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Abstract This chapter presents novel computationally efficient algorithms to ex-
tract semantically meaningful acoustic and visual events related to each of the par-
ticipants in a group discussion using the example of business meeting recordings.
The recording setup involves relatively few audio-visual sensors, comprising a lim-
ited number of cameras and microphones. We first demonstrate computationally
efficient algorithms that can identify who spoke and when, a problem in speech
processing known as speaker diarization. We also extract visual activity features ef-
ficiently from MPEG4 video by taking advantage of the processing that was already
done for video compression. Then, we present a method of associating the audio-
visual data together so that the content of each participant can be managed individ-
ually. The methods presented in this article can be used as a principal component
that enables many higher-level semantic analysis tasks needed in search, retrieval,
and navigation.

1 Introduction

With the decreasing cost of audio-visual sensors and the development of many
video-conferencing systems, a growing trend for creating instrumented meeting
rooms could be observed. As well as aiding teleconferencing, such meeting rooms
could be used to record all meetings as a tool for staff training and development or
to remind them of certain agenda items that were discussed. Given the number of
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meetings that occur for a single person or even a work group, recording and stor-
ing meetings alone would not be useful unless they could be searched and browsed
easily later.

In this chapter, we discuss ways in which we can move toward the use of instru-
mented meeting rooms while also minimizing the amount of audio-visual sensors,
thus enabling fast setup and portability; We show experiments to cluster the audio
and visual data of each person where only one microphone and two cameras are
used to record the group meetings. From this, we present computationally efficient
algorithms for extracting low-level audio and video features. The chapter is divided
into sections describing firstly the general challenges of the meeting room scenario
and what types of applications have been proposed. Then, we describe the related
work on audio-visual speaker segmentation and localization in Sect. 2. In Sect. 3,
we describe the overall approach that is presented in this chapter. Then, we describe
the audio-visual sensor setup that we used in evaluating our algorithms in Sect. 4.
Next, we describe how speakers and their turn-taking patterns are extracted using
an online speaker diarization algorithm (Sect. 5). Then, in Sect. 6, we describe how
visual activity from individuals can be extracted from compressed-domain features
and compare this to conventional pixel-domain processing. In Sect. 7, we describe
a method of associating audio-visual data and present bench-marking results. We
conclude in Sect. 9 and discuss the future challenges.

2 Background

Clustering audio-visual meeting data can involve the grouping of events on different
levels. From the coarsest level, we may want to group them based on date, location,
or which work-group participated. If we increase the granularity, we observe events
within a single meeting such as the types of activities that took place. Increasing
the granularity further, each activity consists of a conversation type (ranging from
monologue to discussion) where speech turn-taking events occurs. For each speech
event, there are also accompanying motion features, such as a nod of the head, that
might accompany a statement of agreement. We can go further in granularity by
observing each speech utterance such as separation into phonemes. The motion can
be organized based on the types of motion that occur such as whether it is an upward
or downward motion.

Like any data mining task, our ultimate obstacle in creating a system that can
cater completely to our searching and browsing needs is the problem of the Seman-
tic Gap. The semantic gap is defined as the difference between the cognitive rep-
resentation of some data compared to what can be extracted in terms of its digital
representation. In this chapter, we concentrate on discussing how audio-visual meet-
ing data can be clustered by who spoke when and where. The approach we present
here consists of two tasks. The first clusters audio data based on how many speakers
there are and when they speak. Semantically, this is not so meaningful since we only
know that there are N speakers and when they spoke but we do not know who each
speaker was. The second task takes these speaker clusters and identifies where they
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are in a set of video streams by associating the clustered audio with video features,
which can then be used to show the corresponding speakers at the relevant time.
This step already closes the semantic gap in terms of finding speakers and when
they spoke and provides audio and video footage of how a speaker delivered a line.

Historically, speaker diarization has been a useful tool for the speech processing
community since once the speakers have been identified, automatic speech recog-
nition (ASR) can be applied to the utterances and attributed to a particular person.
There are many who believe that closing the semantic gap has involved process-
ing speech in terms of its verbal content. From a linguistic viewpoint, this seems
to be the natural choice if we wish to extract the verbal content of what is being
said so that interactions can be analyzed semantically. However, while semantics
are closely related to verbal cues, meaning can also be extracted from nonverbal
features. In some cases, the nonverbal cues can be a better indicator of the senti-
ment of the delivery of a phrase. A common example would be the use of sarcasm
where someone may say “yes” when they actually mean “no”. Analyzing the ver-
bal content alone would provide us with the incorrect interpretation of the message
but looking at the nonverbal cues, we might see that the delivery contained audio
features that are more highly correlated with disagreement.

Practically speaking, systems that can automatically analyze audio-visual data
using ASR and computational linguistics face many challenges. In natural speech,
people do not always speak in perfect sentences and may correct themselves, change
topic, talk over each other or complete each other’s sentences. Typically ASR algo-
rithms are plagued with challenges such as variations in accent, overlapping speech,
and differences in delivery of the same word from the same person (which can de-
pend on the preceding and following words), errors from detected words which
are out of vocabulary, or inaccurate language models. The state-of-the art word er-
ror rate (WER) using distant microphones is around 25% using close-talk head-set
microphones and around 40% using a distant (0.5 m) microphone source [29]. In
terms of computational linguistics, analyzing dialog acts (the aim of the utterance
e.g. agreement, disagreement, knowledge transfer), summarization, topic detection
or the sentiment of what was said based on the ASR output can introduce further
errors into the system chain. This is particularly problematic if the content of the
exchanges are to be used for the analysis of higher semantic concepts from the data.

Analyzing or identifying these higher semantic concepts goes beyond the tradi-
tional meeting browsing technologies that can be used to navigate between changes
in topic in a conversation or simple functions just as skipping through a video every
5 minutes. Being able to analyze a meeting by its social nonverbal content takes
the potential of meeting browsing technology to a more intuitive level for users.
Much of data mining and audio-visual clustering has been treated as a data-driven
problem but perhaps in the context of recorded meetings and in particular where
conversations are concerned, we must not overlook the stable nature of the nonver-
bal behavior that is exhibited during these interactions. For example, it is known that
we move more than our mouths when we talk; we gesticulate for emphasis or to help
us get our point across [43]. If our final goal is to browse meeting data in terms of
social memory triggers, can the patterns of nonverbal behavior seen in social inter-
actions be used to cluster the data too? That is, could aspects of nonverbal behavior
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during conversations provide us a simple and practical solution to this problem? Re-
cent work on estimating behavioral constructs such as find who is dominant [35],
the personality of participants [52] or what roles people have [20] suggest that using
automatically extracted nonverbal cues can be effective.

For meetings in a natural setting, we expect to see mostly unconstrained conver-
sations. Natural conversation in meetings involve many factors that are generally
unwanted in a clean test scenario. The first is overlaps or interruptions in speech.
Traditional data-sets [50] that are used to test audio-visual synchrony algorithms
assume that only one person speaks at a time. In more complex cases, one per-
son mouths words not corresponding to the associated audio sequence in order to
confound simpler synchrony algorithms. Others contain subjects reciting digits si-
multaneously. However, in all cases, the speech is not natural and test data in such
conditions do not reflect the majority of circumstances in which people find them-
selves talking.

Other aspects of real conversations involves natural body movements. In natu-
ral conversations, people move to aid emphasis of what they are saying, provide
feedback for others and regulate their gaze patterns to encourage a smooth flow of
conversation between conversants [30, 43]. Promising work has been presented to
take advantage of the correlation between more holistic body motion and speech
[31, 32, 59, 60]. Such methods have shown a relationship between global body
motion and speech over longer term sequences. The experiments presented in this
chapter, continues in this direction, exploring the extent to which we can use find-
ings in the psychology literature to address the audio-visual clustering problem in
meetings more directly for constructing a plausible practical approach to the prob-
lem of speaker localization. For the remainder of this section, we will discuss firstly
the general challenges faced with organizing meeting data. Then we will concen-
trate the discussion on related work on speaker diarization and on audio-visual syn-
chrony, related to speech and finally some background on the findings in psychology
on audio-visual synchrony during conversations.

