Chapter 2
Simple Evolutionary Algorithms

Abstract In Chap. 1, we drew a graph for EAs with the statement that EAs are
interesting, useful, easy-to-understand, and hot research topics. Starting with Chap.
2, we will demonstrate EAs in a pedagogical way so that you can enjoy the journey
around EAs with active reading. We strongly encourage readers to implement their
basic EAs in this chapter in one programming environment and improve its search
ability through other chapters. Footnotes, exercises, and possible research projects
are of great value for an in-depth understanding of the essence of the algorithms.

2.1 Introductory Remarks

Before introducing some standard EAs,! we need to standardize some terms used
throughout the book.

Classical EAs, including genetic algorithms (GAs), evolution strategy (ES), evo-
lutionary programming (EP), and genetic programming (GP), are all random-based
solution space searching metaheuristic algorithms. So the most important thing be-
fore discussing a concrete algorithm is how to generate and manipulate random
numbers in a programming environment.

We summarize the functions for handling random numbers in MATLAB®,
C/C++, and Java in Table 2.1. As you can see, MATLAB® has advantages in gen-
erating random numbers in a flexible way. So we suggest using MATLAB® as the
programming environment while learning EAs.

Even though MATLAB® has provided a Genetic Algorithm and Direct Search
Toolbox, we strongly suggest that readers make their own EA source code from
scratch if your purpose in reading this textbook is to really understand how EAs
work and maybe improve some famous EAs to some degree.

! We sometimes call these standard evolutionary algorithms “simple” algorithms in the sense that
they are simple compared to the improvements introduced in Chap. 3. But we need to mention that
simple algorithms here do not mean weak performance.

2 We will discuss the first three algorithms in this chapter and introduce GP in Chap. 10.
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Table 2.1 The most common functions related to random numbers

Distribution MATLAB®  C/C++ Java
. C (float)rand()/
1 Uniform distribution U(0,1) rand Math.random
RAND MAX
2 Normal distribution N(0,1) randn nextGaussian

Random permutation between 1
3 . randperm
and integer n

Round towards infinity ceil ceil ceil
5 Round towards negative infinity floor floor floor
Round towards nearest integer round

The density function of a uniform distribution random number in the range (0, 1),
denoted as & ~ U (0,1), is as follows:

1 0<&<1

0 otherwise @1

p@)={

Every programming language provides a uniform distribution® random func-

tion. After generating & ~ U (0,1), there are many ways to convert it into other

distributions [1, 2]. The most important of these are normal distributions, denoted
n~N (,u, 62), whose density function is as follows:

p(n)= L -5 (2.2)
\V21o
where  is the expectance and o > 0 is the standard deviation. It is easy to verify
that if & ~ N (0,1), then = (§ x 6+ ) ~ N (1, 6%). So N(0,1) is very critical
for generating normal distribution random numbers.

A permutation in the range [1,7] is often used in evolutionary combinatorial op-
timization. Thus one should be familiar with how to generate permutations and ran-
dom permutations.

Sometimes we need to generate an integer random number with uniform distri-
bution in the range [1,n], where n is an integer number. We can either combine the
round function and 7 * rand() or select the first cell in the random permutation in
the range [1,n].

In EAs, we often say that an operator (such as a crossover or mutation, discussed
later) needs to be carried out with probability p. How does one implement such
a simple statement in a given programming environment? We give the example in
MATLAB ® as follows.* These are similar in other environments.

3 Also called a Gaussian distribution.

4 We strongly encourage readers to make it clear why this “If” statement could represent that the
operator needs to be carried out with probability p.
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%Operator A is carried out with probability p
If rand < p
Operator A
End

where rand ~ U (0,1).

With respect to selection, there are two ways to carry it out. We often pick up
one solution randomly from current solutions and determine whether it could be se-
lected. We will discuss the selection criteria in detail in later sections of this chapter
and in Chap. 3. Here we would just like to determine how to handle the one being
picked up. If it is put back, regardless of whether it is selected or not, and has the
chance to be picked up again in the next time, we call this selection with replace-
ment. If it is discarded, regardless of whether it is selected or not, and will never be
picked up again, we call this selection without replacement.’

Another term that often appears in the EA literature is norm, which could be seen
as some kind of length measure of vectors. ||u|| is vector u’s norm. Suppose u is a
real vector with n variables. The general p(> 1) norm for u is

all, = (Jua]” + <+ a7 2.3)
where {uj| is the absolute value of u;. If p = 1, then Eq. 2.3 is /-norm; it is the sum
of the absolute values of all cells.

l[ally = (fsr ]+~ + [un]) (24)

If p =2, 2-norm, it is the Euclidean distance.

ully = /ui+---+ul 2.5)

If p = oo, co-norm.

[l = max (fu],- -+, [un]) (2.6)

The final concept is convex function and concave function. A function f is convex
if any two points x; and x; in the definition domain satisfy Eq. 2.7 forany 0 <r < 1,
which is illustrated in Fig. 2.1.

Flxi+(L=r)x) <rf(x)+(1=7r) f(x2) 2.7

For points x; and xa, rx; + (1 —r) x; is their convex combination. Inverting the
inequality defines a concave function.

3> Sometimes we call this sampling with replacement or sampling without replacement.

6 To call a curve convex or concave according to its geometric shape depends on where it is facing.
In the definition, we look at the origin.
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Fig. 2.1 A convex function f A
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2.2 Simple Genetic Algorithm

2.2.1 An Optimization Problem

The basic ideas of GAs were introduced in Chap. 1. In this section, we’d like to
introduce the details of implementing GAs with an optimization algorithm. The
problem is formulated by Eq. 2.8 and illustrated by Fig. 2.2.

max f (x) = xsin(10mx) 4 2.0

2.8
st —1<x<2 (2.8)

Fig. 2.2 A numerical example of an SGA

The curve of the objective function in Fig. 2.2 constitutes the solution landscape
in which we are searching for the optimal solution. In this problem, it has many local
optima, and, based on Fig. 2.2, the problem may seem difficult. We will demonstrate
the strength of simple genetic algorithm (SGA) on this problem by the discussion in
the following subsections.
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In SGA, we maintain many individuals in a population. The number of individ-
uals in the population is the population size (popsize). Each individual’ has two
properties: its location (chromosome® composed of genes) and its quality (fitness
value). After obtaining the quality of all individuals, we use the selection process to
generate a mating pool. Individuals with higher quality should have a higher prob-
ability of being selected into the mating pool so that the good ones will have more
chances to breed and the bad ones will not be selected. Individuals in the mating
pools are called parents. Generally two parents might be selected randomly from
the mating pool to generate two offspring” without replacement and every offspring
might undergo small changes to become a new individual. Then the newly generated
population replaces the old one and another generation starts.

