
Chapter 2
Introduction to Jython

In this chapter, we will give a short introduction to the Jython programming lan-
guage. We have already pointed out that Jython is an implementation of the Python
programming language, unlike CPython which is implemented in C/C++.

While these implementations provide almost identical a Python-language pro-
gramming environment, there are several differences. Since Jython is fully
implemented in Java, it is completely integrated into the Java platform, so one
can call any Java class and method using the Python-language syntax. This
has some consequences for the way you would program in Jython. During
the execution of Jython programs, the Jython source code is translated to Java
bytecode that can run on any computer that supports the Java virtual machine.

We cannot give a comprehensive overview of Jython or Python in this chapter:
This chapter aims to describe a bare minimum which is necessary to understand the
Jython language, and to provide the reader with sufficient information for the fol-
lowing chapters describing data-analysis techniques using the jHepWork libraries.

2.1 Code Structure and Commentary

As for CPython, Jython programs can be put into usual text files with the extension
‘.py’. A Jython code is a sequence of statements that can be executed normally,
line-by-line, from the top to the bottom. Jython statements can also be executed
interactively using the Jython shell (the tab ‘JythonShell’ of the jHepWork IDE).

Comments inside Jython programs can be included using two methods: (1) To
make a single-line comment, put the sharp “#” at the beginning of the line; (2) To
comment out a multi-line block of a code, use a triple-quoted string.

It is good idea to document each piece of the code you are writing. Documenta-
tion comments are strings positioned immediately after the start of a module, class

S.V. Chekanov, Scientific Data Analysis using Jython Scripting and Java,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-287-2_3, © Springer-Verlag London Limited 2010

27

http://dx.doi.org/10.1007/978-1-84996-287-2_3

28 2 Introduction to Jython

or function. Such comment can be accessed via the special attribute __doc__. This
attribute will be considered later on when we will discuss functions and classes.

Jython statements can span multiple lines. In such cases, you should add a back
slash at the end of the previous line to indicate that you are continuing on the next
line.

2.2 Quick Introduction to Jython Objects

As for any dynamically-typed high-lavel computational language, one can use
Jython as a simple calculator. Let us use the jHepWork IDE to illustrate this. Start
the jHepWork and click on the “JythonShell” tab panel. You will see the Jython
invitation “>>>” to type a command. Let us type the following expression:

>>> 100*3/15

Press [Enter]. The prompt returns “20” as you would expect for the expression
(100*3)/15. There was no any assignment in this expression, so Jython assumes
that you just want to see the output. Now, try to assign this expression to some
variable, say W:

>>> W=100*3/15

This time, no any output will be printed, since the output of the expression from
the right side is assigned directly to the variable W. Jython supports multiple assign-
ments, which can be rather handy to keep the code short. Below we define three
variables W1, W2 and W3, assigning them to 0 value:

>>> W1=W2=W3=0

One can also use the parallel assignments using a sequence of values. In the example
below we make the assignment W1=1, W2=2 and W3=3 as:

>>> W1,W2,W3=1,2,3

At any step of your code, you can check which names in your program are de-
fined. Use the built-in function dir() which returns a sorted list of strings

>>> dir()
[’W’,’W1’,’W2’,’W3’,’__doc__’, ’__name__’ ...

2.2 Quick Introduction to Jython Objects 29

(we have truncated the output in this example since the actual output is rather long).
So, Jython knows about all our defined variables including that defined using the
character W. You will see more variables in this printed list which are predefined by
jHepWork.

One can print out variables with the print() method as:

>>> print W1
1

One can also append a comment in front:

>>> print ‘The output =’,W1
The output = 1

You may notice that there is a comma in front the variable W1. This is because
‘The output’ is a string, while ‘W1’ is an integer value, so their types are distinct
and must be separated in the print statement.

How do we know the variable types? For this we can use the type() method
which determines the object type:

>>> type(W1)
<type ’int’>

The output tells that this variable holds an integer value (the type “int”).
Let us continue with this example by introducing another variable, ‘S’ and by

assigning a text message to it. The type of this variable is “str” (string).

>>> S=’The output =’
>>> type (S)
<type ’str’>

So, the types of the variables ’W1’ and S are different. This illustrates the fact
that Jython, as any high-level language, determines types based on assigned values
during execution, i.e. a variable may hold a binding to any kind of object. This
feature is very powerful and the most useful for scripting: now we do not need
to worry about defining variable types before making assignments to a variable.
Clearly, this significantly simplifies program development.

Yet, the mechanics behind such useful feature is not so simple: the price to pay
for such dynamical features is that all variables, even such simple as ‘W1’ and ‘S’ de-
fined before, are objects. Thus, they are more complicated than simple types in other
programming languages, like C/C++ or FORTRAN. The price to pay is slower ex-
ecution and larger memory consumption. On the other hand, this also means that
you can do a lot using such feature! It should also be noted that some people use

30 2 Introduction to Jython

the word “value” when they talk about simple types, such as numbers and strings.
This is because these objects cannot be changed after creation, i.e. they are im-
mutable.

First, let us find out what can we do with the object ‘W1’. We know that it holds
the value 10 (and can hold any value). To find out what can be done with any objects
in the JythonShell window is rather simple: Type ‘W1’ followed by a dot and press
the [Space] key by holding down [Ctrl]:

>>> W1. [Ctrl]-[Space]

You will see a list of methods attributed to this object. They usually start as
__method__, where ’method’ is some attribute. For example, you will see the
method like __str__, which transforms an object of type integer to a string. So,
try this

>>> SW=str(W1); type(SW)
<type ’str’>

Here we put two Jython statements on one line separated by a semi-column. This,
probably, is not very popular way for programming in Jython, but we use it to il-
lustrate that one can this syntax is also possible. In some cases, however, a program
readability can significantly benefit from this style if a code contains many similar
and short statements, such as a1=1; a2=2. In this case, the statements have cer-
tain similarity and it is better to keep them in one single logical unit. In addition, we
will use this style in several examples to make our code snippets short.

The last expression in the above line does not have “=”, so Jython assumes that
what you really want is to redirect the output to the interactive prompt. The method
type() tells that “SW” is a string. As before, you may again look at the methods
of this object as:

>>> SW. [Ctrl]-[Space]

This displays a list of the methods attributed to this object. One can select a neces-
sary method and insert it right after the dot.

In addition to the JythonShell help system, one can discover the attributes of each
Jython object using the native Jython method dir():

>>> dir(SW)

In the following sections we will discuss other methods useful to discover at-
tributes of Java objects.

2.2 Quick Introduction to Jython Objects 31

2.2.1 Numbers as Objects

Numbers in Jython are immutable objects called values, rather than simple types
as in other programming languages (C/C++, Fortran or Java). There are two main
types: integers (no fractional part) and floats (with fractional part). Integers can be
represented by long values if they are followed by the symbol ‘L’. Try this:

>>> Long=20L
<type ’long’>

The only limit in the representation of the long numbers is the memory of Java
virtual machine.

Let us take a look again at the methods of a real number, say “20.2” (without
any assignment to a variable).

>> 20.2. [Ctrl]-[Space]

or, better, you can print them using the method “dir()”

>>> dir(20.2)

Again, since there is no any assignment, Jython just prints the output of the dir()
method directly to the same prompt. Why they are needed and what you can do with
them? Some of them are rather obvious and shown in Table 2.1.

Table 2.1 A short overview of the Jython operators for values

Jython operators for values

abs(x) __abs__ absolute value

pow(x, y) or y**x __pow__ raise x to the power y

−x,+x __neg__, __pos__ negative or positive

+, - __radd__, __rsub__ add or subtract

∗, / __rmul__, __rdiv__ add or subtract

x < y, x > y __com__ less or larger. Returns 0 (false) or 1 (true)

cmp(x, y) __com__ compare numbers. Returns 0 (false) or 1 (true)

x <= y, x >= y – comparison: less (greater) or equal

x == y, x! = y – comparison: equal or not equal

str(x) __str__ convert to a string

float(x) __float__ convert to float

int(x) __int__ convert to integer

long(x) __long__ convert to long

32 2 Introduction to Jython

There are more methods designed for this object, but we will not go into further
discussion. Just to recall: any number in Jython is an object and you can manipulate
with it as with any object to be discussed below. For example, Jython integers are
objects holding integer values. This is unlike C++ and Java where integers are
primitive types.

Is it good if simple entities, such as numbers are, have properties of objects? For
interactive manipulation with a code and fast prototyping, probably we do not care
so much, or even can take advantage of this property. But, for numerical libraries,
this feature is unnecessary and, certainly, is too heavy for high-performance calcu-
lations. We will address this issue later in the text.

2.2.2 Formatted Output

In the above examples we have used the print command without setting control
over the way in which printed values are displayed. For example, in the case of the
expression “1.0/3.0”, Jython prints the answer with 17 digits after the decimal
place!

Obviously, as for any programming language, one can control the way the values
are displayed: For this, one can use the % command to produce a nicely formatted
output. This is especially important of one needs to control the number of deci-
mal places the number is printed to. For example, one can print 1.0/3.0 to three
decimal places using the operator %.3f inside the string:

>>> print ’The answer is %.3f’%(1.0/3)
The answer is 0.333

As you can see, Jython replaces the character “f” with the variable value that fol-
lows the string. One can print more than one variable as shown in the example
below:

>>> print ’The answer is %.3f and %.1f’% (1.0/3, 2.0/3)
The answer is 0.333 and 0.7

One can also use the operator % to control the width of the displayed number,
so one can make neatly aligned tables. For example, the string “10.1f” forces the
number to be printed such that it takes up to ten characters. The example below
shows how to do this using the new-line character to print the second number on a
new line. As one can see, we align this second number with that printed on the first
line:

>>> print ’The answer: %.3f \n %13.1f’% (1.0/3, 2.0/3)
The answer: 0.333

0.7

2.2 Quick Introduction to Jython Objects 33

2.2.3 Mathematical Functions

To perform mathematical calculations with values, one should use the Jython math
module which comes from the standard specification of the Python programming
language. Let us take a look at what is inside of this module. First, we have to
import this module using the “import math” statement:

>>> import math

Use the usual approach to find the methods of this module:

>>> dir(math)
[’acos’, ’asin’, ’atan’, ’atan2’, ’ceil’,
’classDictInit’, ’cos’, ’cosh’, ’e’, ’exp’,
’fabs’, ’floor’, ’fmod’, ’frexp’, ’hypot’,
’ldexp’, ’log’, ’log10’, ’modf’, ’pi’, ’pow’,
’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

Most of us are familiar with all these mathematical functions that have the same
names in any programming language. To use these functions, type the module name
math followed by the function name. A dot must be inserted to separate the module
and the function name:

>>> math.sqrt(20)
4.47213595499958

As before for JythonShell, one can pick up a necessary function as:

>>> math. [Ctrl]-[Space]

It should be noted that, besides functions, the math module includes a few well-
known constants: π and e:

>>> print "PI=", math.pi
PI= 3.141592653589793
>>> print "e=", math.e
e= 2.718281828459045

If you have many mathematical operations and want to make a code shorter by
skipping the “math” attribute in front of each function declaration, one can explic-
itly import all mathematical functions using the symbol “*”:

34 2 Introduction to Jython

>>> from math import *
>>> sqrt(20)
4.47213595499958

2.2.4 Complex Numbers

Python has a natural support for complex numbers. Just attach “J” or “j” for the
imaginary part of a complex number:

>>> C=2+3j
>>> type(C)
<type ’complex’>

Once a complex number is defined, one can perform mathematical manipulations as
with the usual numbers. For example:

>>> 1j*1j
(-1+0j)

Mathematical operations with complex numbers can be performed using the
’cmath’ module, which is analogous to the ’math’ module discussed above.
The example below demonstrates how to calculate hyperbolic cosine of a complex
value:

>>> import cmath
>>> print cmath.cosh(2+3j)
(-3.724+0.511j)

The output values for the real and imaginary part in the above example were trun-
cated to fit the page width.

