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Abstract This paper provides series expansions of the stationary distribution of fi-
nite Markov chains. The work presented is a part of research project on numerical al-
gorithms based on series expansions of Markov chains with finite state-space S. We
are interested in the performance of a stochastic system when some of its parame-
ters or characteristics are changed. This leads to an efficient numerical algorithm for
computing the stationary distribution. Numerical examples are given to illustrate the
performance of the algorithm, while numerical bounds are provided for quantities
from some models like manufacturing systems to optimize the requirement policy
or reliability models to optimize the preventive maintenance policy after modelling
by vacation queuing systems.

1 Introduction

Let P denote the transition kernel of a Markov chain defined on a finite state-space S
having unique stationary distribution 7p. Let Q denote the Markov transition kernel
of the Markov chain modeling the alternative system and assume that Q has unique
stationary distribution 7. The question about the effect of switching from P to Q
on the stationary behavior is expressed by 7mp — 7p, the difference between the sta-
tionary distributions (Heidergott and Hordijk, 2003). In this work, we show that the
performance measure of some stochastic models, which are gouverned by a finite
Markov chain, can be obtained from other performance of more simple models, via
series expansion method. Let || . ||;, denote the total variation norm, then the above
problem can be phrased as follows: Can || p — 7p ||»» be approximated or bounded
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in terms of || P— Q ||;,? This is known as perturbation analysis of Markov chains
(PAMC) in the literature.

This paper is considered as a continuity of the work (Rahmoune and Aissani,
2008), where quantitative estimate of performance measure has been established
via strong stability method for some vacation queueing models. In this work, we
will show that 7p — 7o can be arbitrarily closely approximated by a polynomial in
(Q—P)Dp , where Dp denotes the deviation matrix associated with P. A precise
definitions and notations will be given later. Starting point is the representation of
Tp given by:

k
o= Y mp((Q—P)Dp)" + mp((Q —P)Dp)*t!; (1)
n=0

for any k > 0. This series expansion of 7y provides the means of approximating
7o by Q and entities given via the P Markov chain only. We obtain a bound for
the remainder term working with the weighted supremum norm, denoted by || .
where v is some vector with positive non-zero elements, and for any w € RS
w(i)

= TN ”

see, for example (Meyn and Tweedie, 1993). We will show that for our models

Vs

k
mo(s) — (207?13((0 - P)DP)”> () <d |l (Q—P)Dp) i

for any k € N and any s € S, where v can be any vector satisfying v(s) > 1 for
s € S, and d is some finite computable constant. In particular, the above error bound
can be computed without knowledge of 7.

The key idea of the approach is to solve for all k the optimization problem
min || ((Q—P)Dp)" ||, subject to )
v(s)>1 forseS.

The vector v* thus yields the optimal measure of the rate of convergence of the se-
ries in (1). Moreover, the series in (1) tends to converge extremely fast which is due
to the fact that in many examples v* be found such that || ((Q —P)Dp) ||,»<< 1. The
limit of the series (1) first appeared in (Cao, 1998), however, neither upper bounds
for the remainder term nor numerical examples were given there. The derivation of
this has been done in (Heidergott and Hordijk, 2003), which is a generalization of
(Cao, 1998). The use of series expansion for computational purposes is not new. It
has been used in the field of linear algebra (Cho and Meyer, 2001).

The work presented in this paper is part of research project on numerical algorithms
based on series expansions of Markov chains as it was in Heidergott and Hordijk
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(2003). The present paper establishes the main theoretical results. In particular, nu-
merical examples are provided for vacation queueing systems.

2 Preliminaries on Finite Markov chains

Let S denote a finite set {1,---,S}, with 0 < § < e elements. We consider Markov
kernels on state space S, where the Markov kernel P" is simply obtained from taking
the nth power of P. Provided it exists, we denote the unique stationary distribution
of P by 7p and its ergodic projector by Ilp. For simplicity, we identify 7p and 7g
with I'lp and Ilp, respectively. Throughout the paper, we assume that P is aperiodic
and unichain, which means that there is one closed irreducible set of states and a set
of transient states. Let |A|(i; j) denote the (i; j)th element of the matrix of absolute
values of A € RS*5, and additionally we use the notation |A| for the matrix of ab-
solute values of A.