The relationship between the concepts and the operators described above and the
principle of Darwinian natural selection theory is listed below.

e Selection <= survival of the fittest
e Two parents generate two offspring <> crossover or recombination
e Small changes in the location of the offspring <= mutation

A good individual has more chances to be selected into the mating pool so that it
has more chances to mate than low-quality individuals have. Then the information
contained in the good individual has more chances to be preserved and passed onto
next generation. Information exchange between two parents and small changes in
the offspring promote the search for better individuals. Combining these two factors,
the population will become more and more fit until the optimal or near optimal
solution has been found, if we are lucky. In this way, GAs could gain favor over
traditional gradient-based algorithms. We will discuss these operators step by step.

2.2.2 Representation and Evaluation

We can use a real number, in the range [—1,2], to represent a solution in Eq. 2.8
directly. Many operators can handle real number representation. But we use the
binary code or binary representation here for two reasons. GAs were originally
proposed to be binary code to imitate the genetic encoding of natural organisms.
On the other hand, binary code is good for pedagogy. A binary chromosome is
necessary to represent a solution x in the scale [—1,2]. The same holds for the binary
representation of real numbers in a computer.

In binary code, we cannot represent a real number completely correctly, so a
tradeoff is necessary. A tolerance needs to be defined by the user, which means the
errors below the tolerance are extraneous. If we divide the definition domain into

7 An individual may be understood as an agent.

8 Sometimes a chromosome is called a genome. These two terms have different meanings in ge-
netics and biology, but we disregard them in EAs.

9 Sometimes they are called progeny or descendants.
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2! = 2 parts evenly and select the smallest number in the parts to represent any
number in the division, we can only represent —1 and 0.5 by 0 and 1 respectively.
22 = 4 divisions make the 00, 01, 10, and 11 represent —1, —0.25, 0.5, and 1.25,
respectively. The larger division number we select, the less error there is in repre-
senting a real number on binary code. Suppose we use 100 binary codes to represent
a real number in the range [—1,2]; the maximum error is 3/2'% ~ 2.3773%, which
would be satisfactory for most users. In this way,'® we can represent a real number
with any accuracy requirements.

In this problem, we use / = 12 binary codes to represent one real number!! as
follows, which constitutes a chromosome to be evolved.

11109 8 7 6 543210

Fig. 2.3 Binary representa- |1|O|1|O|0|1|1|0|1|0|1|1|

tion of a real number

For 12 binary codes in the chromosome, every part is called a gene. A gene has
two properties: its value (sometime called allele), which is the number in the square,
and its location (sometimes called locus), which is the number above the square. For
the binary representation of a real number with / genes, its counterpart real number
is

-1 .
Z ai2’

x= B0 (Fx) 2.9)

where g; is the allele of locus i, ¥ and x are the upper and lower bounds for the real

number, respectively. For the chromosome in Fig. 2.3, its counterpart real number
isx= (2" 429420425423 421 +20/212) x (2+1) — 1 = 0.9534. The process
of finding one way to represent a solution to the problem is called representation.
Figure 2.3 illustrates binary encoding and Eq. 2.9 represents binary decoding.

We can use both 101001101011 and 0.9534 to represent an individual (or a chro-
mosome); the former is called a genotype representation of an individual and the
lattera phenotype representation of an individual.

Every individual has two properties: its location and its quality. The location is
the chromosome we described above and the quality is its objective value, which
can be evaluated by Eq. 2.8. The objective value of our example individual is
f(x) =0.9534 x sin (101 x 0.9534) +2.0 = 1.0520. In GAs, we often use the fitness
value to evaluate how much the individual fits the problem. So the function used to
calculate the fitness value is called the fitness function, which is exactly the same as

10 Even though this might weaken your faith in computers.

' What is the maximum error for this representation? Why do we only use [ = 12? Why not
[ =300?
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the objective function in Eq. 2.8.' The process of obtaining a fitness value from a
chromosome is called evaluation.

2.2.3 Initialization

SGA operates on a group of individuals. Generally the algorithm designers need to
define how many individuals will be in the population, which is often represented by
a variable popsize.'> We need to generate popsize individuals to start the evolving
process. This procedure is called initialization.

Sometimes we know which part of the definition domain contains better solu-
tions. But in most situations, we do a blind search over the solution landscape.14
So we could just initialize the population randomly. Another reason for random ini-
tialization is that SGA is capable of a global search, which will be illustrated later.
In some complicated real-world problems, workable solutions may be in the local
optimal solution’s domain of attraction' so that starting from this domain may not
be good for a global search. So why not depend on the global search ability of the
SGA?

There are many ways to initialize popsize individuals randomly. The simplest
way might be to generate every individual with uniform distribution. Specifically,
for every gene in the chromosome, its allele is 1 with probability 0.5, and vice
versa.'®

Another way to generate evenly distributed individuals in the definition domain
is to divide the domain into several grids. Initially, a grid is randomly selected and
a solution in that grid is in turn randomly selected. We need the encoding procedure
to transfer the phenotype to the genotype to get the chromosome.!” We count the

12 After reading the Sect. 2.2.4 below, consider why we could use the objective value as the fitness
value directly. What is the fitness function in other situations, i.e., with a negative objective value,
minimum optimization, etc.? Chap. 3 will discuss this interesting problem.

