
Chapter 4

General Principles

In this chapter, we initiate the investigation of large deviation principles
(LDPs) for families of measures on general spaces. As will be obvious in
subsequent chapters, the objects on which the LDP is sought may vary
considerably. Hence, it is necessary to undertake a study of the LDP in an
abstract setting. We shall focus our attention on the abstract statement of
the LDP as presented in Section 1.2 and give conditions for the existence of
such a principle and various approaches for the identification of the resulting
rate function.

Since this chapter deals with different approaches to the LDP, some of
its sections are independent of the others. A rough structure of it is as
follows. In Section 4.1, extensions of the basic properties of the LDP are
provided. In particular, relations between the topological structure of the
space, the existence of certain limits, and the existence and uniqueness of
the LDP are explored. Section 4.2 describes how to move around the LDP
from one space to another. Thus, under appropriate conditions, the LDP
can be proved in a simple situation and then effortlessly transferred to a
more complex one. Of course, one should not be misled by the word effort-
lessly: It often occurs in applications that much of the technical work to
be done is checking that the conditions for such a transformation are sat-
isfied! Sections 4.3 and 4.4 investigate the relation between the LDP and
the computation of exponential integrals. Although in some applications
the computation of the exponential integrals is a goal in itself, it is more
often the case that such computations are an intermediate step in deriving
the LDP. Such a situation has already been described, though implicitly,
in the treatment of the Chebycheff upper bound in Section 2.2. This line of
thought is tackled again in Section 4.5.1, in the case where X is a topolog-
ical vector space, such that the Fenchel–Legendre transform is well-defined
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116 4. General Principles

and an upper bound may be derived based on it. Section 4.5.2 complements
this approach by providing the tools that will enable us to exploit convexity,
again in the case of topological vector spaces, to derive the lower bound.
The attentive reader may have already suspected that such an attack on the
LDP is possible when he followed the arguments of Section 2.3. Section 4.6
is somewhat independent of the rest of the chapter. Its goal is to show
that the LDP is preserved under projective limits. Although at first sight
this may not look useful for applications, it will become clear to the patient
reader that this approach is quite general and may lead from finite dimen-
sional computations to the LDP in abstract spaces. Finally, Section 4.7
draws attention to the similarity between the LDP and weak convergence
in metric spaces.

Since this chapter deals with the LDP in abstract spaces, some topolog-
ical and analytical preliminaries are in order. The reader may find Appen-
dices B and C helpful reminders of a particular definition or theorem.

The convention that B contains the Borel σ-field BX is used through-
out this chapter, except in Lemma 4.1.5, Theorem 4.2.1, Exercise 4.2.9,
Exercise 4.2.32, and Section 4.6.

4.1 Existence of an LDP and Related
Properties

If a set X is given the coarse topology {∅,X}, the only information implied
by the LDP is that infx∈X I(x) = 0, and many rate functions satisfy this
requirement. To avoid such trivialities, we must put some constraint on the
topology of the set X . Recall that a topological space is Hausdorff if, for
every pair of distinct points x and y, there exist disjoint neighborhoods of
x and y. The natural condition that prevails throughout this book is that,
in addition to being Hausdorff, X is a regular space as defined next.

Definition 4.1.1 A Hausdorff topological space X is regular if, for any
closed set F ⊂ X and any point x �∈ F , there exist disjoint open subsets G1

and G2 such that F ⊂ G1 and x ∈ G2.

In the rest of the book, the term regular will mean Hausdorff and regular.
The following observations regarding regular spaces are of crucial impor-
tance here:
(a) For any neighborhood G of x ∈ X , there exists a neighborhood A of x
such that A ⊂ G.
(b) Every metric space is regular. Moreover, if a real topological vector
space is Hausdorff, then it is regular. All examples of an LDP considered
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in this book are either for metric spaces, or for Hausdorff real topological
vector spaces.
(c) A lower semicontinuous function f satisfies, at every point x,

f(x) = sup
{G neighborhood of x}

inf
y∈G

f(y) . (4.1.2)

Therefore, for any x ∈ X and any δ > 0, one may find a neighborhood
G = G(x, δ) of x, such that infy∈G f(y) ≥ (f(x)− δ)∧ 1/δ. Let A = A(x, δ)
be a neighborhood of x such that A ⊂ G. (Such a set exists by property
(a).) One then has

inf
y∈A

f(y) ≥ inf
y∈G

f(y) ≥ (f(x) − δ) ∧ 1
δ

. (4.1.3)

The sets G = G(x, δ) frequently appear in the proofs of large deviations
statements and properties. Observe that in a metric space, G(x, δ) may be
taken as a ball centered at x and having a small enough radius.