2.3 Strings as Objects

Strings are also treated as values since they are immutable. To define a string, one
should enclose it in double (”) or single (’) quote. The escape character is a back-
slash, so one can put a quote character after it. The newline is given by n directly
after the backslash character. Two strings can be added together using the usual “+”
operator.

As mentioned above, an arbitrary value, val, can be converted into a string us-
ing the method str(val). To convert a string into int or float value, use the

2.4 Import Statements 35

methods int(str) or float(str). Below we illustrate several such conver-
sions:

>>> i=int(’20’)
>>> type(i)
<type ’int’>
>>> f=float(’20.5’)
>>> type(f)
<type ’float’>

As before, all the methods associated with a string can be found using [Ctrl]-
[Space] or the dir() method:

>>> dir(’s’)
...
’capitalize’, ’center’, ’count’,’decode’,
’encode’, ’endswith’, ’expandtabs’, ’find’,
’index’, ’isalnum’, ’isalpha’, ’isdecimal’,
’isdigit’, ’islower’, ’isnumeric’, ’isspace’...

(we display only a few first methods). Some methods are rather obvious and do
not require explanation. All methods that start from the string “is” check for a
particular string feature.

Below we list more methods:

len(str) gives the number of characters in the string str
string.count(str) counts the number of times a given word appears in a

string
string.found(str) numeric position of the first occurrence of word in the

string
str.lower() returns a string with all lower case letters
str.upper() returns a string with all upper case letters

Strings can be compared using the standard operators: ==, !=, <, >, <=,
and >=.

2.4 Import Statements

There are several ways that can be used to import a Java or Python package. One
can use the ’import’ statement followed by the package name. In case of Python,
this corresponds to a file name without the extension ’.py’. The import statement
executes the imported file, unlike lower-level languages, like C/C++, where the
import statement is a preprocessor statement. The consequence of this is that the
import statement can be located in any place of your code, as for the usual exe-
cutable statement. We have seen already how to import the Python package “math”.

36 2 Introduction to Jython

Here is an example illustrating how to import the Java Swing package (usually used
to build a GUI):

>>> from javax.swing import *

In the above example we use the wildcard character “*” to import all packages
from Java Swing. In this book, you will see that we use “*” wildcard almost for
every example, since we what to keep our examples short. This is often considered
as a bad style since it “pollutes” the global namespace. However, if you know that
the code is not going to be very long and complicated, we should not worry too
much about this style.

Let us give another example showing how to import of a Java class. We remind
that the code below works only for Python implemented in Java (Jython):

>>> from javax.swing import JFrame

This time we have imported only a single class (JFrame) from Java, unlike the
previous example with the “polluted” namespace.

Another way to import classes is to use the ’import’ statement without the
string ’from’. For example:

>>> import javax.swing

In this case, we should use the qualified names, i.e.:

>>> f=javax.swing.JFrame(’Hello’)

Although it takes more typing, we have avoided polluting the global namespace of
our code.

2.4.1 Executing Native Applications

In Sect. 1.4.3 we have shown that native applications can be run using JythonShell
by appending “!” in front of an external command. In addition, one can also use
Jython ’os.system’ package to run an external program.

The code below shows how to run an external command. In this example, we
bring up the Acroread PDF file viewer (it should be found on the current PATH if
this program installed on your system):

>>> import os
>>> rc=os.system(’acroread’)

2.5 Comparison Tests and Loops 37

>>> if rc == 0:
>>> ... print ’acroread started successfully’

The statement ’if’ checks whether the execution has succeeded or not. We will
discuss the comparison tests in the next section. The same operation will look like
!acroread when using the Jython shell.

2.5 Comparison Tests and Loops

2.5.1 The ‘if-else’ Statement

Obviously, as in any programming language, one can use the ’if-else’ state-
ment for decision capability of your code. The general structure of comparison tests
is

if [condition1]:
[statements to execute if condition1 is true]

elif [condition2]:
[statements to execute if condition2 is true]

....

else:
[rest of the program]

The text enclosed in square brackets represents some Jython code. After the line
with the statement ’if’, the code is placed farther to the right using white spaces
in order to define the program block. Either space characters or tab characters (or
even both!) are accepted as forms of indentation. In this book, we prefer two spaces
for indentation. It should also be noted that the exact amount of indentation does
not matter, only the relative indentation of nested blocks (relative to each other) is
important.

The indentation is good Python feature: The language syntax forces to use the
indentation that you would have used anyway to make your program readable. Thus
even a lousy programmer is forced to write understandable code!

Now let us come back to the comparison tests. The [condition] statement
has several possibilities for values ’a’ and ’b’ values as shown in Table 2.2:

Let us illustrate this in the example below:

>>> a=1; b=2;
>>> if a*b>1:
>>> .. print "a*b>1"
>>> else:
>>> .. print "a*b<=1"

38 2 Introduction to Jython

Table 2.2 Most popular
Jython comparison tests Comparison tests

a == b a is equal to b

a! = b a is not equal to b

a > b a is greater than b

a >= b a is greater than or equal to b

a < b a is less than b

a <= b a is less than or equal to b

a == b a is equal to b

a! = b a is not equal to b

In case if you will need more complex comparisons, use the boolean operators
such as ’and’ and ’or’:

>>> a=1; b=0
>>> if a>0 and b=0:
>>> ..print ’it works!’

One can also use the string comparisons = (equal) or != (not equal). The com-
parison statements are case sensitive, i.e. ’a’ == ’A’ is false.

2.5.2 Loops. The “for” Statement

The need to repeat a statement or a code block is essential feature of any numerical
calculation. There is, however, one feature you should be aware of: Python should be
viewed as an “interface” type of language, rather than that used for heavy repeated
operations like long loops over values. According to the author’s experience, if the
number of iterations involving looping over values is larger than several thousands,
such part of the code should be moved to an external library to achieve a higher
performance and a lower memory usage compared to the Python code operating
with loops over objects. In case of Java, such libraries should be written in Java.

In this section we will be rather short. One can find more detailed discussion
about this topic in any Python textbook.

The simplest loop which prints, say, 10 numbers is shown below:

>>> for i in range(10):
>>> ... print i

This ’for’ loop iterates from 0 to 9. Generally, you can increment the counter by
any number. For example, to print numbers from 4 to 10 with the step 2, use this
example:

2.5 Comparison Tests and Loops 39

>>> for i in range(4,10,2):
>>> ... print i

2.5.3 The ‘continue’ and ‘break’ Statements

The loops can always be terminated using the ’break’ statement, or some itera-
tions can be skipped using the ’continue’ statement. All such control statements
are rather convenient, since help to avoid various ’if’ statements which makes the
Python code difficult to understand. This is illustrated in the example bellow:

>>> for i in range(10):
>>> ... if (i == 4): continue
>>> ... if (i == 8): break
>>> ... print i

In this loop, we skip the number 6 and break the loop after the number 8:

2.5.4 Loops. The ‘while’ Statement

One can also construct a loop using the ’while’ statement, which is more flexible
since its iteration condition could be more general. A generic form of such loop is
shown below:

while CONDITION:
... <Code Block as long as CONDITION is true>

Let us give a short example which illustrates the while loop:

>>> a=0
>>> while a<10:
>>> ... a=a+1

The while loop terminates when a=10, i.e. when the statement after the
’while’ is false. As before, one can use the control statements discussed above
to avoid overloading the execution block with various “if” statements.

One can also create an infinite loop and then terminate it using the “break”
statement:

40 2 Introduction to Jython

>>> a=0
>>> while 1:
>>> ... print "infinite loop!"
>>> ... a=a+1;
>>> ... if a>10:
>>> break
>>> ... print i

In this example, the ’break’ statement together with the ’if’ condition controls
the number of iterations.

2.6 Collections

Data-analysis computations are usually based on object collections, since they have
being designed for various repetitious operations on sequential data structures—
exactly what we mostly do when analyzing multiple measurements. In addition, a
typical measurement consists of a set of observations which have to be stored in a
data container as a single unit.

Unlike to other languages, we consider Python collections to be useful mainly
for storing and manipulation with other high-level objects, such as collections with
a better optimized performance for numerical calculations. In this book, we will use
the Jython collections to store sets of jHepWork histograms, mathematical func-
tions, Java-based data containers and so on.

Of course, one can use Jython collections to keep numerical values, but this ap-
proach is not going to be very efficient: An analysis of such values requires Python
loops which are known to be slow. Secondly, there are no too many pre-build Jython
libraries for object manipulation.

Nevertheless, in many parts of this books we will use collections which contain
numerical values: this is mainly for pedagogical reasons. Besides, we do not care too
much about the speed of our example programs when analyzing tens of thousands
events.

2.6.1 Lists

As you may guess, a list is an object which holds other objects, including values.
The list belongs to a sequence, i.e. an ordered collection of items.

2.6 Collections 41

2.6.2 List Creation

An empty list can be created using squared brackets. Let us create a list and check
its methods:

>>> list=[]
>>> dir(list) # or list. + [Ctrl]+[Space]

One can also create a list which contains integer or float values during the initial-
ization:

>>> list=[1,2,3,4]
>>> print list
[1, 2, 3, 4]

The size of this list is accessed using the len(list) method. The minimum and
maximum values are given by the min(list) and max(list) methods, respec-
tively. Finally, for a list which keeps numerical values, one can sum-up all list ele-
ments as sum(list).

One can create a mixed list with numbers, strings or even other lists:

>>> list=[1.0,’test’,int(3),long(2),[20,21,23]]
>>> print list
[1.0, ’test’, 3, 2L, [20, 21, 23]]

One can obtain each element of the list as list[i], where ’i’ is the element
index, 0<i<len(list). One can select a slice as list[i1:i2], or even select
the entire list as list[:]. A slice which selects index 0 through ’i’ can be writ-
ten as list[:i]. Several lists can be concatenated using the plus operator ’+’,
or one can repeat the sequence inside a list using the multiplication ’*’.