13 Defining popsize without any a priori knowledge about the problem is a very hard job for
algorithm designers. So either we need some kind of trial-and-error adjustment or we adopt some
information from a current population and change popsize according to that information. We will
discuss the latter interesting idea in Chap. 3.

14 The results of other optimization algorithms, currently workable solutions, and uneven sampling
on the definition domain according to the preference of users are examples of nonblind initializa-
tion.

15 The domain of attraction means a subset of the definition area. For some search technologies,
starting at any point in the domain of attraction will converge to the optimum in that domain even
if it is a local optimum. Consider any x € [—0.9,—0.8] in Fig. 2.2; it will converge to the local
optimum f = 2.8 with any up-hill algorithm.

16 Readers unfamiliar with this should review Sect. 2.1.

17 In our binary representation example, readers may check for methods of transforming a real
number into its binary code in the computer basis textbook.
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number of individuals generated from a grid. The larger the number for a grid is, the
less opportunity the grid will have to generate new ones.'3

After the initial chromosomes have been generated, their fitness values are cal-
culated using a decoding process (Eq. 2.9) and the objective function (Eq. 2.8). It
bears mentioning again that an individual is comprised of a chromosome and a fit-
ness value.

For the problem illustrated by Eq. 2.8 and Fig. 2.2, we set popsize = 10 and
obtain the ten randomly generated initial individuals, illustrated by Fig. 2.4.

3.5 ]
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Fig. 2.4 Initial population of an SGA

The crosses in Fig. 2.4 are the initial individuals. As can be seen, the performance
of the initial population is not impressive at all.

2.2.4 Selection

After initialization, the SGA enters the main loop. It starts with a selection process,
which imitates natural selection by granting fitter individuals higher opportunity
to breed, and ends with two variation operators,l9 crossover and mutation, which
imitate natural reproduction by exchanging genes of parents to generate offspring.

In programming, we need to open another memory to reserve the individuals
selected to breed. This memory is called the mating pool.

18 Consider how to implement this idea in your program.
19 These operators are also called reproductive operators.
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There are many ways to embody the idea of natural selection. We will discuss
one here and introduce others in Chap. 3. Individual i in the current population
has a fitness value f; . According to natural selection, fitter individuals have more
advantages in breeding. So we could define the relative fitness value of individual i
as follows:

pi= ):poﬁize ; (2.10)
i=1 i

popsize
It is easy to verify that Z pi = 1. Thus the relative fitness value can also be seen
=1

as the probability of bemg selected for individual i, i.e., p; could be seen as the
probability of being selected as one candidate in the mating pool for individual i.>

How can we implement this in a programming environment? We can do the se-
lection as in roulette way.?? The difference between real roulette and our selection
is that the holes of the roulette wheel in our selection have different sizes. The larger
pi is, the larger hole individual i has. So the ball could drop into the hole with higher
probability. The size of the hole for i is propositional to p;, which is illustrated by
Fig. 2.5. Instead of digging a hole on the wheel, we use sectors with different central
angles to represent individuals. The central angle of individual i is 27p;. The thick
arrow in Fig. 2.5 represents the ball. We want the arrow to start rotating clockwise
and stop randomly with a central angle 27 rand, where rand ~ U (0, 1). If the arrow
stops at one sector, the corresponding individual is selected into the mating pool. It
is clear that fitter individuals have more chances to be selected.

How is the roulette wheel implemented in a programming environment? We
could simulate the rotation process by an accumulated process. After obtaining
rand, we know where the arrow will be. We memorize the individual we have al-

ready passed during the rotation process, accumulate the probabilities and compare
k+1
it to rand. Whenever we find an individual that is satisfied that ): pi <rand < ): Dis

we know that the arrow stops in sector ;> and select 1nd1V1dua1 i into the matmg
pool. Then the arrow returns to the original location, just like in Fig. 2.5. We can do
the above procedure popsize times until there are popsize individuals in the mating
pool. This selection procedure is called roulette wheel selection (RWS).

In this way, some individuals in the population will be selected more than once
and some will never be selected. The probability of being selected for individual i
is its relative fitness. It is also necessary to mention that fitter individuals are not to
be selected by RWS if they are unlucky enough never to have the arrow stop at their
sector popsize times. We call this phenomenon selection bias. Many studies have

20 Sometimes we also use ind; to represent individual i.

21 This sentence has the implicated meaning that we want to select the candidates in the mating
pool in a serial way. We will introduce a parallel way in Chap. 3.

22 Roulette is a gambling game in which a ball is dropped onto a wheel with numbered holes in it
while the wheel is spinning round.

23 How can we make such as statement?
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<
=

Fig. 2.5 Roulette wheel selection

been done to minimize the selection bias, and we will introduce some of them in
later chapters.

Another consideration about RWS is that the problem needs to be maximum and
all the objective values need to be greater than zero so that we can use objective
values as fitness values and take RWS as the selection process directly.?*

2.2.5 Variation Operators

There are many variation operators to change information in individuals in the mat-
ing pool. If information exchange, i.e., gene exchange, is done between two or more
individuals®, this variation operator is called crossover or recombination. If the
genes of one individual changes on its own, this variation operator is called muta-
tion. We will introduce single-point crossover and bit-flip mutation here.

There are two ways to select two individuals in the mating pool to determine
whether or not to cross over them. One is to shuffle the mating pool randomly
and assign individuals 1 and 2 without replacement to be a crossover pair, 3 and
4 without replacement to be another pair, etc. The other is to generate a random
integer permutation, per, between [1, popsize|. per(i) = j means the ith element in
the permutation is the jth individual in the mating pool. Then we assign ind,, (1)
and ind,,,,(2) without replacement as the first crossover pair, ind 3y and ind,,,(4)
without replacement as the second crossover pair, etc.

24 Why do we need two such requirements for RWS to handle objective values directly?
25 We will give examples of multiparent crossover in Chap. 3.
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Generally, we will assign the probability of crossover p, called the crossover
rate, to control the possibility of performing a crossover.?

For two individuals selected to cross over, we assign a point between 1 and / — 1
randomly, where [ is the length of the chromosome. This means generating a random
integer in the range [1,/ — 1]. The genes after the point are changed between parents
and the resulting chromosomes are offspring. We call this operator a single-point
crossover. Figure 2.6 illustrates this.

