
Chapter 2

State Feedback Control

Abstract In this chapter we explore the advantages of feedback control assuming
that all the state variables are measurable. This is not a realistic assumption since the
rotor variables are usually not measured but it allows us to explore fully the poten-
tiality of feedback control. In Section 2.1 we establish that the feedforward control
does not guarantee the asymptotic stability of the desired operating point for every
initial condition and for every parameter value: the load torque in particular is a crit-
ical parameter. Hence, feedback control is needed to achieve the asymptotic stability
of the desired operating condition, for any load torque and for any initial condition.
Six feedback control algorithms are then presented. The most complex is the dy-
namic feedback linearizing control presented in the last Section 2.6, which imposes
an arbitrary linear dynamic behavior to the controlled motor. The input–output feed-
back linearizing control is presented in Section 2.4: it achieves arbitrary and decou-
pled linear dynamics for the two tracking errors of rotor speed and flux modulus; it is
generalized in Section 2.5 by an adaptive input–output feedback linearizing control
which identifies both the load torque and the rotor resistance in realistic operating
conditions. The identification of these two parameters allows computation online of
the optimal value of the rotor flux modulus which minimizes the power losses. All
three feedback linearizing control schemes have excellent performances provided
that the initial errors are sufficiently small: this is a significant limitation which is
removed by the global control with arbitrary rate of convergence presented in Sec-
tion 2.7. It is the evolution of the historically important direct field-oriented control
which is presented in Section 2.2 and its variant, the indirect field-oriented con-
trol, which is discussed in Section 2.3 and can operate from any initial conditions.
The field-oriented controls constitute a modification of the feedforward control dis-
cussed in Section 2.1 and contain the key steps to design the global control with
arbitrary rate of convergence, which can operate from any motor initial conditions.
The indirect field-oriented control is tested by experiments in Section 2.8 and its
robustness with respect to rotor resistance variations is explored.
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64 2 State Feedback Control

2.1 Stability Analysis of Feedforward Control

In this section we assume that the left inverse control (1.74) is applied as a feed-
forward control to the induction motor fixed frame model (1.26) and we study the
case in which the initial conditions are not compatible in (1.74). We have seen in
the previous chapter that if the initial conditions of the induction motor and of the
inverse system are compatible and the inverse feedforward control (1.74) is applied,
then the induction motor satisfies the equations

dω∗

dt
= μψ∗i∗sq −

TL

J
dψ∗

dt
= −αψ∗ +αMi∗sd

0 = −(ω∗
0 −ω∗)ψ∗ +αMi∗sq

di∗sd
dt

= −γi∗sd +ω∗
0 i∗sq +βαψ∗ +

u∗sd
σ

di∗sq

dt
= −γi∗sq −ω∗

0 i∗sd −βω∗ψ∗ +
u∗sq

σ
(2.1)

in which the (d,q) reference rotating frame rotates at speed

dε∗0
dt

= ω∗
0 = ω∗ +

αMi∗sq

ψ∗ = ω∗ +ω∗
s (2.2)

and it is identified by the angle ε∗0 (t) = ρ∗(t) = ρ(t) in the fixed (a,b) frame. The
crucial question we are going to answer in this section is the following: what hap-
pens when the initial conditions of the inverse control (1.74) are not compatible
and in particular when ρ∗(0) �= arctan ψrb(0)

ψra(0) , which is very likely to happen since
measurements of (ψra,ψrb) are typically not available? In other words we are go-
ing to explore the stability and the attractivity (see Appendix A) of the steady-state
solution (ω∗,ψ∗,0, i∗sd , i

∗
sq). Since the rotor flux angle ρ no longer coincides with

the angle ρ∗, consider the (d,q) frame identified by the angle ε∗0 . In the considered
(d,q) frame the induction motor satisfies (1.31) with ω∗

0 in place of ω0. If we now
subtract (2.1) from (1.31) we obtain the tracking error dynamics

d(ω−ω∗)
dt

= μ
[
(ψrd −ψ∗) i∗sq −ψrqi∗sd

]
+μψ∗ (isq − i∗sq

)
+μ
[
(ψrd −ψ∗)

(
isq − i∗sq

)−ψrq (isd − i∗sd)
]

d(ψrd −ψ∗)
dt

= −α (ψrd −ψ∗)− (ω−ω∗)ψrq

+ω∗
s ψrq +αM (isd − i∗sd)

dψrq

dt
= −αψrq +(ω−ω∗)(ψrd −ψ∗)

−ω∗
s (ψrd −ψ∗)+(ω−ω∗)ψ∗ +αM

(
isq − i∗sq

)
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d
(
isd − i∗sd

)
dt

= −γ (isd − i∗sd)+ω∗
0
(
isq − i∗sq

)
+βα (ψrd −ψ∗)

+βω∗ψrq +β (ω−ω∗)ψrq

d
(
isq − i∗sq

)
dt

= −γ (isq − i∗sq
)−ω∗

0 (isd − i∗sd)+βαψrq

−βω∗ (ψrd −ψ∗)−β (ω−ω∗)(ψrd −ψ∗)
−β (ω−ω∗)ψ∗ (2.3)

where we recall that

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
ω̇∗

μψ∗ +
TL

Jμψ∗ (2.4)

and ω∗
s is defined in (2.2). The origin

[
(ω−ω∗) ,(ψrd −ψ∗) ,ψrq,(isd − i∗sd) ,

(
isq − i∗sq

)]T = 0 ,

which corresponds to zero tracking errors, is clearly an equilibrium point for the
tracking error dynamics (2.3): this is the case of compatible initial conditions in
which

ω(0) = ω∗(0)
ψra(0) = ψ∗(0)cosρ∗(0)
ψrb(0) = ψ∗(0)sinρ∗(0)[

isa(0)
isb(0)

]
=
[

cosρ∗(0) −sinρ∗(0)
sinρ∗(0) cosρ∗(0)

][ ψ∗(0)
M + ψ̇∗(0)

αM
ω̇∗(0)
μψ∗(0) + TL

Jμψ∗(0)

]

ρ∗(0) = ρ(0) .

In order to have a more compact notation, let us rewrite the tracking error dynamics
in terms of the tracking errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

as

dω̃
dt

= μ i∗sqψ̃rd −μ i∗sdψ̃rq +μψ∗ ĩsq +μψ̃rd ĩsq −μψ̃rqĩsd
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dψ̃rd

dt
= −αψ̃rd +ω∗

s ψ̃rq − ω̃ψ̃rq +αMĩsd

dψ̃rq

dt
= −αψ̃rq −ω∗

s ψ̃rd + ω̃ψ̃rd +αMĩsq +ψ∗ω̃

dĩsd

dt
= −γ ĩsd +ω∗

0 ĩsq +βαψ̃rd +βω∗ψ̃rq +βω̃ψ̃rq

dĩsq

dt
= −γ ĩsq −ω∗

0 ĩsd +βαψ̃rq −βω∗ψ̃rd −βω̃ψ̃rd −βψ∗ω̃ . (2.5)

Many questions are naturally posed on the tracking error dynamics (2.5): is the ori-
gin stable, asymptotically stable, exponentially stable, globally asymptotically sta-
ble, globally exponentially stable? How large is the region of attraction of the origin
and what is the influence of critical parameters, such as rotor resistance Rr and load
torque TL, on the region of attraction and on the dynamic behavior? These questions
have no simple answers since the system (2.5) is nonlinear and time-varying when
the reference signals (ω∗,ψ∗) are time-varying. On the other hand, these questions
are extremely important since, for instance, if the origin were globally exponentially
stable with satisfactory transient properties and robustness with respect to parameter
variations then no feedback control would be needed and the feedforward control
(1.74) would achieve the tracking of (ω∗,ψ∗) from any initial condition. To examine
one of those questions, consider the error system dynamics (2.5) and compute the
equilibrium points for (2.5) in the case of constant references (ω∗,ψ∗) and TL �= 0.
In order to use a more compact notation and simplify the analysis, define the track-
ing error variables

zd = ĩsd +βψ̃rd

zq = ĩsq +βψ̃rq

so that the error system (2.5) in the case of constant references (ω∗,ψ∗) may be
rewritten in the simpler form

˙̃ω = Aψ̃rd −Bψ̃rq +Czq +μψ̃rdzq −μψ̃rqzd

˙̃ψrd = −Dψ̃rd − ω̃ψ̃rq +Eψ̃rq +αMzd

˙̃ψrq = −Dψ̃rq + ω̃ψ̃rd −Eψ̃rd +ψ∗ω̃+αMzq

żd = Fzq − kzd + kβψ̃rd

żq = −Fzd − kzq + kβψ̃rq (2.6)

in which the following reparameterization is used

A =
TL

Jψ∗ , B = μψ∗
(

1
M

+β
)

,

C = μψ∗, D = α+αMβ ,

E =
αMTL

μJψ∗2 , F = ω∗ +E, k =
Rs

σ
.
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By direct computation it is possible to show that there exist constant references
(ω∗,ψ∗) and TL �= 0, which are within physical bounds such that the tracking error
dynamics (2.6) have an explicitly computable additional equilibrium point besides
the origin whose first component

ω̃e =
(
βkCF −βkψ∗μF − k2A−AF2)−1

[
αβ 2MCk2 −αβMBk2

−αβMAFk−βCDk2 +βkCFE − k2AE + k2BD+BF2D−AF2E
]

is nonzero. Hence, for such references and load torque values, the origin is not a
globally attractive equilibrium point for (2.6) and rotor speed tracking cannot be
achieved for any motor initial condition. Furthermore, consider the linear approxi-
mation about the origin of system (2.5):

dω̃
dt

= μi∗sqψ̃rd −μ i∗sdψ̃rq +μψ∗ ĩsq

dψ̃rd

dt
= −αψ̃rd +ω∗

s ψ̃rq +αMĩsd

dψ̃rq

dt
= ψ∗ω̃−ω∗

s ψ̃rd −αψ̃rq +αMĩsq

dĩsd

dt
= βαψ̃rd +βω∗ψ̃rq − γ ĩsd +(ω∗ +ω∗

s )ĩsq

dĩsq

dt
= −βψ∗ω̃−βω∗ψ̃rd +βαψ̃rq − (ω∗ +ω∗

s )ĩsd − γ ĩsq . (2.7)

According to the linear approximation Theorem A.7 in Appendix A, if the load
torque satisfies the inequality

T 2
L ≥ (1+Mβ )2ψ∗4

L2
r

then the origin is an unstable equilibrium point for the error system (2.5). Recall that
in the analysis of the torque–speed characteristic curve in Section 1.3 we observed in
Figures 1.5 and 1.6 that unstable operating conditions at low rotor speed correspond
to low rotor flux modulus and high load torques.

In conclusion, there exist constant references (ω∗,ψ∗) and TL �= 0 such that
the feedforward control (1.74), specialized to the case of constant rotor speed
and flux modulus references (see Figure 2.1 for current-fed motors),[

u∗sa
u∗sb

]
=
[

cosρ∗ −sinρ∗
sinρ∗ cosρ∗

][
u∗sd
u∗sq

]

u∗sd = σ

[
Rsψ∗

σM
− ω∗TL

μJψ∗ −
αM
ψ∗

(
TL

Jμψ∗

)2
]
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Fig. 2.1 Feedforward control for current-fed motors (constant references ω∗,ψ∗)

u∗sq = σ
[
γTL

Jμψ∗ +
ω∗ψ∗

M
+
αTL

Jμψ∗ +βω∗ψ∗
]

ρ̇∗ = ω∗ +
αMTL

μJψ∗2 (2.8)

depending on the reference signals (ω∗,ψ∗), on the initial condition ρ∗(0),
and on the machine parameters M, Rr, Lr, J, Rs, Ls, does not guarantee ro-
tor speed tracking for any motor initial condition. Furthermore, the origin of
the error system (2.5), which implies zero tracking error, is unstable if the

inequality |TL| ≥ (1+Mβ )ψ∗2

Lr
is satisfied.

Illustrative Simulations

We tested the feedforward control (2.8) by simulations for the three-phase sin-
gle pole pair 0.6-kW induction motor whose parameters have been reported in
Chapter 1. All the motor initial conditions have been set equal to zero except for
ψra(0) = ψrb(0) = 0.1Wb. The references for the speed and flux modulus along
with the applied load torque are reported in Figures 2.2–2.4. The rotor flux modulus
reference signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
value 100rad/s; at t = 1.5s the reference for the flux modulus is reduced to 0.5Wb.
A 5.8-Nm load torque is applied to the motor and then is reduced to 4.8Nm. Fig-
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ures 2.3 and 2.4 show the time histories of rotor speed and flux modulus along with
the corresponding tracking errors: the rotor speed and flux modulus are regulated
to their corresponding references as long as the load torque satisfies the inequality
TL < ψ∗2(1+Mβ )

Lr
, while rotor speed and rotor flux modulus regulation is not achieved

when the load torque is greater than ψ∗2(1+Mβ )
Lr

. In fact, for a load torque TL = 4.8Nm
and a constant rotor flux reference ψ∗ = 0.5Wb, the origin of the error system (2.5)
is unstable while the computed additional equilibrium point for (2.5) is exponen-
tially stable. Finally, the stator currents and voltages profiles, which are within the
physical saturation limits, are reported in Figures 2.5 and 2.6.

Fig. 2.2 Feedforward control: applied load torque TL

Fig. 2.3 Feedforward control: rotor speed ω and its reference ω∗; rotor speed tracking error
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Fig. 2.4 Feedforward control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗; rotor flux

modulus tracking error

Fig. 2.5 Feedforward control: stator current vector (a,b)-components

A second simulation is performed in order to illustrate, in the particular case in
which the origin of the error system (2.5) is exponentially stable according to the
linear approximation Theorem A.7 in Appendix A, the effect of uncertainties in both
load torque and rotor resistance. All motor initial conditions have been set equal to
zero except for ψra(0) = ψrb(0) = 0.1Wb. A 5.8-Nm load torque is applied to the
motor and is reduced to 0.5Nm as shown in Figure 2.7. The references for the speed
and flux modulus are reported in Figures 2.8 and 2.9. The rotor flux modulus ref-
erence signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
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Fig. 2.6 Feedforward control: stator voltage vector (a,b)-components

value 100rad/s; at t = 1.5s the reference for the flux modulus is then reduced to
0.5Wb. The value of the rotor resistance used by the feedforward control is 50%
greater than the true value Rr = 3.3Ω while only a 0.2-Nm load torque is compen-
sated by the controller for t ≥ 1s (see Figure 2.7). Figures 2.8 and 2.9 show the time
histories of rotor speed and flux modulus along with the corresponding tracking
errors: note that steady-state errors appear as expected. Finally, the stator currents
and voltages profiles, which are within the physical saturation limits, are reported in
Figures 2.10 and 2.11.