2.1 Challenges in Meeting Analysis

Organizing audio-visual meeting data involves using many different sorting criteria.
For now, let us concentrate on scenarios where all the conversants are co-located
so that interactions can occur face-to-face. Even under such circumstances where
acoustic and lighting conditions can be controlled, there are still considerable chal-
lenges that can be addressed in a multi-disciplinary domain from signal processing,
to computer vision, linguistics, and human—computer interaction.

Activities in meetings consist mainly of conversations or interactions between
the participants. Within meetings, people can communicate with each other in dif-
ferent permutations and at different times. They can talk over each other, have sub-
conversations, be involved in multiple conversations at the same time, and can pro-
vide verbal as well as nonverbal signals to others. In some cases the verbal and
nonverbal delivery of a message can be contradictory.
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As well as investigating group conversational dynamics in the work place from
a psychological perspective [6, 17, 49], work has been done in the domain of com-
putational modeling [2, 40, 48, 54]. Due to European project initiatives, the com-
putational modeling of meetings has been considered in terms of either visual or
audio-visual segmentation of the group activities as discussions, monologues, note-
taking, presentations or writing on a white board from the Multi-Modal Meeting
Manager Corpus (M4) (http://www.idiap.ch/mmm/corpora/m4-corpus/) [2, 40, 54]
where the meetings were scripted so each meeting activity and the times of exe-
cution were predetermined. The main problem with approaching meeting analysis
from this perspective is that in reality, it is very difficult to objectively label mono-
logues, dialogues, discussions, or presentations. For example, if someone is giving
a presentation and someone else asks a question, which ultimately leads to a dis-
cussion, then is the current scenario a presentation or a discussion? The answer lies
in the interval over which the judgment is made or the temporal context which is
applied. Therefore, depending on whether the judgment is made on a fine-grained
time scale or a longer time scale, the judgment of the scenario can also be different.
Since the M4 corpus, new audio-visual meeting data (Augmented MultiParty In-
teraction (AMI) corpus http://www.idiap.ch/mmm/corpora/ami) has been recorded,
where the scripting part of the scenario was removed. In more natural meeting sce-
narios, people do not cut from doing a presentation to a discussion or a monologue
necessarily so annotating these meetings in terms of meeting actions is not practical.

With this in mind, it is probably easier to extract semantically meaningful fea-
tures which are easier to evaluate. The problem with analyzing meeting actions is
that labeling is strongly dependent on the temporal context. Rather than examining
temporal intervals of time, we can also segment based on events such as a change
of speaker or when someone starts or stops speaking. Such instantaneous events are
much less ambiguous to label. This can be done by either speech/nonspeech detec-
tion for cases where each person has their own microphone [66] or using speaker di-
arization if a single microphone cannot be directly associated with a single speaker.

If we are able to cluster the audio and video information of a speaker, we can
begin to analyze more complex behaviors such as who responds to whom. Analy-
sis of turn-taking patterns in discussions can be quite powerful for indicating who
is dominant [35] or what roles people play in a meeting [20, 34]. With an audio-
visual clustering method we could automatically obtain both the audio and video
information for the project manager for a meeting, for example. Given that the dis-
cussion above has established that it is easier to analyze meetings in terms of these
turn-taking events, we provide a background review of speaker diarization. In ad-
dition, we provide a review of work on the audio-visual association of speakers so
that some semantic meaning can be associated with the speakers that are identified.
Finally, we provide some background information about how human body motions
are related to speech during conversations.
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2.2 Background on Speaker Diarization

The goal of speaker diarization is to segment audio into speaker-homogeneous re-
gions with the ultimate goal of answering the question “who spoke when?” [55].
While for the related task of speaker recognition, models are trained for a specific set
of target speakers which are applied to an unknown test speaker for acceptance (the
target and test speaker match) or rejection (mismatch), in speaker diarization there
is no prior information about the identity or number of the speakers in the record-
ing. Conceptually, a speaker diarization system therefore performs three tasks: First,
discriminate between speech and nonspeech regions (speech activity detection); sec-
ond, detect speaker changes to segment the audio data; third, group the segmented
regions together into speaker-homogeneous clusters.

Some systems combine the two last steps into a single one, i.e., segmentation
and clustering is performed in one step. In the speech community, different speaker
diarization approaches have been developed over the years. They can be organized
into either one-stage or two-stage algorithms, metric-based, and probabilistic sys-
tems, and either model-based or non-model-based systems.

Many state-of-the-art speaker diarization systems use a one-stage approach, i.e.,
the combination of agglomerative clustering with Bayesian Information Criterion
(BIC) [12] and Gaussian Mixture Models (GMMs) of frame-based cepstral features
(MFCCs) [55] (see Sect. 5). Recently, a new speaker clustering approach, which
applies the Ng—Jordan—Weiss (NJW) spectral clustering algorithm to speaker di-
arization is reported [45].

In two-stage speaker diarization approaches, the first step (speaker segmenta-
tion) aims to detect speaker change points and is essentially a two-way classifi-
cation/decision problem, i.e., at each point, a decision on whether it is a speaker
change point or not needs to be made. After the speaker change detection, the speech
segments, each of which contains only one speaker, are then clustered using either
top-down or bottom-up clustering.

In model-based approaches, pretrained speech and silence models are used for
segmentation. The decision about speaker change is made based on frame assign-
ment, i.e., the detected silence gaps are considered to be the speaker change points.
Metric-based approaches are more often used for speaker segmentation. Usually, a
metric between probabilistic models of two contiguous speech segments, such as
GMMs, is defined, and the decision is made via a simple thresholding procedure.

Over the years, research has concentrated on finding metrics for speaker change
detection. Examples are the Bayesian Information Criterion (BIC) [12], cross
BIC (XBIC) [4, 36], Generalised Likelihood Ratio (GLR) [18], Gish distance
[26], Kullback-Leibler distance (KL) [9], Divergence Shape Distance (DSD) [39].
A more detailed overview can be found in [3]. Newer trends include the investiga-
tion of new features for speaker diarization, such as [24, 61], and novel initialization
methods.
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2.3 Background on Audio-Visual Synchrony

So far, the speaker diarization system provides some intervals of speech associated
with a single person, but we do not have information about what they look like or
how the message was delivered nonverbally. This can be done by associating the
audio streams with the correct video stream by identifying or exploiting the syn-
chrony between the two modalities. Alternatively, sound source localization from
video can be used to tackle a similar problem. Most computational modeling has
involved identifying one or two people in a single video camera only where short-
term synchrony of lip motion and speech are the basis for audio-visual localization.
Audio-visual synchrony or sound source localization can be considered a task in
itself. However, both these tasks could be combined, and recent work has started to
consider both speaker diarization and localization as a single audio-visual task.

Common approaches to audio-visual speaker identification involve identifying
lip motion from frontal faces [13, 21, 22, 46, 47, 53, 57, 58]. Therefore, the un-
derlying assumption is that motion from a speaker comes predominantly from the
motion of the lower half of their face. This is further enforced by artificial audio-
visual data of short duration, where only one person speaks. In these scenarios,
natural conversation is not possible, and so problems with overlapping speech are
not considered. In addition, gestural or other nonverbal behaviors associated with
natural body motion during conversations are artificially suppressed [50].

Nock et al. [46] presents an empirical study to review definitions of audio-visual
synchrony and examine their empirical behavior. The results provide justifications
for the application of audio-visual synchrony techniques to the problem of active
speaker localization in the more natural scenario of broadcast video. Zhang et al.
[69] presented a multimodal speaker localization method using a specialized satel-
lite microphone and omni-directional camera. Though the results seem comparable
to the state-of-the-art, the solution requires specialized hardware, which is not desir-
able in practice. Noulas et al. [47] integrated audio-visual features for online audio-
visual speaker diarization using a dynamic Bayesian network (DBN), but tests were
limited to two-person camera views. Tamura et al. [58] demonstrate that the dif-
ferent shapes the mouth can take when speaking facilitates word recognition under
tightly constrained test conditions (e.g., frontal position of the subject with respect
to the camera while reading digits).