12 v I-1
L{O[1{0[Of1|1|Of1]|O|1|1 110({1{0]0{1(0|0[1[0]0(1
—
0({0|0[1|0[1]|0]0[1]0|0(1 0(0[O[1{O[1{1]O{1|OfL(1
Parents Offspring

Fig. 2.6 Single-point crossover

As can be seen from Fig. 2.6, two new individuals are generated by crossover,
which is generally seen as the major exploration mechanism of SGA.

If two parents do not perform a crossover according to probability p., their off-
spring are themselves.

Now we discuss mutation. There are also two ways to implement mutation. One
way is to open another memory with size popsize to store the results of crossover,
and mutation is carried out in that memory. The other way is to mutate the offspring
of crossover directly. We use the latter way.

For every gene in an individual, we mutate it with probability pp,, called the
mutation rate.?” Provided gene j needs to be mutated, we make a bit-flip change
for gene j, i.e., 1 to 0 or O to 1. We call this operator a bit-flip mutation. Figure 2.7
illustrates the bit-flip mutation. The individual after mutation is called the mutant.

12 j -1 1
101001101011:{) 110{1]0{0f{0[1[0|1{O]1]1

Offspring of crossover Mutant

Fig. 2.7 Bit-flip mutation for gene j of the offspring

26 How do we implement the statement “Individual i and individual j cross over with probability
P
27 How do we implement the statement “Gene j mutates with probability ppy,”?
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As can be seen from Fig. 2.7, small changes are introduced into a chromosome by
bit-flip mutation,”® which could be seen as one local search method and is generally
considered a minor exploring mechanism of SGA. If every gene of an offspring does
not mutate according to probability p,,, the mutant is the offspring itself.

After the variation operators, a new population with popsize individuals is gen-
erated. We need to evaluate the fitness for every individual and then replace the old
population with the new one.?’ The process of replacing the current population with
the new population is called replacement.

Although we call the results of crossover offspring and the results of mutation
mutants, offspring is also used to represent the results after performing all variable
operators.

2.2.6 Simple Genetic Algorithm Infrastructure

The selection, crossover, mutation, and replacement discussed above constitute one
generation or iteration of an SGA. Then the evolving process continues to the next
generation. As mentioned above, selection grants fitter individuals greater odds op-
portunity of propagating their high-quality genes, and crossover and mutation ex-
plore the solution landscape. We could have a rational expectation that the popula-
tion will become better and better. But when do we stop? Here we just assign the
maximum generation number maxgen.>? If the generation number exceeds maxgen,
the SGA stops and the individuals in the final population are the results.
So the infrastructure, solution process, of an SGA can be illustrated as follows:

Solution Process of SGA

Phase 1: Initialization.

Step 1.1: Assign the parameters for SGA, such as p¢, pm, popsize,
maxgen, etc.

Step 1.2: Generate popsize uniformly distributed individuals ran-
domly to form the initial population and evaluate their fitness values. gen = 0.

Phase 2: Main loop. Repeat the following steps until gen > maxgen.

Step 2.1: Select popsize individuals from current population using

RWS to generate the mating pool.

28 How large a perturbation will the bit-flip mutation introduce in a chromosome? Does something
not seem right? We will discuss this question in Chap. 3.

29 1t seems cruel and unreasonable because perhaps we want to keep the good ones in the current
population. How do we solve this problem? We will discuss it in Chap. 3. Sect. 2.3 also gives some
hints.

30 We will discuss other more flexible techniques to stop EAs in Chap. 3.
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Step 2.2: Repeat the following operations until a new population with
popsize individuals has been generated. Select two individuals from the mat-
ing pool randomly without replacement to perform single-point crossover
with probability p., and perform bit-flip mutation for every gene of the off-
spring with probability pp,. Then insert the mutant into the new population.

Step 2.3: Evaluate the fitness value for every new individual in the
new population.

Step 2.4: Replace the current population with the new population.
gen = gen—+1.

Phase 3: Submitting the final popsize individuals as the results of the SGA.

For the problem described by Eq. 2.8 and Fig. 2.2, we use an SGA with popsize =
10, maxgen = 10, p. = 0.8, and py, = 0.013! and obtain the results illustrated in Fig.
2.8. The cross in Fig. 2.8 represents the final individuals.

35¢F ]

25¢ 1

0 . . . . .
-1 -0.5 0 0.5 1 1.5 2

Fig. 2.8 Final population of SGA

As can be seen from comparing Figs. 2.2 and 2.8, an SGA can find a point very
close to the global optimal solution in 10 x 10 = 100 samples over a solution land-
scape without any requirement of gradient information for such a not-so-easy prob-
lem, which could illustrate that SGA, with the help of selection, crossover, and mu-
tation, is an effective search method.

To demonstrate the evolving process of SGA, we can draw a graph with the
horizontal axis representing generation, gen, and the vertical axis representing the
best fitness values in one generation, fyes. For our implementation, the graph is

31 Why do we assign such a small p,?
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Fig. 2.9. The global optimal solution is f (1.85) = 3.85 and the SGA finds 3.8 at
generation 9.

3.8
fi)est 3.6
3.4

3.2

2.8
2.6

2.4

2.2 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

gen

Fig. 2.9 The evolving process of the best fitness value

As can be seen from Fig. 2.9, the randomly generated initial best fitness value
is close to 2.4 and it evolves to about 3.8 with only nine generations, which could
demonstrate the global search and local fine-tuning ability of the SGA. It is neces-
sary to mention two considerations for Fig. 2.9. The first thing is that connecting
the best values of different generations with direct lines is meaningless because the
points on the lines do not have any meaning. But we’d like to use this form to em-
phasize that EAs are evolutionary processes, even though they are implemented in
a discrete environment. The second thing is that after implementing and running
an SGA one time, drawing the results as in Fig. 2.8 and the evolving process as in
Fig. 2.9 is far from thoroughly evaluating the global and local search ability of an
algorithm. We will discuss this important issue, statistical performance evaluation,
in Chap. 3.

