ e2 ∧ e3(= e1e2e3) picks the standard
“right-handed” orientation. In the conformal model space, a suitable pseudoscalar
is I4,1 = eo ∧ I3 ∧ e∞. The inverse of the unit pseudoscalar in 3D Euclidean space
is I−1

3 = −I3 (verify that I3I−1
3 = 1!). In the conformal space, I−1

4,1 = eo ∧ I−1
3 ∧

e∞ = −I4,1.
One can find the blade representing the orthogonal complement of any subspace

through right-dividing its blade A by the pseudoscalar, as AI−1
n . This is called the

dual of A and denoted A∗:

dualization: A∗ = AI−1
n . (6)



44 L. Dorst

For instance, the dual of the 2-blade e1 ∧e2 in 3D-space is (e1 ∧e2)(e1 ∧ e2 ∧ e3)
−1 =

−(e1e2)(e1e2e3) = e3. This is indeed the normal vector of the (e1, e2)-plane using
the right-hand rule. The familiar 3D cross product of vectors can be made in CGA
as x × a = (x ∧ a)I−1

3 , though its use should be avoided.
Duality permits us to intersect subspaces. Let us denote the intersection (or meet)

of blades A and B as A∩B; then we can define it in terms of outer product and dual
as

dual specification of meet: (A ∩ B)∗ = B∗ ∧ A∗, (7)

where the duality is to be taken relative to the smallest-grade blade containing both
A and B (this is known as their join, and the intersection as their meet). If one
simply takes duality relative to the full space, a meet can become zero in degenerate
situations. (More about these operations and their efficient implementation in [4].)

An extension of the inner product beyond vector arguments can be developed as
a product in its own right, with its own set of algebraic rules. When done properly,
it is consistent with the rest of the framework in the sense that

extension of inner product: A · B ≡ (
A ∧ B∗)−∗

, (8)

with duality relative to a blade containing the join (one usually takes the pseu-
doscalar In).2 This inner product has properties like

x · (a ∧ b) = (x · a)b − (x · b)a. (9)

The inner product is especially convenient to define orthogonal projection of sub-
spaces as

orthogonal projection of X onto B: X �→ (
X · B−1) · B.

For flats, this corresponds to the usual orthogonal projection but it is more general:
for instance, projecting a line onto a sphere produces a great circle.

Knowing duality also permits us to interpret elements like a ∧ b. In CGA, a and
b are the dual representations of planes through the origin, for the points on these
planes satisfy x · a = 0 and x · b = 0. Therefore by (7), the 2-blade a ∧ b should be
the dual representation of their intersection line. Points x on that line should then
satisfy x · (a ∧ b) = 0, and expanding according to (9) shows that this indeed holds.
You may verify that the point at infinity e∞ is on the line (a ∧ b)−∗.

We now have enough to show that in CGA, S = a ∧ b ∧ c ∧ d represents the
sphere through the four points a, b, c, d . The geometry is illustrated in Fig. 3. By
antisymmetry of ∧, we can subtract any factor from the others without changing
the value of S. We use a to produce S = a ∧ (b − a) ∧ (c − a) ∧ (d − a). To find
out what (b − a) represents, solve x · (b − a) = 0. This evaluates to x · a = x · b,
and because of (2), this means that x has the same distance to a and b. So (b − a)

2This inner product is called the left contraction and denoted “
” in [2]. It differs in details from
the inner product used in [1].



Structure Preserving Motions Through CGA 45

Fig. 3 The proof that a ∧ b ∧ c ∧ d represents a sphere involves the intersection of the midplanes
b − a, c − a, and d − a

is the dual representation of the midplane between a and b. Therefore (b − a) ∧
(c − a) ∧ (d − a) is the dual representation of the intersection of three midplanes.
These planes intersect in two points: the center of the sphere m and the point at
infinity e∞, so (b − a) ∧ (c − a) ∧ (d − a) is proportional to (m ∧ e∞)∗. Then we
find S ∝ a ∧ (m ∧ e∞)∗ = (a · (m ∧ e∞))∗ = (m − 1

2ρ2e∞)
∗

with a · m = − 1
2ρ2.

So indeed S is the dual of a dual sphere representation and therefore a sphere. This
also gives a very compact way to compute center and radius of a sphere given by
four points: they are simply the appropriate components of (a ∧ b ∧ c ∧ d)∗.