The approaches discussed above were often tested on very limited data sets
(which are not always publicly available) and were often recorded in highly con-
strained scenarios where individuals were unable to move or talk naturally. In gen-
eral, the speakers face the camera frontally and do not talk over or interrupt each
other. In contrast to previous methods which combine audio and video sources in
the early stages of the speaker diarization process, we present a late fusion approach
where noisy video streams are associated with estimated speaker channels.

In terms of finding speakers in conversational settings where video data does not
capture high-resolution faces, Vajaria et al. [59, 60] were the first to consider the
global body motion could be synchronous with speech. They presented a system
that combines audio and video on a feature-level using eigenvector decomposition
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of global body motion. Hung et al. [31] developed this notion further by considering
how simple motion features could be used to identify speakers in video streams for
group discussions. Finally Campbell and Suzuki [10] analyzed speech and upper
torso motion behavior in meetings to study participation levels but did not go further
into evaluating how well speech and motion could be correlated.

2.4 Human Body Motions in Conversations

In contrast to much previous work in this area, we have found that relying on lip mo-
tion to identify speakers is not always necessary and is not always possible [31, 32].
In the psychology literature, it has been shown on many occasions that speaker and
also listener movements are directly related to the role they play in a conversation
[37, 43]. We will explore this in more detail here to show that such nonverbal cues
play a huge role in understanding and inferring behavior types in conversations.

In social psychology, human body movements in conversations have been studied
from different perspectives. The first looks at the movements of speakers, the second
looks at the movement of listeners, and the final considers the synchrony between
the movements of speakers and listeners. The first two are important for understand-
ing what differentiates speakers from listeners in terms of kinesic behavior, while
the third is used more to measure the degree of mutual engagement between con-
versants. The latter is beyond the scope of this paper, but more details can be found
in a critique of work on interactional synchrony by Gatewood and Rosenwein [25].

The first aspect involving the movement of speakers suggests that speakers ac-
company their speech with gestures [37, 43]. Gestures accompanying speech them-
selves have been classified in many different ways. Adam Kendon defined gesture
asa

“range of visible bodily actions that are ... generally regarded as part of a person’s willing
expression” (p. 49).

The reason for gesturing has been explained as a means of increasing precision [27,
43], an evolutionary origin of language [38], or as an aid to speaking to facilitate
lexical retrieval [42, 43]. Whatever the reason for moving when speaking, psychol-
ogists are in agreement that we definitely move a number of body parts when we
speak. Moreover, it was noted by Gatewood and Rosenwein that “normal human
beings exhibit remarkable integration of speech and body motion at the subsecond
time scale” (p. 13, [25]). Such a phenomenon was labeled as “self synchrony” by
Condon and Ogston [15], who later elaborated that,

“As a normal person speaks, his body ‘dances’ in precise and ordered cadence with the
speech as it is articulated. The body moves in patterns of change which are directly pro-
portional to the articulated pattern of the speech stream .... There are no sharp boundary
points but on-going, ordered variations of change in the body which are isomorphic with
the ordered variations of speech” (p. 153) [16].

Gestures that accompany speech can be divided into a number of different cat-
egories involving manipulation of facial features, head pose, the trunk (or upper
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torso), arms, shoulders, and hands. Hadar et al. found that short and rapid head
movements can accompany points of stress in a sentence as a person speaks [27]. In
addition, Hadar et al. also found that the frequency of large linear movements of the
head was correlated with a person’s speaking time in a conversation [28]. In larger
groups, speakers can also move their head to address all the participants. Depend-
ing on the person’s status within the group, their level of conversant monitoring can
vary [19].

Hand motions have been shown to be very related to the content of what is being
said; it has been suggested by Armstrong et al. that

“Most gestures are one to a clause, but when there are successive features within a clause,
each corresponds to an idea unit in and of itself . ... Each gesture is created at the moment
of speaking and highlights what is relevant..." (p. 40—41) [5].

McNeill called such gestures “spontaneous” where “their meaning is determined
on-line with each performance” (p. 67) [43] and identified four types of relation-
ships between spontaneous gestures and speech: iconic, metaphoric, beat, and ab-
stract deictic. Iconic gestures represent objects and events in terms of resemblance;
metaphoric gestures represent an abstraction; beat features are rhythmic movements
of the hand such as for counting or indexing a list; and abstract deictics represent
locations of objects within a gesture space [43].

The listener in a conversation can provide feedback to the speaker, indicate that
they wish to claim the floor, or indicate their interest in a conversation. It was found
by Hadar et al. [27] that listener’s head movements tended to involve more “linear
and expansive” movements when indicating that they wanted to speak, “symmet-
ric and cyclic” when providing simple feedback such as “yes” or “no” responses,
and “linear but with shorter movements” during pauses in the other’s speech, which
could be attributed to “synchrony” behavior between conversants. While speaker’s
movements tend to be more pronounced, the movements of listeners are less pro-
nounced but still observable. Harrigan found that body movements occurred more
frequently when a person was requesting a turn than during the middle of someone
else’s speaking turn [30], showing that listeners tend to move less. She also found
that hand gestures tended to precede a turn compared to feedback responses that
were observed from motion from the head such as nods, shakes and tilts, facial ex-
pressions, and shoulder shrugs. In particular, gestures from the hands were related
to speech, serving to accent or emphasize what was being said.

3 Approach

Figure 1 shows a flow diagram of the approach that we have taken for clustering
the audio-visual meeting data in terms of who spoke when and where they are. The
goal of the presented system is to identify speakers and their approximate locations
in multiple camera streams, in an online and real-time fashion. We perform experi-
ments with four-participant meetings for cases where there are either four cameras
(one for each person) or two cameras (two people are shown per camera). A sum-
mary of the approach is listed below.
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Fig.1 Figure showing our approach. The work consists of two stages: (a) solving the task of “who
is speaking now?” based on audio information only; (b) associating speakers with video streams.
Different types of video features (c—d) are used to enhance the practicality and performance of the
system

(a) Online real-time speaker diarization: Speaker clusters are generated using the
audio data to represent each speaker and when they speak. From this unsu-
pervised data-driven method, a set of speaker clusters are generated where it
is assumed that one speaker corresponds to one cluster.

(b) Audio-visual association of speakers streams and video: Using these speaker
clusters, audio-visual association with a set of video streams is performed so
that the video or approximate spatio-temporal location of a speaker can be
found from multiple cameras. We carried out experiments showing whether
it is possible to associate all participants to their audio source correctly in a
batch manner and how the performance degrades as the length of the meeting
is shortened. As the window size gets smaller, the likelihood of more than
one person speaking within the same time interval is greatly reduced, so we
finally carried out experiments on selecting and evaluating whether just the
speaker was associated with the correct video stream.

(c—d) Extraction of visual activity features: The video features themselves are com-
puted in the compressed domain to take advantage of processing that is al-
ready required for the video compression process. Using these features, it is
possible to do some spatial video-processing in order to identify the locations
of two participants in video streams. We try using different sets of cameras
to both represent and localize speakers in the meeting. Finally, to improve
localization performance, we tried creating a binary representation of each
person’s visual activity, which generated a cleaner signal than the original
raw features used.

4 The Augmented MultiParty Interaction (AMI) Corpus

One of the largest corpora of meeting room data has been recorded by the Aug-
mented MultiParty Interaction (AMI) corpus which was created out of a European
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Fig. 2 All available views in the data set
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Union funded project [11]. This initiative generated a corpus that contains both 100
hours of audio-visual data and annotations from semantically low-level features,
such as who is speaking to, more semantically meaningful concepts, such as di-
alogue acts or who is looking at whom. In each meeting, four participants were
grouped together, and were asked to design a remote control device over a series of
sessions. Each person was assigned a role such as “Project Manager”, “Marketing
Expert”, or “Industrial Designer”. A microphone array and four cameras were set in
the center of the room. Side and rear cameras were also mounted to capture different
angles of the meeting room and its participants, as shown in Fig. 2.