The main tool for this analysis is the v-norm, as defined in (2). For a matrix
A € RS the v-norm is given by

s
s I |AGw()
e j=
[All,=sup .
i wllh <1 v(i)
Next we introduce v-geometric ergodicity of P, see Meyn and Tweedie (1993)
for details.

Definition 0.1. A Markov chain P is v-geometric ergodic if ¢ < e, § < 1 and N < o0

exist such that
|| P"—TIIp ||, < cB", forall n>N.

The following lemma shows that any finite-state aperiodic Markov chain is v-
geometric ergodic.

Lemma 0.1. For finite-state and aperiodic P a finite number N exists such that
|| P" —IIp ||, < cB", forall n>N;

where ¢ < oo and 3 < 1.

Proof. Because of the finite state space and aperiodicity.

3 Series Expansions in Queues with Server Vacation

We are interested in the performance of a queuing system with single vacation of the
server when some of its parameters or characteristics are changed. The system as
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given is modeled as a Markov chain with kernel P, the changed system with kernel
Q. We assume that both Markov chains have a common finite state space S. We as-
sume too, as indicated earlier, that both Markov kernels are aperiodic and unichain.
The goal of this section is to obtain the stationary distribution of Q, denoted by 7y,
via a series expansion in P. In the next section, we comment on the speed of con-
vergence of this series. We summarize our results in an algorithm, presented in an
other section. Finally, we illustrate our approach with numerical examples.

3.1 Description of the models

Let us consider the M/G/1//N queueing systems with multiples vacations of the
server modelling the reliability system with multiple preventives maintenances. We
suppose that there is on the whole N machines in the system. Our system consists of
a source and a waiting system (queue + service). Each machine is either in source
or in the waiting system at any time. A machine in source arrives at the waiting
system precisely, with the durations of inter-failure exponentially distributed with
parameter A) for repairment (corrective maintenance). The distribution of the ser-
vice time is general with a distribution function B(.) and mean b. The repairmen
take maintenance period at each time the system is empty. If the server returns from
maintenance finding the queue impty, he takes an other maintenance period (muliti-
ple maintenance). In addition, let us consider the M/G/1//N queuing system with
unique vacation of the server modelling the reliability system with periodic prenven-
tives maintenances, having the same distributions of the inter-arrivals and the repair
time previously described. In this model, the server (repairman) will wait until the
end of the next activity period during which at least a customer will be served, be-
fore beginning another maintenance period. In other words, there is exactly only one
maintenance at the end of each activity period at each time when the queue becomes
empty (exhaustive service). If the server returns from maintenane finding the queue
nonempty, then the maintenance period finishes for beginning another activity pe-
riod. We also suppose that the maintenance times V of the server are independent
and iid, with general distribution function noted V (x).

3.2 Transition Kernels

Let X, (resp. X,,) the imbedded Markov chains at the end moments of repair #, for
the ' machine associated with the M /G/1//N system with multiple maintenance
(resp.to the system with the unique maintenance). In the same way, we define the
following probabilities:

fr = P[k broken down machines at the end of the preventive maintenance period]
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= C,"v/ (1—e Myke=N=RA gy (1) k =0,N. 4)
0
for witch
o = Jo+ fi, fork=1

= i for2 <k <N.
and

oy = Ji for k=1,N.

1—fo

The one stage transition probabilities of the imbedded Markov chains X,, and X,
allow us to describe the general expression of the transition kernels P = (P;;);; and
Q = (Q;j)ij summarized below respectively.

J+l .
2 Pj—k+1ak7 if i=0,j=0,N-1, k=1N,
k=1
P, = .
Y Pi_it1 it 1 <i<j+1<N-1,
0 else.
J+1 .
ZPj—k—Haka if i=0,j=0,N—1,k=1,N,
Qi — k=1
Y Pi_ii1 ift 1 <i<j+1<N-1,
0 else.

Clearly, the Markov chain {X, } ,eN is irreducible, aperiodic with finite state space
S={0,1,---,N —1}. So, we can applied the main theorical results established in
this paper to this model, in order to approach another Markov chain whose transition
kernel is neighborhood of its transition kernel Q.