4.1.1 Properties of the LDP

The first desirable consequence of the assumption that X is a regular topo-
logical space is the uniqueness of the rate function associated with the LDP.

Lemma 4.1.4 A family of probability measures {με} on a regular topolog-
ical space can have at most one rate function associated with its LDP.

Proof: Suppose there exist two rate functions I1(·) and I2(·), both asso-
ciated with the LDP for {με}. Without loss of generality, assume that for
some x0 ∈ X , I1(x0) > I2(x0). Fix δ > 0 and consider the open set A for
which x0 ∈ A, while infy∈A I1(y) ≥ (I1(x0) − δ) ∧ 1/δ. Such a set exists by
(4.1.3). It follows by the LDP for {με} that

− inf
y∈A

I1(y) ≥ lim sup
ε→0

ε log με(A) ≥ lim inf
ε→0

ε log με(A) ≥ − inf
y∈A

I2(y) .

Therefore,

I2(x0) ≥ inf
y∈A

I2(y) ≥ inf
y∈A

I1(y) ≥ (I1(x0) − δ) ∧ 1
δ

.

Since δ is arbitrary, this contradicts the assumption that I1(x0) > I2(x0).

Remarks:
(a) It is evident from the proof that if X is a locally compact space (e.g.,
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X = IRd), the rate function is unique as soon as a weak LDP holds. As
shown in Exercise 4.1.30, if X is a Polish space, then also the rate function
is unique as soon as a weak LDP holds.
(b) The uniqueness of the rate function does not depend on the Hausdorff
part of the definition of regular spaces. However, the rate function assigns
the same value to any two points of X that are not separated. (See Exercise
4.1.9.) Thus, in terms of the LDP, such points are indistinguishable.

As shown in the next lemma, the LDP is preserved under suitable inclu-
sions. Hence, in applications, one may first prove an LDP in a space that
possesses additional structure (for example, a topological vector space), and
then use this lemma to deduce the LDP in the subspace of interest.

Lemma 4.1.5 Let E be a measurable subset of X such that με(E) = 1 for
all ε > 0. Suppose that E is equipped with the topology induced by X .
(a) If E is a closed subset of X and {με} satisfies the LDP in E with rate
function I, then {με} satisfies the LDP in X with rate function I ′ such that
I ′ = I on E and I ′ = ∞ on Ec.
(b) If {με} satisfies the LDP in X with rate function I and DI ⊂ E, then
the same LDP holds in E. In particular, if E is a closed subset of X , then
DI ⊂ E and hence the LDP holds in E.

Proof: In the topology induced on E by X , the open sets are the sets
of the form G ∩ E with G ⊆ X open. Similarly, the closed sets in this
topology are the sets of the form F ∩ E with F ⊆ X closed. Furthermore,
με(Γ) = με(Γ ∩ E) for any Γ ∈ B.
(a) Suppose that an LDP holds in E , which is a closed subset of X . Extend
the rate function I to be a lower semicontinuous function on X by setting
I(x) = ∞ for any x ∈ Ec. Thus, infx∈Γ I(x) = infx∈Γ∩E I(x) for any Γ ⊂ X
and the large deviations lower (upper) bound holds.
(b) Suppose that an LDP holds in X . If E is closed, then DI ⊂ E by the
large deviations lower bound (since με(Ec) = 0 for all ε > 0 and Ec is open).
Now, DI ⊂ E implies that infx∈Γ I(x) = infx∈Γ∩E I(x) for any Γ ⊂ X and
the large deviations lower (upper) bound holds for all measurable subsets
of E . Further, since the level sets ΨI(α) are closed subsets of E , the rate
function I remains lower semicontinuous when restricted to E .