Figure 2.10 illustrates the number of papers indexed by the SCI on GAs

From Fig. 2.10 we can say that GA is becoming more and popular in recent
days.

).32

32 TS = (“genetic algorithm” OR “genetic algorithms™). The SCI index “TS” is for the search topic
in the title, the keywords, and the abstract.
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Fig. 2.10 Number of papers on GAs indexed by SCI

2.3 Evolution Strategy and Evolutionary Programming
2.3.1 Evolution Strategy

In designing an ES, Rechenberg and Schwefel use real numbers to represent alleles
of genes and make normal distribution mutation the most important exploration
technique over a solution landscape.

Let us take the simple example described by Eq. 2.8 and Fig. 2.2 again to illus-
trate the procedure of ES.

Suppose we have 1 individuals in the current population. For every individua
its chromosome is x, which is a real number in the range [—1,2]. We first randomly
select two of them, x; and x;, to do the crossover and generate one offspring x as

1’33

= X1 +x2
2

This crossover operator is called an intermediate crossover.3* There are other
options for crossover operators in ES. Because crossover is considered a minor ex-
ploring tool in ES by Rechenberg and Schwefel, we do not discuss it here. Real code
crossover operators will be discussed in Chap. 3.

We complete the crossover A times to generate A offspring (A is often larger
than u3%). For every offspring, we want to give a normal distribution disturbance on
every variable (the example has only one variable).

For a normal distribution N (5 , Gz) with mean & and standard deviation o, it can
be generated by N (&,02) = & + 0N (0,1), where N (0,1) is a standard normally
distributed random number with mean 0 and standard deviation 1. In MATLAB®,

(2.11)

33 Without any preference for fitter individuals.
3 Why?
35 So in the previous crossover, we need to sample parents with replacement.
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the randn function can generate N (0, 1) directly. For other programming environ-
ments, readers should refer to textbooks on probability for generating normally dis-
tributed random numbers from uniformly distributed random numbers [1].

In ES, we often want to make changes for every variable based on its current
value. So we only use o to represent the scale of mutation in ES.3 For the ith
variable x; of one offspring, execute

x; = x;+N; (0,6%) = x;+ GN; (0,1) (2.12)

where x;» is the mutant of x;.3” By using Eq. 2.12 for every gene of every offspring,
we can get new individuals. This mutation operator is called a normal mutation.
Then their fitness values can be calculated using the objective function. The standard
deviation o might be the same for all variables and it also might be different for
every variable, depending on the algorithm’s designer.

Then we combine p current individuals and A new individuals and then pick the
U best ones according to their fitness values to form new population. So the solution
process of ES can be illustrated as follows:

Solution Process of (L + A)-ES

Phase 1: Initialization.
Step 1.1: Assign the parameters for ES, such as A, i, and .
Step 1.2: Generate y uniformly distributed individuals randomly to
form the initial population and evaluate their fitness values. gen = 0.

Phase 2: Main loop. Repeat the following steps until gen > maxgen.

Step 2.1: Repeat the following operations until a new population with
A individuals has been generated. Randomly select two individuals with re-
placement to perform crossover, such as intermediate crossover (Eq. 2.11).
Then perform a mutation (Eq. 2.12) for every gene of the offspring. Then
insert the mutant into the new population.

Step 2.2: Calculate the fitness value for every new individual in the
new population.

Step 2.3: Combine u current and A new individuals and pick the u
best ones to form a new population. gen = gen + 1.

Phase 3: Submitting the final u individuals as the results of ES.

ES differs considerably from SGA and we will leave it to the reader to discover the
differences. Here we need to point out that difference in the replacement procedure.
A new population will certainly replace the old one in SGA, but the new population

36 What is the logical relationship between this sentence and the previous one?

37 Why do Rechenberg and Schwefel choose a normal distribution instead of a uniform distribu-
tion? What is their initial design idea behind N(0,1)?
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is selected from the union of A new individuals and u current individuals in ES.
Obviously, the replacement mechanism in ES conserves the best individual. Apart
from replacement, the coolest part of ES is perhaps its self-adaptive control of stan-
dard deviation o , i.e., coding o into the chromosomes. This will be discussed in
Chap. 3.

In the above solution process, y current individuals and A new individuals are
combined and the p best ones form a new population. Thus we call it (¢t +24)-ES. In
another type, (i, A)-ES, p current individuals are used to generate A new individ-
uals and the u best ones among the A new individuals form the new population.®®
There are also other types like (1 + 1)-ES, (1 +A)-ES, and (1, A)-ES.

2.3.2 Evolutionary Programming

Fogel used EP to solve the learning problem and used a finite state machine to
represent the chromosome, which causes some difficulties for solving optimization
problems with EP. In the 1990s, many researchers developed EP into an optimization
field and formed many types of EP. The most cited EP is listed as the following
solution process, where real numbers are used to represent variables.

Solution Process of One Type of EP Implementation

Phase 1: Initialization.
Step 1.1: Assign the parameters for EP, such as A, i, and .
Step 1.2: Generate y uniformly distributed individuals randomly to
form the initial population and evaluate their fitness values. gen = 0.

Phase 2: Main loop. Repeat the following steps until gen > maxgen.
Step 2.1: Repeat the following operations until a new population with
W individuals has been generated. Perform a mutation (Eq. 2.12) for every
gene of the individual to generate a new one.
Step 2.2: Calculate the fitness value for every new individual.
Step 2.3: Combine u current and p new individuals and pick the u
best ones to form a new population. gen = gen+ 1.

Phase 3: Submitting the final pt individuals as the results of EP.

Thus the above listed implementation of EP can be regarded as a (u + 1t )-ES without
Crossover.

38 SGA can be regarded as a (popsize, popsize)-ES if we only consider the replacement procedure.
Here we would like to raise an interesting but important question: Is (1 + A)-ES always better
than (i, A)-ES in optimization? The answer is no! In Chap. 3, we will introduce the dilemma of
exploration and exploitation and discuss the famous No Free Lunch Theorem. This question may
be revisited after reading these materials.
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Figure 2.11 illustrates the number of papers indexed by the SCI on ES and EP.%°
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Fig. 2.11 Number of papers indexed by SCI on ES and EP

From Fig. 2.11 we can say that ES and EP attract a similar level of attention.