Fig. 2.7 Feedforward control with parameter uncertainties: applied load torque TL and compen-
sated load torque
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Fig. 2.8 Feedforward control with parameter uncertainties: rotor speed ω and its reference ω∗;
rotor speed tracking error

Fig. 2.9 Feedforward control with parameter uncertainties: rotor flux modulus
√
ψ2

ra +ψ2
rb and its

reference ψ∗; rotor flux modulus tracking error

In summary, we have shown that the feedforward control (2.8), which is required
to keep the motor at constant speed ω∗ with a desired constant flux modulus ψ∗,
does not guarantee the regulation to ω∗ for any motor initial condition and may
yield unstable steady-state operating conditions depending on load torque TL, mo-
tor parameters, and desired flux modulus ψ∗, even when exact parameter values are
used in (2.8). On the other hand, if the values of the critical parameters Rr and TL
used in (2.8) do not coincide with the corresponding actual values then the simu-
lations show that steady-state tracking errors appear. Feedback is then required to
guarantee asymptotically stable operating conditions for any initial condition and,
at the same time, robustness with respect to uncertainties in critical motor parame-
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Fig. 2.10 Feedforward control with parameter uncertainties: stator current vector (a,b)-
components

Fig. 2.11 Feedforward control with parameter uncertainties: stator voltage vector (a,b)-
components

ters such as rotor resistance and load torque. This goal will be achieved in the next
sections.

2.2 Direct Field-oriented Control

The purpose of this section is to illustrate the benefits of feedback control. Consider
the reduced third-order model in the (d,q) frame rotating at rotor flux speed of
rotation ρ̇ and identified by the rotor flux angle ρ (see (1.39))
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dω
dt

= μψrdisq − TL

J
dψrd

dt
= −αψrd +αMisd

dρ
dt

= ω+
αMisq

ψrd
(2.9)

in which the pair (isd , isq) in (1.41) is viewed as the control input vector, under the
assumption that the actual physical inputs (usd ,usq) in (1.42) can be designed to
track very quickly any desired stator current pair (isd , isq). The currents (isd , isq),
which are related to the stator currents (isa, isb) in the fixed (a,b) frame attached to
the stator by the nonsingular transformation (recall (1.30) with ε0 = ρ and (1.37),
(1.38))

cosρ =
ψra√
ψ2

ra +ψ2
rb

sinρ =
ψrb√
ψ2

ra +ψ2
rb[

isa
isb

]
=
[

cosρ −sinρ
sinρ cosρ

][
isd
isq

]
(2.10)

are to be designed to track the desired signals (ω∗,ψ∗).
The structure of system (2.9) in the rotating frame is very suitable for multivari-

able feedback control design as the field-oriented control strategy shows. The flux
modulus dynamics are linear and can be independently controlled by isd while, when
the flux modulus ψrd coincides with its reference ψ∗, the rotor speed dynamics

dω
dt

= μψ∗isq − TL

J
(2.11)

are also linear with respect to isq and can be independently controlled by isq. Since
the unforced direct flux ψrd dynamics

dψrd

dt
= −αψrd (2.12)

are asymptotically stable (α > 0) when isd = 0, the control input isd can be designed
as the following feedforward signal (recall (1.67))

isd =
ψ∗

M
+
ψ̇∗

αM
(2.13)

which, substituted in (2.9), gives (recall that ψ̃rd = ψrd −ψ∗)

dψ̃rd

dt
= −αψ̃rd . (2.14)
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On the other hand, from the first equation in (2.9), the speed error dynamics are
(recall that ω̃ = ω−ω∗)

dω̃
dt

= μψrdisq − TL

J
− ω̇∗

= μψ∗isq − TL

J
+μψ̃rdisq − ω̇∗ . (2.15)

Define the control for isq as (kω is a positive control parameter)

isq =
1
μψ∗

[
−kωω̃+ ω̇∗ +

TL

J

]
(2.16)

and substitute it into the first equation in (2.9) or, equivalently, in (2.15) so that

dω̃
dt

= −kωω̃+μψ̃rdisq (2.17)

in which ψ̃rd(t), according to (2.14), is an exponentially decaying signal for any
ψrd(0). According to (2.16), (2.17) may be rewritten as

dω̃
dt

= −kω

[
1+

ψ̃rd

ψ∗

]
ω̃+

ψ̃rd

ψ∗

(
ω̇∗ +

TL

J

)
. (2.18)

On the basis of (2.14) and (2.18), we conclude that ω̃(t) is bounded in the time
interval [0,t∗], with t∗ any positive real. On the other hand, according to (2.14), for
any initial condition ψrd(0) and any positive real η < 1 there exists t̃∗ ≥ 0 such that,
for all t ≥ t̃∗, ∣∣∣∣ ψ̃rd(t)

ψ∗(t)

∣∣∣∣≤ 1−η .

Therefore, according to (2.18), ω̃(t) is an exponentially decaying signal for any
initial condition ω(0). Note that in order to avoid the singularities in the controller

at ψrd =
√
ψ2

ra +ψ2
rb = 0 which appear in (2.10), according to (2.14) ψrd(0) must

be greater than zero so that ψrd(t) > 0 for all t ≥ 0.

In conclusion: the direct field-oriented control (see Figure 2.12) is defined as[
isa
isb

]
=
[

cosρ −sinρ
sinρ cosρ

][
isd
isq

]

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
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Fig. 2.12 Direct field-oriented control for current-fed motors (constant references ω∗,ψ∗)

cosρ =
ψra√
ψ2

ra +ψ2
rb

sinρ =
ψrb√
ψ2

ra +ψ2
rb

; (2.19)

it is a static nonlinear feedback control algorithm which depends on the
measurements of the state variables (ω,ψra,ψrb), on the reference signals
(ω∗,ψ∗), on the positive control parameter kω , on the load torque TL, and on
the machine parameters M,Rr,Lr,J, since μ = M

JLr
and α = Rr

Lr
; it guarantees

that, for any initial condition of the current-fed reduced order motor model
(2.9) such that ψrd(0) > 0, the rotor speed and rotor flux modulus tracking
errors decay exponentially to zero.
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Remarks

1. The name direct field-oriented control is due to the fact that the stator current vec-
tor (isa, isb) rotates at the same speed ρ̇ at which the rotor flux vector (ψra,ψrb)
rotates, i.e. it follows the orientation of the flux vector. The quadrature axis com-
ponent isq of the stator current vector is responsible, according to (2.16), for the
rotor speed tracking and depends on the load torque TL, while the direct axis
component isd of the stator current vector is responsible, according to (2.13), for
the tracking of the rotor flux modulus.

2. The direct field-oriented control (2.19) is a static state feedback control which
generates bounded currents (isa, isb) for every state value (ω,ψrd ,ρ); it is not
well defined at ψrd = 0 where (2.9) is no longer an equivalent description of the
fixed frame model (1.26).

3. The measurements of (ψra,ψrb) are required; the critical parameter Rr, which
appears in isd through α = Rr

Lr
when the reference ψ∗ is not constant, is required

only when the reference ψ∗ is time-varying; if ψ∗ is constant the direct field-
oriented control does not depend on Rr.

4. If the flux modulus and the rotor speed are constant and equal to the desired
values (ω∗,ψ∗) then the rotor flux rotates at constant speed w = (ω∗ +ωs), with
ωs = αMTL

μψ∗2 , and the induction motor is driven by the sinusoidal currents obtained
from (2.19):

[
isa
isb

]
=
[

cos(ρ(0)+wt) −sin(ρ(0)+wt)
sin(ρ(0)+wt) cos(ρ(0)+wt)

][ ψ∗
M
TL

Jμψ∗

]
.

5. The direct field-oriented control (2.19) achieves asymptotic input–output feed-
back linearization: according to (2.14), the closed-loop dynamics for (ψrd −ψ∗)
are linear with a time constant equal to α−1 = LrR−1

r depending on the machine
parameters; according to (2.17), once ψrd tends to its reference ψ∗, the closed-
loop dynamics for ω̃ tend to be linear with arbitrary time constant k−1

ω . During
the transient, the nonlinear term Jμψrdisq, which represents the electromagnetic
torque Te in the first equation in (2.9), makes the first two equations in (2.9) still
nonlinear and coupled: for this reason the speed transients may be unsatisfactory.

6. The direct field-oriented control (2.19) can be simply modified by replacing ψrd
with its reference ψ∗ in the dynamic equation which generates the angle of rota-
tion of the (d,q) reference frame, so that the indirect field-oriented control which
will be discussed in the next section (ε0(0) is an arbitrary initial condition)[

isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
isd
isq

]
dε0

dt
= ω0 = ω+

αMisq

ψ∗

isd =
ψ∗

M
+
ψ̇∗

αM
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isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.20)

is obtained. Note that (2.20) is always well defined even at ψrd = 0 where (2.19)
is, on the contrary, not well defined. Furthermore, (2.20) does not require the
measurement of rotor fluxes (ψra,ψrb) but only the measurement of ω while ε0
no longer coincides with the rotor flux angle ρ .

7. The direct field-oriented control (2.19) can be modified to obtain input–output
feedback linearization (and not only asymptotic input–output feedback lineariza-
tion) by using ψrd in place of ψ∗ in the isq espression and by adding a feedback
term in the isd espression in (2.19) as follows:[

isa
isb

]
=
[

cosρ −sinρ
sinρ cosρ

][
isd
isq

]

isd =
ψ∗

M
+
ψ̇∗

αM
− kψ (ψrd −ψ∗)

αM

isq =
1
μψrd

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
ψrd = ψra cosρ+ψrb sinρ

cosρ =
ψra√
ψ2

ra +ψ2
rb

sinρ =
ψrb√
ψ2

ra +ψ2
rb

; (2.21)

substituting (2.21) in (2.9) we have for the rotor speed and flux modulus tracking
errors

dω̃
dt

= −kωω̃

dψ̃rd

dt
= −(α+ kψ

)
ψ̃rd (2.22)

which clarifies that the dynamics for the speed and flux modulus tracking er-
rors are decoupled and linear with arbitrary time constants k−1

ω and
(
α+ kψ

)−1.
Note, however, that exact input–output decoupling and linearization have been
achieved by the controller (2.21) at the expense of a singularity at ψrd = 0 which,
in contrast to the indirect field-oriented control (2.20), may imply very large cur-
rents (isa, isb) when ψrd is close to zero.

It is instructive to compare the structures of the following four control algorithms:
the feedforward control (1.74), the indirect field-oriented control (2.20), the di-
rect field-oriented control (2.19) and the input–output feedback linearizing control
(2.21). They are listed in terms of increasing complexity. In fact, the feedforward
control (1.74) requires no state variable measurements but precise initialization for
ρ∗(0). The indirect field-oriented control (2.20) requires only rotor speed measure-
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ments which are used to introduce the feedback term −kω(ω −ω∗) in the expres-
sion of isq and to replace ω∗ by ω in the dynamic equation which produces the
rotation angle ε0 and can be arbitrarily initialized: the first action is the classical
feedback proportional to the speed tracking error, while the second action is uncon-
ventional and is aimed to achieve the field orientation without flux measurements,
as we shall see in the next section. Both the direct field-oriented control and the
input–output feedback linearizing control generate the rotation matrix on the basis
of rotor flux measurements (ψra,ψrb) without computing the angles ρ∗ or ε0 by
integration: they differ since the input–output linearizing control contains an addi-
tional feedback term −kψ(ψrd −ψ∗)/(αM) in the expression of isd and makes use
of ψrd instead of its reference ψ∗ in the expression of isq.

Illustrative Simulations

We tested the direct field-oriented control by simulations for the current-fed three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1: stator currents dynamics have been neglected so that the stator
currents (isa, isb) constitute the motor control inputs. The rotor speed initial condi-
tion has been set equal to zero while the rotor fluxes initial conditions have been
set equal to ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested us-
ing the control parameter (the value is in SI units) kω = 12, which directly affects
the speed tracking error dynamics. The references for the speed and flux modu-
lus along with the applied load torque are reported in Figures 2.13–2.15. The rotor
flux modulus reference signal starts from 0.001Wb at t = 0s and grows up to the
constant value 1.16Wb. The speed reference is zero until t = 0.32s and grows up
to the constant value 100rad/s; at t = 1.5s the speed is required to go up to the
value 200rad/s, while the reference for the flux modulus is reduced to 0.5Wb. A
5.8-Nm load torque is first applied to the motor and then is reduced to 1.8Nm. Fig-
ures 2.14 and 2.15 show the time histories of rotor speed and flux modulus along
with the corresponding tracking errors: the rotor speed and flux modulus track their
references tightly. As illustrated by Figure 2.16, the motor trajectories in the state
space tend to two attractive limit cycles corresponding to the two constant operat-
ing conditions imposed by the reference signals. Finally, the stator currents profiles,
which are within the physical saturation limits, are reported in Figure 2.17. It is very
interesting to compare Figures 2.2–2.5 which illustrate the feedforward control per-
formance with Figures 2.13–2.17 which illustrate the performance of the feedback
direct field-oriented control for the same parameters and similar reference signals.
The rotor speed tracking errors (see Figures 2.3 and 2.14) are two orders of magni-
tude smaller in the feedback case (maximum error of 5rad/s and 0.09rad/s, respec-
tively). Moreover, the feedback control also achieves very precise tracking when the
load torque reduces its value to 1.8Nm. Similar improvements are obtained in rotor
flux tracking (compare Figures 2.4 and 2.15).
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Fig. 2.13 Direct field-oriented control: applied load torque TL

Fig. 2.14 Direct field-oriented control: rotor speed ω and its reference ω∗; rotor speed tracking
error