Remarks:
(a) The preceding lemma also holds for the weak LDP, since compact subsets
of E are just the compact subsets of X contained in E . Similarly, under the
assumptions of the lemma, I is a good rate function on X iff it is a good
rate function when restricted to E .
(b) Lemma 4.1.5 holds without any change in the proof even when BX �⊆ B.

The following is an important property of good rate functions.
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Lemma 4.1.6 Let I be a good rate function.
(a) Let {Fδ}δ>0 be a nested family of closed sets, i.e., Fδ ⊆ Fδ′ if δ < δ′.
Define F0 = ∩δ>0Fδ. Then

inf
y∈F0

I(y) = lim
δ→0

inf
y∈Fδ

I(y) .

(b) Suppose (X , d) is a metric space. Then, for any set A,

inf
y∈A

I(y) = lim
δ→0

inf
y∈Aδ

I(y) , (4.1.7)

where
Aδ�={y : d(y,A) = inf

z∈A
d(y, z) ≤ δ} (4.1.8)

denotes the closed blowup of A.

Proof: (a) Since F0 ⊆ Fδ for all δ > 0, it suffices to prove that for all η > 0,

γ
�
= lim

δ→0
inf

y∈Fδ

I(y) ≥ inf
y∈F0

I(y) − η .

This inequality holds trivially when γ = ∞. If γ < ∞, fix η > 0 and let
α = γ +η. The sets Fδ ∩ΨI(α), δ > 0, are non-empty, nested, and compact.
Consequently,

F0

⋂
ΨI(α) =

⋂

δ>0

Fδ

⋂
ΨI(α)

is also non-empty, and the proof of part (a) is thus completed.
(b) Note that d(·, A) is a continuous function and hence {Aδ}δ>0 are nested,
closed sets. Moreover,

⋂

δ>0

Aδ = {y : d(y,A) = 0} = A .

Exercise 4.1.9 Suppose that for any closed subset F of X and any point
x �∈ F , there exist two disjoint open sets G1 and G2 such that F ⊂ G1 and
x ∈ G2. Prove that if I(x) �= I(y) for some lower semicontinuous function I,
then there exist disjoint neighborhoods of x and y.

Exercise 4.1.10 [[LyS87], Lemma 2.6. See also [Puk91], Theorem (P).]
Let {μn} be a sequence of probability measures on a Polish space X .
(a) Show that {μn} is exponentially tight if for every α < ∞ and every η > 0,
there exist m ∈ ZZ+ and x1, . . . , xm ∈ X such that for all n,

μn

([ m⋃

i=1

Bxi,η

]c)
≤ e−αn .
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Hint: Observe that for every sequence {mk} and any x
(k)
i ∈ X , the set

∩∞
k=1 ∪

mk
i=1 B

x
(k)
i

,1/k
is pre-compact.

(b) Suppose that {μn} satisfies the large deviations upper bound with a good
rate function. Show that for every countable dense subset of X , e.g., {xi},
every η > 0, every α < ∞, and every m large enough,

lim sup
n→∞

1
n

log μn

([ m⋃

i=1

Bxi,η

]c)
< −α .

Hint: Use Lemma 4.1.6.
(c) Deduce that if {μn} satisfies the large deviations upper bound with a good
rate function, then {μn} is exponentially tight.

Remark: When a non-countable family of measures {με, ε > 0} satisfies
the large deviations upper bound in a Polish space with a good rate function,
the preceding yields the exponential tightness of every sequence {μεn}, where
εn → 0 as n → ∞. As far as large deviations results are concerned, this is
indistinguishable from exponential tightness of the whole family.

4.1.2 The Existence of an LDP

The following theorem introduces a general, indirect approach for establish-
ing the existence of a weak LDP.

Theorem 4.1.11 Let A be a base of the topology of X . For every A ∈ A,
define

LA
�
= − lim inf

ε→0
ε log με(A) (4.1.12)

and
I(x)

�
= sup

{A∈A: x∈A}
LA . (4.1.13)

Suppose that for all x ∈ X ,

I(x) = sup
{A∈A: x∈A}

[

− lim sup
ε→0

ε log με(A)
]

. (4.1.14)

Then με satisfies the weak LDP with the rate function I(x).