As before, one can find the major methods of the list using [Ctrl]+[Space]
keys. Some methods are rather obvious:

To add a new value, use the method append():

>>> list.append(’new string’)

A typical approach to fill a list in a loop would be:

>>> list=[]
>>> for i in range(4,10,2):
>>> ... list.append(i)

(here, we use a step 2 from 4 to 10). The same code in a more elegant form looks
like:

42 2 Introduction to Jython

>>> list=range(4, 10, 2)
>>> print list
[4, 6, 8]

If one needs a simple sequence, say from 0 to 9 with the step 1, this code can be
simplified:

>>> list=range(10)
>>> print ’List from 0 to 9:’,list
List from 0 to 9: [0,1,2,3,4,5,6,7,8,9]

One can create a list by adding some condition to the range statement. For
example, one create lists with odd and even numbers:

>>> odd =range(1,10)[0::2]
>>> even=range(1,10)[1::2]

Another effective “one-line” approach to fill a list with values is demonstrated
below:

>>> import math
>>> list = [math.sqrt(i) for i in range(10)]

Here we created a sequence of sqrt(i) numbers with i = 0..9.
Finally, one can use the ’while’ statement for adding values in a loop. Below

we make a list which contains ten zero values:

>>> list=[]
>>> while len(list)<10:
>>> ... list.append(0)

2.6.3 Iteration over Elements

Looping over a list can be done with the ’for’ statement as:

>>> for i in list:
>>> ...print i

or calling its elements by their index ’i’:

2.6 Collections 43

>>> for i in range(len(list)):
>>> ...print list[i]

2.6.3.1 Sorting, Searches, Removing Duplicates

The list can be sorted with the sort() method:

>>> list.sort()
>>> print list
[1.0, 2L, 3, [20, 21, 23], ’new string’, ’test’]

To reverse the list, use the method reverse().
To insert a value, use the insert(val) method, while to remove an element,

use the remove(val) method. Finally, one can delete either one element of a
list or a slice of elements. For example, to remove one element with the index i1
of a list use this line of the code: ’del list[i1]’. To remove a slice of ele-
ments in the index range i1-i2, use ’del list[i1:i]’. To empty a list, use
’del list[:]’. Finally, ’del list’ removes the list object from the com-
puter memory.

It should be noted that the list size in the computer memory depends on the
number of objects in the list, not on the size of objects, since the list contains pointers
to the objects, not objects themselves.

Advanced statistical analysis will be considered in Sect. 7.4, where we will show
how to access the mean values, median, standard deviations, moments and etc. of
distributions represented by Jython lists.

Jython lists are directly mapped to the Java ordered collection List. For exam-
ple, if a Java function returns ArrayList<Double>, this will be seen by Jython
as a list with double values.

To search for a particular value ’val’, use

>>> if val in list:
>>> ...print ’list contains’, val

For searching values, use the method index(val), which returns the index
of the first matching value. To count the number of matched elements, the method
count(val) can be used (it also returns an integer value).

2.6.4 Removal of Duplicates

Often, you may need to remove a duplicate element from a list. To perform this
task, use the-called dictionary collection (will be discussed below). The example to

44 2 Introduction to Jython

be given below assumes that a list object has been created before, and now we
create a new list (with the same name) but without duplicates:

>>> tmp={}
>>> for x in list:
>>> ...tmp[x] = x
>>> list=tmp.values()

This is usually considered to be the fastest algorithm (and the shortest). However,
this method works for the so-called hashable objects, i.e. class instances with a
“hash” value which does not change during their lifetime. All Jython immutable
built-in objects are hashable, while all mutable containers (such as lists or dictio-
naries to be discussed below) are not. Objects which are instances of user-defined
Jython or Java classes are hashable.

For unhashable objects, one can first sort objects and then scan and compare
them. In this case, a single pass is enough for duplicate removal:

>>> list.sort()
>>> last = list[-1]
>>> for i in range(len(list)-2, -1, -1):
>>> ...if last==list[i]:
>>> del list[i]
>>> ...else:
>>> last=list[i]

The code above is considered to be the second fastest method after that based on the
dictionaries. The method above works for any type of elements inside lists.

2.6.4.1 Examples

Lists are very handy for many data-analysis applications. For example, one can keep
names of input data files which can be processed by your program in a sequential
order. Or, one can create a matrix of numbers for linear algebra. Below we will give
two small examples relevant for data analysis:

A matrix. Let us create a simple matrix with integer or float numbers:

>>> mx=[
... [1, 2],
... [3, 4],
... [5, 6],
...]

One can access a row of this matrix as mx[i], where ’i’ is a row index. One can
swap rows with columns and then access a particular column as:

2.6 Collections 45

>>> col=[[x[0] for x in mx], [x[1] for x in mx]]
>>> print col
[[1, 3, 5], [2, 4, 6]]

In case of an arbitrary number of rows in a matrix, use the map container for the
same task:

>>> col=map(None,*mx)
>>> print col
[[1, 3, 5], [2, 4, 6]]

Advanced linear-algebra matrix operations using a pure Jython approach will be
considered in Sect. 7.5.4.

Records with measurements. Now we will show that the lists are very flexible
for storing records of data. In the example below we create three records that keep
information about measurements characterized by some identification string, a time
stamp indicating when the measurement is done and a list with actual numerical
data:

>>> meas=[]
>>> meas.append([’test1’,’06-08-2009’,[1,2,3,4]])
>>> meas.append([’test2’,’06-09-2009’,[8,1,4,4,2]])
>>> meas.append([’test3’,’06-10-2009’,[9,3]])

This time we append lists with records to the list holding all event records. We may
note that the actual numbers are stored in a separate list which can have an arbitrary
length (and could also contain other lists). To access a particular record inside the
list meas use its indexes:

>>> print meas[0]
>>> [’test1’, ’06-08-2009’, [1, 2, 3, 4]]
>>> print meas[0][2]
[1, 2, 3, 4]

2.6.5 Tuples

Unlike lists, tuples cannot be changed after their creation, thus they cannot grow
or shrink as the lists. Therefore, they are immutable, similar to the values. As the
Jython lists, they can contain objects of any type. Tuples are very similar to the lists
and can be initiated in a similar way:

46 2 Introduction to Jython

>>> tup=() # empty tuple
>>> tup=(1,2,"test",20.0) # with 4 elements

Of course, now operations that can change the object (such as append()), cannot
be applied, since we cannot change the size of this container.

In case if you need to convert a list to a tuple, use this method:

>>> tup=tuple([1,2,3,4,4])

Below we will discuss more advanced methods which add more features to ma-
nipulations with the lists and tuples.

2.6.6 Functional Programming. Operations with Lists

Functional programming in Jython allows to perform various operations on data
structures, like lists or tuples. For example, to create a new list by applying the
formula:

b[i] − a[i]
b[i] + a[i] (2.1)

for each element of two lists, a and b, you would write a code such as:

>>> a=[1,2,3]
>>> b=[3,4,5]
>>> c=[]
>>> for i in range(len(a)):
>>> ... c.append(b[i]-a[i] / (a[i]+b[i]))

To circumvent such unnecessary complexity, one can reduce this code to a single
line using functional programming:

>>> a=[1.,2.,3.]
>>> b=[3.,4.,5.]
>>> c= map(lambda x,y: (y-x)/(y+x),a,b)
>>> print c
[0.5, 0.33, 0.25]

The function map creates a new list by applying (2.1) for each element of the input
lists. The statement lambda creates a small anonymous function at runtime which
tells what should be done with the input lists (we discuss this briefly in Sect. 2.10).

2.6 Collections 47

As you can see, the example contains much lesser code and, obviously, program-
ming is done at a much higher level of abstraction than in the case with the usual
loops over list elements.

To build a new list, one can also use the ’math’ module. Let us show a rather
practical example based on this module: assume we have made a set of measure-
ments, and, in each measurement, we simply counting events with our observations.
The statistical error for each measurement is the square root of the number of events,
in case of counting experiments like this. Let us generate a list with statistical errors
from the list with the numbers of events:

>>> data=[4,9,25,100]
>>> import math
>>> errors= map(lambda x: math.sqrt(x),data)
>>> print errors
[2.0, 3.0, 5.0, 10.0]

The above calculation requires one line of the code, excluding the standard
’import’ statement and the ’print’ command.

Yet, you may not be totally satisfied with the ’lambda’ function: sometime
one needs to create a rather complicated function operating on lists. Then one can
use the standard Jython functions:

>>> a=[1.,2.,3.]
>>> b=[3.,4.,5.]
>>> def calc(x,y):
>>> ... return (y-x)/(x+y)
>>> c= map(calc,a,b)
>>> print c
[0.5, 0.33, 0.25]

The functionality of this code is totally identical to that of the previous example.
But, this time, the function calc() is the so-called “named” Jython function. This
function can contain rather complicated logic which may not fit to a single-line
’lambda’ statement.

One can also create a new list by selecting certain elements. In this case, use the
statement filter() which accepts an one-argument function. Such function must
return the logical true if the element should be selected. In the example below we
create a new list by taking only positive values:

>>> a=[-1,-2,0,1,2]
>>> print "filtered:",filter(lambda x: x>0, a)
filtered: [1, 2]

48 2 Introduction to Jython

As before, the statement ’lambda’may not be enough for more complicated logic
for element selection. In this case, one can define an external (or named) function
as in the example below:

>>> a=[-1,-2,0,1,2]
>>> def posi(x):
>>> ... return x > 0
>>> print "filtered:",filter(posi, a)
filtered: [1, 2]

Again the advantage of this approach is clear: we define a function posi(), which
can arbitrary be complicated, but the price to pay is more codding.

Finally, one can use the function reduce() that applies a certain function to
each pair of items. The results are accumulated as shown below:

>>> print "accumulate:",reduce(lambda x, y: x+y,[1,2,3])
>>> accumulate: 6

The same functional programming methods can be applied to the tuples.

2.6.7 Dictionaries

Another very useful container for analysis of data is the so-called dictionary. If one
needs to store some objects (which, in turn, could contain other objects, such as
more efficiently organized collections of numbers), it would be rather good idea to
annotate such elements. Or, at least, to have some human-readable description for
each stored element, rather than using an index for accessing elements inside the
container as for lists or tuples. Such a description, or the so-called “key”, can be
used for fast element retrieval from a container.

Dictionaries in Jython (as in Python) are designed for one-to-one relationships
between keys and values. The keys and the corresponding values can be any objects.
In particular, the dictionary value can be a string, numerical value or even other
collection, such as a list, a tuple, or other dictionary.

Let us give an example with two keys in form of strings, ’one’ and ’two’,
which map to the integer values ‘1’ and ‘2’, respectively:

>>> dic={’one’:1, ’two’:2}
>>> print dic[’one’]
1

In this example, we have used the key ’one’ to access the integer value ‘1’. One
can easily modify the value using the key:

2.6 Collections 49

>>> dic[’one’]=10

It should be noted that the keys cannot have duplicate values. Assigning a value
to the existing key erases the old value. This feature was used when we removed
duplicates from the list in Sect 2.6.3.1. In addition, dictionaries have no concept of
order among elements.

One can print the available keys as:

>>> print dic.keys()

The easiest way to iterate over values would be to loop over the keys:

>>> for key in dic:
>>> ... print key, ’corresponds to’, dic[key]

Before going further, let us rewrite the measurement example given in the previ-
ous section when we discussed the lists. This time we will use record identifications
as keys for fast retrieval:

>>> meas={}
>>> meas[’test1’]=[’06-08-2009’,[1,2,3,4]]
>>> meas[’test2’]=[’06-09-2009’,[8,1,4,4,2]]
>>> meas[’test3’]=[’06-10-2009’,[9,3]]
>>> print meas[’test2’]
[’06-09-2009’, [8, 1, 4, 4, 2]]

In this case, one can quickly access the actual data records using the keys. In our
example, a single data record is represented by a list with the date and additional list
with numerical values.