3.3 Series Development for 1o

We write Dp for the deviation matrix associated with P; in symbols:

oo

Dp=Y (P"—IIp) )

m=0
Note that Dp is finite for any aperiodic finite-state Markov chain. Moreover, the
deviation can be rewritten as

=

Dp= Y, (P—TIIp)" —Ip,
m=0

where Y, (P —IIp)™ is often referred to as the group inverse, see for instance Cao

(1998) or Coolen-Schrijner and van Doorn (2002). A general definition which is



22 Fazia Rahmoune and Djamil Aissani

valid for periodic Markov chain, can be found in, e.g., Puterman (1994).
Let P be unichain. Using the definition of Dp, we obtain:
(I—P)Dp =1—1TIp.

This is the Poisson equation in matrix format.
Let the following equation:

k
My =1IIp Y ((Q—P)Dp)" + y((Q—P)Dp)**". (6)
n=0
for k > 0, where:
. k
H(k) < 11, Y, (Q—P)Dp)",
n=0

is called a series approximation of degree k for Ilp, T (k), with

T(k) Y Mp((Q—P)Dp), )

denotes the kth element of H(k), and

R(k) “ My((Q—P)Dp)kT, )

is called the remainder term (see Heidergott et al, 2007, for details). The quality of
the approximation provided by H (k) is given through the remainder term R(k).

3.4 Series Convergence

In this section we investigate the limiting behavior of H (k) as k tends to co. We first
establish sufficient conditions for the existence of the series.

Lemma 0.2. (Heidergott and Hordijk, 2003) The following assertions are equiva-
lent:

(i) The series Y. ((Q —P)Dp)K is convergent.
k=0

(ii) There are N and 8y € (0,1) such that || ((Q —P)Dp)N ||,< Jy.
(iii) There are  and § < 1 such that || ((Q —P)Dp)* ||, < k6 for any k.
(iv) There are N and & € (0;1) such that|| ((Q —P)Dp)* ||,< &* for any k > N.

Proof. See Heidergott and Hordijk (2003).

The fact that the maximal eigenvalue of |(Q —P)Dp| is smaller than 1 is necessary

for the convergence of the series Y, ((Q —P)Dp)*.
k=0



Series Expansions in Queues with Server Vacation 23

Remark 0.1. Existence of the limit of H(k), see (i) in Lemma 0.3, is equivalent to
an exponential decay in the v-norm of the elements of the series, see (iv) in Lemma
0.2. For practical purposes, one needs to identify the decay rate ¢ and the threshold
value N after which the exponential decay occurs. The numerical experiments have
shown that the condition (ii) in Lemma 0.2 is the most convenient to work with.
More specifically, we work with the following condition (C) as in Heidergott and
Hordijk (2003), which is similar to the geometric series convergence criterion.

The Condition(C): There exists a finite number N such that we can find Jy €
(0;1) which satisfies:
1 (Q—P)Dp)™ |[y< 8"

and we set
3 LIS (@bt

N 1—dy k=0
As shown in the following lemma, the factor cgN in condition (C) allows to establish
an upper bound for the remainder term that is independent of Ily.
Lemma 0.3. Under (C) it holds that:
(i) [| R(k—1) [v< 5 | T(k) |lv for all k,
(zz)khm H(k) = Hp 20((Q - P)Dp)n = HQ

—>»00 n=

Proof. To proof the lemma it is sufficient to use the definition of the norm || . ||, and
the remainder term R(k — 1), using the condition (iv) of Lemma 0.2.

Remark 0.2. An example where the series H (k) fails to converge is illustrated in
Heidergott and Hordijk (2003).

Remark 0.3. The series expansion for Il put forward in the assertion (ii) in Lemma
1 is well known; see Cao (1998) and Kirkland (2003) for the case of finite Markov
chains and Heidergott and Hordijk (2003) for the general case. It is however worth
noting that in the aforementioned papers, the series was obtained via a differentia-
tion approach, whereas the representation is derived in this paper from the elemen-
tary equation 6.