Each camera captures the visual activity of a single seated participant, who is
assigned a seat at the start of each meeting session. Participants are requested not to
change seats during the session. No other people enter or leave the meeting during
the session, so there are always only four interacting participants. Each person also
wore a headset and a lapel microphone. A plan view of the meeting room is shown
in Fig. 3.
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5 Audio Speaker Diarization

5.1 Traditional Offline Speaker Diarization

As previously explained in Sect. 2, the goal of speaker diarization is answering the
question “who spoke when?”. The following section outlines the traditional audio-
only speaker diarization approach as shown in Fig. 4.

Feature Extraction Wiener filtering is first performed on the audio channel for
noise reduction. The HTK toolkit! is used to convert the audio stream into 19-dim-
ensional Mel-Frequency Cepstral Coefficients (MFCCs) which are used as features
for diarization. A frame period of 10 ms with an analysis window of 30 ms is used
in the feature extraction.

Speech/Nonspeech Detection The speech/nonspeech segmentation [64] proceeds
in three steps. At each step, feature vectors consisting of 12 MFCC components,
their deltas and delta-deltas (approximations of first- and second-order derivatives),
and zero-crossings are used.

In the first step, an initial segmentation is created by running the Viterbi algo-
rithm on a Hidden Markov Model (HMM) with Gaussian Mixture Model (GMM)
emissions that have been trained on Dutch broadcast news data to segment speech
and silence. In the second step, the nonspeech regions are split into two clusters:
regions with low energy and regions with high energy. A new and separate GMM is
then trained on each of the two new clusters and on the speech region. The number
of Gaussians used in the GMM is increased iteratively, and resegmentation is per-
formed in each iteration. The model that is trained on audio with high energy levels

Audio Signal
Feature
Extraction
Diarization
I 1 "
MFCC MFCC Engine who spoke when
‘ (only Speech)
Speech/Non-
Speech Detector

Fig. 4 Block diagram illustrating the traditional speaker diarization approach: as described in
Sect. 5, an agglomerative clustering approach combines speaker segmentation and clustering in
one step

Uhttp://htk.eng.cam.ac.uk/.
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is added to the nonspeech model to capture non-speech-like sounds such as music,
slamming doors, paper rustling, etc. In the final step, the speech model is compared
to all other models using the Bayesian Information Criterion (BIC). If the BIC score
is positive, the models are added to the speech model.

Speaker Segmentation and Clustering In the segmentation and clustering stage
of speaker diarization, an initial segmentation is first generated by randomly parti-
tioning the audio track into k segments of the same length. k is chosen to be much
larger than the assumed number of speakers in the audio track. For meetings data,
we use k = 16. The procedure for segmenting the audio data takes the following
steps:

1. Train a set of GMMs for each initial cluster.

2. Resegmentation: Run a Viterbi decoder using the current set of GMMs to seg-

ment the audio track.

Retraining: Retrain the models using the current segmentation as input.

4. Select the closest pair of clusters and merge them. This is done by going over all
possible pairs of clusters and computing the difference between the sum of the
Bayesian Information Criterion (BIC) scores of each of the models and the BIC
score of a new GMM trained on the merged cluster pair. The clusters from the
pair with the largest positive difference are merged, the new GMM is used, and
the algorithm repeats from the resegmentation step.

5. If no pair with a positive difference is found, the algorithm stops, otherwise the
algorithm repeats from step 2.

w

A more detailed description can be found in [64].

The result of the algorithm consists of a segmentation of the audio track with n
clusters and an audio GMM for each cluster, where n is assumed to be the number
of speakers.

The computational load of such a system can be decomposed into three com-
ponents: (1) find the best merge pair and merge; (2) model retraining and realign-
ment; (3) other costs. After profiling the run-time distribution of an existing speaker
diarization system, we find that the BIC score calculation takes 62% of the total
run-time.

Analyzing how the best merge hypothesis is found, the reason for the high cost
of the BIC score calculation can be identified. Let D, and D} represent the data
belonging to cluster a and cluster b, which are modeled by 6, and 6, respectively. D
represents the data after merging a and b, i.e., D = D, U Dy, which is parameterized
by 6. The Merge Score (MS) is calculated as (1) [1]:

MS(6q, ) = log p(D16) — (log p(Dalba) + 10g p(Dy|6p)). (D

For each merge hypothesis a and b, a new GMM () needs to be trained. When the
system is configured to use more initial clusters, which is preferable for better initial
cluster purity, the computational load can become prohibitive.

The speaker diarization output consists of meta-data describing speech segments
in terms of starting time, ending time, and speaker cluster name. This output is
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usually evaluated against manually annotated ground truth segments. A dynamic
programming procedure is used to find the optimal one-to-one mapping between
the hypothesis and the ground truth segments so that the total overlap between the
reference speaker and the corresponding mapped hypothesized speaker cluster is
maximized. The difference is expressed as Diarization Error Rate (DER), which
is defined by NIST.? The DER can be decomposed into three components: misses
(speaker in reference, but not in hypothesis), false alarms (speaker in hypothesis,
but not in reference), and speaker errors (mapped reference is not the same as hy-
pothesized speaker).

This Speaker Diarization System has competed in the NIST evaluations of the
past several years and established itself well among state-of-the-art systems.>

The current official score is 21.74% DER for the single-microphone case (RT07
evaluation set). This error is composed of 6.8% speech/nonspeech error and 14.9%
speaker clustering error. The total speaker error includes all incorrectly classified
segments, including overlapped speech. NIST distinguishes between recordings
with multiple distant microphones (MDM) and recordings with one single distant
microphone (SDM). In the case of MDM, beam-forming is typically performed to
produce a single channel out of all available ones.

For our approach, the various experimental conditions that we used can be cat-
egorized into a single distant microphone case and an individual close-talk micro-
phone. For the first case, a single audio stream was created by mixing individual
close-talk microphone data, i.e., “Mixed Headset” or “Mixed Lapel” using a sum-
mation. For the latter condition, a single microphone was selected from a micro-
phone array from either the table or ceiling sources.

5.2 Online Speaker Diarization

Our first goal is to segment live-recorded audio into speaker-homogeneous regions
to answer the question “who is speaking now?”. For the system to work live and
online, the question must be answered on intervals of captured audio that are as
small as possible and performed in at least real-time. The online speaker diariza-
tion system has been described in detail in [62] and has two steps: (i) training and
(i1) recognition, which will be described in more detail in the subsequent sections.
Figure 5 shows a summary of the on-line audio diarization algorithm.

Unsupervised Bootstrapping of Speaker Models To bootstrap the creation of
models, we use the speaker diarization system proposed by Wooters et al. [64] which
was presented in Sect. 5.1 in the first meeting of each session. This also results in
an estimation of the number of speakers and their associated speaker models. Once
models have been created, they are added to the pool of speaker models and can be

Zhttp://nist.gov/speech/tests/rt/rt2004/fall.

3NIST rules prohibit publication of results other than our own. Please refer to the NIST website
for further information: http://www.nist.gov/speech/tests/rt/rt2007.
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Fig. 5 Summary of the on-line audio diarization algorithm

reused for all subsequent meetings. The speaker diarization system used for training
is explained as follows.

Speaker Recognition In recognition mode, the system records and processes
chunks of audio as follows. First, Cepstral Mean Subtraction (CMS) is implemented
to reduce stationary channel effects [56]. While some speaker-dependent informa-
tion is lost, according to our experiments performed, the major part of the discrimi-
nant information remains in the temporally varying signal. In the classification step,
the likelihood for each audio frame is computed against each set of Gaussian Mix-
tures obtained in the training step. From our previous experiments on larger meeting
corpora, [62], we decided to use two-second chunks of audio. This introduces a la-
tency of about 2.2 seconds after the person has started talking (recording 200 audio
frames at 10-ms intervals plus a processing time of 0.1 xreal time).

The decision on whether a segment belongs to a certain speaker or the nonspeech
model is reached using majority vote on the likelihoods of an audio frame belonging
to a GMM. If the audio segment is classified as speech, we compare the winning
speaker model against the second best model by computing the likelihood ratio. We
use this as an indicator of the confidence level. In our experiments, we assume that
there are speaker models for all possible speakers, so we used the highest confidence
level to indicate the most likely speaker. For a more realistic case, it is possible to
apply a threshold to the confidence level to detect an unknown speaker, but this
currently requires manual intervention.