So far we have designed the direct field-oriented control (2.19) and its variants (2.20)
and (2.21) on the basis of the reduced order model (2.9) in which the stator current
dynamics have been neglected, which is clearly an approximation. Reconsider now
the full order model (1.39) expressed in the state coordinates (1.41) and in the con-
trol coordinates (usd ,usq) which are related to the original control inputs (usa,usb)
by [

usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]
. (2.23)
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Fig. 2.15 Direct field-oriented control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗; rotor

flux modulus tracking error

Fig. 2.16 Direct field-oriented control: (ψra,ψrb,ω)-trajectories

Let us now design (usd ,usq) as state feedback controls so that the desired references
(ω∗,ψ∗) are asymptotically tracked. From the last two equations in (1.39) define
the state feedback control

usd = σ

[
−ωisq −

αMi2sq

ψrd
−βαψrd + vd

]

usq = σ
[
ωisd +

αMisqisd

ψrd
+βωψrd + vq

]
(2.24)

in which (vd ,vq) are new control inputs yet to be designed. Note that the state feed-
back control (2.23), (2.24) introduces a singularity at ψrd = 0 so that very large input
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Fig. 2.17 Direct field-oriented control: stator current vector (a,b)-components (isa, isb)

voltages are to be expected when the rotor flux modulus is close to zero. Substituting
(2.24) in (1.39) we obtain the closed-loop system

dω
dt

= μψrdisq − TL

J
disq

dt
= −γ isq + vq

dψrd

dt
= −αψrd +αMisd

disd

dt
= −γ isd + vd

dρ
dt

= ω+
αMisq

ψrd
. (2.25)

In other words, the system (1.26) is transformed into (2.25) by the state space change
of coordinates (1.41) and the state feedback control (2.23), (2.24) provided that
ψrd �= 0, since in ψrd = 0 the field-oriented model (1.39) is no longer an equivalent
description of the fixed frame model (1.26). The closed-loop system (2.25) has a
much simpler structure than system (1.26): the flux amplitude dynamics are linear

dψrd

dt
= −αψrd +αMisd

disd

dt
= −γ isd + vd (2.26)

and can be independently controlled by vd for instance via a proportional-integral
(PI) controller (kd p and kdi are positive control parameters)
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vd(t) = −kd p(ψrd(t)−ψ∗(t))− kdi

∫ t

0
(ψrd(τ)−ψ∗(τ))dτ . (2.27)

Once the flux amplitude ψrd tracks its reference ψ∗, the rotor speed dynamics are
also linear

dω
dt

= μψ∗isq − TL

J
disq

dt
= −γisq + vq (2.28)

and can be independently controlled by vq for instance via two nested loops of PI
controllers (kqp and kqi are positive control parameters)

vq(t) = −kqp(Te(t)−T ∗
e (t))− kqi

∫ t

0
(Te(τ)−T ∗

e (τ))dτ (2.29)

with (kT p and kTi are positive control parameters)

Te(t) = μψrd(t)isq(t)

T ∗
e (t) = −kT p(ω(t)−ω∗(t))− kTi

∫ t

0
(ω(τ)−ω∗(τ))dτ . (2.30)

We can then say that the state feedback control (2.23), (2.24) achieves asymptotic
input–output linearization and decoupling since the first four equations in (2.25)
tend to the linear ones (2.26) and (2.28) as ψrd tends to its reference ψ∗; moreover
the outputs ω and ψrd can be independently controlled by the new inputs vd and vq,
respectively. Note, however, that during flux transients the nonlinear term Jμψrdisq,
which represents the electromagnetic torque Te in the first equation in (2.25), makes
the first four equations in (2.25) still nonlinear and coupled; consequently, the speed
transients are difficult to evaluate and may result unacceptable when the flux under-
goes a transient to improve efficiency.

2.3 Indirect Field-oriented Control

The indirect field-oriented control (2.20) is a modification of the direct field-oriented
control (2.19) which uses, instead of the rotor flux angle ρ , an arbitrary rotating
angle ε0 which is generated replacing ψrd by its reference ψ∗ in the differential
equation defining the ε0 dynamics, i.e.

[
isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][ ψ∗
M + ψ̇∗

αM
1
μψ∗
[
−kω (ω−ω∗)+ ω̇∗ + TL

J

]]

dε0

dt
= ω0 = ω+

αMisq

ψ∗
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= ω+
αM
μψ∗2

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.31)

with arbitrary ε0(0).
The indirect field-oriented control (2.31) may also be designed directly on the

basis of the first three equations in the rotating frame model (1.31):

dω
dt

= μ (ψrdisq −ψrqisd)− TL

J
dψrd

dt
= −αψrd +(ω0 −ω)ψrq +αMisd

dψrq

dt
= −αψrq − (ω0 −ω)ψrd +αMisq . (2.32)

Let (ω∗(t),ψ∗(t),0) be the reference signals for (ω(t),ψrd(t),ψrq(t)): (2.32) can
be rewritten as (ω̃ = ω−ω∗, ψ̃rd = ψrd −ψ∗, ψ̃rq = ψrq)

dω̃
dt

= μ (ψ̃rdisq − ψ̃rqisd)+μψ∗isq − ω̇∗ − TL

J
dψ̃rd

dt
= −αψ̃rd +(ω0 −ω) ψ̃rq −αψ∗ − ψ̇∗ +αMisd

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω) ψ̃rd − (ω0 −ω)ψ∗ +αMisq . (2.33)

Our goal is to design a dynamic feedback control[
isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
isd
isq

]
ε̇0 = ω0 (2.34)

so that the tracking errors (ω̃, ψ̃rd , ψ̃rq) tend exponentially to zero from any initial
condition. Note that by introducing a dynamic feedback we add an extra degree of
freedom in the design since we can now freely choose in (2.33) three independent
feedback terms (isd , isq, ω0) in place of (isd , isq) which are at our disposal if a static
feedback is designed. We design (isd , isq,ω0) as feedback terms so that

μψ∗isq − ω̇∗ − TL

J
= −kω(ω−ω∗)

−αψ∗ − ψ̇∗ +αMisd = 0
−(ω0 −ω)ψ∗ +αMisq = 0 (2.35)

since, substituting (2.35) in (2.33), we obtain

dω̃
dt

= −kωω̃+μ (ψ̃rdisq − ψ̃rqisd)

dψ̃rd

dt
= −αψ̃rd +(ω0 −ω) ψ̃rq
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dψ̃rq

dt
= −αψ̃rq − (ω0 −ω) ψ̃rd .

Solving (2.35) for (isd , isq,ω0), we explicitly obtain the feedback terms to be used
in (2.34)

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]

ω0 = ω+
αM
μψ∗2

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]

which, substituted in (2.34), gives exactly the indirect field-oriented control (2.31)
in (a,b) coordinates.

The advantages of (2.31) with respect to (2.19) are:

1. while (2.19) is not well defined at ψ2
ra +ψ2

rb = 0, the indirect field-oriented con-
trol (2.31) is always well defined since ψ∗(t) ≥ cψ > 0 for all t ≥ 0;

2. the control (2.31) requires only the measurement of rotor speed ω while (2.19)
also requires the measurement of (ψra,ψrb) to compute cosρ and sinρ ;

3. the control (2.31) is a dynamic first order output feedback controller for the
current-fed model (2.9) from rotor speed measurements while (2.19) is a static
state feedback controller for the same reduced order model (2.9) from rotor speed
and flux measurements.

We now substitute (2.31) in the first three equations of the fixed frame model (1.26):
to evaluate the closed-loop stability it is more convenient to use directly the rotating
frame model (1.31) in the (d,q) reference frame rotating at the speed

dε0

dt
= ω0 (2.36)

defined in (2.31). Substituting

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.37)

in the first three equations of model (1.31) we obtain for the second equation in
(1.31)

dψ̃rd

dt
= −αψ̃rd +(ω0 −ω) ψ̃rq (2.38)

while for the third equation in (1.31), since

(ω0 −ω)ψ∗ = αMisq , (2.39)
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we have

dψ̃rq

dt
= −αψ̃rq − (ω0 −ω) ψ̃rd . (2.40)

The first equation in (1.31) can be rewritten as

dω
dt

= μψ∗isq − TL

J
+μ (ψ̃rdisq −ψrqisd) (2.41)

so that, substituting (2.37) in (2.41), we obtain

dω̃
dt

= −kωω̃+μ (ψ̃rdisq − ψ̃rqisd) (2.42)

which along with (2.38) and (2.40), namely[ ˙̃ψrd
˙̃ψrq

]
=
[ −α (ω0 −ω)
−(ω0 −ω) −α

][
ψ̃rd
ψ̃rq

]
, (2.43)

constitute the closed-loop linear, time-varying tracking dynamics in the (d,q) frame
defined by (2.36). Consider the positive definite function

V =
1
2
ψ̃2

rd +
1
2
ψ̃2

rq (2.44)

whose time derivative along the trajectories of the closed-loop system (2.43) is

V̇ = −αψ̃2
rd −αψ̃2

rq = −2αV . (2.45)

Since, according to (2.45),

V (t) = e−2αtV (0) (2.46)

we can establish that ψ̃rd(t) and ψ̃rq(t) exponentially tend to zero for any initial
condition (ψrd(0),ψrq(0)). In particular, since ψrq(t) tends to zero, (ε0(t)−ρ(t))
tends to zero, i.e. the (d,q) frame rotating at speed ω0(t) given by (2.36) will tend
to have its d-axis coincident with the rotating rotor flux vector: field orientation is
asymptotically achieved. According to (2.37), (2.42) may be rewritten as

dω̃
dt

= −kω

[
1+

ψ̃rd

ψ∗

]
ω̃

+
ψ̃rd

ψ∗

(
ω̇∗ +

TL

J

)
−μψ̃rq

[
ψ∗

M
+
ψ̇∗

αM

]
. (2.47)

According to (2.46) and (2.47), ω̃(t) is bounded on [0, t∗] with t∗ any positive real.
On the other hand, according to (2.46), for any initial condition (ψrd(0),ψrq(0)) and
any positive real η < 1 there exists t̃∗ ≥ 0 such that for all t ≥ t̃∗
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ψ∗(t)

∣∣∣∣≤ 1−η .

Therefore, according to (2.47), ω̃(t) is an exponentially decaying signal for any
initial condition ω(0).

Fig. 2.18 Indirect field-oriented control for current-fed motors (constant references ω∗,ψ∗)

In conclusion: the indirect field-oriented control (see Figure 2.18) is defined
as [

isa
isb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
isd
isq

]

isd =
ψ∗

M
+
ψ̇∗

αM

isq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
dε0

dt
= ω+

αMisq

ψ∗ ; (2.48)

it is a first order dynamic control algorithm which depends on the measure-
ments of the rotor speed ω , on the reference signals (ω∗,ψ∗), on the arbitrary
initial condition ε0(0), on the positive control parameter kω , on the load torque
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TL, and on the machine parameters M,Rr,Lr,J, since μ = M
JLr

and α = Rr
Lr

; it
guarantees that, for any ε0(0) and for any initial condition of the current-fed
reduced order motor model (2.32), the rotor speed and flux modulus tracking
errors decay exponentially to zero.

Remarks

1. The name indirect field-oriented control arises from the fact that it is obtained
from the direct field-oriented control by using the angle ε0 in place of the the
rotor flux angle ρ: the rotor flux angle dynamics

dρ
dt

= ω+
αMisq

ψrd

with ρ(0) = arctan
(
ψrb(0)
ψra(0)

)
are replaced by

dε0

dt
= ω+

αMisq

ψ∗

with arbitrary ε0(0) in which the reference flux ψ∗ simply replaces the unmea-
sured ψrd . Note that, even though ε0 does not coincide with the rotor flux angle
ρ , [ε0(t)−ρ(t)] exponentially tends to zero for every initial condition ε0(0): the
remarkable fact is that field orientation is achieved for any ε0(0).

2. As in direct field-oriented control, according to (2.37), the quadrature axis com-
ponent isq of the stator current vector is responsible for the rotor speed tracking
and depends on TL, while the direct axis component isd of the stator current vector
is responsible for the tracking of the rotor flux modulus.

3. The critical parameter Rr is required to generate the angle ε0 in (2.48), since α =
Rr/Lr. This feature makes the indirect field-oriented control more sensitive with
respect to α than the direct field-oriented control, as the experiments reported
in Section 2.8 confirm. As we shall see in Chapter 3, the online identification
of α is related to the estimation of the rotor flux, so that the need for rotor flux
estimation, which is seemingly eliminated by the indirect field-oriented control,
reappears through the critical parameter α , whose identification is very closely
related to the flux estimation.

4. The measurement of ω is always required in (2.48) even when stringent specifi-
cations on speed dynamics are not required so that the gain kω in isq is set equal
to zero. In fact, ω is still needed to compute the angle ε0.

5. As in direct field-oriented control, if the flux modulus and the rotor speed are
constant and equal to the desired values (ω∗,ψ∗), then the rotor flux rotates at



2.3 Indirect Field-oriented Control 89

constant speed w = (ω∗+ωs), with ωs = αMTL
μψ∗2 , and the induction motor is driven

by the sinusoidal currents obtained from (2.48):

[
isa
isb

]
=
[

cos(ε0(0)+wt) −sin(ε0(0)+wt)
sin(ε0(0)+wt) cos(ε0(0)+wt)

][ ψ∗
M
TL

Jμψ∗

]
.

6. According to (2.47), once ψrd tends to its reference ψ∗ and ψrq tends to zero, the
closed-loop dynamics for ω̃ tend to be linear with arbitrary time constant k−1

ω .
During the transient, the nonlinear term Jμ (ψrdisq −ψrqisd), which represents
the electromagnetic torque Te in the first equation in (1.31), makes the first two
equations in (1.31) still nonlinear and coupled: for this reason the speed transients
may be unsatisfactory, for instance when the flux modulus is adjusted to improve
power efficiency.

