Chapter 2

Finite-element-model Updating Using Nelder-Mead
Simplex and BFGS Methods

Abstract. This chapter presents the Nelder—Mead simplex method and the Broyden—
Fletcher—Goldfarb—Shanno (BFGS) method for finite-element-model updating. The methods
presented have been tested on a simple beam and an unsymmetrical H-shaped structure. It
was noted that, on average, the Nelder—-Mead simplex method gives more accurate results
than did the BFGS method. This is mainly because the BFGS method requires the
calculation of gradients, which is prone to numerical errors within the context of finite-
element-model updating.
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2.1 Introduction

In Chapter 1, the concept of finite-element-model updating was introduced. It was
noted there that a model-updating process is essentially an optimization problem
where the updating parameters are those parameters in the finite-element model
that are deemed to be highly uncertain, while the objective function is some
measure of the distance between the finite-element’s predicted data and measured
data.

The purpose of this chapter is to introduce the concept of the updating of finite-
element models using the Nelder-Mead (NM) simplex and Broyden-Fletcher—
Goldfarb—Shanno (BFGS) optimization methods. The NM simplex method was
used because it was found to be advantageous in that it (Olsson and Nelson, 1975):

e gives good results in the early stages of the simulations;

e does not require the use of the gradient and the Hessian of the objective
function;

® is computationally efficient; and

e isrelatively simple to understand and use.
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The BFGS method was used because it has the following advantages. It
preserves the necessary conditions for convergence — for example stability,
descending direction, and positive definiteness (Azizi et al., 2005). There is always
a mismatch between the coordinates of the measured data and those of the finite-
element model (Friswell and Mottershead, 1995). Because of this mismatch, it is
always a good idea to reduce the system’s matrices so that they correspond to the
measured degrees of freedom, or to expand the measured coordinates so that they
are of the same size as those from the finite-element model.

The purpose of this chapter is also to review reductions and expansions
methods that equalize the size of the measured data and the system matrices of the
structure in question. One question that is of great importance is: how do we
compare the measurements and data from the finite-element model? This chapter
reports an investigation that was carried out on how the data can be compared to
establish whether the finite-element model has been sufficiently well updated.

The presented NM and BFGS optimization methods were then used for finite-
element updating and were tested on a simple beam and an unsymmetrical H-
shaped structure.

2.2 Introduction to Structural Dynamics

In this chapter, the modal properties i.e., natural frequencies and mode shapes were
used as a basis for finite-element-model updating. Thus, these parameters are
described in this section. The modal properties are related to the physical
properties of the structure. All elastic structures may be described in terms of their
distributed mass, damping and stiffness matrices in the time domain through the
following expression (Paz and Leigh, 2003):

[MI{X}+[CH{X}+[K1{X}={F} @1

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix,
{X} is the displacement vector, { X } is the velocity vector, {X } is the acceleration
vector, and {F'} is the applied force vector.

If Equation 2.1 is transformed into the modal domain to form an eigenvalue
equation for the ith mode, then (Ewins, 1995):

(—@ M1+ joa[CI+[KD{g}, ={0} 2.2)

Here, j=+-1; @;is the ith complex eigenvalue; and {0} is the null vector. In
Equation 2.2 the real part of {¢@} ; corresponds to the normalized mode shape

{#}, while the imaginary part of @ corresponds to the natural frequency @.
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From Equation 2.2 it may be deduced that the changes in the mass and stiffness

matrices cause changes in the modal properties of the structure.

Therefore, the modal properties can be identified through the identification of
the correct mass and stiffness matrices. The frequency-response function (FRF) is
defined as the ratio of the Fourier-transformed response to the Fourier-transformed
force. The FRF may be written in terms of the modal properties by using the modal
summation equation as follows (Fu and He, 2001):

N _ a)Z [y
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In Equation 2.3 Hy(w) is an FRF due to excitation at position k and response
measurement at position 1, w is the frequency point, w; is the ith natural frequency
point, N is the number of modes and ¢; is the damping ratio of mode i.

The excitation and response of the structure and Fourier-transform method
(Ewins, 1995) can be used to calculate the FRF. Through Equation 2.3 and modal
analysis (Ewins, 1995; Fu and He, 2001), the natural frequencies and mode shapes
can be indirectly calculated from the FRFs. The modal properties of a dynamic
system depend on the mass and stiffness matrices of the system as indicated by
Equation 2.3. Therefore, the measured modal properties can be reproduced by the
model if the correct mass and stiffness matrices are identified.