A Note on Model Order Selection Offline audio speaker diarization can lead to
more clusters than speakers since the method is data-driven, and therefore cluster



40 H. Hung et al.

merging stops depending on whether the BIC score is improved or worsened by
merging two candidate clusters. Due to the robustness of our online speaker diariza-
tion algorithm, while more clusters than participants can be generated in the offline
training phase, in the online stage, noisy or extraneous clusters have much lower
likelihoods, so they are never selected as likely speaker models. We found in our
experiments that the number of recognized clusters and that of actual participants
were always equal.

It is also important to note that the data we use includes overlapping speech.
These periods are automatically ignored when the speaker models are generated
to ensure they remain as clean as possible. Work has been carried out to address
overlapping speech in offline diarization systems but involve a second pass over
the diarized audio signal, which would not be feasible for an on-line and real-time
system [8].

5.3 Summary of the Diarization Performance

As described earlier, the output of a speaker diarization system consists of meta-
data describing speech segments in terms of start and end times, and speaker cluster
labels. NIST provides a measurement tool that uses a dynamic programming proce-
dure to find the optimal one-to-one mapping between the hypothesis and the ground
truth segments so that the total overlap between the reference speaker and the cor-
responding mapped hypothesized speaker cluster is maximized. The difference is
expressed as Diarization Error Rate, which is also defined by NIST.* The Diariza-
tion Error Rate (DER) can be decomposed into three components: misses (speaker
in reference, but not in hypothesis), false alarms (speaker in hypothesis, but not in
reference), and speaker errors (mapped reference is not the same as hypothesized
speaker). It is expressed as a percentage relative to the total length of the meeting.
To characterize the algorithm under increasingly noisy input conditions, three
different sources were used. Two signals were obtained by mixing the four individ-
ual headset microphones (MH) or lapel microphones (ML) using a direct summa-
tion. Also a real far-field case (F) where a single microphone from the array on the
table was used. Table 1 shows the results for the online audio diarization system
where the average, best, and worse performances are shown for 12 meeting sessions
that were used. As expected, one can observe a decrease in performance as the SNR
decreases. It was interesting to observe a high variation in performance where in
one case the error rate fell to 4.53% for the mixed headset condition. If we observe
the variation in performance more closely, as shown in Fig. 6, we see that there is
one particular meeting session which has a consistently better performance than the
rest. This is because in this meeting, everyone stays seated (and therefore maintains
equidistance from the far-field microphone). In addition, the meeting is mostly a dis-
cussion, and there is little use of the other equipment in the room such as the slide

“http://nist.gov/speech/tests/rt/rt2004/fall.
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Table 1 Diarization results in terms of the Diarization Error Rate (DER) using both offline and on-
line methods. Note that the offline results were computed using meetings of 5-minute length, while
the online results were bootstrapped using longer meetings but speaker models were produced
from just 60 s of speech from each person. Results are also presented using different microphone
sources where the associated signal-to-noise ratio for each source is shown in brackets

Input Offline results Online results
Video Methods F(21dB) ML (22dB) MH (31dB) F(21dB) ML (22dB) MH (31 dB)

Average DER (%) 33.16 36.35 36.16 18.26 26.18 28.57
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Fig. 6 Comparison of the online speaker diarization performance across different input conditions
and over the different meetings that were considered

screen or white board. In contrast, meeting IS1006d is one of the worst perform-
ing meetings because people are often presenting at the whiteboard or slide screen.
It is also interesting to observe that while the relative performance when using the
far-field and headset microphones remain fairly consistent (the far-field case always
performs worse), the mixed lapel condition does not. This could be explained by
additional noise generated by shifting of the body or touching the microphone by
accident, particularly when participants were moving around the meeting room.

6 Extracting Computationally Efficient Video Features

With the increased need for recording and storing video data, many modern day
video cameras have hardware to encode the signal at the source. In order to capture
visual activity efficiently, we leverage the fact that meeting videos are already in
compressed form so that we can extract visual activity features at a much lower
computational cost.

These features are generated from compressed-domain information such as mo-
tion vectors and block discrete-cosine transform coefficients that are accessible with
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(a) (b) (c) (d

Fig. 7 Compressed domain video feature extraction. (a) Original image, (b) Motion vectors, (c)
Residual coding bitrate, (d) skin-colored regions

almost zero cost from compressed video [63]. As compared to extracting similar
higher resolution pixel-based features such as optical flow, compressed domain fea-
tures are much faster to extract, with a run-time reduction of 95% [67].

Video streams that have been compressed using MPEG4 encoding contain a col-
lection of group-of-picture (GOP) which is structured with an Intra-coded frame
or I-frame, while the rest are predicted frames or P-frames. Figure 7 summarizes
the various compressed domain features which can be extracted cheaply from com-
pressed video as the motion vector magnitude (see Fig. 7(b)) and the residual coding
bitrate (see Fig. 7(c)) to estimate visual activity level. Motion vectors, illustrated in
Fig. 7(d), are generated from motion compensation during video encoding; for each
source block that is encoded in a predictive fashion, its motion vectors indicate
which predictor block from the reference frame (in this case the previous frame for
our compressed video data) is to be used. Typically, a predictor block is highly corre-
lated with the source block and hence similar to the block to be encoded. Therefore,
motion vectors are usually a good approximation of optical flow, which in turn is a
proxy for the underlying motion of objects in the video [14].

After motion compensation, the DCT-transform coefficients of the residual signal
(the difference between the block to be encoded and its prediction from the reference
frame) are quantized and entropy coded. The residual coding bitrate, illustrated in
Fig. 7(c), is the number of bits used to encode this transformed residual signal.
While the motion vector captures gross block translation, it fails to fully account for
nonrigid motion such as lips moving. On the other hand, the residual coding bitrate
is able to capture the level of such motion, since a temporal change that is not well
modeled by the block translational model will result in a residual with higher energy
and hence require more bits to entropy encode.

6.1 Estimating Personal Activity Levels in the Compressed Domain

Even when personal close-view cameras are used, the distance from the camera
causes scale and pose issues, as shown in some example shots in Fig. 8. By averag-
ing activity measures over detected skin-color blocks, we hope to mitigate some of
these issues. Therefore we implement a block-level skin-color detector that works



Computationally Efficient Clustering of Audio-Visual Meeting Data 43

Fig. 8 Possible pose variations and ambiguities captured from the video streams

mostly in the compressed domain which can detect head and hand regions as il-
lustrated in Fig. 7. This is also useful for detecting when each meeting participant
is in view. To do this, we use a GMM to model the distribution of chrominance
coefficients [41] in the YUV color-space. Specifically, we model the chrominance
coefficients, (U, V), as a mixture of Gaussians, where each Gaussian component
is assumed to have a diagonal covariance matrix. In the Intra-frames of the video,
we compute the likelihood of observed chrominance DCT DC coefficients accord-
ing to the GMM and threshold it to determine skin-color blocks. Skin blocks in the
Inter-frames are inferred by using motion vector information to propagate skin-color
blocks through the duration of the group-of-picture (GOP).

We threshold the number of skin-colored blocks in the close-up view to detect
when a participant is seated. If a participant is not detected in an image frame of
the close-up video stream, he is assumed to be presenting at the projection screen,
which is a reasonable assumption in the meeting data. Since they are assumed to be
presenting at the slide screen or whiteboard, they are more likely to be active and
also speaking. Therefore, a simple assumption was to set periods where the person
was detected as not seated to the maximum value seen so far. While this is a simple
rule, it was found to be effective in previous experiments [31].