Illustrative Simulations

We tested the indirect field-oriented control by simulations for the current-fed, three-
phase, single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1: stator currents dynamics have been neglected so that the stator
currents (isa, isb) constitute the motor control inputs. The rotor speed initial condi-
tion has been set equal to zero while the rotor fluxes initial conditions have been
set equal to ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested with
the control parameter (the value is in SI units) kω = 12, which directly affects the
speed tracking error dynamics, and the initial condition ε0(0) = 0. The references
for the speed and flux modulus along with the applied load torque are reported in
Figures 2.19–2.21. The rotor flux modulus reference signal starts from 0.001Wb
at t = 0s and grows up to the constant value 1.16Wb. The speed reference is zero
until t = 0.32s and grows up to the constant value 100rad/s; at t = 1.5s the speed
is required to go up to the value 200rad/s, while the reference for the flux modu-
lus is reduced to 0.5Wb. A 5.8-Nm load torque is applied to the motor at t = 0.5s
and is reduced to 1.8Nm at t = 1s. Figures 2.20 and 2.21 show the time histo-
ries of rotor speed and flux modulus along with the corresponding tracking errors:
both the rotor speed and the flux modulus track their references tightly. As illus-
trated by Figure 2.22 the motor trajectories in the state space tend to two attractive
limit cycles corresponding to the two constant operating conditions imposed by the
reference signals. Finally, the stator currents profiles, which are within physical sat-
uration limits, are reported in Figure 2.23. We now compare the performance of the
direct field-oriented control illustrated in Figures 2.13–2.17 with the performance
obtained by the indirect field-oriented control illustrated in Figures 2.19–2.23 for
the same motor, same initial conditions, same motor parameters, same control pa-
rameters (kω = 12), and same reference signals. While the stator current inputs can
be hardly distinguished (compare Figures 2.17 and 2.23) and the state space trajec-
tories are very similar (compare Figures 2.16 and 2.22), the only difference is in
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the transient behavior of the speed errors (compare Figures 2.14 and 2.20), which
shows a worse speed transient during the time interval [0,1]s in which the rotor flux
error is different from zero (see Figure 2.21) when the indirect field-oriented control
is used.

Fig. 2.19 Indirect field-oriented control: applied load torque TL

Fig. 2.20 Indirect field-oriented control: rotor speed ω and its reference ω∗; rotor speed tracking
error

So far we have designed the indirect field-oriented control (2.48) on the basis
of the reduced order model (2.9). If the full order model (1.31), expressed in the
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Fig. 2.21 Indirect field-oriented control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference ψ∗;

rotor flux modulus tracking error

Fig. 2.22 Indirect field-oriented control: (ψra,ψrb,ω)-trajectories

state and control coordinates (1.30), is considered, then (usd ,usq) are to be designed
as state feedback controls so that the reference signals (ω∗,ψ∗) are asymptotically
tracked. This can actually be achieved by defining the speed of the rotating (d,q)
frame and the reference signals for the stator current vector (d,q) components as

dε0

dt
= ω0 = ω+

αMisq

ψ∗

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
(2.49)
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Fig. 2.23 Indirect field-oriented control: stator current vector (a,b)-components (isa, isb)

and the stator voltages (usd ,usq) in the (d,q) frame rotating at speed ω0 as (ki is a
positive control parameter)

usd = σ
[
γi∗sd −ω0isq −βαψrd −βωψrq +

di∗sd
dt

− ki (isd − i∗sd)−αM (ψrd −ψ∗)
]

usq = σ
[
γi∗sq +ω0isd −βαψrq +βωψrd +

di∗sq

dt
− ki
(
isq − i∗sq

)]
(2.50)

in which, according to (2.49) and the first equation in (1.31), the time derivatives of
i∗sd and i∗sq are given by

di∗sd
dt

=
ψ̇∗

M
+
ψ̈∗

αM
di∗sq

dt
=

1
μψ∗ [−kω (ω̇− ω̇∗)+ ω̈∗]− ψ̇∗

μψ∗2

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]

=
1
μψ∗

[
−kω

[
μ (ψrdisq −ψrqisd)− TL

J
− ω̇∗
]

+ ω̈∗
]

− ψ̇∗

μψ∗2

[
−kω (ω−ω∗)+ ω̇∗ +

TL

J

]
. (2.51)

Exponential rotor speed and flux modulus tracking can be proved for any motor
initial condition (see Problem 2.6). However, as in the current-fed case, the rate of
convergence depends on α , according to (2.46).
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2.4 Input–Output Feedback Linearizing Control

The input–output feedback linearizing control (2.21) for current-fed induction mo-
tors has the structure given in Figure 2.24 (compare with Figures 2.1 and 2.12).
In this section we design an input–output feedback linearizing control both for the
field-oriented model (1.39) and for the fixed frame model (1.26). The direct field-

Fig. 2.24 Input–output feedback linearizing control for current-fed motors (constant references
ω∗,ψ∗)

oriented control design which led us to the state feedback control (2.23), (2.24)
can be improved by designing the additional control input vq so that the first two
equations in (2.25) are made linear by state feedback and input–output feedback
linearization and decoupling are achieved: to this end, introduce the rotor angular
acceleration

a = μψrdisq − TL

J
(2.52)

in place of isq as a new state variable so that the first two equations in (2.25) become
(recall that TL is assumed to be constant)

dω
dt

= a
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da
dt

= μ
dψrd

dt
isq +μψrd

disq

dt
= −μαψrdisq +μαMisdisq − γμψrdisq +μψrdvq . (2.53)

Define the additional state feedback term

vq = αisq + γisq − αMisdisq

ψrd
+

1
μψrd

v′q (2.54)

in which v′q is an additional control input. Substituting (2.54) in (2.53), the closed-
loop system (2.25), (2.54) becomes

dω
dt

= a

da
dt

= v′q
dψrd

dt
= −αψrd +αMisd

disd

dt
= −γ isd + vd

dρ
dt

= ω+
αMisq

ψrd
. (2.55)

The first four equations in (2.55) are linear and decoupled since the dynamics of
ω and ψrd are independent and can be independently controlled by the control in-
puts v′q and vd , respectively. If we compare the closed-loop dynamics (2.25) with
(2.55) we note that while rotor speed ω transients in (2.55) are not influenced by
rotor flux ψrd transients, this is not so in (2.25). We can then conclude that the state
feedback control (2.23), (2.24), and (2.54) improves the direct field-oriented control
since it achieves input–output feedback linearization and decoupling as shown by
the closed-loop dynamics (2.55). To design vd in (2.26), introduce the time deriva-
tive of ψrd

vψd = −αψrd +αMisd

so that (2.26) is transformed into

dψrd

dt
= vψd

dvψd

dt
= −α(αMisd −αψrd)+αM(−γ isd + vd) .

Define

vd = γ isd − αψrd

M
+α isd + v′d (2.56)

so that we can write
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dω
dt

= a

da
dt

= v′q
dψrd

dt
= vψd

dvψd

dt
= v′d .

In order to track the desired references ω∗ and ψ∗ for ω and ψrd , the input signals
(v′d ,v

′
q) are designed as

v′d(t) = −kψ p (ψrd(t)−ψ(t))− kψd
(
vψd(t)− ψ̇∗(t)

)
+ ψ̈∗(t)

v′q(t) = −kω p (ω(t)−ω∗(t))− kωd (a(t)− ω̇∗(t))+ ω̈∗(t) (2.57)

where kψ p, kψd , kω p and kωd are positive constant design parameters to be deter-
mined in order to make the decoupled, linear, time-invariant, second order systems
(ω̃ = ω−ω∗, ψ̃rd = ψrd −ψ∗)

d2ω̃
dt2 = −kω pω̃− kωd

dω̃
dt

d2ψ̃rd

dt2 = −kψ pψ̃rd − kψd
dψ̃rd

dt

exponentially stable and to shape their dynamics.
Note that the same result can be achieved directly in fixed (a,b) coordinates

without introducing any rotating frame at all. It is enough to perform the following
state space change of coordinates z = ϕ(ω,ψra,ψrb, isa, isb) with z = [z1, . . . ,z5] and

z1 = ω

z2 = a = μ (ψraisb −ψrbisa)− TL

J
z3 = ψ2

ra +ψ2
rb

z4 =
d
(
ψ2

ra +ψ2
rb

)
dt

= −2α
(
ψ2

ra +ψ2
rb
)
+2αM (ψraisa +ψrbisb)

z5 = ρ = arctan
(
ψrb

ψra

)
. (2.58)

According to the Inverse Function Theorem B.1 in Appendix B, for any point p =
(ω ,ψra, ψrb, isa, isb) satisfying ψ2

ra +ψ2
rb �= 0 there exists an open neighborhood U

of p such that ϕ(p) = (z1(p), . . . ,zn(p)) : U → ϕ(U) is a diffeomorphism, that is
a bijection with ϕ(·) and ϕ−1(·) smooth maps. In the new z-coordinates, system
(1.26) becomes
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⎡
⎢⎢⎢⎢⎣

ż1
ż2
ż3
ż4
ż5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

z2
Γ1
z4
Γ2

ω+
αM (ψraisb −ψrbisa)(

ψ2
ra +ψ2

rb

)

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎣ −μψrb

σ
μψra

σ
2αMψra

σ
2αMψrb

σ

⎤
⎦[usa

usb

]
(2.59)

in which the nonlinear terms

Γ1(ω,ψra,ψrb, isa, isb) = −μβω (ψ2
ra +ψ2

rb
)−μ (α+ γ)(ψraisb −ψrbisa)

−μω (ψraisa +ψrbisb)
Γ2(ω,ψra,ψrb, isa, isb) =

(
4α2 +2α2βM

)(
ψ2

ra +ψ2
rb
)
+2αMω (ψraisb −ψrbisa)

−(6α2M +2αγM
)
(ψraisa +ψrbisb)+2α2M2 (i2sa + i2sb

)
appear and the decoupling matrix

D(ψra,ψrb) =

⎡
⎣ −μψrb

σ
μψra

σ
2αMψra

σ
2αMψrb

σ

⎤
⎦

whose determinant is

det [D] (ψra,ψrb) = −2μαM
σ2

(
ψ2

ra +ψ2
rb
)

is nonsingular provided that (ψ2
ra +ψ2

rb) �= 0: hence, Theorem B.10 in Appendix B
applies with control characteristic indices ρ1 = 2, ρ2 = 2. As a matter of fact, The-
orem B.10 applies directly to the induction motor fixed frame model (1.26) with
outputs ω and ψ2

ra +ψ2
rb and decoupling indices ρ1 = 2, ρ2 = 2. The input–output

state feedback linearizing control is[
usa
usb

]
= D(ψra,ψrb)−1

[−Γ1 + va
−Γ2 + vb

]
(2.60)

which substituted in (2.59) gives
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⎡
⎢⎢⎢⎢⎣

ż1
ż2
ż3
ż4
ż5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

z2
va
z4
vb

ω+
αM (ψraisb −ψrbisa)(

ψ2
ra +ψ2

rb

)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z2
va
z4
vb

z1 +
αM
(

z2 + TL
J

)
μz3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

z2
va
z4
vb

z1 +
Rr (Jz2 +TL)

z3

⎤
⎥⎥⎥⎥⎥⎦ . (2.61)

The last equation in (2.61) represents the dynamics which have been made unob-
servable from the outputs ω and (ψ2

ra +ψ2
rb) by the state feedback control (2.60).

The same interpretation can be given to the last equation in (2.55).

Remarks

1. The closed-loop system (2.61) is input–output decoupled and linear: the input–
output map consists of a pair of second order linear time-invariant systems. This
allows for an independent tracking of the outputs so that transient responses can
be decoupled: this is an improvement with respect to both the direct and the indi-
rect field-oriented controls. Note however that the exact input–output decoupling
and linearization have been achieved by the controller (2.60) at the expense of
a singularity at (ψ2

ra +ψ2
rb) = 0 introduced by the inversion of the decoupling

matrix

D(ψra,ψrb)−1 = [det [D] (ψra,ψrb)]
−1

[
2αMψrb
σ − μψra

σ
− 2αMψra

σ − μψrb
σ

]

=
[
−2μαM

σ2

(
ψ2

ra +ψ2
rb
)]−1
[

2αMψrb
σ − μψra

σ
− 2αMψra

σ − μψrb
σ

]
(2.62)

in (2.60) which, in contrast to the indirect field-oriented control, may imply very
large voltages (usa,usb) when (ψ2

ra +ψ2
rb) is close to zero. Recall that the direct

field-oriented control also cannot operate when the rotor flux modulus is zero.
Note that (2.62) can be rewritten as

D(ψra,ψrb)−1 =
[−sinρ cosρ

cosρ sinρ

]⎡⎢⎣
σ

μ
√
ψ2

ra+ψ2
rb

0

0 σ
2αM
√
ψ2

ra+ψ2
rb

⎤
⎥⎦
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with sinρ = ψrb/
√
ψ2

ra +ψ2
rb and cosρ = ψra/

√
ψ2

ra +ψ2
rb. The rotation matrix

has been reobtained without introducing any rotating frame from the beginning.
2. Measurements of the state variables are required both by the control (2.60) and

by the direct field-oriented control.
3. While the indirect field-oriented control is a first order output feedback (from ω)

dynamic control, the control (2.60) is a static state feedback control law.
4. Since it has been previously shown that the induction motor model (1.26) is not

feedback linearizable and that the largest feedback linearizable subsystem has
dimension 4, the control (2.60) provides the largest linearizable subsystem in the
closed-loop.

We now design the input signals va and vb in (2.60) in order to track the desired
references ω∗ and ψ∗2 for the rotor speed z1 = ω and z3 = (ψ2

ra +ψ2
rb). Similarly to

the design of v′d and v′q, we choose

va = −kω p (z1 −ω∗)− kωd (ż1 − ω̇∗)+ ω̈∗

= −kω p (ω−ω∗)− kωd

(
μ (ψraisb −ψrbisa)− TL

J
− ω̇∗
)

+ ω̈∗

vb = −kψ p
(
z3 −ψ∗2)− kψd (ż3 −2ψ∗ψ̇∗)+2ψ̇∗2 +2ψ∗ψ̈∗

= −kψ p
[(
ψ2

ra +ψ2
rb
)−ψ∗2]

−kψd
[−2α

(
ψ2

ra +ψ2
rb
)
+2αM (ψraisa +ψrbisb)−2ψ∗ψ̇∗]

+2ψ̇∗2 +2ψ∗ψ̈∗

where kω p, kωd , kψ p, kψd are constant design parameters to be determined in order to
make the decoupled, linear, time-invariant, second order systems (Ψ̃ = ψ2

ra +ψ2
rb −

ψ∗2)

d2ω̃
dt2 = −kω pω̃− kωd

dω̃
dt

d2Ψ̃
dt2 = −kψ pΨ̃ − kψd

dΨ̃
dt

(2.63)

exponentially stable and to shape their dynamics.