The finite-element-model updating process is achieved by identifying the
correct mass and stiffness matrices. In the light of the measured data, the correct
mass and stiffness matrices can be obtained by identifying the correct moduli of
elasticity of various sections of the structure under consideration. In this chapter, to
identify correctly the moduli of elasticity that would give the updated finite-
element model, the following objective function that measures the distance
between measured modal data and finite-element-model calculated modal data,
was minimized (Marwala, 1997):

E=

3?1+ joiCI+ KD g}, H 2.4)
i=1

Here, N is the number of measured modes; E is the error; and " " is the Euclidean

norm.

In Equation 2.4 the mass, damping and stiffness matrices are obtained from the
finite-element model, while the natural frequencies and mode shapes are measured.
If the natural frequencies and mode shapes of the system are described by the
mass, damping and stiffness matrices then E is equal to zero. Therefore, the
minimization of E identifies the updated finite-element model. Thus, the process of
finite-element-model updating may be viewed as being an optimization problem.
The updated finite-element models of a simple beam and an unsymmetrical H-
shaped structure that are identified in this chapter were evaluated by comparing the
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natural frequencies and mode shapes from the finite-element models before and
after updating to the measured ones.

2.3 Expansion/Reduction Methods

2.3.1 Model Expansion and Reduction Procedures

Two approaches may be pursued to ensure that the measured coordinates and
modes are equal to the computed ones. These approaches are:
1. the experimental data may be expanded to the same number of degrees of
freedom as the computed ones; and
2. the computed results may be reduced to the same number of coordinates as
the measured ones.

Several techniques may be employed. As part of this study, the methods were
implemented, and their effectiveness evaluated with respect to each method. The
reduction methods applied were (Friswell and Mottershead, 1995):

Guyan static reduction method;

Guyan dynamic reduction method;

Improved reduced system (IRS); and

System equivalent reduction expansion process (SEREP).

The expansion methods applied were:

e expansion using mass and stiffness matrices; and
e expansion using modal data.

2.3.2 Model Reduction
A) Guyan Static Reduction (GSR) Method

This method was used to reduce the mass and stiffness matrices to the levels of the
measured degrees of freedom. Prakash and Prabhu (1986) used the GSR method
for reducing the mass and stiffness matrices in dynamic substructures, whereas
Bushard (1981) applied this method to reduce system matrices in thermal
problems. Bouhaddi and Fillod (1992) applied the GSR method for choosing
master degrees of freedom in substructuring, while Higgblad and Eriksson (1993)
applied the model condensation technique for analyses of large structures.
Applications of reduction methods to nonlinear systems include Noor (1981).

In the GSR method, the state and force vectors, {x} and {f}, and the mass and
stiffness matrices [M] and [K] are partitioned into the measured (master) and
unmeasured (slave) coordinates as follows (Friswell and Mottershead, 1995):
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[Mmm][Mms] xm + [Kmm][Kms] xm _ fm (25)

[M sm] [MSS ] "XES [Ksm] [KSS ] xs 0 .
Here, the subscripts m and s correspond to master and slave coordinates,
respectively. The inertia terms are neglected to obtain the equation (Guyan, 1965):

(K, {x, Y+ K {x =T 1{x,} (2.6)

This equation may be used to eliminate the slave coordinate to leave the following
equation (Guyan, 1965):

Wl M ) 27
X, - _[Kss]fl[Ksm] Xt = WX, 2.7)

The parameter T denotes the static transformation between full state vector and
master coordinates and the parameter [/] is the identity matrix. The reduced mass
[Mp] and stiffness [ K] matrices can be calculated as follows:

M 1=[T, 1 [M]IT,] (2.8)
and

[K1=I[T,1"[KIIT,] 2.9)

The frequency-response functions generated by the reduced-mass matrices are
exact at zero frequency because the inertia matrices were neglected.

B) Guyan Dynamic Reduction (GDR) Method

The GSR method neglects the effects of inertia. However, the GDR method takes
into account the inertia effect, assuming a particular frequency. Salvini and Vivio
(2007) applied the GDR method to reduce the system matrices, while Yang (2009)
applied it in model reduction using a Neumann series expansion. Yin et al. (2009)
applied the GDR method to structural damage detection in a transmission tower.
The technique used ambient vibration data.

The choice of frequency affects the accuracy of the reduced model. In the GDR
method, the mass and stiffness matrices are partitioned into slave and master
coordinates. The modified transformation matrices are as follows (Paz, 1984):
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G| _| U]
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The dynamic transformation, [7)], may then be used in the same way as the static
transformation, [7], to obtain the reduced mass and stiffness matrices similar to
Equations 2.8 and 2.9.