6.2 Finding Personal Head and Hand Activity Levels

While previous work has concentrated on extracting personal visual activity from
gross head motion, here we go a step further by trying to understand how head and
hand motion might play a part in human discourse, at a holistic level. The impor-
tance of this can be highlighted in Fig. 9, where we observe three seconds of a
meeting discussion. There are four participants in the discussion, in the configura-
tion shown in Fig. 3. Here we see just two participants where the person on the right
is speaking. The top two rows of Fig. 9 shows a breakdown of the gross head and
hand motion that is observed for the two observed meeting participants, illustrated
in the bottom row of the figure. To illustrate the change in motion over time more
clearly, the average motion vector magnitudes over the head and hand skin regions
are shown (further details about how these are calculated will be provided in the re-
mainder of this section). The visual head and hand activity for the silent participant
on the left is shown in grey, while the speaker’s visual activity is shown in black.
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Fig. 9 Tllustration of the difference in head and hand motions between speaker and listener. The
black lines show the head and hand motions of the speaker, while those in grey show the motions
of the listener. The two rows below shows key image frames from this 3-s interval where the person
on the right is speaking the entire time

The bottom two rows of the figure shows some key image frames within the three-
second interval where the person on the right is speaking. She starts off addressing
those on the other side of the table and then directly addresses the participant to
the left half way through the observed interval. When he realizes that he is being
addressed directly, he moves his head to face her directly but then lowers it again
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when attention is shifted away from him. In terms of hand motion, we see that the
speaker is the only person of the two that moves during this interval. Note that in
this paper, we describe head motion to be observed from skin-color regions, which
captures visual activity inside the face as well as some translations and deformations
of the face region.

The example in Fig. 9 shows that a speaker and an attentive listener can have
very different behavior types if we simply observe the head and hand motions sepa-
rately. It is also interesting to observe that partial occlusion of one of the hands does
not affect the discrimination between the roles of these two meeting participants. Of
course, the data is not always as clean and depends on how involved the participants
were. Note also that the motion vector magnitudes were shown for illustrative pur-
poses only; in our experiments, we use the residual coding bitrate, which we found
to produce better results since it tends to smooth out large and fast variations in the
visual activity, and can also detect small motions from the lips if they are visible.

The features extraction method described in Sect. 6.1 were for gross body mo-
tion, and can include both head and hand motions where the hands are only sporad-
ically visible in the close-up views (see bottom row of Fig. 2). Therefore, we focus
on extracting the desired features from the side views (see images L and R of the
top row of Fig. 2) where two people’s head and hands are captured.

We first need to find the boundary between the two persons in each side view. The
method we employ was inspired by the work of Jaimes on studying body postures
of office workers [33]. For each image frame, we construct a horizontal profile of
the number of detected skin-color blocks in each column, as shown by the accumu-
lated profile at the bottom of the image in Fig. 10. Suppose S(x, y) is an indicator
function of skin color blocks for the (x, y) block in the image frame. The horizontal
profile is simply Sp(x) = Zy S(x,y). Since we expect the horizontal location of
each person’s head to result in a strong peak in S, (x), we use a K-means clustering
algorithm (with K = 2) to find the locations of the two peaks. To ensure continu-
ity between image frames, K-means is initialized with the locations of the peaks
from the previous image frame. The boundary is simply the midpoint between the
two peaks. Once the left and right regions of each camera-view are separated, we
treated the two portions of the image frame as two video streams, representing the
individual visual activity of each person in the same way as described in Sect. 6.1.

Next, we needed to find the boundary between the head and hands for each per-
son. This time, for each person (i.e., the left half or right half of the view, separated
by the estimated boundary), we constructed a vertical profile of the number of de-
tected skin-color blocks in each row as shown in Fig. 10. Again, since we expect
the vertical locations of the head and hands to result in strong peaks in the vertical
profile, we use a K-means algorithm to find the two peaks. As before, K -means is
initialized with the locations of the peaks from the previous image frame, and the
boundary between the head and hands is just the midpoint. Note that the vertical
profile is only considered below a certain height to remove spurious detections of
skin color in the background.

Now, we can compute head and hands activity levels using the same approach as
in Sect. 6.1, except that the area of interest is the estimated quadrant of the side-view



46 H. Hung et al.

Fig. 10 Example of the horizontal and vertical profiles of the skin blocks and the located bound-
aries between the two people and their respective head and hand regions. The accumulated horizon-
tal of the skin-color blocks is shown at the bottom of the example snap-shot. The vertical profiles
of the skin-color blocks for each corresponding person are shown to the left and right of the image
frame. The detected skin color regions are highlighted in red, and the estimated boundaries using
the horizontal and vertical profiles are shown in green

that contains the subject of interest, i.e., left person’s head, left person’s hands, right
person’s head, and right person’s hands.

We evaluated the boundary estimation described above on one meeting session,
where bounding boxes of speakers’ heads had been annotated. The error rate of
finding the boundary between two persons was 0.4%, where an error is defined as the
estimated boundary not cleanly separating the bounding boxes of the two persons.
The error rate of finding the boundary between the head and hands is 0.5%, where
the error is defined as the estimated boundary not being below the head bounding
boxes of the respective person. We found that errors occurred mostly when the hands
touched the face or moved above the shoulders or when a person reached across
the table to their neighbor’s table area. From this two-camera setup, four different
personal activity features were generated; head activity; hand activity; the average
activity of the head and hand blobs; and the maximum of the average head and
average hand motion after the features were normalized.

6.3 Estimating Speakers Using Video Only

From previous experiments, we have found that speech and the visual activity of
the speaker are better correlated over long-term intervals [31, 32]. We know that
people who move are not necessarily talking, but we know that people who talk will
tend to move. This is further illustrated by the distributions in Fig. 11(a) where we
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see accumulated histograms of the distribution of visual activity as measured using
the residual coding bitrate with the close-up cameras, when people were seated and
speaking or silent. This shows that people who talk tend to move more but that
people who are silent can sometimes move a lot too. As mentioned in Sect. 6.1, when
a person is detected as standing, their visual activity level is set to the highest value
for that person that has been observed so far. Note also that previously [32] we found
that using the motion vectors to associate audio and video streams led to worse
performance. This is further illustrated in Fig. 11(b) where the same distributions as
(a) are shown but using the average motion vector magnitude instead.

To estimate the speaker based on observing the meeting participant with the most
motion, it is important to first normalize the visual activity features for each person.
The normalization allows us to compare the speaking and silent behavior of each
participant in the meeting across all participants. For our meetings, there are no
participants who remain inactive for the entire meeting; therefore, we apply the nor-
malization assuming that all participants will be relatively engaged in the meeting
activities. Since the method is online, the normalization needed to be adaptive, and
so each new visual activity value was divided by the maximum value that was ob-
served until that point.

Once the values have been normalized, each person’s visual activity stream is
considered to be comparable across individuals. Using this assumption and also that
we know that speakers tend to move more than listeners, binary versions of each
person’s speaking activity was estimated. This was done by making the person who
had the highest visual activity over the previous time window the estimated speaker,
as described in Algorithm 1. This makes the same assumption as the speaker di-
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1 Computationally Efficient Clustering of Audio-Visual Meeting Data
foreach p in Participants do
| Votes[p] =0;
end
foreach ¢ in Window do
i = argmax, (VisualActivityt, p]), Vp € Participants;
Vortes|i| = Vores[i] + 1;
end
J = argmax,(Votes[p|), Vp € Participants;
BinaryVisual Activity[j]=1;

Algorithm 1: Estimating speakers using visual activity only.

arization system, that the speech is not overlapped, though in reality overlapping
regions of speech exist in our test data and are usually the periods in which correct
estimates are more difficult to make. As discussed previously, it would have been
interesting to account for cases of overlapping speech, but previous work has shown
that this would require a second pass over the data in order to find regions where the
likelihood of a particular person speaking becomes much lower than during periods
of clean speech [8].

7 Associating Speaker Clusters with Video Channels

To begin with, let us consider how well speech and audio streams can be associated
together if clean audio signals are used. We used speaker segmentations from the au-
dio signal taken from personal headset microphones as a simple automated speaker
segmentation method. These were associated with the two real-valued visual ac-
tivity features using the residual coding bitrate or motion vector magnitudes. The
headset segmentations were generated by extracting the speaker energy from each
headset and then thresholding this value to create a binary signal where 1 represents
speaking and O is silence.