In conclusion: the input–output feedback linearizing control is defined as

[
usa
usb

]
=
[
−2μαM

σ2

(
ψ2

ra +ψ2
rb
)]−1

⎡
⎢⎣

2αMψrb

σ
−μψra

σ
−2αMψra

σ
−μψrb

σ

⎤
⎥⎦[−Γ1 + va

−Γ2 + vb

]

Γ1 = −μβω (ψ2
ra +ψ2

rb
)−μ (α+ γ)(ψraisb −ψrbisa)

−μω (ψraisa +ψrbisb)
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Γ2 =
(
4α2 +2α2βM

)(
ψ2

ra +ψ2
rb
)
+2αMω (ψraisb −ψrbisa)

−(6α2M +2αγM
)
(ψraisa +ψrbisb)+2α2M2 (i2sa + i2sb

)
va = −kω p (ω−ω∗)− kωd

(
μ (ψraisb −ψrbisa)− TL

J
− ω̇∗
)

+ ω̈∗

vb = −kψ p
[(
ψ2

ra +ψ2
rb
)−ψ∗2]

−kψd
[−2α

(
ψ2

ra +ψ2
rb
)
+2αM (ψraisa +ψrbisb)−2ψ∗ψ̇∗]

+2ψ̇∗2 +2ψ∗ψ̈∗; (2.64)

it is a static nonlinear feedback control algorithm which depends on the mea-
surements of the state variables (ω,ψra,ψrb, isa, isb), on the reference signals
(ω∗,ψ∗), on the positive control parameters kω p, kωd , kψ p, kψd , on the load

torque TL and on the machine parameters M,Rr,Lr,J,Rs,Ls, since μ =
M

JLr
,

α =
Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β =

M
σLr

, γ =
Rs

σ
+βαM; it guarantees that,

for suitable motor initial conditions such that ψ2
ra(t) +ψ2

rb(t) ≥ cψ > 0 for
all t ≥ 0, the rotor speed and flux modulus tracking errors have decoupled
dynamics and decay exponentially to zero according to (2.63).

Illustrative Simulations

We tested the input–output feedback linearizing control by simulations for the three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1. All the motor initial conditions have been set equal to zero
except for ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested with
the control parameters (all the values are in SI units) kω p = 8100, kωd = 180,
kψ p = 8100, kψd = 180; real coincident eigenvalues are assigned to the matrices as-
sociated with the decoupled, linear time-invariant second order systems (2.63). The
references for the speed and flux modulus along with the applied load torque are
reported in Figures 2.25–2.27. The rotor flux modulus reference signal starts from
0.001Wb at t = 0s and grows up to the constant value 1.16Wb. The speed reference
is zero until t = 0.32s and grows up to the constant value 100rad/s; at t = 1.5s the
speed is required to go up to the value 200rad/s, while the reference for the flux
modulus is reduced to 0.5Wb. A 5.8-Nm load torque is applied to the motor and is
reduced to 1.8Nm. Figures 2.26 and 2.27 show the time histories of rotor speed and
flux modulus along with the corresponding tracking errors: the rotor speed and flux
modulus track tightly their references. Note that there is no coupling between rotor
speed tracking and rotor flux modulus tracking at t = 0.5s and t = 1s when rotor
speed is perturbed by the uncompensated load torque time derivative. Finally, the
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stator current and voltages profiles, which are within the physical saturation limits,
are reported in Figures 2.28 and 2.29.

Fig. 2.25 Input–output feedback linearizing control: applied load torque TL

Fig. 2.26 Input–output feedback linearizing control: rotor speed ω and its reference ω∗; rotor
speed tracking error
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Fig. 2.27 Input–output feedback linearizing control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its refer-

ence ψ∗; rotor flux modulus tracking error

Fig. 2.28 Input–output feedback linearizing control: stator current vector (a,b)-components
(isa, isb)

2.5 Adaptive Input–Output Feedback Linearizing Control

So far we have designed the state feedback control algorithms by assuming the
knowledge of the rotor resistance Rr and of the load torque TL. While the load
torque depends on applications, the rotor resistance may vary up to 100% during
operations due to rotor heating: thus they constitute typically uncertain parameters.
Experiments reported in Section 2.8 will show how critical the rotor resistance pa-
rameter is for the control design. In this section we shall estimate its value online
along with the load torque.
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Fig. 2.29 Input–output feedback linearizing control: stator voltage vector (a,b)-components
(usa,usb)

Reconsider the state feedback input–output linearizing control (2.23), (2.24),
(2.54) and (2.56); note that (usd ,usq) defined in (2.24) are linear with respect to
the unknown parameter α = RrL−1

r . Hence, the controller (2.23), (2.24), (2.54) and
(2.56) constitutes a good starting point to design an adaptation with respect to α . To
this end, let us denote by α̂ the estimate of the parameter α and by

α̃ = α− α̂

the corresponding estimation error. Recalling (2.24), define (usd ,usq) as

usd = σ

[
Rs

σ
isd −ωisq −

α̂Mi2sq

ψrd
− α̂βψrd + α̂Mβ isd + vd

]

usq = σ

[
Rs

σ
isq +ωisd +

α̂Misqisd

ψrd
+βωψrd + α̂Mβ isq + vq

]
(2.65)

in which (vd ,vq) are additional control inputs to be designed. Substituting (2.65) in
(1.39) we obtain

dω
dt

= μψrdisq − TL

J
disq

dt
= −
(

Misqisd

ψrd
+Mβ isq

)
α̃+ vq

dψrd

dt
= −αψrd +αMisd

disd

dt
=

(
Mi2sq

ψrd
+βψrd −Mβ isd

)
α̃+ vd
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dρ
dt

= ω+
αMisq

ψrd
. (2.66)

Let us denote by T̂L the estimate of the load torque TL and by

T̃L = TL − T̂L

the corresponding estimation error. Since the load torque appears additively in the
rotor speed dynamics given by the first equation in (1.31), we design the load torque
estimate T̂L as the output of a linear time-invariant one-dimensional system

ξ̇ = −λξ +λJμψrdisq +λ 2Jω− vT

T̂L = ξ −λJω (2.67)

in which the term vT is yet to be defined. The above choice is justified by the fact
that, according to (2.67), ˙̂T L satisfies

˙̂T L = −λJμψrdisq +λTL + ξ̇
= λTL −λ (ξ −λJω)− vT

= λ (TL − T̂L)− vT (2.68)

and therefore

˙̃T L = −λ T̃L + vT (2.69)

which will be useful in the overall stability analysis. Introduce two new state vari-
ables: the estimated rotor angular acceleration

â = μψrdisq − T̂L

J
(2.70)

and the estimated time derivative of the rotor flux direct component ψrd

v̂ψd = −α̂ψrd + α̂Misd . (2.71)

In new state coordinates (ω, â,ψrd , v̂ψd ,ρ), (2.66) are rewritten as (recall (2.53))

dω
dt

= â− T̃L

J
dâ
dt

= μ(−αψrd +αMisd)isq −μα̃Misqisd +μψrdvq −μα̃ψrdβMisq

−λ
J

T̃L +
vT

J
dψrd

dt
= v̂ψd +(Misd −ψrd)α̃

dv̂ψd

dt
= ˙̂α(Misd −ψrd)− α̂(αMisd −αψrd)
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+α̂M

[(
Mi2sq

ψrd
+βψrd −Mβ isd

)
α̃+ vd

]

dρ
dt

= ω+αM
(

â
μψ2

rd
+

T̂L

Jμψ2
rd

)
. (2.72)

Define

vq = α̂ isq − α̂Misdisq

ψrd
− vT

Jμψrd

+
1
μψrd

[−kω p(ω−ω∗)− kωd(â− ω̇∗)+ ω̈∗]

vd = − α̂ψrd

M
+ α̂isd +

1
α̂M

[
− ˙̂α(Misd −ψrd)

−kψ p(ψrd −ψ∗)− kψd(v̂ψd − ψ̇∗)+ ψ̈∗
]

(2.73)

which substituted in (2.72) give

dω
dt

= â− T̃L

J
dâ
dt

= −kω p(ω−ω∗)− kωd(â− ω̇∗)+ ω̈∗ −μα̃(1+βM)ψrdisq − λJ T̃L

dψrd

dt
= v̂ψd +(Misd −ψrd)α̃

dv̂ψd

dt
= −kψ p(ψrd −ψ∗)− kψd(v̂ψd − ψ̇∗)+ ψ̈∗

+α̃

[
−α̂M(1+βM)isd + α̂(1+βM)ψrd +

α̂M2i2sq

ψrd

]

dρ
dt

= ω+αM
(

â
μψ2

rd
+

T̂L

Jμψ2
rd

)
. (2.74)

Let Pω and Pψ be the positive definite solutions of the Lyapunov matrix equations
(see Theorem A.6 in Appendix A)[

0 −kω p
1 −kωd

]
Pω +Pω

[
0 1

−kω p −kωd

]
= −I2 (2.75)[

0 −kψ p
1 −kψd

]
Pψ +Pψ

[
0 1

−kψ p −kψd

]
= −I2 (2.76)

in which I2 is the 2×2 identity matrix. Define the tracking errors

ω̃ = ω−ω∗
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ã = â− ω̇∗

ψ̃rd = ψrd −ψ∗

ṽψd = v̂ψd − ψ̇∗

and introduce the error vectors

w1 = [ω̃, ã]T

w2 = [ψ̃rd , ṽψd ]T .

Consider the Lyapunov function

V = wT
1 Pωw1 +wT

2 Pψw2 + T̃ 2
L +

α̃2

λα
(2.77)

in which λα is a positive control parameter. The time derivative of function V along
the trajectories of the closed-loop system (2.74) is

V̇ = −‖w1‖2 −‖w2‖2 −2λ T̃ 2
L + T̃L

(
2vT +2wT

1 Pω

[
−1

J
,−λ

J

]T
)

+α̃

(
2λ−1
α ˙̃α+2wT

1 Pω [0,−(1+Mβ )μψrdisq]
T

+2wT
2 Pψ

[
Misd −ψrd ,−(1+Mβ )α̂Misd +(1+Mβ )α̂ψrd +

α̂M2i2sq

ψrd

]T)
.

(2.78)

If we design the yet undefined term vT and the estimation law for α̂ as

vT = −wT
1 Pω

[
−1

J
,−λ

J

]T

˙̂α = λα

(
wT

1 Pω [0,−(1+Mβ )μψrdisq]
T

+wT
2 Pψ

[
Misd −ψrd ,−(1+Mβ )α̂Misd +(1+Mβ )α̂ψrd +

α̂M2i2sq

ψrd

]T)

then from (2.78) we obtain

V̇ = −‖w1‖2 −‖w2‖2 −2λ T̃ 2
L . (2.79)

Since the previous equation implies that for all t ≥ 0

V (t) ≤V (0)
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then we can restrict the initial conditions for the tracking and the estimation errors
such that V (0) is sufficiently small to guarantee ψrd(t) ≥ c1 > 0 and α̂(t) ≥ c2 > 0
for all t ≥ 0. On the other hand, from (2.77) and (2.79) we can establish that w1(t),
w2(t), T̃L(t), and α̃(t) are bounded functions on [0,∞) and therefore, according to
(2.70) and (2.71), μψrd(t)isq(t) and (Misd(t)−ψrd(t)) are bounded functions on
[0,∞). Since ψrd(t) is a bounded function on [0,∞), it follows that isd(t) and isq(t)
are bounded functions on [0,∞). Therefore ω̇(t), ψ̇rd(t), ˙̂T L(t), and ˙̂a(t) are bounded
functions on [0,∞) so that ω̃(t), ψ̃rd(t), and T̃L(t) are uniformly continuous func-
tions on [0,∞). Since for any t ≥ 0

∫ t

0
(ω̃2(τ)+ ψ̃2

rd(τ)+ ã2(τ)+2λ T̃ 2
L (τ))dτ ≤ V (0)−V (t) ≤V (0) (2.80)

which implies

lim
t→∞

∫ t

0
[ω̃2(τ)+ ψ̃2

rd(τ)+ ã2(τ)+2λ T̃ 2
L (τ)]dτ ≤ V (0) (2.81)

by applying Barbalat’s Lemma A.2 in Appendix A, we have

lim
t→∞ω̃(t) = 0

lim
t→∞ψ̃rd(t) = 0

lim
t→∞ ã(t) = 0

lim
t→∞ T̃L(t) = 0 . (2.82)

Hence, asymptotic rotor speed and flux modulus tracking of the reference signals
ω∗ and ψ∗ is achieved along with estimation of the unknown load torque.

On the other hand, since ¨̃a(t) is a bounded function on [0,∞), ˙̃a(t) is a uniformly
continuous function on [0,∞) so that, by Barbalat’s Lemma A.2,

lim
t→∞

˙̃a(t) = 0 .

Since from (2.74) we have

˙̃a = −kω pω̃− kωdã− α̃(1+βM)
(

â+
T̂L

J

)
− λ

J
T̃L

= −kω pω̃− kωdã− α̃(1+βM)
(

ã− T̃L

J

)
− λ

J
T̃L − α̃(1+βM)

(
ω̇∗ +

TL

J

)
,

according to (2.82) we can finally establish that

lim
t→∞

[(
ω̇∗(t)+

TL

J

)
α̃(t)
]

= 0 (2.83)
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which implies that α̃(t) asymptotically converges to zero provided that ω̇∗(t)+TL/J
is different from zero for all t ≥ 0. A stronger result is obtained since, if there exist
two positive reals Tp and cp such that

∫ t+Tp

t

[(
ω̇∗(τ)+

TL

J

)2
]

dτ ≥ cp, ∀t ≥ 0 , (2.84)

then exponential convergence to zero of the rotor speed and rotor flux modulus
tracking errors is guaranteed, for sufficiently small initial conditions, along with
exponential estimation of both the uncertain parameters α and TL.