C) Improved Reduced System (IRS)

The IRS is an improvement of the Guyan static reduction method. This method
uses the transformation, the reduced mass and stiffness matrices from the Guyan
reduction method together with the [S] matrix, which is made out of zeros and the
inverse of the slave partition of the stiffness matrix, to obtain a new transformation
matrix (O’Callahan, 1989):

[1]
rl= SIMISIM . 1'[K
. -[K 17K, ] FISIMALS M (11K R ] @1
where
[0][0]
S1= 2.12)
- LO][KSS]‘} (

Friswell et al. (1995) studied the convergence of the iterated IRS method, whereas
Kim and Cho (2008) studied the subdomain optimization of a multi-domain
structure built by the IRS reduced system. Li ef al. (2008) refined reduced models
of dynamic systems, while Xia and Lin (2004) improved the iterated IRS method
and applied this to structural eigensolutions. Friswell et al. (1998) developed
iterated IRS techniques in structural dynamics. The iterated IRS method converges
to the same transformation as the SEREP, which is the subject of the next section.

D) System Equivalent Reduction Expansion Process (SEREP)

The system equivalent reduction expansion process (SEREP) (O’Callahan et al.,
1989) partitions the analytical mode shapes into measured and unmeasured
coordinates, and obtains the transformation by multiplying that with the
generalized pseudo-inverse. See Equations 2.13 and 2.14.
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gm
)= 2.13

(T, 1={p}0" (2.14)

where

o =(or9,) " o7 2.15)

The transformation may then be used in the same way as the static transformation,
[7], to obtain the reduced mass and stiffness matrices similar to Equations 2.8 and
2.9. Das and Dutt (2008) used the SEREP to reduce the model of a rotor-shaft
system, while Sastry et al. (2003) introduced an iterative SEREP for extracting the
high-frequency response.

2.3.3 Model Expansion

A) Expansion Using Mass and Stiffness Matrices (EMS)

In essence, this method is the inverse of the Guyan reduction method. Suppose
@, and ¢mj_ are the measured natural frequencies and mode shapes of coordinates
i. Then the mass and the stiffness matrices from the finite-element analysis may be
partitioned into measured and unmeasured coordinates. The equation of motion
may then be written as follows (Friswell and Mottershead, 1995):

2 [Mmm][Mlm] [Kmm][Knm] ¢m' 0
-, + = (2.16)
[Msm ] [st ] [Ksm ] [sz ] ¢s' O
where ¢Ay. represents the mode shape at the slave or the unmeasured coordinates.

Rearranging the lower part of the matrix equation produces a solution for the
unknown part of the measured mode shape vector. Thus (Friswell and
Mottershead, 1995):

{9,)=—(-w,,[M J+[K D' (-0, [M 1+[K,Dig,} @17

Other estimates of the unmeasured degrees of freedom may be obtained by using
the upper part of Equation 2.12, which will involve the pseudo inverse. Using the
upper part is satisfactory if the number of measured degrees of freedom exceeds
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the number of unmeasured degrees of freedom. Similarly, the unmeasured FRF
may be calculated using the following equation (Friswell and Mottershead, 1995):

[H,]=—(-w,,[M +[K D" (-o,[M ]+[K, D{H,} @13

Corus et al. (2006) applied this technique to improve structural dynamics models,
while Kammer and Peck (2008) applied the expansion technique for sensor
placement and Kammer (2005) applied this method for improved modal vibration
testing.

B) Expansion Using Modal Data (EMD)

This method uses the modal data obtained from the finite-element model to
estimate the modes at the unmeasured degrees of freedom. The measured modes
are assumed to be a linear combination of the analytical modes at measured
degrees of freedom and a transformation, 7, as indicated by the following equation
(Friswell and Mottershead, 1995):

{0,}=10,1,[T] (2.19)

where [@, ] represents the analytical mode shapes at measured degrees of

freedom. Applying the pseudo-inverse to Equation 2.19 gives the transformation as
(Friswell and Mottershead, 1995):

(T1=1¢,1,{0,} (2.20)

where + indicates the pseudo-inverse. This transformation may be used to estimate
the modes at unmeasured degrees of freedom from the finite-element analysis. It
may also be used to smooth out the measured modes. Thus (Friswell and
Mottershead, 1995):

{¢m }xmoothed = [¢a ]m [T] (221)

(¢,1=10,1,[T] (2.22)

where [¢ ], represents the analytical mode shapes at the unmeasured degrees of

freedom. The transformation may be obtained by using only the analytical modal
data or the combination of measured and analytical data. This method is like an
inverse of the SEREP method.