Remarks:
(a) Observe that condition (4.1.14) holds when the limits limε→0 ε log με(A)
exist for all A ∈ A (with −∞ as a possible value).
(b) When X is a locally convex, Hausdorff topological vector space, the base
A is often chosen to be the collection of open, convex sets. For concrete
examples, see Sections 6.1 and 6.3.
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Proof: Since A is a base for the topology of X , for any open set G and any
point x ∈ G there exists an A ∈ A such that x ∈ A ⊂ G. Therefore, by
definition,

lim inf
ε→0

ε log με(G) ≥ lim inf
ε→0

ε log με(A) = −LA ≥ −I(x) .

As seen in Section 1.2, this is just one of the alternative statements of the
large deviations lower bound.

Clearly, I(x) is a nonnegative function. Moreover, if I(x) > α, then
LA > α for some A ∈ A such that x ∈ A. Therefore, I(y) ≥ LA > α for
every y ∈ A. Hence, the sets {x : I(x) > α} are open, and consequently I
is a rate function.

Note that the lower bound and the fact that I is a rate function do
not depend on (4.1.14). This condition is used in the proof of the upper
bound. Fix δ > 0 and a compact F ⊂ X . Let Iδ be the δ-rate function,
i.e., Iδ(x)�= min{I(x)− δ, 1/δ}. Then, (4.1.14) implies that for every x ∈ F ,
there exists a set Ax ∈ A (which may depend on δ) such that x ∈ Ax and

− lim sup
ε→0

ε log με(Ax) ≥ Iδ(x) .

Since F is compact, one can extract from the open cover ∪x∈F Ax of F a
finite cover of F by the sets Ax1 , . . . , Axm . Thus,

με(F ) ≤
m∑

i=1

με(Axi) ,

and consequently,

lim sup
ε→0

ε log με(F ) ≤ max
i=1,...,m

lim sup
ε→0

ε log με(Axi)

≤ − min
i=1,...,m

Iδ(xi) ≤ − inf
x∈F

Iδ(x) .

The proof of the upper bound for compact sets is completed by considering
the limit as δ → 0.

Theorem 4.1.11 is extended in the following lemma, which concerns the
LDP of a family of probability measures {με,σ} that is indexed by an addi-
tional parameter σ. For a concrete application, see Section 6.3, where σ is
the initial state of a Markov chain.

Lemma 4.1.15 Let με,σ be a family of probability measures on X , indexed
by σ, whose range is the set Σ. Let A be a base for the topology of X . For
each A ∈ A, define

LA
�
= − lim inf

ε→0
ε log

[
inf
σ∈Σ

με,σ(A)
]
. (4.1.16)
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Let
I(x) = sup

{A∈A: x∈A}
LA .

If for every x ∈ X ,

I(x) = sup
{A∈A: x∈A}

{

− lim sup
ε→0

ε log
[
sup
σ∈Σ

με,σ(A)
]}

, (4.1.17)

then, for each σ ∈ Σ, the measures με,σ satisfy a weak LDP with the (same)
rate function I(·).

Proof: The proof parallels that of Theorem 4.1.11. (See Exercise 4.1.29.)

It is aesthetically pleasing to know that the following partial converse of
Theorem 4.1.11 holds.

Theorem 4.1.18 Suppose that {με} satisfies the LDP in a regular topolog-
ical space X with rate function I. Then, for any base A of the topology of
X , and for any x ∈ X ,

I(x) = sup
{A∈A: x∈A}

{
− lim inf

ε→0
ε log με(A)

}

= sup
{A∈A: x∈A}

{

− lim sup
ε→0

ε log με(A)
}

. (4.1.19)

Remark: As shown in Exercise 4.1.30, for a Polish space X suffices to
assume in Theorem 4.1.18 that {με} satisfies the weak LDP. Consequently,
by Theorem 4.1.11, in this context (4.1.19) is equivalent to the weak LDP.