In conclusion: the adaptive input–output feedback linearizing control is de-
fined as[

usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]

usd = σ

[
Rs

σ
isd −ωisq −

α̂Mi2sq

ψrd
− α̂βψrd + α̂Mβ isd + vd

]

usq = σ

[
Rs

σ
isq +ωisd +

α̂Misqisd

ψrd
+βωψrd + α̂Mβ isq + vq

]

vd = − α̂ψrd

M
+ α̂ isd +

1
α̂M

[
− ˙̂α(Misd −ψrd)

−kψ p(ψrd −ψ∗)− kψd(v̂ψd − ψ̇∗)+ ψ̈∗
]

vq = α̂ isq − α̂Misdisq

ψrd
− vT

Jμψrd

+
1
μψrd

[−kω p(ω−ω∗)− kωd(â− ω̇∗)+ ω̈∗]

ψrd = ψra cosρ+ψrb sinρ[
isd
isq

]
=
[

cosρ sinρ
−sinρ cosρ

][
isa
isb

]

−I2 =
[

0 −kω p
1 −kωd

]
Pω +Pω

[
0 1

−kω p −kωd

]

−I2 =
[

0 −kψ p
1 −kψd

]
Pψ +Pψ

[
0 1

−kψ p −kψd

]
ξ̇ = −λξ +λJμψrdisq +λ 2Jω− vT

T̂L = ξ −λJω
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vT = wT
1 Pω

[
1
J
,
λ
J

]T

˙̂α = λα

(
wT

1 Pω [0,−(1+Mβ )μψrdisq]
T +wT

2 Pψ

[
Misd −ψrd ,

−(1+Mβ )α̂Misd +(1+Mβ )α̂ψrd +
α̂M2i2sq

ψrd

]T
)

; (2.85)

it is a second order dynamic nonlinear feedback control algorithm which de-
pends on the measurements of the state variables (ω ,ψra,ψrb, isa, isb), on the
reference signals (ω∗,ψ∗), on the positive control parameters kω p, kωd , kψ p,

kψd , λ , λα , and on the machine parameters M,Lr,J,Rs,Ls since μ =
M

JLr
,

α =
Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β =

M
σLr

; it guarantees that, for any initial con-

dition such that ψrd(t)≥ c1 > 0 and α̂(t)≥ c2 > 0 for all t ≥ 0, the rotor speed
and flux modulus tracking errors tend asymptotically to zero; moreover, the
rotor speed and flux modulus tracking errors along with the rotor resistance
and load torque estimation errors decay exponentially to zero provided that
there exist two positive reals Tp and cp such that the persistency of excitation
condition (2.84) is satisfied.

Remarks

1. Note that even for constant speed and zero load torque, that is when the rotor
resistance estimate is not guaranteed to converge to the true value, both the rotor
speed and the rotor flux modulus tracking errors asymptotically converge to zero.

2. When both the critical parameters TL and α are known, so that we can set T̂L ≡ TL
and α̂ ≡ α , the controller (2.85) reduces to the input–output feedback linearizing
controller designed in the first part of Section 2.4.

3. When the critical parameter α is known, so that we can set α̂ = α , the controller
(2.85) guarantees exponential rotor speed and flux modulus tracking along with
exponential load torque estimation.

4. The resulting controller (2.85) shows singularities at ψrd = 0 and α̂ = 0 which
can imply very large voltages when ψrd and α̂ are close to zero.
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Illustrative Simulations

We tested the adaptive input–output feedback linearizing control by simulations for
the three-phase single pole pair 0.6-kW induction motor whose parameters have
been reported in Chapter 1. All the motor initial conditions have been set equal to
zero except for ψra(0) = ψrb(0) = 0.1Wb. The control algorithm has been tested
with the control parameters (all the values are in SI units): kω p = 8100, kωd = 180,
kψ p = 8100, kψd = 180. Real coincident eigenvalues are assigned to the matrices
associated with the decoupled, linear, time-invariant, second order systems describ-
ing the dynamics of the rotor speed and tracking errors when the estimates of the
unknown parameters are equal to the corresponding true parameter values. Those
values are the same as those used for the nonadaptive version of the previous sec-
tion. The parameters λ and λα , which are the adaptation gains for the estimates
of the load torque TL and of the parameter α , have been set equal to λ = 120 and
λα = 0.09. The initial condition T̂L(0) has been set equal to zero while the initial
condition for the estimate of α has been set equal to α̂(0) = 13.2s−1 which is 50%
greater than the true parameter value α = 8.8 s−1. The references for the speed and
flux modulus along with the applied load torque are reported in Figures 2.30–2.32.
The rotor flux modulus reference signal starts from 0.001Wb at t = 0s and grows
up to the constant value 1.16Wb. The speed reference is zero until t = 0.32s and
grows up to the constant value 100rad/s; at t = 1.5s the speed is required to go up to
the value 200rad/s, while the reference for the flux modulus is reduced to 0.5Wb. A
5.8-Nm load torque is applied to the motor and is reduced to 1.8Nm. Figures 2.30
and 2.31 show the time histories of rotor speed and flux modulus along with the cor-
responding tracking errors: the rotor speed tracks its reference tightly even though
load torque sharply changes since, according to Figure 2.32, the load torque estimate
quickly recovers the applied unknown load torque. The rotor flux modulus tracks its
reference: there is, however, a coupling with rotor speed tracking at t = 0.5s and
t = 1s when the rotor speed tracking error is perturbed by the unknown load torque.
Also the estimate of α quickly converges, according to Figure 2.33, to the true value
(unknown to the controller). Stator currents and voltages are within the saturation
limits, as illustrated by Figures 2.34 and 2.35.

2.6 Dynamic Feedback Linearizing Control

The key idea of field-oriented control is to use the direct current component isd to
control the flux modulus ψrd and the quadrature current component isq to control
the speed ω in (1.39): there is no concern on controlling the dynamics of the re-
maining state variable in (2.9). However, while the dynamics of ψrd are linear and
the dynamics of ω tend to be linear if ψrd tends to be constant, the dynamics of ρ in
(2.9) remain nonlinear in terms of the states (ω,ψrd) and of the control input isq in
(2.9). Similarly, the input–output feedback linearizing control (2.23), (2.24), (2.54),
(2.56) aims at controlling linearly and independently ω and ψrd while leaving the



110 2 State Feedback Control

Fig. 2.30 Adaptive input–output feedback linearizing control: rotor speed ω and its reference ω∗;
rotor speed tracking error

Fig. 2.31 Adaptive input–output feedback linearizing control: rotor flux modulus
√
ψ2

ra +ψ2
rb and

its reference ψ∗; rotor flux modulus tracking error

dynamics of ρ nonlinearly dependent on the state variables (ω ,ψrd , isq) in (2.55).
For this reason the state feedback control (2.23), (2.24), (2.54), (2.56) linearizes
the input–output behavior from (vd ,v′q) to (ω,ψrd) but fails to make the controlled
system dynamics (2.55) linear since the dynamics of ρ remain nonlinear.

On the other hand, if the goal of the control is to make the system, in suitable
state coordinates, linear by state feedback, then it is convenient to consider the four
equations in (1.39)

dω
dt

= μψrdisq − TL

J
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Fig. 2.32 Adaptive input–output feedback linearizing control: applied load torque TL and its esti-
mate T̂L

Fig. 2.33 Adaptive input–output feedback linearizing control: parameter α and its estimate α̂

disq

dt
= −γisq −ωisd − αMisqisd

ψrd
−βωψrd +

usq

σ
dρ
dt

= ω+
αMisq

ψrd

dψrd

dt
= −αψrd +αMisd (2.86)

in which usq and isd are viewed as the control inputs.
Consider the state space change of coordinates from (ω , isq, ρ , ψrd) to (ω , ω̇ , ρ ,

ρ̇), which is nonsingular provided that ψrd �= 0 and isq �= 0 since from
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Fig. 2.34 Adaptive input–output feedback linearizing control: stator current vector (a,b)-
components (isa, isb)

Fig. 2.35 Adaptive input–output feedback linearizing control: stator voltage vector (a,b)-
components (usa,usb)

ρ̇−ω =
αMisq

ψrd
=
αM
μψ2

rd

(
ω̇+

TL

J

)

we can solve for ψrd obtaining (if isq �= 0)

ψrd =

√√√√√αM
(
ω̇+

TL

J

)
μ(ρ̇−ω)

(2.87)

while
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isq =

(
ω̇+

TL

J

)
μψrd

=

√√√√√
(
ω̇+

TL

J

)
(ρ̇−ω)

μαM
. (2.88)

In new coordinates (ω, ω̇ ,ρ , ρ̇) the dynamics become

[
ω̈
ρ̈

]
=

⎡
⎣ −μ(γ+α)ψrdisq −μβωψ2

rd

μψrdisq − TL

J
+
αM(α− γ)isq

ψrd
−αMβω

⎤
⎦

+

⎡
⎢⎣
μψrd

σ
−μωψrd

αM
σψrd

−2α2M2isq

ψ2
rd

− αMω
ψrd

⎤
⎥⎦[usq

isd

]

�=

⎡
⎣ −μ(γ+α)ψrdisq −μβωψ2

rd

μψrdisq − TL

J
+
αM(α− γ)isq

ψrd
−αMβω

⎤
⎦+Dd

[
usq
isd

]
. (2.89)

Since

det [Dd ] = −2μα2M2isq

σψrd
,

provided that ψrd �= 0 and isq �= 0, the signals usq and isd can be uniquely expressed
in terms of (ω, ω̇, ω̈,ρ, ρ̇, ρ̈) from (2.87), (2.88) and (2.89) as

[
usq
isd

]
= D−1

d

⎡
⎣ ω̈+μ(γ+α)ψrdisq +μβωψ2

rd

ρ̈−μψrdisq +
TL

J
− αM(α− γ)isq

ψrd
+αMβω

⎤
⎦ (2.90)

with ψrd and isq given by (2.87) and (2.88). Hence, if a new input vsq is defined as

dusq

dt
=

vsq

σ
(2.91)

so that the variable usq becomes an additional state, (1.39) together with (2.91) be-
come

dω
dt

= μψrdisq − TL

J
disq

dt
= −γisq −ωisd − αMisdisq

ψrd
−βωψrd +

usq

σ
dusq

dt
=

vsq

σ
dρ
dt

= ω+
αMisq

ψrd
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dψrd

dt
= −αψrd +αMisd

disd

dt
= −γisd +ω isq +

αMi2sq

ψrd
+βαψrd +

usd

σ
(2.92)

in which (ω, isq,usq,ρ,ψrd , isd) are the state variables and (vsq,usd) are the control
input variables. From (2.87), (2.88), and (2.90) it follows that (ω , ω̇, ω̈ ,ρ, ρ̇ , ρ̈) de-
fined in (2.86) and (2.89) constitute an equivalent set of state variables if ψrd �= 0
and isq �= 0 since (ω , isq,usq,ρ,ψrd , isd) can be uniquely expressed in terms of
(ω , ω̇ , ω̈ ,ρ, ρ̇, ρ̈). Hence, differentiating (2.89) with respect to time we can express
the dynamics (2.92) in new coordinates (ω, ω̇, ω̈,ρ, ρ̇, ρ̈) as follows[ ˙̈ω

˙̈ρ

]
=
[
Φω
Φρ

]
+

Dd

σ

[
vsq
usd

]

with

Φω = −μ(γ+α)[Δ1isq +Δ2ψrd ]−μβ [Δ3ψ2
rd +2ωψrdΔ1]

+
μΔ1usq

σ
−μΔ1ω isd −μωψrdΔ4 −μΔ3ψrdisd

Φρ = μΔ1isq +μψrdΔ2 +
αM(α− γ)Δ2

ψrd
− αM(α− γ)isqΔ1

ψ2
rd

−αMβΔ3

−αMΔ1usq

σψ2
rd

− αMΔ3isd

ψrd
+
αMωΔ1isd

ψ2
rd

− 2α2M2Δ2isd

ψ2
rd

+
4α2M2isqisdΔ1

ψ3
rd

−
(

2α2M2isq

ψ2
rd

+
αMω
ψrd

)
Δ4

and

Δ1 = −αψrd +αMisd

Δ2 = −γisq −ωisd − αMisdisq

ψrd
−βωψrd +

usq

σ

Δ3 = μψrdisq − TL

J

Δ4 = −γisd +ωisq +
αMi2sq

ψrd
+βαψrd .

By defining the state feedback control law[
vsq
usd

]
= σD−1

d

[−Φω − kω1(ω−ω∗)− kω2(ω̇− ω̇∗)− kω3(ω̈− ω̈∗)+ ˙̈ω∗

−Φρ − kρ1(ρ−ρ∗)− kρ2(ρ̇− ρ̇∗)− kρ3(ρ̈− ρ̈∗)+ ˙̈ρ∗
]

the closed-loop linear dynamics are obtained
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d3ω̃
dt3 = −kω1ω̃− kω2

dω̃
dt

− kω3
d2ω̃
dt2

d3ρ̃
dt3 = −kρ1ρ̃− kρ2

dρ̃
dt

− kρ3
d2ρ̃
dt2 (2.93)

with ω̃ = ω−ω∗, ρ̃ = ρ−ρ∗, ρ∗ defined in (1.70) and kω1, kω2, kω3, kρ1, kρ2, kρ3
positive control parameters such that all the roots of the polynomials

πω(s) = s3 + kω3s2 + kω2s+ kω1

πρ(s) = s3 + kρ3s2 + kρ2s+ kρ1

have negative real parts.