Marwala (1997) compared these methods and found that the reduction methods
are more reliable than the expansion methods. This is because the expansion
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methods are more computationally intensive when compared to the reduction
methods. Furthermore, the SEREP method was found to be susceptible to
numerical instability. The IRS was found to be the best reduction method over the
other methods.

2.4 Methods for Comparing Data

The most vital characteristic of modal testing is a comparison between the
computed dynamic properties and those actually observed in practice (Ewins, 1995
Marwala, 1997; Ewins, 2001). This procedure is frequently called “validating” a
theoretical model and it involves a number of stages. The first stage is to compare
the specific dynamic properties, as measured against the predicted ones. The
second stage is to measure the degree of the discrepancies or similarities between
the two sets of data. The third stage is to bring the theoretical model closer to the
measured data. When this is accomplished, the theoretical model is said to have
been updated. In this section we closely study the computational methods used in
the first, second and third stages.

In most situations, much endeavor goes into deriving the theory-based model
and the experimentally derived model. For this reason, it is prudent to compare on
as many different levels as possible. The dynamic model of a structure may be
classified into spatial, modal, and response models (Ewins, 2001).

It is, at this time, appropriate to revisit this classification and attempt to
compare the experimental and the theoretical model at each of these classifications.
Consequently, a comparison of response properties as well as modal properties will
be made. Comparisons between spatial properties are complex and, for that reason,
will not be reflected on. In using any medium of comparison, the model must be
developed comprehensively from the original form.

2.4.1 Direct Comparison
A) Comparisons of Natural Frequencies

The simplest method of comparison between the experimental and theoretical
model is by comparing the natural frequencies (Ewins, 2001). This may be
achieved by tabulating the experimental and theoretical natural frequencies. The
most convenient way of comparison is to plot the graph of the experimental natural
frequencies against the analytical ones for all available modes. If the gradient of
the best straight line passing through the points is close to zero, then the correlation
between the experimental and computed model is good. If the points lie spread out
extensively about a straight line, then there is a severe failure of the model in
representing the theoretical model’s capacity to estimate the measured natural
frequencies and, therefore, the theoretical model should be re-evaluated. If the
positions diverge to some extent from the straight line, in a systematic fashion, this
implies that there is a particular characteristic responsible for the deviation.
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B) Comparisons of Mode Shapes

The mode shapes can also be compared by plotting the analytical modes against
the experimental ones. For a simple structure with well-separated modes, this
technique of comparison may be used with ease. Nevertheless, for a complicated
structure with modes that are close to one another, this technique frequently
becomes tricky to employ. Therefore, it is appropriate to make comparisons of
mode shapes at the same time as those of the natural frequencies.

In the situation where we have more data to handle for each mode, the
comparison may be conducted by plotting the deformed shape for each model,
experimental and theoretical, and overlaying one plot on the other. The
disadvantage of this technique is that, even though the difference is evident, the
plots are not easy to understand and they are usually confusing because there is so
much information. A suitable method of comparison, which is along the lines of
the natural-frequency plot, is to plot each element in the mode shape vector,
experimental and theoretical, on an x-y plot (Ewins, 2001).

The individual points on this graph relate to modal coordinates, and it is
expected that they should lie close to a straight line. If the mode shape vectors are
mass-normalized, this straight line should have a slope of 1. If the points lie close
to a straight line with a slope that is not 1, then one of the mode shapes is not mass-
normalized or there is scaling error in the data. If the points are widely spread out
about the line, then there is inaccuracy in one set or the other set. If the dispersion
is too great, then it may be that the eigenvectors that are being compared do not
relate to the same mode.

The slope of the best straight line is called the modal scale factor (MSF) and is
defined as (Ewins, 2001):

(00" (4.}

MSF (¢,.9,) = ,<
(o) (9.1 (0.}

(2.23)

Here, @

a

is the analytical modes; @

., 1s the measured modes; and * is the complex
conjugate.
The MSF parameter gives no indication of the quality of the measured points

with respect to the straight-line fit.
2.4.2 Frequency-response Functions Assurance Criterion (FRFAC)

The benefit of using frequency-response functions (FRFs) straightforwardly is that
they are measured directly. The easiest approach through which measured FRFs
may be compared to the computed FRFs is by plotting the measured and
theoretical FRFs in one plot (Ewins, 2001).