Let us come back to the description of the dictionaries. Here are a few important
methods we should know about:

dic.clear() clean a dictionary;
dic.copy() make a copy;
has_key(key) test, is a key present?;
keys() returns a list of keys;
values() returns a list of values in the dictionary.

One can delete entries from a dictionary in the same way as for the list:

>>> del dic[’one’]

50 2 Introduction to Jython

One can sort the dictionary keys using the following approach: convert them into
a list and use the sort() method for sorting:

>>> people = {’Eve’:10, ’Tom’: 20, ’Arnold’: 50}
>>> list = people.keys()
>>> list.sort()
>>> for p in list:
>>> ... print p,’is ’,people[p]
Arnold is 50
Eve is 10
Tom is 20

2.7 Java Collections in Jython

It was already said that the concept of collections is very important for any data
analysis, since “packing” multiple records with information into a single unit is a
very common task.

There are many situations when it is imperative to go beyond the standard
Python-type collections implemented in Jython. The strength of Jython is in its com-
plete integration with Java, thus one can call Java collections to store data. Yes, the
power of Java is in your hands!

To access Java collections, first you need to import the classes from the package
java.util. Java collections usually have the class names started with capital
letters, since this is the standard convention for class names in the Java programming
language. With this observation in mind, there is a little chance for mixing Python
collections with Java classes during the code development. In this section, we will
consider several collections from the Java platform.

2.7.1 List. An Ordered Collection

To build an ordered collection which contain duplicates, use the class List from
the Java package java.util. Since we are talking about Java, one can check what
is inside of this Java package as:

>>> from java.util import *
>>> dir()
[.. ’ArrayList’,’Currency’,’Date’,List,Set,Map]

Here we printed only a few Java classes to fit the long list of classes to the page
width. One can easily identify the class ArrayList, a class which is usually used

2.7 Java Collections in Jython 51

to keep elements in a list. One can check the type of this class and its methods using
either dir() or the JythonShell code assist:

>>> from java.util import *
>>> jlist=ArrayList()
>>> type(jlist)
<type ’java.util.ArrayList’>
>>> dir(jlist):
[... methods ...]
>>> jlist. # [Ctrl]+[Space]

As you can see, the type() method indicates that this is a Java instance, so we
have to use the Java methods of this instance for further manipulation. Let us add
elements to this list and print them:

>>> e=jlist.add(’test’)
>>> e=jlist.add(1)
>>> jlist.add(0,’new test’)
>>> e=jlist.add(2)
>>> print jlist
[new test, test, 1, 2]
>>> print jlist.get(0)
new test
>>> print jlist.toArray()
array(java.lang.Object,[’new test’, ’test’, 1, 2])

You may notice that when we append an element to the end of this list, we assign the
result to the variable ’e’. In Jython, it returns ‘1’ for success (or true for Java).
We also can add an object obj at the position characterized with the index i using
the method add(i,obj). Analogously, one can access elements by their integer
positions. For example, one can retrieve an object back using the method get(i).
The list of elements can be retrieved in a loop exactly as we usually do for the Jython
lists. Let us show a more complete example below:

Java list example

from java.util import *

jlist=ArrayList()
append integers
for i in range(100):

jlist.add(i)
print jlist.size()

replace at 0 position
jlist.set(0,100)
s=jlist
print type(s)

52 2 Introduction to Jython

range between 0-50
newlist=jlist.subList(0,50)
for j in newList:

print j

Run the above code and make sense of its output.
Probably, there are not too strong reasons to use Java List while working with

Jython, since the native Jython list discussed in the previous section should be suffi-
cient for almost any task. However, it is possible that you will need to use Java lists
in order to integrate your application natively into the Java platform after moving
your code into a pure Java codding.

2.7.1.1 Sorting Java Lists

One can do several manipulations with the List using the Java Collection
class. Below we show how to sort a list using the natural ordering of its elements,
and how to reverse the order:

>>> from java.util import *
>>> jlist=ArrayList()
>>> jlist.add(’zero’); jlist.add(’one’); jlist.add(’two’)
>>> Collections.sort(jlist)
>>> print jlist
>>> [one, two, zero]
>>> Collections.reverse(jlist)
>>> print jlist
>>> [zero, two, one]

The next question is how to sort a list with more complicated objects, using some
object attribute for sorting. Consider a list containing a sequence of other lists as in
the case shown below:

>>> from java.util import *
>>> jlist=ArrayList()
>>> jlist.add([2,2]); jlist.add([3,4]); jlist.add([1,1])
>>> print jlist
[[2, 2], [3, 4], [1, 1]]

Here there is a small problem: how can we tell to the method sort() that we want
to perform a sorting using a first (or second) item in each element-list? Or, more
generally, if each element is an instance of some class, how can we change ordering
objects instantiated by the same class?

One can do this by creating a small class which implements the Comparator
interface. We will consider Jython classes in Sect. 2.11, so at this moment just accept

2.7 Java Collections in Jython 53

this construction as a simple prescription that performs a comparison of two objects.
The method compare(obj1,obj2) of this class compares objects and returns
a negative value, zero, or a positive integer value depending on whether the object
is less than, equal to, or greater than the specified object. Of course, it is up to
you to define how to perform such object comparison. For the example above, each
object is a list with two integers, so one can easily prototype a function for object
comparison. Let us write a script which orders the list in increasing order using the
first element of each list:

Sorting Java lists

from java.util import *

jlist=ArrayList()
jlist.add([2,2]); jlist.add([3,4]); jlist.add([1,1])

class cmt(Comparator):
def compare(self, i1,i2):

if i1[0]>i2[0]: return 1
return 0

Collections.sort(jlist,cmt())
print jlist

After running this script, all elements will be ordered and the print method displays
[[1, 1],[2, 2],[3, 4]].

We will leave the reader here. One can always find further information about the
Java lists from any Java textbook.

2.7.2 Set. A Collection Without Duplicate Elements

The Set container from the package java.util is a Java collection that cannot
contain duplicate elements. Such set can be created using general-purpose imple-
mentations based on the HashSet class:

>>> from java.util import *
>>> s=HashSet()
>>> e=s.add(’test’)
>>> e=s.add(’test’)
>>> e=s.add(1)
>>> e=s.add(2)
>>> print s
[1, 2, test]

As you can see from this example, the string ’test’ is automatically removed
from the collection. Operations with the Java sets are exactly the same as those with

54 2 Introduction to Jython

the ArrayList. One can loop over all elements of the set collection using the
same method as that used for the ArrayList class, or one can use a method by
calling each element by its index:

>>> for i in range(s.size()):
>>> ...print s[i]

As in the case with the Java lists, you may face a problem when go beyond
simple items in the collection. If you want to store complicated objects with certain
attributes, what method should be used to remove duplicates? You can do this as
well but make sure that instances of the class used as elements inside the Java set
use hash tables (most of them do). In case of the example shown in Sect. 2.7.1.1, you
cannot use HashSet since lists are unhashinable. But with tuples, it is different:
Tuples have hash tables, so the code snippet below should be healthy:

>>> from java.util import *
>>> s=HashSet()
>>> e=s.add((1,2))
>>> e=s.add((2,4))
>>> e=s.add((1,2))
>>> print s
[(2, 4), (1, 2)]

As you can see, the duplicate entry (1,2) is gone from the container. In case if
you need to do the same with Python lists, convert them first into tuples as shown in
Sect. 2.6.5.

2.7.3 SortedSet. Sorted Unique Elements

Next, why not to keep all our elements in the Java set container in a sorted order,
without calling an additional sorting method each time we add a new element? The
example below shows the use of the SortedSet Java class:

>>> from java.util import *
>>> s=TreeSet()
>>> e=s.add(1)
>>> e=s.add(4)
>>> e=s.add(4)
>>> e=s.add(2)
>>> print s
[1, 2, 4]

the second value “4” is automatically removed and the collection appears in the
sorted oder.

2.7 Java Collections in Jython 55

2.7.4 Map. Mapping Keys to Values

As it is clear from the title, now we will consider the Java Map collection which
maps keys to specific objects. This collection is analogous to a Jython dictionary,
Sect. 2.6.7. Thus, a map cannot contain duplicate keys as we have learned from the
Jython dictionaries.

Let us build a map collection based on the HashMap Java class:

>>> from java.util import *
>>> m=HashMap()
>>> m.put(’a’, 1)
>>> m.put(’b’, 2)
>>> m.put(’c’, 3)
>>> print m
{b=2, c=3, a=1}

Now you can see that Java maps have the same functionality as the Jython dictionar-
ies. As for any Java collection, the size of the Map is given by the method size().
One can access the map values using the key:

>>> print m[’a’]
1

Similar to the lists, one can print all keys in a loop:

>>> for key in m:
>>> ... print key, ’corresponds to’, m[key]
b corresponds to 2
c corresponds to 3
a corresponds to 1

Here we print all keys and also values corresponding to the keys.

2.7.5 Java Map with Sorted Elements

This time we are interested in a map with sorted keys. For this one should use the
class TreeMap and the same methods as for the HashMap class discussed before:

>>> from java.util import *
>>> m=TreeMap()
>>> m.put(’c’, 1)
>>> m.put(’a’, 2)

56 2 Introduction to Jython

>>> m.put(’b’, 3)
>>> print m
{a=2, b=3, c=1}

Compare this result with that given in the previous subsection. Now the map is
sorted using the keys.

2.7.6 Real Life Example: Sorting and Removing Duplicates

Based on the Java methods discussed above, we can do something more compli-
cated. In many cases, we need to deal with a sequence of data records. Each record,
or event, can consist of strings, integer and real numbers. So we are dealing with
lists of lists. For example, assume we record one event and make measurements of
this event by recording a string describing some feature and several numbers char-
acterizing this feature. Such example was already considered in Sect. 2.6.4.1.

Assume we make many such observations. What we want to do at the end of our
experiment is to remove duplicates based on the string with a description, and then
sort all the records (or observations) based on this description. This looks like a real
project, but not for Jython! The code below does everything using a several lines of
the code:

Sorting and removing duplicates

from java.util import *

data=ArrayList()
data.add(["star",1.1,30])
data.add(["galaxy",2.2,80])
data.add(["galaxy",3.3,10])
data.add(["moon",4.4,50])

map=TreeMap()
for row in data:

map.put(row[0],row[1:])

data.clear()
for i in map:

row=map[i]
row.insert(0,i)
data.add(row)

print data

Let us give some explanations. First, we make a data record based on the list
’data’ holding all our measurements. Then we build a TreeMap class and use
the first element to keep the description of our measurement in form of a “key”.