Proof: Fix x ∈ X and let

�(x) = sup
{A∈A: x∈A}

inf
y∈A

I(y) . (4.1.20)

Suppose that I(x) > �(x). Then, in particular, �(x) < ∞ and x ∈ ΨI(α)c

for some α > �(x). Since ΨI(α)c is an open set and A is a base for the
topology of the regular space X , there exists a set A ∈ A such that x ∈ A
and A ⊆ ΨI(α)c. Therefore, infy∈A I(y) ≥ α, which contradicts (4.1.20).
We conclude that �(x) ≥ I(x). The large deviations lower bound implies

I(x) ≥ sup
{A∈A: x∈A}

{
− lim inf

ε→0
ε log με(A)

}
,

while the large deviations upper bound implies that for all A ∈ A,

− lim inf
ε→0

ε log με(A) ≥ − lim sup
ε→0

ε log με(A) ≥ inf
y∈A

I(y) .
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These two inequalities yield (4.1.19), since �(x) ≥ I(x).

The characterization of the rate function in Theorem 4.1.11 and Lemma
4.1.15 involves the supremum over a large collection of sets. Hence, it does
not yield a convenient explicit formula. As shown in Section 4.5.2, if X
is a Hausdorff topological vector space, this rate function can sometimes
be identified with the Fenchel–Legendre transform of a limiting logarithmic
moment generating function. This approach requires an a priori proof that
the rate function is convex. The following lemma improves on Theorem
4.1.11 by giving a sufficient condition for the convexity of the rate function.
Throughout, for any sets A1, A2 ∈ X ,

A1 + A2

2
�
= {x : x = (x1 + x2)/2, x1 ∈ A1, x2 ∈ A2} .

Lemma 4.1.21 Let A be a base for a Hausdorff topological vector space X ,
such that in addition to condition (4.1.14), for every A1, A2 ∈ A,

lim sup
ε→0

ε log με

(
A1 + A2

2

)

≥ −1
2

(LA1 + LA2) . (4.1.22)

Then the rate function I of (4.1.13), which governs the weak LDP associated
with {με}, is convex.

Proof: It suffices to show that the condition (4.1.22) yields the convexity
of the rate function I of (4.1.13). To this end, fix x1, x2 ∈ X and δ > 0. Let
x = (x1 + x2)/2 and let Iδ denote the δ-rate function. Then, by (4.1.14),
there exists an A ∈ A such that x ∈ A and − lim supε→0 ε log με(A) ≥ Iδ(x).
The pair (x1, x2) belongs to the set {(y1, y2) : (y1 +y2)/2 ∈ A}, which is an
open subset of X ×X . Therefore, there exist open sets A1 ⊆ X and A2 ⊆ X
with x1 ∈ A1 and x2 ∈ A2 such that (A1 + A2)/2 ⊆ A. Furthermore, since
A is a base for the topology of X , one may take A1 and A2 in A. Thus, our
assumptions imply that

−Iδ(x) ≥ lim sup
ε→0

ε log με(A)

≥ lim sup
ε→0

ε log με

(
A1 + A2

2

)

≥ −1
2

(LA1 + LA2) .

Since x1 ∈ A1 and x2 ∈ A2, it follows that

1
2

I(x1) +
1
2

I(x2) ≥
1
2
LA1 +

1
2
LA2 ≥ Iδ(x) = Iδ

(
1
2

x1 +
1
2

x2

)

.

Considering the limit δ ↘ 0, one obtains

1
2

I(x1) +
1
2

I(x2) ≥ I

(
1
2

x1 +
1
2

x2

)

.
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By iterating, this inequality can be extended to any x of the form (k/2n)x1+
(1−k/2n)x2 with k, n ∈ ZZ+. The definition of a topological vector space and
the lower semicontinuity of I imply that I(βx1 +(1−β)x2) : [0, 1] → [0,∞]
is a lower semicontinuous function of β. Hence, the preceding inequality
holds for all convex combinations of x1, x2 and the proof of the lemma is
complete.

When combined with exponential tightness, Theorem 4.1.11 implies the
following large deviations analog of Prohorov’s theorem (Theorem D.9).

Lemma 4.1.23 Suppose the topological space X has a countable base. For
any family of probability measures {με}, there exists a sequence εk → 0 such
that {μεk

} satisfies the weak LDP in X . If {με} is an exponentially tight
family of probability measures, then {μεk

} also satisfies the LDP with a good
rate function.