Remark 0.4. Provided that det(/ — (Q —P)Dp) # 0, one can obtain 7y from
mo = Mp(I— (Q —P)Dp) ™! )

Moreover, provided that the limit

lim H(k) = Jim 7 3" ((Q ~P)Dy)’

k—o0 =0

exists (see Lemma 0.3 for sufficient conditions), it yields 7y as 7p Y, ((Q —
P)Dp)".
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Remark 0.5. Note that a sufficient condition for (C) is
[(Q-P)Dp|,<d, §<1. (10)
In Altman et al (2004); Cho and Meyer (2001) it is even assumed that
1 (Q—=P)Dp [, <31, 1D

with g; > 0 a finite constant, and

¢
D — 12
H P HV< lfﬁ’ ( )
with ¢ >0 and 0 < 8 < 1 finite constants. If
81¢
<1, 13
- B (13)

then (10) and hence (C) is clearly fulfilled. Hence, for numerical purposes these
conditions are too strong.

3.5 The remainder term Bounds

The quality of approximation by H(k— 1) is given by the remainder term R(k—1)
and in applications v should be chosen such that it minimizes ¢ || (k) |y, thus
minimizing our upper bound for the remainder term. For finding an optimal upper
bound, since cgN is independent of k, we focus on T (k). Specifically, we have to find
a bounding vector v that minimizes || 7'(k) ||, uniformly w.r.t. k. As the following
theorem shows, the unit vector, denoted by 1, with all components equal to one,
yields the minimal value for || T (k) ||, for any k.

Theorem 0.1. (Heidergott and Hordijk, 2003) The unit vector 1 minimizes || T (k) ||,
uniformly over k, i.e.,

Vk=1:inf, | T(k) =] T (k) [ (14)

Remark 0.6. It can be shown as for the results in Altman et al (2004) and Cho and
Meyer (2001), that the smallest lcf IB is precisely the maximal eigenvalue of |Dp|.
Again we note that often the product of these maximal eigenvalues is not smaller
than 1. If this is the case, then according to Altman et al (2004) and Cho and Meyer
(2001) we cannot decide whether the series H(k) converges to ITp. Hence, their

condition is too restrictive for numerical purposes.
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3.6 Algorithm

In this section we describe a numerical approach to computing our upper bound for

the remainder term R(k). We search for N such that 1 > &y défH (Q—P)Dp)¥ |1,
which implies that for N and 8y, the condition (C) holds. Then the upper bound for
R(k) is obtained from cj || ((Q —P)Dp)**" ||1. Based on the above, the algorithm
that yields an approximation for 7y with € precision can be described, with two
main parts. First cé is computed. Then, the series can be computed in an iterative
way until a predefined level of precision is reached.

The Algorithm
Chose precision € > 0. Set k =1,T(1) = I[1p(Q — P)Dp and H(0) = ITp.

Step 1: Find N such that || ((Q —P)Dp)" ||;< 1. Set 8y =|| ((Q—P)Dp)" ||| and
compute

! 1 g k
T T gy || ]Z(,)((Q—P)DP) 1 -

Step 2: If
cs || T(k) [h<e,

the algorithm terminates and H (k — 1) yields the desired approximation. Other-
wise, go to step 3.

Step 3: Set H(k) =H(k—1)+T(k). Setk:=k+1and T(k) =T(k—1)(Q—
P)Dp. Go to step 2.

Remark 0.7. Algorithm 1 terminates in a finite number of steps, since Y, ((Q —
k=0

P)Dp)¥ is finite, .

3.7 Numerical Application

The present paper established the main theoretical results, and the analysis provided
applies to the case of optimization of preventive maintenance in reparable reliability
models. The application of this algorithm step by step gives us the following results.

This part of the paper is reserved for theoretical and numerical results obtained
via series expansion method to obtain the development of the stationary distribution
of the M/G/1//N queueing models with single server vacation, witch modeless re-
liability system with preventive maintenance.
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Let S the state space of the imbedded Markov chains X,, and X,, of the both con-
sidered queueing systems. Note that the both chains are irreducible and aperiodic,
with finite state space S, so they are v-geometric ergodic. We note by Dp the de-
viation matrix associated to X,, chain, and by 7p its stationary distribution, with
stationary projector Ilp. In the same time, 7y is the stationary distribution of X,,,
with the projector ITy.