2.8 Random Numbers 57

The rest of our record is used to fill the map values (see row[1:]). As you already
know, when we fill the TreeMap object, we remove duplicate elements and sort the
keys automatically. Once the map is ready, we remove all entries from the list and
refill it using a loop over all the keys (which are now ordered). Then we combine the
key value to form a complete event record. The output of the script is given below:

[[’galaxy’,3.3,10],[’moon’,4.4,50],[’star’,1.1,30]]

We do not have extra record with the description ‘galaxy’ and, expectedly, all our
records are appropriately sorted.

2.8 Random Numbers

A generation of random numbers is an essential phase in scientific programming.
Random numbers are used for estimating integrals, generating data encryption keys,
data interpretation, simulation and modeling complex phenomena. In many exam-
ples of this book, we will simulate random data sets for illustrating data-analysis
techniques.

Let us give a simple example which shows how to generate a random floating
point number in the range [0,1] using the Python language:

>>> from random import *
>>> r=Random()
>>> r.randint(1,10) # a random number in range [0.10]

Since we do not specify any argument for the Random() statement, a random seed
from the current system time is used. In this case, every time you execute this script,
a new random number will be generated.

In order to generate a random number predictably for debugging purpose, one
should pass an integer (or long) value to an instance of the Random() class. For
the above code, this may look as: r=Random(100L). Now the behavior of the
script above will be different: every time when you execute this script, the method
randint(1,10) will return the same random value, since the seed value is fixed.

Random numbers in Python can be generated using various distributions depend-
ing on the applied method:

>>> r.random() # in range [0.0, 1.0)
>>> r.randint(min,max) # int in range [min,max]
>>> r.uniform(min,max) # real number in [min,max]
>>> r.betavariate(a,b) # Beta distribution (a>0,b>0)
>>> r.expovariate(lambda) # Exponential distribution
>>> r.gauss(m,s) # Gaussian distribution
>>> r.lognormvariate(m,s) # Log normal distribution

58 2 Introduction to Jython

>>> r.normalvariate(m,s) # Normal distribution
>>> r. gammavariate(a, b) # Gamma distribution.
>>> r.seed(i) # set seed (i integer or long)
>>> state=r.getstate() # returns internal state
>>> setstate(state) # restores internal state

In the examples above, ’m’ denotes a mean value and ’s’ represents a standard
deviation for the output distributions.

Random numbers are also used for manipulations with Jython lists. One can
randomly rearrange elements in a list as:

>>> list=[1,2,3,4,5,6,7,8,9]
>>> r.shuffle(list)
>>> print list
[3, 4, 2, 7, 6, 5, 9, 8, 1] # random list

One can pick up a random value from a list as:

>>> list=[1,2,3,4,5,6,7,8,9]
>>> r.choice(list) # get a random element

Similarly, one can get a random sample of elements as:

>>> list=[1,2,3,4,5,6,7,8,9]
>>> print r.sample(list,4) # random list
>>> [4, 2, 3, 6]

Of course, the printed numbers will be different in your case.

2.9 Time Module

The time module is rather popular due to several reasons. First, it is always a good
idea to find our the current time. Secondly, it is an essential module for more serious
tasks, such as optimization and benchmarking analysis programs or their parts. Let
us check the methods of the module time:

>>> import time
>>> dir(time) # check what is inside
[’__doc__’, ’accept2dyear’, ’altzone’, ’asctime’,
’classDictInit’, ’clock’, ’ctime’, ’daylight’,
’gmtime’, ’locale_asctime’, ’localtime’, ’mktime’,
’sleep’, ’strftime’, ’struct_time’, ’time’,
’timezone’, ’tzname’]

2.9 Time Module 59

You may notice that there is a method called __doc__. This looks like a method
to keep the documentation for this module. Indeed, by printing the documentation
of this module as

>>> print time.__doc__

you will see a rather comprehensive description. Let us give several examples:

>>> time.time() # time in seconds since the Epoch
>>> time.sleep() # delay for a number of seconds
>>> t=time.time()
>>> print t.strftime(’4-digit year: %Y, 2-digit year: \

%y, month: %m, day: %d’)

The last line prints the current year, the month and the day with explanatory anno-
tations.

To find the current day, the easiest is to use the module datetime:

>>> import datetime
>>> print "The date is", datetime.date.today()
>>> The date is 2008-11-14
>>> t=datetime.date.today()
>>> print t.strftime("4-digit year: \

%Y, 2-digit year: %y, month: %m, day: %d")

To force a program to sleep a certain number of seconds, use the sleep()
method:

>>> seconds = 10
>>> time.sleep(seconds)

2.9.1 Benchmarking

For tests involving benchmarking, i.e. when one needs to determine the time spent
by a program or its part on some computational task, one should use a Jython mod-
ule returning high-resolution time. The best is to use the module clock() which
returns the current processor time as a floating point number expressed in seconds.
The resolution is rather dependent on the platform used to run this program but, for
our benchmarking tests, this is not too important.

To benchmark a piece of code, enclose it between two time.clock() state-
ments as in this code example:

60 2 Introduction to Jython

>>> start = time.clock(); \
[SOME CODE FOR BENCHMARKING]; \
end = time.clock()

>>> print ’The execution of took (sec) =’, end-start

Let us give a concrete example: We will benchmark the creation of a list with integer
numbers. For benchmarking in an interactive mode, we will use the exec() state-
ment. This code benchmarks the creation of a list with the integer numbers from 0
to 99999.

>>> code=’range(0,100000)’
>>> start=time.clock();List=exec(code);end=time.clock()
>>> print ’Execution of the code took (sec)=’,end-start
Execution of the code took (sec) = 0.003

Alternatively, one can write this as:

>>> List=[]
>>> code=’for x in range(0,100000): List.append(x)’
>>> start=time.clock();exec(code);end=time.clock()
>>> print ’Execution of the code took (sec)=’,end-start

2.10 Python Functions and Modules

Jython supports code reuse via functions and classes. The language has many built-
in functions which can be used without calling the import statement. For example,
the function dir() is a typical built-in function. But how one can find out which
functions have already been defined? The dir() itself cannot display them. How-
ever, one can always use the statement dir(module) to get more information
about a particular module. Try to use the lines:

>>> import __builtin__
>>> dir(__builtin__)
...’compile’, ’dict’, ’dir’, ’eval’ ..

This prints a rather long list of the built-in functions available for immediate use
(we show here only a few functions).

Other (“library”) functions should be explicitly imported using the import
statement. For example, the function sqrt() is located inside the package
’math’, thus it should be imported as ’import math’. One can always list

2.10 Python Functions and Modules 61

all functions of a particular package by using the dir() function as shown in
Sect. 2.2.3.

It is always a good idea to split your code down into a series of functions, each of
which would perform a single logical action. The functions in Jython are declared
using the statement def. Here is a typical example of a function which returns
(a-b)/(a+b):

>>>def func(a,b):
>>> ... "function"
>>> ... d=(a-b)/(a+b)
>>> ... return d
>>>print func(3.0,1.0)
0.5
>>> print func.__doc__
function

To call the function func(), a comma-separated list of argument values is used.
The ’return’ statement inside the function definition returns the calculated
value back and exits the function block. If no return statement is specified, then
’None’ will be returned. The above function definition contains a string comment
’function’. A function comment should always be on the first line after the def
attributed. One can print the documentation comment with the method __doc__
from a program from which the function is called.

One can also return multiple values from a function. In this case, put a list of
values separated by commas; then a function returns a tuple with values as in this
example:

>>>def func(a,b,c=10):
>>> ... d1=(a-b)/(a+b)
>>> ... d2=(a*b*c)
>>> ... return d1,d2
>>>print func(2,1)
(0, 20)
>>> >print func(2.,1.0)
(0.5, 30.0)

The example shows another features of Jython functions: the answer from the
function totally depends on the type of passed argument values. The statement
func(2,1) interprets the arguments as integer values, thus the answer for
(a-b)/(a+b) is zero (not the expected 0.5 as in case of double values). Thus,
Jython functions are generic and any type can be passed in.

One can note another feature of the above example: it is possible to omit a pa-
rameter and use default values specified in the function definition. For the above
example, we could skip the third argument in the calling statement, assuming c=10
by default.

62 2 Introduction to Jython

All variable names assigned to a function are local to that function and exist
only inside the function block. However, you may use the declaration ’global’
to force a variable to be common to all functions.

>>>def func1(a,b):
>>> ... global c
>>> ... return a+b+c
>>>def func2(a,b):
>>> ... global c
>>> ... c=a+b
>>>
>>>print func2(2,1)
None
>>>print func1(2,1)
6

Thus, once the global variable ’c’ is assigned a value, this value is propagated
to other functions in which the ’global’ statement was included. The second
function does not have the ’return’ statement, thus it returns ’None’.

We should note that a function in Jython can call other functions, including itself.
In Jython, one can also create an anonymous function at runtime, using a con-

struct called ’lambda’ discussed in Sect. 2.6.6. The example below shows two
function declarations with the same functionality. In one case, we define the function
using the standard (“named”) approach, and the second case uses the “lambda”
anonymous declaration:

>>> def f1 (x): return x*x
>>> print f1(2)
4
>>> f1=lambda x: x*x
>>> print f1(2)
4

Both function definitions, f1 and f2 do exactly the same operation. However, the
“lambda” definition is shorter.

It is very convenient to put functions in files and use them later in your programs.
A file containing functions (or any Jython statement!) should have the extension
’.py’. Usually, such file is called a “module”. For example, one can create a file
’Func.py’ and put these lines:

File ’Func.py’

def func1(a,b):
"My function 1"
global c
return a+b+c

def func2(a,b):

2.11 Python Classes 63

"My function 2"
global c
c=a+b

This module can be imported into other modules. Let us call this module from
the JythonShell prompt with the following commands:

>>> import Func
>>>print Func.func2(2,1)
None
>>>print Func.func1(2,1)
6

We can access functions exactly as if they are defined in the same program, since the
import statement executes the file ’Func.py’ and makes the functions available
at runtime of your program.

Probably, we should remind again that one can import all functions with the
statement ’from Func import *’, as we usually do in many examples of this
book. In this case, one can call the functions directly without typing the module
name.

Another question is where such modules should be located? How can we tell
Jython to look at particular locations with module files? This can be done by using a
predefined list sys.path from the ’sys’ module. The list sys.path contains
strings that specify the location of Jython modules. One can add an additional mod-
ule location using the append() method: In this example, we added the location
’/home/lib’ and printed out all directories containing Jython modules:

>>> import sys
>>> sys.path.append(’/home/lib’)
>>> print sys.path

Here we have assumed that we put new functions in the directory ’/home/lib’.
Now we are equipped to go further. We would recommend to read any book about

Python or Jython to find more detail about Jython modules and functions.

2.11 Python Classes

As for any object-oriented language, one can define a Jython class either inside a
module file or inside the body of a program. Moreover, one can define many classes
inside a single module.

Classes are templates for creation of objects. Class attributes can be hidden, so
one can access the class itself only through the methods of the class. Any Python
book or tutorial should be fine in helping to go into the depth of this subject.

64 2 Introduction to Jython

A Jython class is defined as:

>>> class ClassName[args]:
>>> ... [code block]

where [code block] indicates the class body and bounds its variables and meth-
ods.