There are many measurements to be compared for particular FRF
measurements. So, it becomes necessary to introduce a scalar factor (FRFAC) that
gives the correlation between the measured and theoretical FRFs. One such scalar
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factor uses the measured FRFs directly (Marwala, 1997) and can be written as
follows:

2 H, ()

FRFAC =+ "— — (2.24)

D |H, ()

j=1 n=l1

~

Here, N is the number of degrees of freedom; M is the number of the measured
frequency; H,, is the measured FRF; and H, is the analytical FRF.

An FRFAC of 1 indicates that the measured FRFs perfectly reflect the
analytical FRFs; the FRFAC that is greater than 1 indicate that the magnitude of
the analytical FRFs is, on average, greater than the experimental ones. An FRFAC
that is less than 1 indicates that the magnitudes of the experimental FRFs are, on
average, greater than the analytical ones.

2.4.3 The Model Assurance Criterion (MAC)

The modal assurance criterion (MAC) compares the measured and the computed
mode shapes. Stetson (2008) calculated the MAC from electronic holography data,
while Allemang (2003) reviewed the use of the modal assurance criterion over a
period of 20 years. Yuan et al. (2009a) used the MAC optimally place a sensor on
a cable-stayed bridge, whereas Caponero et al. (2002) used an interferometer and
the MAC for identification of component modes. Brechlin et al. (1998) introduced
the scaled modal assurance criterion to analyze a system with rotational degrees of
freedom, whereas Lars (1998) used the modal assurance criteria to analyze two
orthogonal modal vectors. Finally, Desforges et al. (1996) used the MAC for
tracking modes during flutter testing while Heylen and Janter (1989) applied the
modal assurance criterion for dynamic model updating. The MAC can be
mathematically summarized by the following equation (Allemang and Brown,
1982):

2

wac., - 1. )1¢3)

- e — (2.25)
{9,V o, o, } {9,}

Here, MAC is modal assurance criterion; c¢ is for reference; d is the degrees-of-
freedom; r is the mode; T is the transpose; * is the complex conjugate; and {} is a
vector.

The MAC is a measure of the least-squares deviation of the points from a
straight-line correlation. A value close to 1 suggests that the two mode shapes are
well correlated, while a value close to O indicates that the mode shapes are not
correlated.
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2.4.4 The Coordinate Modal Assurance Criterion (COMAC)

The COMAC technique is based on the same principle as the MAC and is, in
essence, a measure of the correlation between the measured and the computed
mode shapes for a given common coordinate. Meo and Zumpano (2008) used the
COMAC for damage estimation on plate structures, while Zhao and DeWolf
(2007) applied the COMAC for damage detection in a cracked I-shaped steel
beam. The COMAC for coordinate j is given by (Lieven and Ewins, 1988):

L 2

( \f¢a,f¢;,]
COMAC(j)=—"——

2.0.,)°2.(9,)

(2.26)

Unlike the MAC, the COMAC does not have any difficulty in comparing modes
that are close in frequency or that are measured at insufficient transducer locations.
L is the total number of well-correlated modes as indicated by the MAC. A value
close to 1 suggests a good correlation. If the mode shape vectors are used then the
COMAC becomes a vector. In this chapter, the MAC and direct comparison of
mode natural frequencies are used to evaluate the effectiveness of the finite-
element-model updating.

2.5 Optimization Methods

2.5.1 Nelder-Mead Simplex Method

The Nelder-Mead (NM) simplex method is one of the most used, direct
optimization methods. First, the algorithm generates a simplex having N+1 vertices
(x;) in an N-dimensional space. Zhao et al. (2009) applied a modified NM simplex
search for unconstrained optimization. The results obtained showed that the
modified technique performs better than the original NM optimization method.
Coelho and Araujo (2009) applied the NM simplex method for the successful
identification in a Hénon chaotic map, while Ouria and Toufigh (2009) applied it
for solving unconfined seepage problems.

Kalantar and Zimmer (2009) used the NM simplex method for optimally
localizing vehicle formations, whereas Mastorakis (2009) applied this technique,
finite-element modeling and a genetic algorithm for solving the Schrodinger—
Maxwell’s equations. Jung and Kim (2009) applied a hybrid of genetic algorithm
and the NM simplex method for finite-element updating in a numerical bridge
model.