3 Bonus: The Elements of Euclidean Geometry as Blades

Closure of the operations of outer product and duality produces a suite of blades
representing recognizable elements of Euclidean geometry. We have seen many ex-
amples of this already, and the full list is given in Table 2 from [2] (where n is
the dimension of the Euclidean space, E a purely Euclidean element of appropriate
grade, E	 denotes the Euclidean dual EI−1

n , and Tp denotes the translation versor
over p, see (11)). Care has been taken to orient the blades and their duals consis-
tently.

The square of a normalized round gives its radius squared, and this may be neg-
ative. Such “imaginary rounds” occur naturally, for instance, when intersecting two
spheres that are further apart than the sum of their radii. Because only the squared
radius occurs in the conformal model, these elements are tractable in a real alge-
bra. Tangents are in fact rounds of zero radius, indicative of their infinitesimal size.
A tangent 2-blade occurs, for instance, as the grade 3 element that is the meet of
two touching spheres. In this context, a weighted point may be viewed as a local-
ized tangent scalar.



46 L. Dorst

Table 2

Element Standard form X Defining properties

Direction E ∧ e∞ e∞ ∧ X = 0; e∞ · X = 0

Dual direction −E	 ∧ e∞ e∞ ∧ X = 0; e∞ · X = 0

Flat Tp(eo ∧ E ∧ e∞)T −1
p e∞ ∧ X = 0; e∞ · X �= 0

Dual flat Tp(E	(−1)n−grade(E))T −1
p e∞ ∧ X �= 0; e∞ · X = 0

Tangent Tp(eo ∧ E)T −1
p e∞ ∧ X �= 0; e∞ · X �= 0; X2 = 0

Dual tangent Tp(eo ∧ E	(−1)n)T −1
p e∞ ∧ X �= 0; e∞ · X �= 0; X2 = 0

Round Tp((eo + 1
2 ρ2e∞) ∧ E)T −1

p e∞ ∧ X �= 0; e∞ · X �= 0; X2 �= 0

Dual round Tp((eo − 1
2 ρ2e∞) ∧ E	(−1)n)T −1

p e∞ ∧ X �= 0; e∞ · X �= 0; X2 �= 0

It is especially notable that the various uses and meanings of “vector with direc-
tion u” from applied linear algebra get their own “algebraic data structures”:

• a point at location u is represented by the CGA vector eo + u + 1
2 u2e∞

• a free vector is represented by the translation invariant 2-blade u ∧ e∞
• a normal vector is the vector p · (u ∧ e∞) and can shift on a localized plane
• a force vector is represented by the 3-blade p ∧ u ∧ e∞ and can shift along a line
• a tangent vector u at p is the localized 2-blade p · (p ∧ u ∧ e∞)

All these automatically move appropriately under Euclidean versors, without a pro-
grammer needing to specify that they should (by giving them their own “classes”
and “methods,” as is required in common practice in classical software, even when
based on homogeneous coordinates).

4 Bonus: Euclidean Motions Through Sandwiching

We have seen how all orthogonal transformations can be made as multiple reflec-
tions and that a single reflection is represented by an invertible vector a as the
transformation x �→ −axa−1. Now that we know what the vectors in the conformal
model represent, we can easily generate the versors for common motions. Euclidean
motions are generated by multiple reflections in planes, and we have seen that those
are dually represented by vectors of the form π = n + δe∞ that satisfy e∞ · π = 0.

• Rotation in a plane through the origin: If we take two unit dual planes at the
origin n1 and n2 with a relative angle of φ/2 from n1 to n2, the double reflection
first in n1 and then in n2 is represented as

RIφ = n2n1 = n2 · n1 + n2 ∧ n1 = cos(φ/2) − I sin(φ/2). (10)

When used in a sandwiching operation, this is a rotation over the angle φ around
the dual line given by the unit 2-blade I (proportional to n1 ∧ n2). Such a 2-blade
has the property I2 = −1. To show this, introduce an orthonormal basis {e1, e2},



Structure Preserving Motions Through CGA 47

write I = e1 ∧ e2 = e1e2, and compute using the associativity property of the ge-
ometric product: (e1 ∧ e2)(e1 ∧ e2) = (e1e2)(e1e2) = −e2e1e1e2 = −e2e2 = −1.