We want to express 7y in terms of puissance series on (P — Q)Dp and 7p as
follows: N

o = Y, mp((Q—P)Dp)"; (15)
n=0
We show that this series is convergent. In fact, since the state space of the both
chains is finite, so we can give the first following elementary result:

Lemma 0.4. Let X,, and X, the imbedded Markov chains of the M/G/1//N queue-
ing system with server vacation and the classical M/G/1//Nsystem respectively.
Then, the finite number N exist and verified the following:

| P~ Tp |lv< ", forall n>N: (16)

where ¢ < oo, B < 1.

For the same precedent raisons we give the most important result about the devi-
ation matrix Dp associated to the imbedded Markov chain X,,.

Lemma 0.5. Let X,, the imbedded Markov of the classical M/G/1//N queueing
system and Dp its deviation matrix. Then, Dp is finite.

Using Lemma 0.2, we obtain the following result about the required series ex-
pansion:

Lemma 0.6. Let mp (resp. Tp) the stationary distribution of the M/G/1/ /N classi-
cal system, (resp. M/G/1/ /N system with unique vacation), and Dp the associated
deviation matrix. Then, the series

Y mp((Q—P)Dp)"; 17)
n=0

converge normally then uniformly.

This result is equivalent to say that the reminder term R(k) is uniformly convergent
to zero.

From the condition (C) and the Lemma 0.3, the sum function of the series 15 is
the stationary vector 7.

Lemma 0.7. Let mtp (resp. mp) the stationary distribution of the M/G/1/ /N classi-
cal system, (resp. M/G/1/ /N with vacation of the server), and Dp the associated
deviation matrix. Then, the series
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o= Y, mp((Q—P)Dp)"; (18)
n=0

converge uniformly to the stationary vector Tp.

From the work of Heidergot, we describe in this section a numerical approach to
compute the supremum borne of the reminder term R(k). We ask about the number
N as:

o =| (Q—P)Dp)" 1< 1,

witch implies that the condition (C) is verified for N and 6,. Then the limit of R(k)
is obtained from:

1 ((@—P)Dp)"! 1< ¢,

The performance measure for witch we are interesting is the mean number of
costumers at the stationary state in the system.

The considered entries parameters are: N = 5, 1 = 2, service rate — Exp(i; =5),
vacation rate — Exp(u, = 300).

Our goal is to compute approximatively the quantities 7*w.

The error to predict the stationary queue length via the quantities H(n) is then
given and illustrated in the Figurel.

A=3, lI*-D.5.[l-1.]5-3,N‘-J‘N2-8
1,5 L] T T Ll L] L

0s5F h

% Error In Average Cueue Length

L} 6 8 10 12 14 16
Order of Approximation n

Fig. 1 Error in Average queue length
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The figure show that

*w—H(n)w
W

is a graph on n. The numerical value of ww is 2.4956. For this example, we have
obtained N = 14, 8y = 0.9197 and c(lgN =201.2313.

| 19)

The algorithm terminates when the upper bound for || R ||; given by cgN IR |1

is under the value &. By taking € = 1072, the algorithm compute 7*w juste to the
precision 1072 || w ||.

).=3.u=0.5.u=1.[‘l=3\NT=4.N:,=G
Oma T 1 T L] T

0.04

o B
g &

- 2
8 B

0.015

Uppar Bound or Remainder

0.01

0.005

10 1 12 13 14 16 16
Ordes of Approddmation n

Fig. 2 Relative error of the upper bound of the remainder term

13
From this figure we conclude that 7 ¥ ((Q* — Q)D)*w approximates *w with
k=0
a maximal absolute error & || w |[;= 31072,

4 Conclusion

In this work, we have presented a part of research project on numerical algorithms
based on series expansions of finite Markov chains. We are interested in the perfor-
mance of a stochastic system when some of its parameters or characteristics are per-
turbed. This leads to an efficient numerical algorithm for computing the stationary
distribution. We have shown theoretically and numerically that introducing a small
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disturbance on the structure of maintenance policy in M/G/1//N system with mul-
tiples maintenances after modelling by queues with server vacation, we obtain the
M/G/1//N system with single maintenance policy (periodic maintenance). Then
characteristics of this system can be approximated by those of the M/G/1//N sys-
tem with periodic maintenance, with a precision which depends on the disturbance,
in other words on the maintenance parameter value.
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