A simplex of a specific dimension (a) is initialized around x, using the
following rule (Luersen and Riche, 2004; Ransome, 2006):
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\/_(\/F+n 1k, + kzlil n\/_(\/_ ]ec.i=Ln@an

Here, e is the unit base vector.

The simplex vertices coordinates are changed through using the reflection,
expansion and contraction operators. The procedure is explained as follows
(Ransome, 2006):

X, =X, +

e for a given iteration in the optimization procedure the vertex with the worst
fitness measure as defined by Equation 2.4 is substituted by a new vertex;

e the coordinates of the new vertex are established by reflecting the old
vertex’s point about the outstanding vertices. An easy reflection of a two-
dimensional simplex is illustrated in Figure 2.1;

e if the fitness measure of the current vertices is lower than the preceding
removed vertex’s fitness, the dimensions of the simplex are minimized and
if not, it is enlarged; and

e this process is continued until the functional evaluation values of the
vertices converge.

The convergence process is measured using the following inequality:

g—(fl _f) <7

i=1 n

(2.28)

where 7 is a small positive scalar and is computed by using:

n+l

Z f, (2.29)

n+1

The advantages of the NM simplex method are (Biirmen et al., 2006):

e it normally yields major progress in the initial iterations and rapidly gives
acceptable results;

e it usually involves a single or double functional evaluation per iteration,
apart from a shrink transformation;

e it succeeds in getting an excellent decrease in the function value by using
comparatively few function evaluations; and

e it is simple to comprehend and use.

The disadvantages of the NM simplex are (McKinnon, 1998):

e it lacks a convergence theory;
e it experiences numerical failure even for smooth functions;
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e it takes many iterations with insignificant improvement in the function
value even when it is far from a minimum; and
® it experiences untimely convergence.

2.5.2 Quasi-Newton Broyden-Fletcher-Goldfarb—Shanno (BFGS) Algorithm

The quasi-Newton optimization method is a successful, robust and quadratically
convergent optimization method that uses a gradient. The technique is a derivation
of the Newton—Raphson method, with the difference being that the inverse of the
second derivative is updated through using a one-dimensional or multi-dimensional
Hessian estimation method. Ghosal and Chaki (2009) used the quasi-Newton
method for estimating and optimizing the depth of penetration in CO, Laser-MIG
welding. The Newton—Raphson algorithm is mathematically represented as follows
(Ransome, 2006):

New

Figure 2.1 An easy reflection of a two-dimensional Simplex (Ransome, 2006)

X =X

n+l n

_ﬂfup

f(x,)

(2.30)

Here, f(x,) is the objective function; and f(x,) is the Jacobian (first-

derivative), and f(x, ) is the Hessian (second-derivative).
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For a single-dimensional function, f(x,) can be updated by using the

following equation:

. s
="n 2.31
f(xn+1) 4ﬂ ( )

where

(2.32)

q, = f(x,.) - f(x,) (2.33)

The most popular multi-dimensional technique for estimating the Hessian is the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) technique (Broyden, 1970; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970). Sun et al. (2009) applied the BFGS
technique for optimizing a machining allowance. Tan et al. (2009) applied the
BFGS method for Stokes flows with fixed or moving interfaces and rigid
boundaries, while Du et al. (2009) applied the BFGS method for optimizing the
distribution of fibrous insulation. Further applications of the BEGS method include
studies in aerodynamics (Papadimitriou and Giannakoglou, 2009), in solving
equations (Yuan et al., 2009b) and in nonconvex problems (Xiao et al., 2009). The
BFGS estimation of the inverse Hessian H,,,; is given by:

T T .T
+ QnQn _Hn Sn San

H,  =H (2.34)

n T T
q}’l sn Sn Hn sn

From an initially estimated X,, and Hessian matrix, Hy, repeat the following steps
(Nocedal and Wright, 2006):
1. Obtain a step s, by solving §, = —HJIVf(xn) and do a line search to

discover an optimal step size /1,, in the direction obtained in the initial step,