In this real geometric algebra, we therefore naturally get elements that square
to −1. In 3D, there is a basis for 2-blades consisting of the elements I = e1 ∧ e2,
J = e2 ∧ e3, and K = e3 ∧ e1, each squaring to −1 and having multiplicative rela-
tionships like IJ = −JI = −K. These are of course isomorphic to the elementary
quaternions which have proven so useful for 3D rotation computations. In geo-
metric algebra, they are introduced in a real manner as products of vectors, fully
integrated with the real elements they operate on. We will soon see that they can
rotate any element, and derive the versor for a rotation around a general line in
Sect. 6.

• Translation: A translation over a vector t is generated by reflection in two dual
planes separated by a vector t/2, resulting in the element: (t + 1

2 t · te∞)t =
t2(1 − te∞/2). Since a scalar multiple generates the same motion in the sand-
wiching product with the inverse, we prefer to define

versor for translation over t: Tt ≡ 1 − te∞/2. (11)

You can check that the point representation (1) is indeed related to the point at
the origin eo by translation over x, since x = TxeoT

−1
x .

• General rigid body motion: A general rigid body motion can be constructed in
the usual manner as a rotation followed by a translation. In CGA, an alternative is
to make it directly as the reflection in two lines, which produces a screw motion
(see [2]).

• Uniform scaling: Although not strictly a rigid body motion, the Euclidean simi-
larity transformation of uniform scaling can be made by subsequent reflection in
two dual spheres at the origin such as eo − 1

2ρ2
1e∞ and eo − 1

2ρ2
2e∞. After some

simplification, the scaling versor for a uniform scaling by eγ is found to be

Sγ ≡ cosh(γ /2) + sinh(γ /2)eo ∧ e∞.

More versors can be generated by reflection in spheres, notably for the conformal
operation of a transversion—details may be found elsewhere [2].

5 Bonus: Structure Preservation and the Transfer Principle

All constructions of elements were based on the linear combinations of geometric
products, since the other products are ultimately expressible in that manner. There-
fore, when we act on them with a versor V in the sandwiching product, all construc-
tions transform covariantly. For the outer product, this means that equations hold
like the following:

V (a ∧ b)V −1 = (
V aV −1) ∧ (

V bV −1).



48 L. Dorst

The same structure-preserving property holds for all operations we introduced, be
they spanning, inner product, or duality (relative to a transformed pseudoscalar). In
words: “the transformation of a construction equals the construction of the trans-
formed elements.” This fact is very convenient, for it implies that we can simply
construct something at the origin and then move it into place to find the general
form (hence our preference for origin-based specification in the table above). And
composite elements move by the same versor as points do: the translation versor
Tt universally translates points, lines, planes, spheres, or tangent elements. As we
mentioned, there is no longer any need for data structures distinguishing between
“position vectors” which feel translations and “direction vectors” which do not; all
is automatically administrated in the algebraic behavior of the corresponding ele-
ments. This is an enormous advantage relative to the classical homogeneous model
for the development of structural code, either by hand or using a code genera-
tor [3].

This principle is also extremely useful in derivations. Let us, for instance, use
it to prove the general formula for the reflection of a line Λ in a dual plane π as
Λ �→ −πΛπ−1, simply from the 1-D direction reflection formula (5). A line Λ0

with direction u through the origin is given as Λ0 = eo ∧ u ∧ e∞, and a dual plane
π0 through the origin with normal vector n as π0 = n. The reflection of the direction
u is affected by (5) as u �→ u′ ≡ −nun−1 = −π0uπ0

−1. The reflected line is then
Λ′

0 = eo ∧u′ ∧e∞. Now we note that due to the algebraic commutation (i.e., the geo-
metric orthogonality) of the bold Euclidean and the nonbold extra dimensions eo and
e∞, we have −π0eoπ0

−1 = −neon−1 = eo and −π0e∞π0
−1 = −ne∞n−1 = e∞.

Therefore we can “pull out” the reflection operator to act on the whole line Λ0

by (5):

Λ′
0 = (−π0eoπ0

−1) ∧ (−π0uπ0
−1) ∧ (−π0e∞π0

−1)
= −π0(eo ∧ u ∧ e∞)π0

−1 = −π0Λ0π0
−1.

This is still only true at the origin, but we can move this construction by a mo-
tion versor V to an arbitrary location. All elements change to their general form
π = V π0V

−1, Λ = V Λ0V
−1, and the reflection transformation preserves its struc-

ture since V Λ′
0V

−1 = (V π0V
−1)(V Λ0V

−1)(V π0V
−1) = πΛπ−1. Therefore the

general reflection formula of a line in a plane is simply

reflection of a line Λ in the dual plane π : Λ �→ −πΛπ−1.