The example below shows how to create a simple class and how to instantiate
it:

>>> class Func:
>>> ... ’My first class’
>>> ... a=’hello’; b=10
>>>
>>> c=Func()
>>> print c.a, c.b
hello 10

The class defined above has two public variables, a and b. We create an instance of
the class ’Func’ and print its public attributes, which are just variables of the type
string and integer. As you can see, the class instance has its own namespace which
is accessible with the dot. As for functions and modules, classes can (and should)
have documentary strings.

The created instance has more attributes which can be shown as a list using the
built-in function dic(): Try this line:

>>> dir(Func)
[’__doc__’, ’__module__’, ’a’, ’b’]

The command displays the class attributes and the attributes of its class base. Note
that one can also call the method dir(obj), where ’obj’ is an instance of the
class (c in our example), rather than explicitly using the class name.

But what about the attributes which start from the two leading underscores? In
the example above, both variables, a and b, are public, so they can be seen by a
program that instantiates this class. In many cases, one should have private vari-
ables seen by only the class itself. For this, Jython has a naming convention: one
can declare names in the form __Name (with the two leading underscores). Such
convention offers only the so-called “name-mangling” which helps to discourage
internal variables or methods from being called from outside a class.

In the example above, the methods with two leading underscores are private
attributes generated automatically by Jython during class creation. The variable
__doc__ keeps the comment line which was put right after the class definition,

2.11 Python Classes 65

and the second variable __module__ keeps a reference to the module where the
class is defined.

>>> print c.__doc__
My first class
>>> print c.__module__
None

The last call returns ’None’ since we did not put the class in an external module
file.

2.11.1 Initializing a Class

The initialization of a Jython class can be done with the __init__ method, which
takes any number of arguments. The function for initialization is called immediately
after creation of the instance:

>>> class Func():
>>> ’My class with initialization’
>>> def __init__(self, filename=None):
>>> self.filename=filename
>>> def __del__(self):
>>> # some close statement goes here
>>> def close(self):
>>> # statement to release some resources

Let us take a closer look at this example. You may notice that the first argument of
the __init__ call is named as self. You should remember this convention: every
class method, including __init__, is always a reference to the current instance of
the class.

In case if an instance was initialized and the associated resources are allocated,
make sure they are released at the end of a program. This is usually done with
the __del__ method which is called before Jython garbage collector deallocates
the object. This method takes exactly one parameter, self. It is also a good prac-
tice to have a direct cleanup method, like close() shown in this example. This
method can be used, for example, to close a file or a database. It should be called
directly from a program which creates the object. In some cases, you may wish to
call close() from the __del__ function, to make sure that a file or database was
closed correctly before the object is deallocated.

66 2 Introduction to Jython

2.11.2 Classes Inherited from Other Classes

In many cases, classes can be inherited from other classes. For instance, if you have
already created a class ’exam1’ located in the file ’exam1.py’, you can use this
class to build a new (“derived”) class as:

>>> from exam1 import exam1
>>> class exam2(exam1):
>>> ... [class body]

As you can see, first we import the ancestor class ’exam1’, and then the ances-
tor of the class is listed in parentheses immediately after the class name. The new
class ’exam2’ inherits all attributes from the ’exam1’ class. One can change the
behavior of the class ’exam1’ by simply adding new components to ’examp2’
rather than rewriting the existing ancestor class. In particular, one can overwrite
methods of the class ’exam1’ or even add new methods.

2.11.3 Java Classes in Jython

The power of Jython, a Java implementation of the Python language, becomes clear
when we start to call Java classes using Python syntax. Jython was designed as a
language which can create instances of Java classes and has an access to any method
of such Java class.

This is exactly what we are going to do while working with the jHepWork
libraries. The example below shows how to create the Java Date object from
java.util and use its methods:

>>> from java.util import Date
>>> date=Date()
>>> date.toGMTString()
’09 Jun 2009 03:48:17 GMT’

One can use the code assist to learn more about the methods of this Java class (Type)
the object name followed by a dot and use [Ctrl]+[Space] in JythonShell for
help. Similarly, one can call dir(obj), where obj is an object which belongs to
the Java platform. For jHepWork IDE code editor, use a dot and the key [F4].

In this book, we will use Java-based numerical libraries from jHepWork, thus
most of the time we will call Java classes of this package. Also, in many cases, we
call classes from the native Java platform. For example, the AWT classes ’Font’
and ’Color’ are used by many jHepWork objects to set fonts and colors. For
example, Sect. 3.3.1 shows how to build a Java instance of graphical canvas based
on the Java class HPlot.

2.12 Used Memory 67

2.11.4 Topics Not Covered

In this book, we will try to avoid going into the depths of Python classes. We cannot
cover here many important topics, such as inheritance (the ability of a class to in-
herit propertied from another class) and abstract classes. We would recommend any
Python or Jython textbook to learn more about classes.

As we have mentioned before, we would recommend to develop Java libraries
to be linked with Jython, rather than building numerical libraries using pure-Jython
classes; for the latter approach, you will be somewhat locked inside the Python
language specification, plus this may result in slow overall performance of your
application. Of course, you have to be familiar with the Java language in order to
develop Java classes.

2.12 Used Memory

To know how much memory used by the Java virtual machine for an application is
important for code debugging and optimization. The amount of memory currently
allocated to a process can be found using the standard Java library as in the example
below:

>>> from java.lang import Runtime
>>> r=Runtime.getRuntime()
>>> Used_memory = r.totalMemory() - r.freeMemory()
>>> ’Used memory in MB = ’, Used_memory/(1024*1024)

We will emphasize that this only can be done in Jython, but not in CPython which
does not have any knowledge about the Java virtual machine.

We remind that if you use the jHepWork IDE, one can look at the memory mon-
itor located below the code editor.

2.13 Parallel Computing and Threads

A Jython program can perform several tasks at once using the so-called threads.
A thread allows to make programs parallelizable, thus one can significantly boost
their performance using parallel computing on multi-core processors.

Jython provides a very effective threading compared to CPython, since JAVA
platform is designed from the ground up to support multi-thread programming.
A multi-threading program has significant advantage in processing large data sets,
since one can break up a single task into pieces that can be executed in parallel.
At the end, one can combine the outputs. We will consider one such example in
Sect. 16.4.

68 2 Introduction to Jython

To start a thread, one should import the Jython module ’threading’. Typi-
cally, one should write a small class to create a thread or threads. The class should
contain the code to be executed when the thread is called. One can also put an ini-
tialization method for the class to pass necessary arguments. In the example below,
we create ten independent threads using Jython. Each thread prints integer numbers.
We create instances of the class shown above and start the thread using the method
start() which executes the method run() of this class.

A thread example

from threading import Thread

class test(Thread):
def __init__ (self,fin):
Thread.__init__(self)
self.fin = fin

def run(self):
print ’This is thread No=’+str (self.fin)

for x in xrange (10):
current=test(x)
current.start()
print ’done!’

Here we prefer to avoid going into detailed discussion of this topic. Instead,
we will illustrate the effectiveness of multi-threading programs in the following
chapters when we will discuss concrete data-analysis examples.

2.14 Arrays in Jython

This is an important section: Here we will give the basics of objects which can be
used for effective numerical calculations and storing consecutive values of the same
type.

Unfortunately, the Java containers discussed in Sect. 2.7 cannot be used in all
cases. Although they do provide a handy interface for passing arrays to Java and
jHepWork objects to be discussed later, they do not have sufficient number of built-
in methods for manipulations.

Jython lists can also be used for data storage and manipulation. However, they
are best suited for general-purpose tasks, such as storing complex objects, especially
if they belong to different types. They are rather heavy and slow for numerical ma-
nipulations with numbers.

Here we will discuss Python/Jython arrays that can be used for storing a sequence
of values of a certain type, such as integers, long values, floating point numbers etc.
Unlike lists, arrays cannot contain objects with different types.

The Jython arrays directly mapped to Java arrays. If you have a Java function
which returns an array of double values, and declared as double[] in a Java code,
this array will be seen by Jython as an array.

2.14 Arrays in Jython 69

Table 2.3 Characters used to
specify types of the Jython
arrays

Jython array types

Typecode Java type

z boolean

c char

b byte

h short

i int

l long

f float

d double

To start working with the arrays, one should import the module jarray. Then,
for example, an array with integers can be created as:

>>> from jarray import *
>>> a=array([1,2,3,4], ’i’)

This array, initialized from the input list [1,2,3,4], keeps integer values, see the
input character ’i’ (integer). To create an array with double values, the character
’i’ should be replaced by ’d’. Table 2.3 shows different choices for array types.
The length of arrays is given by the method len(a).

Arrays can be initialized without invoking the lists. To create an array containing,
say, ten zeros, one can use this statement:

>>> a=zeros(10, ’i’)

here, the first argument represents the length of the array, while the second specifies
its type.

A new value ’val’ can be appended to the end of an array using the
append(val) method if the value has exactly the same type as that used dur-
ing array creation. A value can be inserted at a particular location given by the
index ’i’ by calling the method insert(i,val). One can also append a list to
the array by calling the method fromlist(list).

The number of occurrences of a particular value ’val’ in an array can be given
by the method count(val). To remove the first occurrence of ’val’ from an
array, use the remove(val) method.

70 2 Introduction to Jython

2.14.1 Array Conversion and Transformations

Many Java methods return Java arrays. Such arrays are converted to Jython arrays
when Java classes are called from a Jython script.

Very often, it is useful to convert arrays to Jython list for easy manipulation. Use
the method tolist() as below:

>>> from jarray import *
>>> a=array([1,2,3,4], ’i’)
>>> print a.tolist()
[1, 2, 3, 4]

One can reverse all elements in arrays using the reverse() method. Finally, one
can also transform an array into a string applying the tostring() method.

There are no too many transformations for Jython arrays: in the following chap-
ters, we will consider another high-level objects which are rather similar to the
Jython arrays but have a large number of methods for numerical calculations.

2.14.2 Performance Issues

We have already noted that in order to achieve the best possible performance for
numerical calculations, one should use the built-in methods, rather than Python-
language constructs.

Below we show a simple benchmarking test in which we fill arrays with one
million elements. We will consider two scenarios: In one case, we use a built-in
function. In the second case, we use a Python-type loop. The benchmarking test
was done using the time module discussed in Sect. 2.9. The only new component in
this program is the one in which we format the output number: here we print only
four digits after the decimal point.

Benchmarking Jython arrays

import time
from jarray import *

start=time.clock()
a=zeros(1000000, ’i’)
t=time.clock()-start
print ’Build-in method (sec)= %.4f’ % t

start=time.clock()
a=array([], ’i’)
for i in range(0,1000000,1):

a.append(0)

2.15 Exceptions in Python 71

t=time.clock()-start
print ’Python loop (sec) %.4f’ % t

Run this small script by loading it in the editor and using the “[run]” button. The
performance of the second part, in which integers are sequentially appended to the
array, is several orders of magnitudes slower than for the case with the built-in array
constructor zeros().

Generally, the performance of Jython loops is not so dramatically slow. For most
examples to be discussed later, loops are several times slower than equivalent loops
implemented in built-in functions.

2.15 Exceptions in Python

Exception is an unexpected error during program execution. An exception is raised
whenever an error occurs.