and then update x,,, = x, + ﬂllsn ;
2. q, =Vf(x,)=-Vf(x,):
9,9, _H,s,5,H,

T T
q,s, s H, s

n-n

3. Calculatethe H,,, = H,k +
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2.6 Example 1: Simple Beam

The aluminum beam shown in Figure 2.2 was used to test the NM simplex method
and the BFGS method for finite-element-model updating. This beam had the
following dimensions: length: 1.1 m, width: 29.2 mm and thickness: 9.6 mm. This
beam had holes of diameters 5.8 mm located at the centers of elements 2 to 9 and,
therefore, was difficult to model. Further details of this beam are reported by
Marwala (1997). The beam was tested freely suspended using elastic rubber bands.
The beam was excited using an electromagnetic shaker and the response was
measured using an accelerometer. The beam was also modeled using the structural
dynamics toolbox (Balmes, 1997) and it was divided into 11 elements. The finite-
element model used Euler-Bernoulli beam elements (Zienkiewicz, 1971). It was
excited at a position indicated by the double arrows and acceleration was measured
at 10 positions indicated by the single arrows in Figure 2.2. A set of 10 frequency
response functions were calculated and a roving accelerometer was used for
testing. The moduli of elasticity of these elements were used as updating
parameters. When the finite-element-model updating was implemented, the moduli
of elasticity were restricted to vary from6 x 10 ' to 8 x 10'° N m™. The NM
simplex optimization method and the BFGS were run to optimize Equation 2.4 and
the results in Table 2.1 were obtained.

Element 1 Element 11

ﬂk
Figure 2.2 A beam with holes that is tested freely suspended

Table 2.1 Results showing measured frequencies of the beam, the initial frequencies and the
frequencies obtained when the finite-element model of a beam is updated using the NM and
BFGS

Modes Measured Initial Frequencies Frequencies
frequency frequency from the NM from the BFGS
(Hz) (Hz) updated model updated model
(Hz) (Hz)
1 41.5 423 40.1 42.1
2 114.5 117.0 114.9 1134
3 224.5 227.3 222.0 219.7
4 371.6 376.9 371.1 373.9

When a modulus of elasticity of 7 x 10'° N m™ was assumed, the error between
the first measured natural frequency and that from the initial finite-element model
was 1.9%. When the NM was used for finite-element-model updating, this error
was increased to 3.4% but using BFGS reduced it to only 1.4%.

The error between the second measured natural frequency and that from the
initial model was 2.2%. When the NM was used, this error was reduced to 0.3%
while using BFGS reduced it to 1.0%.
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The error of the third natural frequency between the measured data and the
initial finite-element model was 1.2%. When the NM was used, this error was
reduced to 1.1%, while using the BFGS reduced it to 2.1%.

The error between the fourth measured natural frequency and that from the
initial model was 1.4%. When the NM was used for finite-element-model updating,
this error was reduced to 0.1%, while using the BFGS reduced it to 0.6%. Overall,
the NM gave the best results.

The updated models were also validated on the mode shapes they predicted. To
make this assessment possible, the modal assurance criterion (MAC) was used
(Allemang and Brown, 1983). The mean of the diagonal of the MAC vector was
used to compare the mode shapes predicted by the updated and initial finite-
element models to the measured mode shapes. The average MAC calculated
between the mode shapes from an initial finite-element model and the measured
mode shapes was 0.9986. When the average MAC was calculated between the
measured data and data obtained from the updated finite-element models, the
results in Table 2.2 were obtained.

Table 2.2 Beam results showing the MAC calculated between measured mode shapes and
the initial finite-element model for the NM and BFGS updated finite-element model

Method MAC
Initial model 0.9986
NM 0.9988
BFGS 0.9986

It is observed that only the NM updated finite model gave improved averages for
the diagonals of the MAC matrix. The computational time taken to run the
complete NM method was 20 CPU sec, while the BFGS took 21 CPU min to run.
In conclusion, the NM method was found to be better than the BFGS method. This
is mainly because the implementation of the BFGS method experienced many
numerical problems due to the difficulty in estimating the gradient and the Hessian
matrix. This, in a way, suggests that in implementing computational methods,
gradient-based methods should be avoided for finite-element-updating methods.

2.7 Example 2: Unsymmetrical H-shaped Structure

The unsymmetrical H-shaped aluminum structure shown in Figure 2.3 was also
used to validate the proposed method (Marwala, 1997). This structure had three
thin cuts of 1 mm that went half-way through the cross-section of the beam. These
cuts were introduced to elements 3, 4 and 5. The structure with these cuts was used
so that the initial FE model gave data that were far from the measured data and,
thereby, tested the proposed procedure with a difficult finite-element-model
updating problem. The structure was suspended using elastic rubber bands. It was
excited using an electromagnetic shaker and the response was measured using an
accelerometer. The structure was divided into 12 elements. It was excited at the
position indicated by the double arrows in Figure 2.3, and the acceleration was
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measured at 15 positions indicated by the single arrows in Figure 2.3. The structure
was tested freely suspended, and a set of 15 frequency-response functions were
calculated. A roving accelerometer was used for measuring the response.