This includes all aspects of location, direction, and orientation. Note that this com-
putation reflects a general line in a general plane without computing its intersection
point—try doing that using linear algebra! (If you need the intersection point of line
and plane, it is π · Λ, by straightforward application of the universal meet opera-



Structure Preserving Motions Through CGA 49

tion (7) and duality (6), (8).)

direction u
normal vector−−−−−−−→ a

as reflector−−−−−−−→ direction u − 2(u · a)a/‖a‖2)

embed in GA

⏐⏐� embed in GA

⏐⏐� embed in GA

⏐⏐�
direction u

normal vector−−−−−−−→ a
as reflector−−−−−−−→ direction u′ = −aua−1

embed in CGA

⏐⏐� embed in CGA

⏐⏐� embed in CGA

⏐⏐�
origin line Λo = eo ∧ u ∧ e∞

dual eo-plane−−−−−−−→ πo
as reflector−−−−−−−→ origin line Λ′

o = −πoΛoπo
−1

Euclidean versor

⏐⏐� Euclidean versor

⏐⏐� Euclidean versor

⏐⏐�
general line Λ = V ΛoV

−1 dual plane−−−−−−→ π
as reflector−−−−−−−→ general line Λ′ = −πΛπ−1

conformal versor

⏐⏐� conformal versor

⏐⏐� conformal versor

⏐⏐�
general circle K = V ΛV −1 dual sphere−−−−−−→ σ

as invertor−−−−−−→ general circle K ′ = −σKσ−1

We can even apply an arbitrary conformal versor and change the reflecting dual
plane π into a dual sphere σ , and the line L into a circle K ; the result is a spherical
inversion operation. (As a further extension, another application of the structure
preservation property shows that the reflection in σ of a general element X is X �→
(−1)grade(X)σXσ−1.)

The conformal model renders all transitions trivial in this transfer, all the way
from a reflection of a Euclidean direction vector at the origin to the inversion of
a general circle in a general sphere. Such is the power of a structure-preserving
framework!

6 Trick 5: Exponential Representation of Versors

Even-graded versors, made by an even number of reflections, represent motions that
can be performed continuously and in small amounts. In Euclidean and Minkowski
spaces, all even-graded versors can be written as the exponentials of bivectors. The
bivector specification of an even versor is often more directly related to the geometry
of the situation than the “product of vectors” method.

As an example of the exponential rewriting, take the rotation RIφ over the an-
gle φ, parallel to the I-plane as treated in (10),

RIφ = cos(φ/2) − sin(φ/2)I = e−Iφ/2.

It is the property I2 = −1 that makes the exponential rewriting permitted:



50 L. Dorst

e−Iφ/2 = 1 + 1

1! (−Iφ/2)1 + 1

2! (−Iφ/2)2 + · · ·

=
(

1 − 1

2! (φ/2)2 + · · ·
)

+
(

1

1! (φ/2)1 − 1

3! (φ/2)3 + · · ·
)

I

= cos(φ/2) − sin(φ/2)I.

The translation versor of (11) can also be written in this exponential form; but since
it involves the bivector t ∧ e∞, the expansion truncates after two terms (fundamen-
tally due to e2∞ = 0):

Tt = 1 − t ∧ e∞/2 = e−t∧e∞/2.

A rotation around a general 3D unit line Λ over φ is now generated by the versor:

rotation around Λ over φ: RΛ,φ = eΛ∗φ/2

Proof This follows from the simply derived structural property

V exp(B)V −1 = exp
(
V BV −1)

and the transfer property applied as follows. First recognize that the rotation axis
of the origin rotation RIφ is the line Λ0 = I∗ = −I−∗, so the origin rotation is
exp(Λ0

∗φ/2). Then transfer this by a translation T to the actual location of the de-
sired axis Λ, which changes Λ0

∗ to T (Λ0
∗)T −1 = (T Λ0T

−1)/(T I4,1T
−1) = Λ∗

since the pseudoscalar I4,1 involved in the dualization is translation invariant.
Done. �

General rigid body motions can of course also be made, for instance, by the
usual method of combining an origin rotation with a translation. You find that the
result can be written as the exponential of a general conformal bivector on the ba-
sis {e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, e1 ∧ e∞, e2 ∧ e∞, e3 ∧ e∞}, giving the six degrees of
freedom required. Since this space of bivectors is linear, it can be used for motion in-
terpolation. To interpolate between two poses characterized by the versors M0 and
M1, find their bivectors B0 = log(M0) and B1 = log(M1). Now apply a standard
vector interpolation method to smoothly change B0 into B1 through intermediate
bivectors Bi ; then use the versors exp(Bi) to generate the interpolated poses. To ex-
ecute this procedure, one needs to find the bivector corresponding to a given versor;
such “versor logarithms” may be found in [2].