In conclusion: the dynamic feedback linearizing control is defined as[
usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]
dusq

dt
=

vsq

σ[
vsq
usd

]
= σD−1

d

[−Φω − kω1(ω−ω∗)− kω2(ω̇− ω̇∗)− kω3(ω̈− ω̈∗)+ ˙̈ω∗

−Φρ − kρ1(ρ−ρ∗)− kρ2(ρ̇− ρ̇∗)− kρ3(ρ̈− ρ̈∗)+ ˙̈ρ∗
]

ρ̇ = ω+
αMisq

ψrd

ρ̇∗ = ω∗ +
αMTL

μJψ∗2 , ρ∗(0) = arctan
(
ψrb(0)
ψra(0)

)
ψrd = ψra cosρ+ψrb sinρ[

isd
isq

]
=
[

cosρ sinρ
−sinρ cosρ

][
isa
isb

]
Φω = −μ(γ+α)[Δ1isq +Δ2ψrd ]−μβ [Δ3ψ2

rd +2ωψrdΔ1]

+
μΔ1usq

σ
−μΔ1ωisd −μωψrdΔ4 −μΔ3ψrdisd

Φρ = μΔ1isq +μψrdΔ2 +
αM(α− γ)Δ2

ψrd
− αM(α− γ)isqΔ1

ψ2
rd

−αMβΔ3

−αMΔ1usq

σψ2
rd

− αMΔ3isd

ψrd
+
αMωΔ1isd

ψ2
rd

− 2α2M2Δ2isd

ψ2
rd

+
4α2M2isqisdΔ1

ψ3
rd

−
(

2α2M2isq

ψ2
rd

+
αMω
ψrd

)
Δ4

Δ1 = −αψrd +αMisd

Δ2 = −γisq −ωisd − αMisdisq

ψrd
−βωψrd +

usq

σ
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Δ3 = μψrdisq − TL

J

Δ4 = −γisd +ωisq +
αMi2sq

ψrd
+βαψrd ; (2.94)

it is a third order dynamic nonlinear feedback control algorithm which de-
pends on the measurements of the state variables (ω,ψra,ψrb, isa, isb), on
the reference signals (ω∗,ψ∗), on the positive control parameters kω1, kω2,
kω3, kρ1, kρ2, kρ3, on the load torque TL, and on the machine parameters

M,Rr,Lr,J,Rs,Ls, since μ =
M

JLr
, α =

Rr

Lr
, σ = Ls

(
1− M2

LsLr

)
, β =

M
σLr

,

γ =
Rs

σ
+ βαM; it guarantees that, for suitable initial and operating condi-

tions such that ψrd(t) ≥ c1 > 0 and isq(t) ≥ c2 > 0 for all t ≥ 0, the rotor
speed and flux angle tracking errors have decoupled dynamics and decay ex-
ponentially to zero according to (2.93), with c1 and c2 depending on the initial
tracking errors.

Illustrative Simulations

We tested the dynamic feedback linearizing control by simulations for the three-
phase single pole pair 0.6-kW induction motor whose parameters have been re-
ported in Chapter 1. All the motor initial conditions have been set equal to zero ex-
cept for ψra(0) = ψrb(0) = 0.1Wb. The motor is driven by the feedforward control
until t = 0.7s in order to avoid the singularities appearing in the dynamic feedback
linearizing control; at t = 0.7s the dynamic feedback linearizing control is applied.
The control parameters used in the simulation are (all the values are in SI units):
kω1 = 106, kω2 = 3×104, kω3 = 3×102, kρ1 = 106, kρ2 = 3×104, kρ3 = 3×102;
real coincident eigenvalues are assigned to the matrices associated to the decou-
pled, linear time-invariant third order systems (2.93). The controller initial condition
has been set equal to usq(0) = 171.46922V in order to avoid discontinuities at the
switching time t = 0.7s. The references for the speed and flux modulus along with
the applied load torque are reported in Figures 2.36–2.38. The rotor flux modulus
reference signal starts from 0.001Wb at t = 0s and grows up to the constant value
1.16Wb. The speed reference is zero until t = 0.32s and grows up to the constant
value 100rad/s. A 5.8-Nm load torque is applied to the motor and is reduced to
4.8Nm. Figures 2.37 and 2.38 show the time histories of the rotor speed and rotor
flux modulus along with the corresponding tracking errors: the rotor speed and rotor
flux modulus track their references. Note that at t = 1.5s the speed and flux modu-
lus tracking errors are perturbed by the uncompensated load torque time derivatives.
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Finally, the stator current and voltages profiles, which are within the physical satu-
ration limits, are reported in Figures 2.39 and 2.40.

Fig. 2.36 Dynamic feedback linearizing control: applied load torque TL

Fig. 2.37 Dynamic feedback linearizing control: rotor speed ω and its reference ω∗; rotor speed
tracking error



118 2 State Feedback Control

Fig. 2.38 Dynamic feedback linearizing control: rotor flux modulus
√
ψ2

ra +ψ2
rb and its reference

ψ∗; rotor flux modulus tracking error

Fig. 2.39 Dynamic feedback linearizing control: stator current vector (a,b)-components (isa, isb)

2.7 Global Control with Arbitrary Rate of Convergence

The goal of this section is to improve the indirect field-oriented control presented
in Section 2.3, which has the advantage of allowing for any motor initial condition
but has the drawback of not guaranteeing exponential tracking of reference signals
(ω∗(t),ψ∗(t)) with arbitrary rate of convergence. On the other hand, we have seen
in Section 2.4 that it is possible to design a state feedback control which achieves
exponential tracking with arbitrary rate from sufficiently small initial errors. We
would like to bridge the gap between these two control schemes. To this end, we re-
consider the control algorithm (2.48) and modify the reference for the stator current



2.7 Global Control with Arbitrary Rate of Convergence 119

Fig. 2.40 Dynamic feedback linearizing control: stator voltage vector (a,b)-components (usa,usb)

vector d-component and the speed of the rotating (d,q) frame as follows:

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

ω0 = ω+
αMisq

ψ∗ − ηq

ψ∗ , (2.95)

i.e. by adding two feedback terms ηd and ηq which will be designed in the following.
The reference for the stator current vector q-component remains the same as in
(2.48), i.e.

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]
. (2.96)

Introduce the tracking errors

ω̃ = ω−ω∗

ψ̃rd = ψrd −ψ∗

ψ̃rq = ψrq

ĩsd = isd − i∗sd

ĩsq = isq − i∗sq

for the rotor speed, rotor flux vector (d,q)-components and stator current vector
(d,q)-components, respectively. The dynamics for ω̃ , ψ̃rd , and ψ̃rq are given by

˙̃ω = −kωω̃+μ(ψ̃rdisq − ψ̃rqisd)+μψ∗ ĩsq

˙̃ψrd = −αψ̃rd +(ω0 −ω)ψ̃rq +αMĩsd +ηd

˙̃ψrq = −αψ̃rq − (ω0 −ω)ψ̃rd +ηq . (2.97)
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In order to design the additional undetermined terms ηd and ηq in (2.95), we intro-
duce the positive control parameter λ and consider the Lyapunov function

W =
1
2
(
λω̃2 + ψ̃2

rd + ψ̃2
rq
)

(2.98)

whose time derivative along the trajectories of (2.97) is

Ẇ = −λkωω̃2 +λμ(ψ̃rdisq − ψ̃rqisd)ω̃+λμψ∗ ĩsqω̃
−α(ψ̃2

rd + ψ̃2
rq)+αMĩsdψ̃rd +ηdψ̃rd +ηqψ̃rq . (2.99)

Since isq = ĩsq + i∗sq, we define the additive feedback terms in (2.95) as

ηd = −kψ(ψrd −ψ∗)−λμ i∗sqω̃
ηq = −kψψrq +λμ isdω̃ (2.100)

in which kψ is a positive control parameter and (ψrd ,ψrq) are the measured rotor
flux vector components in the (d,q) frame which is identified by the rotating angle
ε0, whose dynamics are

dε0

dt
= ω0 = ω+

αMisq

ψ∗ +
kψψrq

ψ∗ − λμisdω̃
ψ∗

with arbitrary initial condition ε0(0). Recall that[
ψrd
ψrq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
ψra
ψrb

]
[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
.

By substituting (2.100) in (2.99) we obtain

Ẇ = −λkωω̃2 − (α+ kψ)(ψ̃2
rd + ψ̃2

rq)+λμψrd ĩsqω̃+αMĩsdψ̃rd . (2.101)

Note that the feedback terms depending on the arbitrary control parameter kψ intro-
duced in (2.100) are beneficial since kψ is added to the given motor parameter α in
(2.101). The influence of the last two terms in (2.101) will then be compensated by
a suitable choice of the stator voltages (usd ,usq). To this end, let us compute

di∗sq

dt
= Γq (2.102)

in which the term Γq depending on known signals is

Γq =
1
μψ∗
[
k2
ωω̃− kωμψ∗ ĩsq + ω̈∗]− ψ̇∗

μψ∗2

[
−kωω̃+

TL

J
+ ω̇∗
]
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−kω isq

ψ∗ ψ̃rd +
kω isd

ψ∗ ψ̃rq . (2.103)

Similarly, let us compute

di∗sd
dt

= Γd (2.104)

in which the term Γd depending on known signals is

Γd =
ψ̇∗

M
+
ψ̈∗

αM
− λμ

2ψ∗ ĩsqi∗sq

αM
− λμΓqω̃

αM
+
λμkωω̃i∗sq

αM
+

kψψ̇∗

αM

− kψ
αM

[−αψrd +(ω0 −ω)ψrq +αMisd ]

−λμ
2ψ̃rdisqi∗sq

αM
+
λμ2ψ̃rqisdi∗sq

αM
. (2.105)

On the basis of (2.102) and (2.104) the dynamics for the stator currents tracking
errors ĩsd and ĩsq can be computed as follows

dĩsd

dt
= −γisd +ω0isq +αβψrd +βωψrq +

usd

σ
−Γd

dĩsq

dt
= −γisq −ω0isd +αβψrq −βωψrd +

usq

σ
−Γq . (2.106)

Design the control inputs (usd ,usq) as

usd = σ
[
γ i∗sd −ω0isq −αβψrd −βωψrq +Γd − kiĩsd + vd

]
usq = σ

[
γ i∗sq +ω0isd −αβψrq +βωψrd +Γq − kiĩsq + vq

]
(2.107)

where vd and vq are yet to be designed and ki is a positive control parameter, so that
(2.106) becomes

dĩsd

dt
= −(γ+ ki)ĩsd + vd

dĩsq

dt
= −(γ+ ki)ĩsq + vq . (2.108)

In order to choose the undefined terms vd and vq, consider the Lyapunov function
for the overall tracking error dynamics

V = W +
1
2
(
ĩ2sd + ĩ2sq

)
(2.109)

whose time derivative along the trajectories of the closed-loop system (2.97),
(2.106) and (2.107) satisfies

V̇ = −λkωω̃2 −(α+ kψ
)
(ψ̃2

rd + ψ̃2
rq)+λμψrd ĩsqω̃+αMĩsdψ̃rd
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−(γ+ ki)(ĩ2sd + ĩ2sq)+ vd ĩsd + vqĩsq . (2.110)

If we design the yet undefined terms vd and vq as

vd = −αMψ̃rd

vq = −λμψrdω̃ (2.111)

then from (2.110) we obtain

V̇ ≤ −λkωω̃2 −(α+ kψ
)
(ψ̃2

rd + ψ̃2
rq)− (γ+ ki)(ĩ2sd + ĩ2sq)

≤ −2min{kω ,α+ kψ ,γ+ ki}V . (2.112)

Fig. 2.41 Global control with arbitrary rate of convergence for current-fed motors (constant refer-
ences ω∗,ψ∗)

In conclusion, the first order nonlinear state feedback global control with
arbitrary rate of convergence (see Figure 2.41)
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usd = σ [γi∗sd −ω0isq −αβψrd −βωψrq +Γd − ki(isd − i∗sd)+ vd ]
usq = σ

[
γi∗sq +ω0isd −αβψrq +βωψrd +Γq − ki(isq − i∗sq)+ vq

]
vd = −αM(ψrd −ψ∗)
vq = −λμψrd(ω−ω∗) (2.113)

with Γd and Γq given in (2.105) and (2.103) and[
usa
usb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
usd
usq

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM
+
ηd

αM

i∗sq =
1
μψ∗

[
−kω(ω−ω∗)+ ω̇∗ +

TL

J

]
dε0

dt
= ω0 = ω+

αMisq

ψ∗ − ηq

ψ∗

ηd = −kψ(ψrd −ψ∗)−λμ i∗sq(ω−ω∗)
ηq = −kψψrq +λμ isd(ω−ω∗)[

isd
isq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
isa
isb

]
[
ψrd
ψrq

]
=
[

cosε0 sinε0
−sinε0 cosε0

][
ψra
ψrb

]
(2.114)

with (kω ,kψ ,ki) arbitrary positive design parameters, is such that (ω −ω∗),
(ψrd −ψ∗), ψrq, (isd − i∗sd), (isq − i∗sq) tend exponentially to zero from any
initial condition with arbitrary rate of convergence min{kω ,α+ kψ ,γ+ ki}.

As we shall see, in Chapter 4 a global adaptive version of the controller (2.114)
will be presented which does not rely on rotor flux measurements and is adaptive
with respect to both critical parameters TL and α: no arbitrary exponential rate of
convergence will, however, be obtained when the parameters TL and α are uncertain.

Illustrative Simulations

We tested the global control with arbitrary rate of convergence by simulations for
the three-phase single pole pair 0.6-kW induction motor whose parameters have
been reported in Chapter 1. All the motor and controller initial conditions have been
set to zero except for ψra(0) = ψrb(0) = 0.1Wb. The control parameters are (all
values are in SI units) λ = 0.005, kω = 450, ki = 800, kψ = 12. The references
for the speed and flux modulus along with the applied load torque are reported in
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Figures 2.42–2.44. The rotor flux modulus reference signal starts from 0.01Wb at
t = 0s and grows up to the constant value 1.16Wb. The speed reference is zero
until t = 0.32s and grows up to the constant value 100rad/s; at t = 1.5s the speed
is required to go up to the value 200rad/s, while the reference for the flux modulus
is reduced to 0.5Wb. A 5.8-Nm load torque is applied to the motor and is reduced
to 1.8Nm. Figures 2.43 and 2.44 show the time histories of the rotor speed and the
flux modulus along with the corresponding tracking errors: the rotor speed and the
flux modulus track their references tightly. Finally, the stator current and voltages
profiles (which are within physical saturation limits) are reported in Figures 2.45
and 2.46.