¥
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——

400 mm | | | | 200 mm
M ottt
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|< 600 mm >|

Cross-section indicated by line AB |9.8 mm

Figure 2.3 The irregular H-shaped structure

The mass of the accelerometer was found to be negligible compared to the mass of
the structure. As in the previous example, the finite-element model was constructed
using the structural dynamics toolbox (Balmes, 1997) with the Euler—Bernoulli
beam elements (Zienkiewicz, 1971). The finite-element model contained 12
elements. The finite-element model of the structure contained 12 elements. As in
the previous example, the moduli of elasticity of these elements were used as
updating parameters, which were restricted to fall in the interval6 x 10" to
8x10' N m™ The NM and BFGS were implemented as in the previous
example.

These optimization methods were implemented for finite-element-model
updating, and the results obtained are shown in Tables 2.3 and 2.4. Table 2.3
shows the measured natural frequencies, initial natural frequencies and natural
frequencies obtained by the NM and BFGS updated finite-element models. When a
modulus of elasticity of 7 x 10'° N m™ was assumed, the error between the first
measured natural frequency and that from the initial finite-element model was
4.3%. When the NM was used for finite-element-model updating, this error was
reduced to 1.1% and the BFGS approach reduced this error to 2.6%.
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The error between the second measured natural frequency and that from the
initial model was 8.4%. When the NM was used, this error was reduced to 1.4%
and the BFGS reduced this error to 5.8%.

The error of the third natural frequencies between the measured data and the
initial finite-element model was 9.6%. When the NM was used, this error was
reduced to 2.4% and in using the BFGS it was reduced to 1.2%.

The error between the fourth measured natural frequency and that from the
initial model was 3.7%. When the NM was used, this error was reduced to 0.7%
and using the BFGS it was reduced to 2.1%.

The error between the fifth measured natural frequency and that from the initial
model was 1.6%. When the NM was used this error was reduced to 2.6% and the
BFGS reduced it to 1.1%.

Overall, the NM gave the best results with an average error calculated over all
the five natural frequencies of 2.1%, while the BFGS gave an average error of
2.6%. On average, all four methods improved when compared to the average error
between the initial finite-element model and the natural frequencies, which was
5.5%.

Table 2.3 Results from an unsymmetrical H-shaped structure showing measured
frequencies, the initial frequencies and the frequencies obtained when the finite-element
model was updated using the NM and BFGS

Modes | Measured Initial Frequencies Frequencies
frequency frequency from the NM | from the BFGS
(Hz) (Hz) updated model | updated model
(Hz) (Hz)
1 53.9 56.2 53.3 55.3
2 117.3 127.1 118.9 124.1
3 208.4 228.4 213.3 205.8
4 254.0 263.4 252.3 248.6
5 445.1 452.4 433.7 440.4

As in the previous example, the updated models implemented were validated on
the mode shapes they predicted using the MAC. The NM- and BFGS-updated
finite-element models gave improved averages for the diagonals of the MAC
matrices of 0.8404 and 0.8403, respectively. When the computational load for each
method was monitored, it was observed that, on average, the NM was the most
computationally efficient method.

Table 2.4 Beam results showing the MAC calculated between measured mode shapes and
the initial finite-element model for the NM and BFGS updated finite-element model

Method MAC
Initial model 0.8394
NM 0.8404
BFGS 0.8403
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Again, the results indicate that the NM method is marginally better than the
BFGS method. The reason for this seems to be the fact that the calculations of the
gradient and the Hessian matrix were fraught with numerical difficulties.

2.8 Conclusion

In this chapter the NM simplex and the BFGS methods were implemented for
finite-element-model updating. When these techniques were tested on a simple
beam and an unsymmetrical H-shaped structure, it was observed, on average, that
the NM simplex method gave more accurate results than the BEGS method. This is
mainly because the BFGS methods require the calculation of gradients, which is
fraught with numerical errors. Furthermore, the NM method was found to be more
computationally efficient than the BFGS method. For further work, hybrid
techniques should be explored.

2.9 Further Work

This chapter compared the Nelder—-Mead simplex and the BFGS methods for
finite-element-model updating. These methods are classified as local search
methods. For future work, other local search methods such as conjugate gradient
method and the Levenberg—Marquardt algorithm need to be implemented for
finite-element-model updating. In particular, their convergence properties within
the context of finite-element-model updating also need to be studied. Further work
should also include hybridizing these local search methods.
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