Jython handles the exceptions using the “try”-“except”-“else” block. Let us give
a short example:

>>> b=0
>>> try:
>>> ... a=100/b
>>> except:
>>> ... print "b is zero!"

Normally, if you will not enclose the expression a=100/b in the “try”-“except”
block, you will see the message such as:

>>> a=100/b
Traceback (innermost last):

File "<input>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

As you can see, the exception in this case is ZeroDivisionError.
Another example of the exceptions is “a file not found” which happens while

attempting to open a non-existing file (see the next chapter describing Jython I/O).
Such exception can be caught in a similar way:

>>> try:
>>> ... f=open(’filename’)
>>> except IOError, e:
>>> ... print e

72 2 Introduction to Jython

This time the exception is IOError, which was explicitly specified. The variable
e contains the description of the error.

Exceptions can be rather different. For example, NameError means unknown
name of the class or a function, TypeError means operation for incompatible
types and so on. One can find more details about the exceptions in any Python
manual.

2.16 Input and Output

2.16.1 User Interaction

A useful feature you should consider for your Jython program is interactivity, i.e.
when a program asks questions at run-time and a user can enter desired values or
strings. To pass a value, use the Jython method input():

>>> a=input(’Please type a number: ’)
>>> print ’Entered number=’,a

In this example, the input() method prints the string ‘Please type a number:’ and
waits for the user response.

But what if the entered value is not a number? In this case, we should handle an
exception as discussed in Sect. 2.15.

If you want to pass a string, use the method raw_input() instead of
input().

The above code example works only for the stand-alone Jython interpreter, out-
side the jHepWork IDE. For the jHepWork IDE, this functionality is not supported.
In fact, you do not need this feature at all: When working with the IDE, you are
already working in an interactive mode. However, when you run Jython using the
system prompt, the operations input() or raw_input() are certainly very use-
ful.

2.16.2 Reading and Writing Files

File handling in Jython is relatively simple. One can open a file for read or write
using the open() statement:

>>> f=open(FileName, option)

where ’FileName’ represents a file name including the correct path, ’option’
is a string which could be either ’w’ (open for writing, old file will be removed),
’r’ (open for reading) or ’a’ (file is opened for appending, i.e. data written to it
is added on at the end). The file can be closed with the close() statement.

2.16 Input and Output 73

Let us read a file ’data.txt’with several numbers, each number is positioned
on a new line:

>>> f=open(’data.txt’,’r’)
>>> s=f.readline()
>>> x1=float(s)
>>> s=f.readline()
>>> x2=float(s)
>>> f.close()

At each step, readline() reads a new line and returns a string with the number,
which is converted into either a float or integer.

The situation is different if several numbers are located on one line. In the sim-
plest case, they can be separated by a space. For such file format, we should split
the line into pieces after reading it. For example, if we have two numbers separated
by white spaces in one line, like ‘100 200’, we can read this line and then split it as:

>>> f=open(’data.txt’, ’r’)
>>> s=f.readline()
>>> x=s.split()
>>> print s
[’100’,’200’]

As you can see, the variable ’x’ is a list which contains the numbers in form of
strings. Next, you will need to convert the elements of this list into either float or
integer numbers:

>>> x1=float(x[0])
>>> x2=float(x[1])

In fact, the numbers can also be separated by any string, not necessarily by white
spaces. Generally, use the method split(str), where ’str’ is a string used to
split the original string.

There is another powerful method: readlines(), which reads all lines of a
file and returns them as a list:

>>> f=open(’data.txt’)
>>> for l in f.readlines():
>>> ... print l

To write numbers or strings, use the method write(). Numbers should be co-
erced into strings using the str() method. Look at the example below:

>>> f=open(’data.txt’, ’w’)
>>> f.write(str(100)+’\n’)

74 2 Introduction to Jython

>>> f.write(str(200))
>>> f.close()

here we added a new line symbol, so the next number will be printed on a new line.
One can also use the statement ’print’ to redirect the output into a file. This

can be done with the help of the >> operator. (Note: by default, this operator prints
to a console.). Let us give one example that shows how to print ten numbers from
zero to nine:

>>> f=open(’data.txt’, ’w’)
>>> for i in range(10):
>>> ... print >> f, i
>>> f.close()

One can check the existence of the file using the Jython module ’os’:

>>> import os
>>> b=os.path.exists(fileName)

where ’b=0’ (false in Java) if the file does not exist, and ’b=1’ (true in Java) in
the opposite case.

2.16.3 Input and Output for Arrays

Jython arrays considered in the previous section can be written into an external
(binary) file. Once written, one can read its content back to a new array (or append
the values to the existing array).

>>> from jarray import *
>>> a=array([1,2,3,4],’i’)
>>> f=open(’data.txt’,’w’)
>>> a.tofile(f) # write values to a file
>>> f.close()
>>> # read values
>>> f=open(’data.txt’,’r’)
>>> b=array([],’i’)
>>> b.fromfile(f,3) # read 3 values from the file
>>> print b
array(’i’,[1, 2, 3])

It should be noted that the method fromfile() takes two arguments: the file
object and the number of items (as machine values).

2.16 Input and Output 75

2.16.4 Working with CSV Python Module

The CSV (“Comma Separated Value”) file format is often used to store data struc-
tured in a table. It is used for import and export in spreadsheets and databases and to
exchange data between different applications. Data in such files are either separated
by commas, tabs, or some custom delimiters.

Let as write a table consisting of several rows. We will import Jython csv file
and write several lists with values using the code below:

Writing a CSV file

import csv

w=csv.writer(open(’test.csv’, ’w’),delimiter=’,’)
w.writerow([’London’, ’Moscow’, ’Hamburg’])
w.writerow([1,2,3])
w.writerow([10,20,30])

Execute this script and look at the current directory. You will see the file
’test.csv’ with the lines:

London,Moscow,Hamburg
1,2,3
10,20,30

This is expected output: each file entry is separated by a comma as given in the
delimiter attribute specified in our script. One can put any symbol as a delim-
iter to separate values. The most popular delimiter is a space, tab, semi-column
and the symbol ’|’. The module also works for quoted values and line endings,
so you can write files that contain arbitrary strings (including strings that contain
commas). For example, one can specify the attribute quotechar=’|’ to separate
fields containing quotes.

In the example below we read a CSV file and, in case of problems, we print an
error message using the Jython exception mechanism discussed in Sect. 2.15:

Reading a CSV file

import csv

r = csv.reader(open(’test.csv’, ’rb’), delimiter=’,’)
try:

for row in r:
print row

except csv.Error, e:
print ’line %d: %s’ % (reader.line_num,e)

Let us convert our example into a different format. This time we will use a double
quote (useful when a string contains comma inside!) for each value and tab for value

76 2 Introduction to Jython

separations. The conversion script is based on the same Jython csvmodule and will
look as:

Converting CSV file

import csv

reader=csv.reader(open(’test.csv’,"rb"),delimiter=’,’)
writer=csv.writer(open(’newtest.csv’,"wb"),\

delimiter=’\t’,\
quotechar=’"’, quoting=csv.QUOTE_ALL)

for row in reader:
writer.writerow(row)

The output file will look as:

"London" "Moscow" "Hamburg"
"1" "2" "3"
"10" "20" "30"

But what if we do not know which format was used for the file you want to
read in? First of all, one can always open this file in an editor to see how it looks
like, since the CSV files are human readable. One can use the jHepWork editor by
printing this line in the JythonShell prompt:

>>> view.open(’newtest.csv’, 0)

which opens the file ’newtest.csv’ in the IDE. Alternatively, one can deter-
mine the file format automatically using the Sniffer method for safe opening of
any CSV file:

Reading a CSV file using sniffer

import csv

f=open(’newtest.csv’)
dialect = csv.Sniffer().sniff(f.read(1024))
f.seek(0)
reader = csv.reader(f, dialect)
for row in csv.reader(f, dialect):

print row

This time we do not use the exception mechanism, since it is very likely that your
file will be correctly processed.

We will come back to the CSV file format in the following chapters when we
will discuss Java libraries designed to read the CSV files.

2.16 Input and Output 77

2.16.5 Saving Objects in a Serialized File

If you are dealing with an object from the Python-language specification, you may
want to store this object in a file persistently (i.e. permanently), so another applica-
tion can read it later. In Jython, one can serialize (or pickle) an object as:

>>> import pickle
>>> f=open(’data.pic’,’w’)
>>> a=[1,2,3]
>>> pickle.dump(a,f)
>>> f.close()

One can restore the object back as:

>>> import pickle
>>> f=open(’data.pic’,’r’)
>>> a=pickle.load(f)
>>> f.close()

In this example, we save a list and then restore it back from the file ’data.pic’.
One cannot save Java objects using the same approach. Also, any object which has
a reference to a Java class cannot be saved. We will consider how to deal with such
special situations in the following chapters.

2.16.6 Storing Multiple Objects

To store one object per file is not too useful feature. In many cases, we are dealing
with multiple objects. Multiple objects can be stored in one serialized file using the
shelve module. This Jython module can be used to store anything that the pickle
module can handle.

Let us give one example in which we store two Jython objects, a string and a list:

>>> import shelve
>>> sh=shelve.open(’data.shelf’)
>>> sh[’describe’]=’My data’
>>> sh[’data’]=[1,2,3,4]
>>> sh.close()

The example above creates two files, ‘data.shelf.dir’ and ‘data.shelf.dat’. The first
file contains a “directory” with the persistent data. This file is in a human-readable
form, so if you want to learn what is stored inside of the data file, one can open it
and read its keys. For the above example, the file contains the following lines:

78 2 Introduction to Jython

’describe’, (0, 15)
’data’, (512, 22)

The second file, ‘data.shelf.dat’, contains the actual data in a binary form.
One can add new objects to the “shelf” file. In the example below, we add a

Jython map to the existing file:

>>> import shelve
>>> sh=shelve.open(’data.shelf’)
>>> sh[’map’]={’x1’:100,’x2’:200}
>>> sh.close()

Let us retrieve the information from the shelve storage and print out all saved
objects:

>>> import shelve
>>> sh=shelve.open(’data.shelf’)
>>> for i in sh.keys():
>>> ...print i, ’ = ’,sh[i]
>>> sh.close()

The output of this code is:

describe = My data
data = [1, 2, 3, 4]
map = {’x2’: 200, ’x1’: 100}

Finally, one can remove elements using the usual del method.
As you can see, the “shelve” module is very useful since now one can create a

small persistent database to hold different Jython objects.

2.16.7 Using Java for I/O

In this section, we show how to write and read data by calling Java classes. Let
us give an example of how to write a list of values into a binary file using the
DataOutputStream Java class. In the example below we also use the Java class
BufferedOutputStream to make the output operations to be more efficient. In
this approach, data are accumulated in the computer memory buffer first, and are
only written when the memory buffer is full.

Writing data using Java

from java.io import *

2.16 Input and Output 79

fo=FileOutputStream(’test.d’)
out=DataOutputStream(BufferedOutputStream(fo))

list=[1.,2.,3.,4]
for a in list:

out.writeFloat(a)

out.close()
fo.close()

The output of this example is binary data. The DataOutputStream class al-
lows to write any of the basic types of data using appropriate methods, such
as boolean (writeBoolean(val)), double (writeDouble(val)), integers
(writeInt(val)), long (writeLong(val)) and so on.