Fig. 2.42 Global control with arbitrary rate of convergence: applied load torque TL

2.8 Experimental Results

Two experiments have been performed in order to test how critical the parameter α
is in practice. The indirect field-oriented control (2.49) has been tested with usd and
usq in (2.50) simplified by PI controls on the current errors isd − i∗sd and isq − i∗sq and
TL replaced by its estimate (2.115) (see Problem 2.5), in which in place of the true
value of α a constant estimate α̂ has been used. The reference signals for speed and
rotor flux modulus in the experiments are reported in Figure 2.47: the flux modulus
is first required to reach its desired value of 1.16Wb before 0.5s when the rotor
speed is then required to reach its desired value of 100rad/s. After start-up, a con-
stant load torque of 5.8Nm is applied. In the first experiment α̂ underestimates the
correct value of α , i.e. α̂/α = 0.7, while in the second one α is overestimated, i.e.
α̂/α = 1.5. The following control parameters and initial conditions have been used:
kω = 300, kT = 187, T̂L(0) = 0, ε0(0) = 0. The gains kP and kI of the PI controllers
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Fig. 2.43 Global control with arbitrary rate of convergence: rotor speed ω and its reference ω∗;
rotor speed tracking error

Fig. 2.44 Global control with arbitrary rate of convergence: rotor flux modulus
√
ψ2

ra +ψ2
rb and

its reference ψ∗; rotor flux modulus tracking error

for the voltages (usd ,usq) are chosen so that a unit step reference is tracked with
a settling time of about 2.5ms. The flux is estimated by the open-loop rotor flux
observer (3.8) which will be given in Section 3.1.1 (converging outside the mag-
netic saturation region), which makes use of the true value of α . The performance
achieved by the controller in the two cases are reported in Figures 2.48 and 2.49:
while the speed error is still satisfactory, the flux modulus is above the reference
rated value when α̂/α = 0.7 and below when α̂/α = 1.5 and, therefore, the power
efficiency degrades. In both cases higher iq currents (when compared with the corre-
sponding iq obtained in simulations) are required to produce the rated torque: this is
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Fig. 2.45 Global control with arbitrary rate of convergence: stator current vector (a,b)-
components (isa, isb)

Fig. 2.46 Global control with arbitrary rate of convergence: stator voltage vector (a,b)-
components (usa,usb)

due to the magnetic saturation when α̂/α = 0.7 and to the low flux modulus when
α̂/α = 1.5.

2.9 Conclusions

In this chapter the potentiality of feedback control for induction motors has been
fully explored under the assumption that all the state variables are available for
feedback. The motivation for introducing feedback actions in the controller comes
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Fig. 2.47 Reference signals in the experiments

Fig. 2.48 Experimental results with the indirect field-oriented control and underestimated rotor
resistance

Fig. 2.49 Experimental results with the indirect field-oriented control and overestimated rotor re-
sistance
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from the analysis in Section 2.1 of the motor driven by the feedforward control
which, when the initial conditions are compatible and the parameters values are ex-
act, forces the motor to follow the desired rotor speed and flux modulus reference
signals as shown in Chapter 1. In Section 2.1 the existence of constant rotor speed
and flux modulus references and nonzero load torque is shown such that the origin of
the error system is not globally attractive. In fact, an additional nonzero equilibrium
point exists so that rotor speed tracking is not achieved for any motor initial condi-
tion. Moreover, the stability of the origin of the error system critically depends on
the load torque which turns an asymptotically stable operating condition into an un-
stable one by crossing a critical value. Hence, the main goal of the feedback control
is to make the desired operating condition attractive for any motor initial condition,
for any value of the load torque, and robust with respect to motor parameter vari-
ations. The simplest way to achieve this goal is to modify the feedforward control
by including a feedback action from the rotor speed as in the indirect field-oriented
control presented in Section 2.3. This control is a modification of the original, his-
torically important, direct field-oriented control, which requires rotor flux measure-
ments and has a distinctive drawback: a singularity when the rotor flux modulus is
zero requires the motor to start from nonzero rotor flux modulus initial conditions,
in order to achieve exponential tracking of rotor speed reference signals for any load
torque. If one is willing to accept singularities in the control law and to rely on rotor
flux measurements with the aim of improving the closed-loop motor performance,
then the input–output feedback linearizing control presented in Section 2.4 achieves
an independent exponential tracking of rotor speed and flux modulus reference sig-
nals. For instance, the rotor flux modulus reference can be independently adjusted
to minimize the power losses, as discussed in Chapter 1, without affecting the speed
tracking: this feature is very appealing in electric traction applications. This control
strategy can be rendered adaptive with respect to uncertainties in the load torque and
rotor resistance by the adaptive input–output feedback linearizing control which is
presented in Section 2.5. This control involves estimates of both parameters: assum-
ing that either the load torque is different from zero or the rotor speed is not constant,
the convergence of the rotor resistance estimator is achieved while the load torque
estimator is always convergent to the true value. The online estimation of critical
parameters constitutes a strong motivation for the use of feedback control and leads
to an improved efficiency. In Section 2.6 it is shown that a dynamic third order state
feedback control, the dynamic feedback linearizing control, can render the closed-
loop motor linear so that the rotor speed and rotor flux angle can independently track
their desired reference signals. However the control shows singularities when either
the rotor flux modulus is zero or the stator current vector quadrature component is
zero and it works only when the initial tracking errors are sufficiently small. Finally,
in Section 2.7 the indirect field-oriented control introduced in Section 2.4 is gen-
eralized to obtain a global control that has several important features: it works for
any motor initial condition and for any load torque; it achieves exponential tracking
of desired reference signals (ω∗(t),ψ∗(t)) with arbitrary rate of convergence; it is
linear with respect to the rotor fluxes, the load torque, and the rotor resistance, so
that, as we shall see in Chapter 4, rotor flux observers and uncertain parameter es-



Problems 129

timators can be incorporated. An indirect field-oriented control, which is the only
implementable since it does not require flux measurements, has been experimen-
tally tested in Section 2.8 to evaluate how critical the exact knowledge of the rotor
resistance is. It turns out that an uncertain rotor resistance causes errors in the flux
regulation so that power efficiency degrades. Many control algorithms presented in
this chapter require flux measurements and exact parameter values. It will be dis-
cussed in Chapter 3 how to design rotor flux observers, adaptive observers, and
parameter estimators for load torque and rotor resistance. The global control with
arbitrary rate of convergence presented in Section 2.7 will be the starting point in
Chapter 4 to design control algorithms which achieve rotor speed and flux modulus
tracking for any initial condition, without the need of rotor flux measurements and
of load torque and rotor resistance exact values.

Problems

2.1. Given any positive constant rotor speed and flux modulus reference values
(ω∗,ψ∗), show that, in the case of zero load torque, exponential rotor speed and
flux modulus tracking are guaranteed for any motor initial condition by the feedfor-
ward control (2.8). Suggestion: use the positive definite function V = γ1(ω−ω∗)2 +
γ2(ψrd −ψ∗)2 +γ2ψ2

rq +γ3(isd − i∗sd)
2 +γ3(isq− i∗sq)

2 with γ1μ = γ2M = γ3β and γ1,
γ2, γ3 positive reals.

2.2. Show that the constant rotor flux modulus reference minimizing the power
losses given by (1.51) in Chapter 1 makes the origin of the error system exponen-
tially stable.

2.3. Show that exponential rotor speed and flux modulus tracking along with expo-
nential load torque estimation can be achieved for current-fed motors by both the
direct and the indirect field-oriented controls (2.19) and (2.48) with the load torque
estimate (kT is a positive control parameter)

T̂L(t) = T̂L(0)− kT

∫ t

0
(ω(τ)−ω∗(τ))dτ (2.115)

in place of TL. Suggestion: follow the analysis performed for the nonadaptive case.

2.4. Design a modified version of the indirect field-oriented control (2.48) for
current-fed motors which guarantees, for any motor initial condition using rotor
speed measurements only, exponential rotor speed and flux modulus tracking with
a rate of decay which depends on α . Suggestion: use the positive definite function
V = λ (ω−ω∗)2 +(ψrd −ψ∗)2 +ψ2

rq with λ a positive real.

2.5. Consider the indirect field-oriented control algorithm (2.48) with T̂L given in
Problem 2.3 in place of TL
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i∗sa
i∗sb

]
=
[

cosε0 −sinε0
sinε0 cosε0

][
i∗sd
i∗sq

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM

i∗sq =
1
μψ∗

[
−kω (ω−ω∗)+ ω̇∗ +

T̂L

J

]

ε̇0 = ω0 = ω+
αMisq

ψ∗

T̂L(t) = T̂L(0)− kT

∫ t

0
[ω(τ)−ω∗(τ)]dτ

and the PI control inputs

usa(t) = −kP[isa(t)− i∗sa(t)]− kI

∫ t

0
[isa(τ)− i∗sa(τ)]dτ

usb(t) = −kP[isb(t)− i∗sb(t)]− kI

∫ t

0
[isb(τ)− i∗sb(τ)]dτ

to drive the stator current tracking errors (isa − i∗sa) and (isb − i∗sb) quickly to zero.
Simulate the closed-loop performance and compare with the experimental results
given in Section 2.8.

2.6. Show that exponential rotor speed and flux modulus tracking is guaranteed for
any initial condition of the full order model by the indirect field-oriented control
(2.49)–(2.51). Suggestion: follow the analysis performed for the third-order model.

2.7. Design a modified version of the indirect field-oriented control (2.49)–(2.51)
which is global (i.e. it works for any motor initial condition) and adaptive with
respect to the critical parameters TL (load torque) and Rr (rotor resistance). Sugges-
tion: use the positive definite function V = γ1(ω−ω∗)2 + γ2(ψrd −ψ∗)2 + γ2ψ2

rq +
(isd − i∗sd)

2 +(isq − i∗sq)2 + γ3(TL − T̂L)2 + γ4(α− α̂)2 with γ1, γ2, γ3, and γ4 positive
reals.

2.8. Design a modified version of the input–output feedback linearizing control
(2.85) which is adaptive with respect to the load torque TL and both rotor and stator
resistances Rr, Rs. Suggestion: follow, in the control design, steps similar to those
presented in Section 2.5.

2.9. By following the ideas presented in Section 2.6, design a dynamic feedback

linearizing control by choosing
(
ψrd ,ω− μψ

2
rdρ
αM

)
in place of (ω,ρ).

2.10. Analyze the closed-loop behavior of the full order motor model (1.39) con-
trolled by the algorithm (2.24), (2.27), (2.29), and (2.30) when ω∗ and ψ∗ are con-
stant while TL and α are constant uncertain parameters. What happens if the feed-
back terms −αMi2sq/ψrd and αMisqisd/ψrd are dropped in (2.24)?
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2.11. Rewrite the input–output feedback linearizing control (2.64) as[
usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
vsd
vsq

]

with cosρ =ψra/
√
ψ2

ra +ψ2
rb, sinρ =ψrb/

√
ψ2

ra +ψ2
rb and compare (vsd ,vsq) with

(usd ,usq) in (2.24), (2.54), (2.56), and (2.57).

2.12. Show that if the condition (2.84) holds, then the control (2.85) guarantees for
suitable initial conditions exponential convergence to zero of the rotor speed and the
rotor flux modulus tracking errors and of the estimation errors as well. Suggestion:
use the Persistency of Excitation Lemma A.3 in Appendix A.

2.13. Design an adaptive version of the global control with arbitrary rate of con-
vergence (2.113) when the load torque TL is unknown: replace TL with its estimate
T̂L and then design an adaptation law for T̂L using the function [recall (2.98) and
(2.109)]

VT = V +
1

2λT
(TL − T̂L)2

with λT a positive real design parameter. Compare the resulting controller with that
obtained by setting α̂ = α in (2.85).

2.14. Simulate the adaptive control[
usa
usb

]
=
[

cosρ −sinρ
sinρ cosρ

][
usd
usq

]

usd = σ
[
γi∗sd −

(
ω+

αMisq

ψrd

)
isq −αβψrd +Γd − kiĩsd −αMψ̃rd

]

usq = σ
[
γi∗sq +

(
ω+

αMisq

ψrd

)
isd +βωψrd +Γq − kiĩsq −μω̃ψ̃rd

]

i∗sd =
ψ∗

M
+
ψ̇∗

αM
− kψψ̃rd

αM

i∗sq =
1
μψrd

(
−kωω̃+

T̂L

J
+ ω̇∗
)

T̂L = ξ −λJω
ξ̇ = −λξ +λJμψrdisq +λ 2Jω− vT

vT =
(kω +λ )
Jμψrd

ĩsq +
ω̃
J

Γd =
ψ̇∗

M
+
ψ̈∗

αM
− kψ
αM

(−αψrd +αMisd − ψ̇∗)

Γq =
1
μψrd

[
−kω

(
μψrdisq − T̂L

J
− ω̇∗
)
− vT

J
+ ω̈∗
]
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− 1
μψ2

rd

(
−kωω̃+

T̂L

J
+ ω̇∗
)

(−αψrd +αMisd)

ψrd = ψra cosρ+ψrb sinρ[
isd
isq

]
=
[

cosρ sinρ
−sinρ cosρ

][
isa
isb

]

by choosing the control parameters (ki, kψ , kω , λ ); compare the results with those
obtained by (2.85) with α̂ = α and kω p = 8,100, kωd = 180, kψ p = 8,100, kψd =
180, λ = 120.

2.15. Consider the current-fed model (2.32) in an arbitrary rotating frame and the
dynamic feedback control (2.34): design (isd , isq, ω0) assuming that (ω , ψrd , ψrq)
are measured so that the closed-loop system (2.32), (2.34) becomes linear and de-
coupled (kω , kd , and kq are positive reals)

˙̃ω = −kωω̃
˙̃ψrd = −kdψ̃rd

˙̃ψrq = −kqψ̃rq

provided that ψ2
rd(t)+ψ2

rq(t) ≥ c > 0 for all t ≥ 0.

2.16. Design an adaptive version of the global control with arbitrary rate of conver-
gence (2.113) which is adaptive with respect to all model parameters and guarantees
the asymptotic tracking of both rotor speed and flux modulus references from any
motor initial conditions. Suggestion: reparameterize and use projection algorithms.

2.17. Consider the indirect field-oriented control (2.49) and replace the parameter α
by a constant estimate α̂ . Compute the error dynamics and their equilibrium points
in terms of the estimation error α̃ = α− α̂ and evaluate their stability.
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