Proof: Fix a countable base A for the topology of X and a sequence εn → 0.
By Tychonoff’s theorem (Theorem B.3), the product topology makes Y =
[0, 1]A into a compact metrizable space. Since Y is sequentially compact
(Theorem B.2) and με(·)ε : A → [0, 1] is in Y for each ε > 0, the sequence
μεn(·)εn has a convergent subsequence in Y . Hence, passing to the latter
subsequence, denoted εk, the limits limk→∞ εk log μεk

(A) exist for all A ∈ A
(with −∞ as a possible value). In particular, condition (4.1.14) holds and
by Theorem 4.1.11, {μεk

: k ∈ ZZ+} satisfies the weak LDP. Applying
Lemma 1.2.18, the LDP with a good rate function follows when {με} is
an exponentially tight family of probability measures.

The next lemma applies for tight Borel probability measures με on metric
spaces. In this context, it allows replacement of the assumed LDP in either
Lemma 4.1.4 or Theorem 4.1.18 by a weak LDP (see Exercise 4.1.30).

Lemma 4.1.24 Suppose {με} is a family of tight (Borel) probability mea-
sures on a metric space (X , d), such that the upper bound (1.2.12) holds for
all compact sets and some rate function I(·). Then, for any base A of the
topology of X , and for any x ∈ X ,

I(x) ≤ sup
{A∈A: x∈A}

{

− lim sup
ε→0

ε log με(A)
}

. (4.1.25)

Proof: We argue by contradiction, fixing a base A of the metric topology
and x ∈ X for which (4.1.25) fails. For any m ∈ ZZ+, there exists some
A ∈ A such that x ∈ A ⊂ Bx,m−1 . Hence, for some δ > 0 and any m ∈ ZZ+,

lim sup
ε→0

ε log με(Bx,m−1) > −Iδ(x) = −min{I(x) − δ, 1/δ} ,
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implying that for some εm → 0,

μεm(Bx,m−1) > e−Iδ(x)/εm ∀m ∈ ZZ+ . (4.1.26)

Recall that the probability measures μεm are regular (by Theorem C.5),
hence in (4.1.26) we may replace each open set Bx,m−1 by some closed
subset Fm. With each μεm assumed tight, we may further replace the
closed sets Fm by compact subsets Km ⊂ Fm ⊂ Bx,m−1 such that

μεm(Km) > e−Iδ(x)/εm ∀m ∈ ZZ+ . (4.1.27)

Note that the sets K∗
r = {x} ∪m≥r Km are also compact. Indeed, in any

open covering of K∗
r there is an open set Go such that x ∈ Go and hence

∪m>m0Km ⊂ Bx,m−1
0

⊂ Go for some mo ∈ ZZ+, whereas the compact set
∪mo

m=rKm is contained in the union of some Gi, i = 1, . . . ,M , from this
cover. In view of (4.1.27), the upper bound (1.2.12) yields for K∗

r ⊂ Bx,r−1

that,

− inf
y∈Bx,r−1

I(y) ≥ − inf
y∈K∗

r

I(y) ≥ lim sup
ε→0

ε log με(K∗
r ) (4.1.28)

≥ lim sup
m→∞

εm log μεm(Km) ≥ −Iδ(x) .

By lower semicontinuity, limr→∞ infy∈Bx,r−1 I(y) = I(x) > Iδ(x), in con-
tradiction with (4.1.28). Necessarily, (4.1.25) holds for any x ∈ X and any
base A.

Exercise 4.1.29 Prove Lemma 4.1.15 using the following steps.
(a) Check that the large deviations lower bound (for each σ ∈ Σ) and the lower
semicontinuity of I may be proved exactly as done in Theorem 4.1.11.
(b) Fix σ ∈ Σ and prove the large deviations upper bound for compact sets.

Exercise 4.1.30 Suppose a family of tight (Borel) probability measures {με}
satisfies the weak LDP in a metric space (X , d) with rate function I(·).
(a) Combine Lemma 4.1.24 with the large deviations lower bound to conclude
that (4.1.19) holds for any base A of the topology of X and any x ∈ X .
(b) Conclude that in this context the rate function I(·) associated with the
weak LDP is unique.