For each pair-wise combination of speaking and visual activity channels, their
corresponding normalized correlation was calculated. We then matched the channels
by using an ordered one-to-one mapping based on associating the best correlated
channels first. Figure 12 shows the algorithm in more detail.

(a) Quantifying the distance between audio-visual streams: the pair-wise correla-
tion between each video, v;, and audio stream, a;, is calculated:

Y v - a)
Y Y gal)

where T is the total length of the meeting, and in our experiments, ¢ indexes
the feature value at each frame. For our experiments, the frame rate used was 5
frames per second.

(b) Selecting the closest audio-visual streams: the pair of audio and video streams
with the highest correlation are selected.

vii, j) 2

Pvj,a; =



Computationally Efficient Clustering of Audio-Visual Meeting Data 49

Associating Speaker Clusters and Visual Activity Streams
N Speaker
+ Clusters
= 23
25 5
£§ B 2 . E
+ <@
* (a) Correlate (b) Select (c) Eliminate Sc_elect
and Select Next Final
Low Correlation High Correlation - A/V pairs to eliminate
[ [0 Associated A/V streams

Fig. 12 Greedy Algorithm for ordered and discriminative pairwise associations between audio
and video streams. (i) All pairwise combinations of the audio and video streams are correlated.
(ii) The pair with the highest correlation is associated first and then eliminated from the correlation
matrix

Table 2 Proportion of correctly associated meetings using speech segmentations generated from
individual headset microphones that were then associated with visqual activity from the close-
view cameras. EvH: Hard evaluation strategy where all audio-visual streams in the meeting must
be associated correctly; EvM Medium evaluation strategy where at least two of the audio-visual
streams in the meeting must be associated correctly; EvS Soft evaluation strategy where at least
one of the audio-visual streams in the meeting must be associated correctly

EvS EvM EvH
Residue 1.00 1.00 0.90
Vector 1.00 0.95 0.81

(c) Selection of the next closest audio-visual streams: the next best correlated pair
of audio and video streams is selected.

(d) Full assignment of audio and video streams: step (c) is repeated until all audio-
visual streams are associated.

Since the association is performed on a meeting basis, it is important to evaluate
the performance similarly. Three evaluation criteria are used to observe the diffi-
culty in associating more channels correctly in each meeting. Hard (EvH), medium
(EvM), and soft (EvS) criteria are used that assign respectively a score of 1 for each
meeting only when all, at least two, or at least one of the pairs of associated au-
dio and visual streams is correct for each meeting. We refrain from evaluating on
a participant basis since the meeting-based ordered mapping procedure, by defini-
tion, discriminates pairs that are easier to distinguish, as a means of improving the
association from noisier channels which may have less observable activity.

The proportion of correctly associated meetings using both visual activity feature
types are shown in Table 2. Correlating the headset segmentations and Residue vi-
sual activity channels performed best. Also, it was also encouraging to see that even
for the hard evaluation strategy, the performance remained high for this case.
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For the online association method, the association method described above was
modified so that after all streams were associated within a 2-s sliding window. Then,
only the person who spoke for the longest time was assigned their associated video
stream for that window.

8 Audio-Visual Clustering Results

Speaker localization experiments were run on the same meeting data that was used
in the previous section. The outputs from the online speaker diarization were used
as a reference to determine which video stream contained the relevant speaker. As
described in Sect. 6, the visual activity of each individual could be represented by a
number of features. These are summarized in Table 3. In addition, a binary feature
can be derived from each of these using the method described in Sect. 6.3.

For the 4-camera and 2-camera case, the location of each stream was known so
evaluation was straightforward. For the 2-camera case, it was assumed that each
half of the frame would be treated as a single stream, leading to four possible video
candidates. An analysis window of 2 s was used with a 40-ms shift.

8.1 Using Raw Visual Activity

As an initial extension to the method presented in the previous subsection, we ap-
plied the online association algorithm to the real-valued average residual coding
bitrate in the five video forms described in Table 3. The results are summarized in
Table 4, where evaluation was done using the same scoring as for the online diariza-
tion. Rather than comparing the speaker reference with the speaker clusters, which
was done for the speaker diarization evaluation, we compare the speaker reference
with the estimated video stream labels. For clarity, we refer to this measure as the
association error rate (AER), but the mechanics of the performance measure are the
same as the DER. We see that the error is quite high in all cases but note that the
results are still better than random, where the error would be closer to 80% since the
associated video could be one of the four participants or none of them. Comparing
the performance more carefully across the different input audio conditions, we see
that there is again a slight improvement in performance when the mixed headset
signal is used rather than the far-field microphone. Comparing across the different
video features that were tried, using the mean residual coding bitrate for the esti-
mated hand regions from the 2-camera set-up for each person gave the best results,
but there was not a significant difference between the best and worse average results.

Table 3 Summary of video features that were used

4 close-up cameras Head Close-up

2 mid-view cameras Head+Hands Head Hands Max(Head,Hands)
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Table 4 Audio-visual speaker localization with the real-valued average residual coding bitrate for
each person, using the different video feature methods. The signal-to-noise ratio for each audio
type is shown in brackets for each input audio source. The results show the average AER over all
the meetings for each experimental condition, where the bracketed number shows the lowest AER
that was achieved

Input video Input audio conditions
methods F (21 dB) ML (22 dB) MH (31 dB)
AER (%) (Min) AER (%) (Min) AER (%) (Min)

Head(Closeup) 68.39 (64.92) 6842 (65.45)  68.04 (64.82)
Max(Head,Hands)  68.05 (62.75) 6791 (62.09) 68 (60.62)
Heads 68.1 (64.25)  67.84 (63.79)  67.98 (63.03)
Head+Hands 67.67 (61.54) 6758 61.87) 6754 (61.31)
Hands 67.92 (61.41)  67.65 (61.29)  67.64 (61.13)

8.2 Using Estimates of Speaking Activity from Video

We then conducted similar experiments with each video feature type replaced by
its binarized version using the method described in Sect. 6.3. These binarized video
streams were then associated with the relevant audio stream as described in Sect. 7.
The results are summarized in terms of AER again in Table 5. Here we see a signif-
icant increase in performance when these binarized visual activity values are used.
This indicates that our hypothesis that people who talk tend to move more is quite
successful at finding speakers from video only. Overall, the best speaker and video
association performance was observed when the motion from the close-up cameras
was used. This is not surprising since the head is represented at a higher resolution
and therefore lip motion is better captured. It is encouraging to see that even when
using the 2-camera set-up, where the size of the heads was about half of those in the
close-view cameras, the performance is slightly worse but still comparable. Of the
2-camera features, the one using head activity alone gave the best average perfor-
mance, but the best performance for any session used the Max(Head,Hands) feature.
This indicates that hand motion can still be effective for discriminating speakers
from listeners and is complementary to head motion. The worse average AER of
the Max(Head,Hands) case compared to the Heads is likely to be due to how much
body motion was attributed to meeting activities such as using a laptop, writing, or
manipulating the remote control prototype they were designing.

Since the AER is not a widely used performance measure, in multimodal pro-
cessing tasks, we also provide the average precision, recall, and F-measure when
using the far-field microphone and binary estimates of speaking activity in Table 6.
Here the boldened values show the best achieved performance for a single meet-
ing, while the number on the left shows the average. Using these measures, similar
differences in performance are observed, although here, using the maximum of the
head and hand motion appears to give the best overall performance for the 2-camera
case. Again, the 4-camera case performs the best. It is also interesting to observe
that the head-only and the Max(Head,Hands) features perform similarly, while the
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Table 5 Audio-visual speaker localization results using binary estimates of speaking status from
each person’s visual activity. The signal-to-noise ratio for each audio type is shown in brackets for
each input audio source. The results show the average AER for each experimental condition, and
the accompanying bracketed number shows the minimum AER that was achieved from one of the
12 sessions that were used

Input video Input audio conditions
methods F (21 dB) ML (22 dB) MH (31 dB)
AER (%) (Min) AER (%) (Min) AER (%) (Min)

Head(Close-up) 41.89 (20.19) 4191 (19.71)  41.55 (19.71)
Max(Head,Hands) ~ 42.38 (2224)  42.82 (2237)  42.83 (22.39)
Heads 423 (2627) 4275 (2642) 4262 (26.4)

Head+Hands 46 (33.3) 46.83 (3341) 4624 (33.31)
Hands 53.83 (34.48) 5479 (34.55)  54.18 (34.67)

Table 6 Summary of the average precision, recall, and F-measure for the different video feature
types. Results for using the far-field microphone are shown and the binary estimates of speaking
status from visual activity. For each video feature, the highest performance is shown boldened

Input video methods Prec. Recall F-meas.
Head(Close-up) 52.74 72.93 41.64 62.53 44.72 66.18
Max(Heads,Hands) 50.64 68.62 41.58 62.26 43.59 63.1
Head 51.01 66.41 41.95 58.18 43.93 60.2
Head+Hands 39.63 56.51 34.17 54.21 34.68 49.44
Hands 37.17 56.91 31.33 48.12 31.64 43.28

Head+Hands and hands-only features perform similarly badly compared to the rest.
This indicates that for both listeners and speakers, observing head motion is more
discriminative in most situations. However, the success of the feature which takes
the maximum of the head and hand motion indicates that the head and hand features
should be treated independently since they are complementary.