2.4 Direction-based Search

All the aforesaid algorithms are random-based, i.e., generating initial points, ex-
ploring new points, selecting better points, etc. In this section, we will first in-
troduce a deterministic search method, simplex search, that can explore and ex-
ploit the solution space without the requirement for gradient information. Then two
stochastic direction-based search methods, scatter search and differential evolution,
are introduced. All of these algorithms use a specific direction, unlike SGA or ES
discussed above, for generating new solutions. Thus we call them direction-based
search methods.

2.4.1 Deterministic Direction-based Search

Methods that do not require gradient information to perform a search and sequen-
tially explore the solution space are called direct search methods. There are many
effective direct search methods, such as simplex search, pattern search, etc. All

39 TS = (“evolution strategies”) and TS = (“evolutionary programming”). The SCI index “TS” is
for the search topic in the title, the keywords, and the abstract.
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of them are based on the following philosophy. The methods maintain a group of
points. They utilize some sort of deterministic exploration methods to search the
objective space and almost always utilize a greedy method to update the maintained
points.

Some of them use direction information, which might be the improvement di-
rections, to search the objective space. Thus it might be very useful to embed these
directions into one’s evolutionary algorithm as either a local search method or an
exploration operator.

2.4.1.1 Simplex Search

Nelder and Mead introduced the most famous deterministic direction-based search
method, the simplex search, in 1965 [3]. Thus sometimes the simplex search is re-
ferred as the Nelder—Mead method. Do not confuse it with the simplex methods
used in linear programming. But these algorithms use the same concept of simplex,
which is a polytope with n+ 1 vertices in n dimensions: a line segment in one di-
mension, a triangle in 2-D, a tetrahedron in 3-D space, and so forth.40

In multidimensional spaces, the subtraction of two vectors means a new vector
starting at one vector and ending at the other, like (x; —x;) in Fig. 2.12. Vectors in
the space could be moved with their length and direction freely. So we often refer
to the subtraction of two vectors as a direction.

The addition of two vectors can be implemented in a triangular way, moving the
start of one vector to the end of the other to form an addition vector, like x3 + (x, —
x1) in Fig. 2.12. We often refer to the addition of two vectors as a point.

The expression x3 + (X, — X;) can be regarded as the destination of a moving
point that starts at x3 and has a length and direction of (x; —x;).

y
X2-X
o XsH(xexg)
X2 \»/ &
Fig. 2.12 Graphical meaning X
of the subtraction between 0 X3 X
two vectors >

In a direct search, generally we cannot obtain the gradient information so that
the idea of a step in the negative gradient direction for a minimum problem is im-
practical. But if the objectives of a group of solutions are available, we then know
which one is the best one (suppose it is B). For any other solution (suppose it is

40 A simplex can be considered the simplest set of points to make an effective search.
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C), its improvement direction is unambiguously C — B.*! This intuitive idea is the
foundation of many powerful direction-based search methods and EAs.

Now let us discuss the simplex search in the 2-D minimum optimization situa-
tion. There are three maintained points that are the vertices of a triangle, each with
an objective value. Let us rank and name them by Eq. 2.13, which means the first
point (B) will always be the best one, the second point (G) will always be the middle
one, and the third point (W) will always be the worst one.

f(xp) < f(xg) < f(xw) (2.13)

Point B is the best one in the simplex and point W is the worst one, which means
moving from W to B is a good search direction. Also moving from W to G is a good
search direction. So why not combine these two considerations and move from W
toward the centroid, gravity center, of B and G for a further step?

The gravity center of B and G is M. We think the direction from W to M is the
optimizing direction.

Xy = XG +XB
2

We start from point W and go in the good search direction (W—M) and extend

a further step to point R, which satisfies

(2.14)

XR = XM + (Xpm — Xw) (2.15)

The search discussed above is called a reflection procedure. W is reflected with
respect to M, which means a moving point starts at M and has a length and direction
of (xm — xw). Figure 2.13 illustrates the situation. Now B, G, and R constitute the
new simplex.

Fig. 2.13 Simplex search E

If f (xg) < f (xB), then the reflection improves the best points thus far and proves
our guess that the direction (W—M) is good. So why not extend it more? This is

41 Perhaps this direction is not the best or the fastest direction, but it is a workable one because B
is better than C.
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the expansion procedure, which means that we want to expand the simplex B-G-R
to B-G-E. That is, we search point E by

Xg = xXpm +2 (XM — Xw) (2.16)

If f(xg) < f(xB), then we are fully satisfied and make E, B, and G the current
simplex. If not, then the expansion procedure is not good enough, but we still have
good point R. So R, B, and G constitute the current simplex.

If f(xB) < f(xr) < f(xG), which means the reflection is acceptable. So B, R,
G constitutes the current simplex.

If f(xg) < f(xr), then the reflection does not find good points. But we still
believe that the direction (W—M) is correct. The too-large step is the cause of the
failure. So we shorten the step and make a contraction procedure, which means we
want to contract the simplex B-G-R to B-G-C. That is, we search point C by

xXc = xw + 0.5 (XM — Xw) 2.17)

If f(xc) < f(xw), then we accept the results and make B, G, and C the current
simplex.

If f(xw) < f(xc), this weakens our idea that the direction (W—M) is correct.
We reject it and do a shrink procedure, which means we want to shrink the simplex
based on point B. Then B, M, and S constitute the new simplex.

_ Xw+XB
2

For every new simplex, we need to assign B, G, W according to their objec-
tive values. Then the simplex search repeats reflection, expansion, contraction, and
shrink again and again in a very efficient and deterministic way. Vertices of the sim-
plex will move toward the optimal point (perhaps the local optimal solution) and the
simplex will become smaller and smaller. Stop criteria could be made based on the
time of function evaluation, the length of the edge, the improving rate of B, etc.