Exercise 4.1.31 Suppose Xi ∈ IRd−1, d ≥ 2, with |Xi| ≤ C and Yi ∈
[m, M ] for some 0 < m < M, C < ∞, are such that n−1

∑n
i=1(Xi, Yi) satisfy

the LDP in IRd with a good rate function J(x, y). Let τε = inf{n :
∑n

i=1 Yi >

ε−1}. Show that (ε
∑τε

i=1 Xi, (ετε)−1) satisfies the LDP in IRd with good rate
function y−1J(xy, y).
Hint: A convenient way to handle the move from the random variables
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n−1
∑n

i=1(Xi, Yi) to (ε
∑τε

i=1 Xi, (ετε)−1) is in looking at small balls in IRd

and applying the characterization of the weak LDP as in Theorem 4.1.11.

Remark: Such transformations appear, for example, in the study of regen-
erative (or renewal) processes [KucC91, Jia94, PuW97], and of multifractal
formalism [Rei95, Zoh96].

Exercise 4.1.32 Suppose the topological space X has a countable base.
Show that for any rate function I(·) such that infx I(x) = 0, the LDP with
rate function I(·) holds for some family of probability measures {με} on X .
Hint: For A a countable base for the topology of X and each A ∈ A,
let xA,m ∈ A be such that I(xA,m) → infx∈A I(x) as m → ∞. Let
Y = {yk : k ∈ ZZ+} denote the countable set ∪A∈A ∪m xA,m. Check that
infx∈G I(x) = infx∈Y∩G I(x) for any open set G ⊂ X , and try the probability
measures με such that με({yk}) = c−1

ε exp(−k − I(yk)/ε) for yk ∈ Y and
cε =

∑
k exp(−k − I(yk)/ε).

4.2 Transformations of LDPs

This section is devoted to transformations that preserve the LDP, although,
possibly, changing the rate function. Once the LDP with a good rate func-
tion is established for με, the basic contraction principle yields the LDP for
με ◦ f−1, where f is any continuous map. The inverse contraction principle
deals with f which is the inverse of a continuous bijection, and this is a use-
ful tool for strengthening the topology under which the LDP holds. These
two transformations are presented in Section 4.2.1. Section 4.2.2 is devoted
to exponentially good approximations and their implications; for example,
it is shown that when two families of measures defined on the same prob-
ability space are exponentially equivalent, then one can infer the LDP for
one family from the other. A direct consequence is Theorem 4.2.23, which
extends the contraction principle to “approximately continuous” maps.

4.2.1 Contraction Principles

The LDP is preserved under continuous mappings, as the following elemen-
tary theorem shows.

Theorem 4.2.1 (Contraction principle) Let X and Y be Hausdorff
topological spaces and f : X → Y a continuous function. Consider a good
rate function I : X → [0,∞].
(a) For each y ∈ Y, define

I ′(y)
�
= inf{I(x) : x ∈ X , y = f(x)} . (4.2.2)
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Then I ′ is a good rate function on Y, where as usual the infimum over the
empty set is taken as ∞.
(b) If I controls the LDP associated with a family of probability measures
{με} on X , then I ′ controls the LDP associated with the family of probability
measures {με ◦ f−1} on Y.

Proof: (a) Clearly, I ′ is nonnegative. Since I is a good rate function, for
all y ∈ f(X ) the infimum in the definition of I ′ is obtained at some point
of X . Thus, the level sets of I ′, ΨI′(α)�={y : I ′(y) ≤ α}, are

ΨI′(α) = {f(x) : I(x) ≤ α} = f(ΨI(α)) ,

where ΨI(α) are the corresponding level sets of I. As ΨI(α) ⊂ X are
compact, so are the sets ΨI′(α) ⊂ Y.
(b) The definition of I ′ implies that for any A ⊂ Y,

inf
y∈A

I ′(y) = inf
x∈f−1(A)

I(x) . (4.2.3)

Since f is continuous, the set f−1(A) is an open (closed) subset of X for
any open (closed) A ⊂ Y. Therefore, the LDP for με ◦ f−1 follows as a
consequence of the LDP for με and (4.2.3).