From the results we have presented, it seems that using the binary estimates of
speaking activity from video is effective. However, the performance is not as high
as estimating speakers from the audio alone. We can observe the locations of failure
modes by looking more closely at an example meeting, which is shown in Fig. 13.
Here the binary segmentations of the estimated speaker are shown using the as-
sociation method described in Sect. 7 (first row); the binary estimates of speaking
activity from video (second row); and the speaker clusters generated from the on-
line speaker diarization algorithm (third row). The final row shows the ground truth
speaker segmentations. We can see that there are occasions (e.g., between 150—
200 s and 600-700 s) when the binary estimates of speaking activity fail since the
person who moves the most is not talking. This is not surprising since there is still a
considerable overlap observed in the speaker and listener activity shown in Fig. 11
previously. Furthermore, we observed that there are occasions where nonspeakers
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Fig. 13 Graphical comparison of different feature representations and estimates. White areas in-
dicate either that someone is speaking. The first row shows the estimated associated video stream,
given the diarized speaker clusters in the third row; the second row shows the estimate of speaker
status from just the motion activity taken from the maximum of the head and hand motion; and the
final row shows the ground-truth speaker segmentations

were involved in other activities while someone was speaking (e.g., working on a
laptop). However, there are also observed cases where speaker diarization fails and
the speaker estimates from video was successful (between 350—450 s). The failure
in the speaker diarization could be caused by speaker models being confused due
to either short utterances or because the speaker models were only generated from
60 s of speech for each speaker in the training phase. This example of complemen-
tary failure modes suggests that combining the audio and video features at an earlier
stage may also improve the speaker diarization performance.

9 Discussion

In this chapter, we have discussed offline systems which can be used for post-
processing of previously recorded data. However, audio-visual mining of the data
could also happen in real-time. A system that can work online and in real-time is
useful for remote meeting scenarios where subtle information about an interaction
can be lost through transmission. These could relate to transmission failure of one
or more modalities but could also be due to the inherent time delay between send-
ing and receiving data. In terms of more complex immersion problems within the
remote meeting scenario, it is also difficult for remote participants to know when
to interrupt in a conversation or judge the mood or atmosphere of the group they
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are interacting with. For colocated meetings, live-recording and summary may be
useful for a quick recap if someone missed what was said (e.g., a phone call inter-
ruption) but does not want to interrupt the conversation flow in order to catch up
on information they missed. Aside from this, live processing also aids post-meeting
browsing since a live capability could be used to enable live tagging of automati-
cally segmented events such as how an issue on the agenda was received by other
meeting participants. Of course, some of the tags could be substituted by automated
event identification methods, but when certain technologies are not available, tag-
ging is an extremely useful way of labeling information. In particular, tagging has
been used extensively for mining image data with the emergence of social network-
ing sites where photos are organized amongst self-organized groups. It has been
demonstrated that imagery data itself need not be used for mining the data if tags
are available [44].

Moving away from the online and real-time problems, there are other ways in
which the performance of the speaker diarization and audio-visual association task
can be improved. In particular, while the approach presented in this chapter demon-
strated a late fusion approach, given that we know that speech and body motion it
correlated, there is also motivation to make the task into a speaker diarization and
localization task by fusing the modalities early on in the clustering process. This is
particularly interesting since clustering video data alone into speakers tends to re-
quire a priori knowledge of the number or participants. Of course, techniques such
as face detection can be employed to identify the speakers, but this may not be
practical if the resolution of faces is in the video and nonfrontal faces tend to be
difficult to detect robustly. Research on fusing audio and visual features for speaker
diarization or speaker localization as discussed in Sect. 2 has shown an improve-
ment in performance over single-modality methods. However most work performs
experiments on data where two talking heads are visible and remain relatively sta-
tionary with fully frontal faces. Few consider more global body movements [10, 31,
32, 59, 60]. Vajaria et al. [59, 60] was one of the first to use gross body movement
for speaker diarization and localization but suffer from the need to cluster spatially
separated noisy visual features. Recently some preliminary success by using just a
single camera and microphone [23] to perform speaker diarization where the audio
and visual features are fused early on in the agglomerative clustering process. Re-
sults for the speaker diarization task show improvement, despite the low resolution
of each participant in the captured video. In both cases, the correlation of speech
and motion from different body parts was not considered for the diarization task.
Also, finding a suitable way to evaluate the locations of speakers in the video in a
similar way to the diarization performance is yet to be found.

With the success of multimodal speaker diarization methods, it is clear that the
trend is moving toward using multiple sensors and multiple modalities to solve
data-mining problems, certainly in the domain of meeting analysis. The importance
of multimodal data mining when capturing human behavior is further emphasized
since psychologically, both modalities are used differently when we communicate
socially and communicate very different messages. It is sometimes these differences
and in particular unusual events which trigger memories for us about a particular
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conversation. It could be said that these are the events which are the most difficult to
find again once they have been archived. This brings us to the application of estimat-
ing dominance, which was demonstrated at the end of this chapter. It showed that
even with computationally efficient methods for clustering the data where the esti-
mates of the raw outputs was degraded, the performance of the semantically higher
level dominance task was not necessarily affected. This addresses some interesting
questions about how the problem of the semantic gap should be addressed in data
mining. From a cognitive perspective, perhaps we would expect that the verbal con-
tent of each speaker would need to be analyzed. However, experiments have shown
that using speaking time alone is quite robust, even if the estimates of the speaker
turns are not as accurate. Given these results, one might ask the question of whether
other semantically high-level behavioral types or affiliations can be characterized
using equally simple features such as the excitement levels in a meeting [65], roles
[68], or personality [52].

Ultimately, one could argue that to address the semantic gap in mining meet-
ing data, we must start from the questions we ask ourselves when trying to search
through meeting data such as in terms of what happened, what were the conclusions,
and how people interacted with each other. From a functional perspective, knowing
the meeting agenda and the final outcomes are useful, but from a social perspective
knowing about the subtle nonverbal behavior tells us more about relationships be-
tween colleagues or clients. For example, knowing how a person usually behaves
can help us to detect unusual behavior, which could be indications of stress, if, for
example, the person has been delegated too much work. These are ultimately useful
tools to ensure that teams in organizations work effectively and that staff are not
overworked or under-utilized. From an individual perspective, there are those that
argue that success is well correlated with “emotional intelligence” which is defined
as the ability to monitor both one’s own and the other’s feelings and emotions in or-
der to guide one’s thinking and actions [51]. Automatically estimating the feelings
and emotions of others are topics of interest currently [7, 65]. In particular, recent
work on distinguishing real from fake facial expressions of pain has shown that
automated systems perform significantly better than human observers [7]. Such re-
search shows the potential of using machines to help us understand how we interact
and in particular how this could potentially be used to help individuals in becoming
more aware of social interactions around them. Ultimately, such knowledge should
lead to more efficient team-working where perhaps the easiest failure mode in teams
occurs through a break-down in communication between members.
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