Dennis and Torczon modified the standard simplex search by a different reflec-
tion procedure [4]. Based on that, MATLAB® contains a direct search toolbox [5].

The simplex search is a group-based deterministic search method capable of ex-
ploring the objective space very fast, but sometimes becoming trapped in the local
optimal point. Thus many EAs use simplex as a local search method after mutation,
which can combine the global search ability of EAs and the local search ability of
the simplex search. In Chap. 3, we will discuss it again as part of memetic algo-
rithms.

Xs (2.18)
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2.4.2 Random Direction-based Search

2.4.2.1 Scatter Search

Although the simplex search is effective, it is more like a technique than an algo-
rithm when facing real-world complex problems. Glover, Laguna, and Marti include
the elitism mechanism in the simplex search and suggest an ES-like algorithm: the
scatter search [6, 7].

The basic idea of the scatter search is the same as that of the simplex search.
Given a group of points, the algorithm somehow finds new points, accepts the better
ones, and discards the worse ones.

The scatter search has four main steps, illustrated by Fig. 2.14. The reference set
(RS) contains b “best” solutions, b of which are good with respect to their objective
value (RefSet;) and b, of which are good with respect to diversity (far away from
RefSet| points) (RefSety) (b = by + b»).

The initialization procedure of a scatter search randomly generates solutions in
such a way that the more individuals are generated in one area, the less opportunity
this area will have to generate new ones.** In this way, the initial solutions of the
scatter search can maintain maximum diversity. After the initialization procedure,
the scatter search makes use of the improvement procedure, the simplex search, to
make the initial solutions better. After that, RefSet; is selected from the improve-
ment results according to the objective quality, and RefSet, is selected from the
improvement results according to the smallest distance to RefSet; of the remaining
improved individuals (the larger the better). Then the main loop starts. We use RS
to generate subsets. The solutions in the subsets are combined in various ways to
get Psize new solutions. Then the solutions are improved by some local search ap-
proaches (such as simplex search) to become better solutions. Finally, the improved
solutions will replace some solutions of RS if they are good with respect to objective
quality or diversity. The main loop is illustrated in Fig. 2.14.

generate combine improve

—_ > > . .| Better
Subsets Solutions| > )
set solutions

Reference

update

Fig. 2.14 Scatter search

There are four types of subsets to be generated in a scatter search:

1. All two-element subsets containing all pairwise combinations of the b reference
set solutions.

42 Readers are encouraged to reread the second method for the initialization of SGA.
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2. Three-element subsets derived from two-element subsets by adding the best so-
lution not in this subset (measured by objective value).

3. Four-element subsets derived from three-element subsets by adding the best so-
lution not in this subset (measured by objective value).

4. Subsets containing the best i elements (measured by objective value), for i =5 to
b.

In this way, subsets regard the objective value as the most important factor but
still contain the diversity factor.

There are many types of combinations for generating new solutions from subsets.
Let us give an example for a two-element subset: x; and x;. We can first find a
vector starting at x| and pointing to x as d = *25~L(the length of the vector is half
the distance between x; and x;). Glover, Laguna, and Marti suggested three types
of re-combination: (1) Xpew = Xj — rd, (2) Xpew = X| + d, and (3) Xpew = X2 + rd,®
where r ~ U (0, 1). Every subset can generate several new solutions according to the
composition of the subset.*

e Both x; and x, belong to Re fSet;, which means that they are all good solutions.
Four new solutions are generated by types 1 and 3 once and type 2 twice.

e Only one of x; and x, belongs to Re fSet|. Three new solutions are generated by
types 1, 2, and 3 once.

e Neither x; nor x; belongs to Re fSet;, which means that they are all uncrowded
solutions. Two new solutions are generated by type 2 once and type 1 or 3 once.

As has been stated, a simplex search is used by Glover, Laguna, and Marti to
improve the new solutions.

If an improved solution’s objective value is better than that of the worst one in
Re fSety, it will replace the worst one without replacement (delete it from the set of
improved solutions). If an improved solution’s distance to the closest RS solutions
is larger than that of most crowded solutions in RefSet,, it will replace the most
crowded one without replacement.

If RS does not change in the updating procedure and the stop criterion has not
been satisfied, then the initialization procedure will be started to construct a new
RefSety.

Glover, Laguna, and Marti suggested that Psize = max(100,5 % b). We can con-
sider the scatter search as a special kind of (b + Psize)-ES. But in the updating
(replacement) phase, the objective value is not the only criterion.

2.4.2.2 Differential Evolution

Differential evolution (DE) is also a kind of direction-based search, suggested by
Storn and Price in 1997 [8, 9]. DE also maintains a population with Np individ-

43 Readers may find out the geometric explanation for these formulae using Fig. 2.12.

44 What is the intuitive idea of Glover, Laguna, and Marti for generating new solutions? This is the
origin of the name “scatter.”
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uals and has mutation, crossover operators, and a selection process. So DE could
be regarded as a real parameter coded version of GA.*> We suppose there are n
dimensions in the decision space so that individual i of DE can be expressed as

X; = (x[,l sXi2y 7xi,n) (219)

where x; ; €R, i=1,2,--- ,Np, j=1,2,--- ,n.

The main difference between DE, SGA, and ES lies in the mutation operator,
where the direction is used to make the perturbation from the current individual.

Let us start with individual i. Unlike the random step size of mutation along each
dimension of ES, DE uses the directional information from the current population.
The standard mutation operator of DE needs three randomly selected different indi-
viduals from the current population (r| # ry # r3 # X;) for each individual to form
a simplex like triangle. For x;, its mutants v; is*0

vi=r|+F(r;—r3) (2.20)

where F is a positive real number (seldom larger than one) that controls the strength
of the direction. Differential (r, —r3) forms a direction that is the origin of DE and
the reason it is a direction-based search. Equation 2.20 means the mutant of x; starts
at r and has direction and length of F (r, —r3).