Now let us read the stored float numbers sequentially. We will do this in an in-
finite loop using the ’while’ statement until we reach the end of the file (i.e.
until the “end-line” exception is thrown). Then, the break statement exits the in-
finite loop. Since we know that our data are a sequence of float numbers, we use
the method readFloat(). One can play with other similar methods, such as
readInt() (read integer values), readDouble() (read double values).

Reading data using Java

from java.io import *

fo=FileInputStream(’test.d’)
inf=DataInputStream(BufferedInputStream(fo))

while 1:
try:

f=inf.readFloat()
print f

except:
print ’end of file’
break

inf.close()
fo.close()

We will continue the discussion of high-level Java classes for I/O which allow us
to store objects or sequences of objects in Chap. 11.

2.16.8 Reading Data from the Network

Files with data may not be available from a local file storage, but exist in network-
accessible locations. In this case, one should use the module ’urllib2’ that can

80 2 Introduction to Jython

read data from URLs using HTTP, HTTPS, FTP file protocols. Here is an example
of how to read the HTML Jython web page with Jython news:

>>> from urllib2 import *
>>> f = urlopen(’http://www.jython.org/Project/news.html’)
>>> s=f.read()
>>> f.close()
>>> print s

This code snippet is very similar to the I/O examples shown above, with the only
one exception: now we open a file using the urlopen statement. The web access
is an unauthenticated. One can always check the response headers as f.info(),
while the actual URL can be printed using the string f.geturl(). As usual, one
can also use the method readlines() to put all HTML-page lines into a Jython
list.

One can also use a jHepWork module for downloading files from the Web. It has
one advantage: it shows a progress bar during file retrievals. This will be discussed
in Sect. 12.2.

If authentication is required during file access, a client should retry the request
with the appropriate name and password. The module ’urllib2’ also provides
such functionality, but we will refrain from further discussion of this advanced topic.

2.17 Real-life Example. Collecting Data Files

Here we will consider a rather common data-analysis task: we collect all files lo-
cated in a file system, assuming that all such files have the extension ’.dat’. The
files will be located in the root directory ’/home’, which is the usual user-home
directory on the Linux/UNIX platform. Our files contain numbers, each of which is
positioned on a new line. We will persuade the following task: we will try to sum up
all numbers in the files and calculate the sum of all numbers inside these files.

A snippet of a module ’walker.py’ which returns a list of files is given be-
low. The module accepts two arguments: the root directory for scanning and the
extension of the files we are interested in. The function builds a list of files with the
appended full path. We will call the function walk() recursively until all directo-
ries are identified:

File ’walker.py’

import os

def walker (dir,extension):
files=[]
def walk(dir, process):
for f in os.listdir(dir):
fpath = os.path.join(dir, f)
if os.path.isdir(fpath) and not os.path.islink(fpath):

2.17 Real-life Example. Collecting Data Files 81

walk(fpath, process)
if os.path.isfile(fpath):

if fpath.endswith(extension):
files.append(fpath)

walk(dir,files)
return files

Let us test this module. For this, we will write a small program which: (1) imports
the module ’walker.py’; (2) lists all descendant files and subdirectories under
the specified directory and fills the file list with all files which have the extension
’.dat’; (3) then it loops over all files in the list and reads the numbers positioned
on every new line; (4) Finally, all numbers are summed up. The code which does all
of this is given below:

File collector

import os
from walker import *

files= walker(’/home/’,’.dat’)

sum=0
lines=[]
for file in files:

ifile = open(file,’r’)
lines=lines+ifile.readlines()
ifile.close()
for i in range(len(lines)):

sum=sum+float(lines[i])
print "Sum of all numbers=", sum

The described approach is not the only one. The module which lists all files
recursively can look much sorter using the os.walk function:

Building a file list

def getFileList(rootdir):
fileList = []
for root, subFolders, files in os.walk(rootdir):
for f in files:

fileList.append(os.path.join(root,f))
return fileList

print getFileList(’/home/’)

This code builds a list of files in the directory “/home/”.

82 2 Introduction to Jython

In Sect. 12.9 we will show another efficient code based on the jHepWork Java
class which can also be used in pure-Java applications. As in the example above, it
builds a list of files recursing into all subdirectories.

The above code can significantly be simplified if we know that all input files are
located inside a single directory, thus there is no need for transversing all subdirec-
tories.

>>> list=[]
>>> for f in os.listdir(’/home/’):
>>> if not file.endswith(’.dat’): continue
>>> list.append(f)

Finally, there is a simpler approach: import the module ’glob’ and scan all
files:

>>> import glob
>>> list=glob.glob(’/home/*.dat’)

The asterisk (*) in this code indicates that we are searching for a pattern match, so
every file or directory with the extension ’.dat’ will be put into a list, without re-
cursing further into subdirectories. One can specify other wildcard characters, such
as ’/home/data?.dat’, that matches any single character in that position in the
name starting from ’data’. Another example: ’/home/*[0-9].dat’ string
considers all files that have a digit in their names before the extension ’.dat’.

Often, in order to process data stored in many files, it is useful to divide a list
with file names into several lists with equal number of files in each list. In this way,
one can process files in parallel using multiple computers or multiple processors.
This task can easily be achieved with the code given below:

File list splitter

def splitlist(seq, size):
newlist = []
splitsize = 1.0/size*len(seq)
for i in range(size):

k1=round(i*splitsize)
k2=round((i+1)*splitsize)
newlist.append(seq[int(k1):int(k2)])
newlist.append(seq[k])

return newlist

The code accepts a list of files and an integer size which specifies how many lists
need to be generated. The function returns a new list in which each entry represents
a list of files. The number of entries in each sublist is roughly equal.

2.18 Using Java for GUI Programming 83

2.18 Using Java for GUI Programming

Undoubtedly, the major strength of Jython is in its natural integration with Java, a
language used to build Jython. This opens infinite opportunities for a programmer.
Assuming that you had already a chance to look at one of these Java books [1–5],
you can start immediately use Java libraries to write a Jython code.

Below we show a small example of how to write a graphical user interface which
consists of a frame, a button and a text area. While the code still uses the Python
syntax, it calls classes from the Java platform.

Swing GUI using Jython

from java.awt import *
from javax.swing import *

fr = JFrame(’Hello!’)
pa1 = JPanel()
pa2 = JTextArea(’text’,6,20)

def act(event):
pa2.setText(’Hello, jHepWork’)

bu=JButton(’Hello’, actionPerformed=act)
pa1.add(bu)

fr.add(pa1,BorderLayout.SOUTH)
fr.add(pa2,BorderLayout.NORTH)
fr.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE)
fr.pack()
fr.setVisible(1)

In this example, we call Java swing components directly, like they are usual Python
classes. The main difference with Python is in the class names: Java classes always
have names starting with capital letters.

When comparing this code with Java, one should note several important differ-
ences: there is no need to use the ’new’ statement when creating Java objects. Also,
there is no need to put a semicolon at the end of each Java method or class declara-
tion. We should also recall that Java boolean values are transformed into either “1”
(true) or “0” (false) in Jython programs.

So, let us continue with our example. Create a file, say, ’gui.py’, copy the
lines from the example below and run this file in the jHepWork editor. You will
see a frame as shown in Fig. 2.1. By clicking on the button, the message “Hello,
jHepWork” should be shown.

In the following chapters, we try to follow our general concept: a Jython macro
is already a sufficiently high-level program style, so we will avoid detailed discus-
sion of GUI-type of program development. In this book, we aim to show how to
develop data analysis programs for which GUI-type of features are less frequent,

84 2 Introduction to Jython

Fig. 2.1 A Java Swing frame
with a button “Hello”

compare to “macro”-type of programming. Since Jython macros allow manipula-
tions with objects without dealing with low-level features of programing languages,
in some sense, they are already some sort of “user-interfaces”. In addition, Jython
macros have much greater flexibility than any GUI-driven application, since they
can quickly be altered and rerun.

Yet, GUI is an important aspect of our life and we will discuss how to add GUI
features to data-analysis applications in appropriate chapters.

2.19 Concluding Remarks

This concludes our introduction to the world of Python, Jython and Java. If there is
one message I have tried to convey here is that the combination of all these three
languages (actually, only two!) gives you an extremely powerful and flexible tool
for your research. There are dozens of books written for each language and I would
recommend to have some of them on your table if you want to study the topic in
depth. To learn about Jython, you can always pick up a Python book (version 2.5
at least). In several cases, you may look at Jython and Java programming books,
especially if you will need to do something very specific and non-standard using
Java libraries. But, I almost guarantee, such situations will be infrequent if you will
learn how to use the jHepWork libraries to be discussed in the following chapters.

References

1. Richardson, C., Avondolio, D., Vitale, J., Schrager, S., Mitchell, M., Scanlon, J.: Professional
Java, JDK 5th edn. Wrox, Birmingham (2005)

2. Arnold, K., Gosling, J., Holmes, D.: Java(TM) Programming Language, 4th edn. Java Series.
Addison-Wesley, Reading (2005)

3. Flanagan, D.: Java in a Nutshell, 5th edn. O’Reilly Media, Sebastopol (2005)
4. Eckel, B.: Thinking in Java, 4th edn. Prentice Hall PTR, Englewood Cliffs (2006)
5. Bloch, J.: Effective Java, 2nd edn. The Java Series. Prentice Hall PTR, Englewood Cliffs (2008)

http://www.springer.com/978-1-84996-286-5

	Introduction to Jython
	Code Structure and Commentary
	Quick Introduction to Jython Objects
	Numbers as Objects
	Formatted Output
	Mathematical Functions
	Complex Numbers

	Strings as Objects
	Import Statements
	Executing Native Applications

	Comparison Tests and Loops
	The `if-else' Statement
	Loops. The "for" Statement
	The `continue' and `break' Statements
	Loops. The `while' Statement

	Collections
	Lists
	List Creation
	Iteration over Elements
	Sorting, Searches, Removing Duplicates

	Removal of Duplicates
	Examples

	Tuples
	Functional Programming. Operations with Lists
	Dictionaries

	Java Collections in Jython
	List. An Ordered Collection
	Sorting Java Lists

	Set. A Collection Without Duplicate Elements
	SortedSet. Sorted Unique Elements
	Map. Mapping Keys to Values
	Java Map with Sorted Elements
	Real Life Example: Sorting and Removing Duplicates

	Random Numbers
	Time Module
	Benchmarking

	Python Functions and Modules
	Python Classes
	Initializing a Class
	Classes Inherited from Other Classes
	Java Classes in Jython
	Topics Not Covered

	Used Memory
	Parallel Computing and Threads
	Arrays in Jython
	Array Conversion and Transformations
	Performance Issues

	Exceptions in Python
	Input and Output
	User Interaction
	Reading and Writing Files
	Input and Output for Arrays
	Working with CSV Python Module
	Saving Objects in a Serialized File
	Storing Multiple Objects
	Using Java for I/O
	Reading Data from the Network

	Real-life Example. Collecting Data Files
	Using Java for GUI Programming
	Concluding Remarks
	References