Linearization of versor motions for extrapolation or estimation is also possible
and requires geometric calculus. When performed (see [1]), the first order change in
an element X that is moved by a changing versor V (τ) from a standard element X0
as X(τ) = V (τ)X0V (τ)−1 is

X(τ + dτ) = X(τ) + (
Ω(τ)X(τ) − X(τ)Ω(τ)

)

with Ω(τ) =
(

d

dτ
V (τ)

)
V (τ)−1.



Structure Preserving Motions Through CGA 51

Fig. 4 The mirror Π rotates φ round a line Λ, and a line X is reflected in it. Using a local
first-order linearization of the reflection versor, one can derive the perturbation of the reflected line
to second order (in black) to be the rotation with versor exp(−φ((Λ · Π)/Π)∗), i.e., around the
projection of Λ onto Π with angle 2φ cos(Π,Λ). For details, see [2]

If V is normalized, Ω is a bivector, and its commutator product with X(τ) pre-
serves the grade. This linearization of geometrical perturbations is very useful in
applications, see Fig. 4. The full geometric calculus is truly powerful, and one can
differentiate relative to an arbitrary element of the algebra (such as a blade or a ver-
sor). We cannot treat that here, and the reader is referred to introductions like [2]
and [1].

7 Trick 6: Sparse Implementation at Compiler Level

Implementation of CGA may seem to be expensive. After all, to treat a 3D space,
we embed into a 5D representational space and use the geometric algebra of that,
which involves a 25-D basis of constructible elements of all grades. Yet the use we
make of this space is restricted, and the elements are therefore somehow sparse.



52 L. Dorst

Ultimately, the main purpose of the algebraic organization is to keep track auto-
matically of the administration of the meaning of the coordinates of points, lines,
planes, spheres, etc., simultaneous with performing the quantitative computations.
That is in a sense a Boolean selection task of the algebra, which one would intu-
itively expect not to be too expensive. Indeed it has proved possible to limit the
overhead of the use of CGA to about 10% relative to the best available coordinate
code programmed classically. For the computer science techniques that achieve this,
consult [2] and [3]. A warning: before you start using CGA in commercial applica-
tions, be aware that it is covered by a US patent [6].

References

1. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cam-
bridge (2000)

2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-
Oriented Approach to Geometry. Morgan Kaufman, San Mateo (2007). Second revised printing
2009. See also www.geometricalgebra.net

3. Fontijne, D.: Efficient implementation of geometric algebra. Ph.D. Thesis, U. of Amsterdam
(2007). See also www.science.uva.nl/~fontijne

4. Fontijne, D., Dorst, L.: Efficient algorithms for factorization and join of blades. This volume
5. Hestenes, D.: New tools for computational geometry and the rejuvenation of screw theory. This

volume
6. Hestenes, D., Rockwood, A., Li, H.: System for encoding and manipulating models of objects.

US Patent 6,853,964, granted 8 February 2005

http://www.geometricalgebra.net
http://www.science.uva.nl/~fontijne


http://www.springer.com/978-1-84996-107-3


	Tutorial: Structure-Preserving Representation of Euclidean Motions Through Conformal Geometric Algebra
	Introduction
	Conformal Geometric Algebra
	Trick 1: Representing Euclidean Points in Minkowski Space
	Trick 2: Orthogonal Transformations as Multiple Reflections in a Sandwiching Representation
	Trick 3: Constructing Elements by Anti-Symmetry
	Trick 4: Dual Specification of Elements Permits Intersection

	Bonus: The Elements of Euclidean Geometry as Blades
	Bonus: Euclidean Motions Through Sandwiching
	Bonus: Structure Preservation and the Transfer Principle
	Trick 5: Exponential Representation of Versors
	Trick 6: Sparse Implementation at Compiler Level
	References