After mutation, DE utilizes a uniform crossover operator“7 to combine the in-
formation of the parents x; and v; into the offspring u;. We need to have at least
one variable of v;, so a random integer number ji,nq in the range [1,n] should be
generated before crossover. The offspring u; is generated by Eq. 2.21:

ui = { vij rand <Crorj= jrfmd @21
Xi otherwise

where Cr € [0,1] is a user-defined parameter controlling the effect of crossover,
rand ~ U(0,1). Equation 2.21 means that the offspring u; has the possibility of Cr
to select variables from mutant v; and ensures at least the j,hqth variable will be
picked from v;.

Then u;, called a trial vector, competes with x;, called a target vector, for survival
in the next generation in a steady way,*® which means

- {40 MO

Mutation, crossover, and selection will be carried out for Np individuals in one
generation. The initialization and the stop criteria might be the same with SGA.

”

45 So we generally do not differentiate “individuals” between “points,” “solutions,” and “vectors.”
46 What is the geometric explanation of Eq. 2.20?
47 Uniform crossover will be discussed in detail in Chap. 3.

48 DE treats every individual with mutation, crossover, and a replacement procedure, which is a
steady state EA, unlike the generational approach in SGA. These two terms will be discussed in
Chap. 3.
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Even though standard DE utilizes a random direction to mutate individuals, the
direction may point to the promising area during the evolving process. Apart from
that, more effectively assigning r| # r; # r3 # X; may promote evolution toward the
designated area, which will be discussed in later chapters. DE is a kind of simple
but powerful EA that has been attracting increasing research interests. Figure 2.15
illustrates the number of papers indexed by the SCI on DE.** Mathematica® has
already added DE to its numerical optimizer package.
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Fig. 2.15 Number of papers indexed by SCI on DE

All the algorithms introduced in this section may be regarded as EAs because
they all maintain a group of individuals and have some kind of selection scheme
and variation operators.

2.5 Summary

After providing the necessary mathematical and programming backgrounds in Sect.
2.1, we introduced SGA in detail using a not-so-easy problem to demonstrate the
strength of EAs, and we explained the implementation key points for programming
EAs. After that, five algorithms, including ES, EP, simplex search, scatter search,
and DE, were introduced. We do not want readers to remember every step of these
algorithms. But the intuitive ideas of these algorithms are of utmost importance
because they might be the effective search techniques of your algorithms.
Observing Fig. 2.9 carefully, you might notice that SGA can improve the quality
of the best fitness value very fast, and there is a saturation like character thereafter.
It is almost always correct with respect to every EA that about 80% of its initial
improvements from randomly generated initial individuals are done in about 20%

49 TS = (“differential evolution”). The SCI index “TS” is for the search topic in the title, the
keywords, and the abstract.
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of its evolving process and about 20% of its final improvements are made in about
80% of its evolving process.’” In Chap. 3, we will introduce many ways to improve
the final search efficiency.

Good metaheuristics, such as GA, ES, EP, scatter search, DE, etc., need at least
three mechanisms to accomplish the search requirement satisfactorily.

e Global search mechanism. Good algorithms need a global search mechanism to
find the domain of attraction of global optimum.

e Convergence mechanism. Good algorithms need a convergence mechanism to
promote the evolution of individuals toward the best ones.

o Up-hill mechanism for minimum optimization problems.’! Good algorithms
need an up-hill mechanism to accept no-so-good individuals so that the popula-
tion can escape the domain of attraction of the local optimum where the current
best individual resides.

For SGA, its global search mechanism is randomly generated initial individu-
als and crossover and mutation operators; its convergence mechanism is RWS; its
up-hill mechanism is also RWS and maintaining a group of individuals in the pop-
ulation. Readers are strongly suggested to find out these mechanisms for every EA
we introduce hereafter.

Before concluding this chapter, we need to mention two viewpoints. The prereq-
uisite for designing an effective algorithm for real-world problems is to grasp the
innovative elements of standard EAs. The only way to grasp, instead of memorizing
them, is to read actively. Apart from that, if an powerful algorithm takes advantage
of various effective search techniques introduced in this chapter and the later ones,
it is sometimes hard to call it a GA, ES, EP, DE, or other specific algorithm.

You need to grasp the programming details of SGA and understand the intuitive
ideas behind other introduced EAs.

Suggestions for Further Reading

This chapter deals with the basics of EAs, so the suggested reading list only includes
chapters of the textbooks.

For SGA, ES, and EP, we encourage interested readers to read Chaps. 2-5 of
Eiben and Smith’s textbook [10] and Chaps. 8—10 of Béck et al.’s textbook [11].
Haupt and Haupt also give good introductions for binary GA in Chap. 2 of their
second version of the textbook published in 2004 [12].

For DE, we recommend Chap. 2 of Price et al.’s textbook [9] and Chap. 1 of
Feoktistov’s textbook [13].

We introduced several EAs in this chapter. Readers interested in their taxonomy
are encouraged to read paper by Calégari et al. [14].

30 This is an example of the 80/20 rule.
31 Or down-hill mechanism for maximum optimization problem.
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Exercises and Potential Research Projects

2.1. Implement an SGA from scratch in any programming environment to repeat
the solution process of the problem illustrated by Eq. 2.8. We insist on encouraging
readers to implement their SGA without the help of any source codes to promote
an in-depth understanding of EAs. MATLAB® is suggested for implementing the
SGA. Comparisons between different parameter settings are encouraged.

2.2. In RWS, is the selection with replacement or without replacement?

2.3. Why do we need to define the crossover rate p. and the mutation rate py,? What
will happen if p. = p. = 1 in an SGA?

2.4. Summarize the difference between SGA, ES, and EP in a table.
2.5. What are the meanings of (1+ 1)-ES, (1+A)-ES, and (1, 1)-ES?

2.6. Find out the global search mechanism, the convergence mechanism, and the
up-hill mechanism of ES.

2.7. Find out the global search mechanism, the convergence mechanism, and the
up-hill mechanism of scatter search.

2.8. Why do we use the centroid of B and G as the reflection center in simplex
search? Is there any other method? For example, if we think B should have twice as
much influence on the reflection center as G, then what is the expression for M?

2.9. Read [4] and summarize its simplex search on a single sheet of paper.
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