Remarks:
(a) This theorem holds even when BX �⊆ B, since for any (measurable) set
A ⊂ Y, both f−1(A) ⊂ f−1(A) and f−1(Ao) ⊂ (f−1(A))o.
(b) Note that the upper and lower bounds implied by part (b) of Theorem
4.2.1 hold even when I is not a good rate function. However, if I is not
a good rate function, it may happen that I ′ is not a rate function, as the
example X = Y = IR, I(x) = 0, and f(x) = ex demonstrates.
(c) Theorem 4.2.1 holds as long as f is continuous at every x ∈ DI ; namely,
for every x ∈ DI and every neighborhood G of f(x) ∈ Y, there exists
a neighborhood A of x such that A ⊆ f−1(G). This suggests that the
contraction principle may be further extended to cover a certain class of
“approximately continuous” maps. Such an extension will be pursued in
Theorem 4.2.23.

We remind the reader that in what follows, it is always assumed that
BX ⊆ B, and therefore open sets are always measurable. The following
theorem shows that in the presence of exponential tightness, the contraction
principle can be made to work in the reverse direction. This property is
extremely useful for strengthening large deviations results from a coarse
topology to a finer one.

Theorem 4.2.4 (Inverse contraction principle) Let X and Y be Haus-
dorff topological spaces. Suppose that g : Y → X is a continuous bijection,
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and that {νε} is an exponentially tight family of probability measures on Y.
If {νε ◦ g−1} satisfies the LDP with the rate function I : X → [0,∞], then
{νε} satisfies the LDP with the good rate function I ′(·)�=I(g(·)).

Remarks:
(a) In view of Lemma 4.1.5, it suffices for g to be a continuous injection, for
then the exponential tightness of {νε} implies that DI ⊆ g(Y) even if the
latter is not a closed subset of X .
(b) The requirement that BY ⊆ B is relaxed in Exercise 4.2.9.

Proof: Note first that for every α < ∞, by the continuity of g, the level
set {y : I ′(y) ≤ α} = g−1(ΨI(α)) is closed. Moreover, I ′ ≥ 0, and hence
I ′ is a rate function. Next, because {νε} is an exponentially tight family,
it suffices to prove a weak LDP with the rate function I ′(·). Starting with
the upper bound, fix an arbitrary compact set K ⊂ Y and apply the large
deviations upper bound for νε ◦ g−1 on the compact set g(K) to obtain

lim sup
ε→0

ε log νε(K) = lim sup
ε→0

ε log[νε ◦ g−1(g(K))]

≤ − inf
x∈g(K)

I(x) = − inf
y∈K

I ′(y) ,

which is the specified upper bound for νε.

To prove the large deviations lower bound, fix y ∈ Y with I ′(y) =
I(g(y)) = α < ∞, and a neighborhood G of y. Since {νε} is exponentially
tight, there exists a compact set Kα ⊂ Y such that

lim sup
ε→0

ε log νε(Kc
α) < −α . (4.2.5)

Because g is a bijection, Kc
α = g−1 ◦ g(Kc

α) and g(Kc
α) = g(Kα)c. By the

continuity of g, the set g(Kα) is compact, and consequently g(Kα)c is an
open set. Thus, the large deviations lower bound for the measures {νε◦g−1}
results in

− inf
x∈g(Kc

α)
I(x) ≤ lim inf

ε→0
ε log νε(Kc

α) < −α .

Recall that I(g(y)) = α, and thus by the preceding inequality it must be
that y ∈ Kα. Since g is a continuous bijection, it is a homeomorphism
between the compact sets Kα and g(Kα). Therefore, the set g(G∩Kα) is a
neighborhood of g(y) in the induced topology on g(Kα) ⊂ X . Hence, there
exists a neighborhood G′ of g(y) in X such that

G′ ⊂ g(G ∩ Kα) ∪ g(Kα)c = g(G ∪ Kc
α) ,

where the last equality holds because g is a bijection. Consequently, for
every ε > 0,

νε(G) + νε(Kc
α) ≥ νε ◦ g−1(G′) ,
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and by the large deviations lower bound for {νε ◦ g−1},

max { lim inf
ε→0

ε log νε(G), lim sup
ε→0

ε log νε(Kc
α) }

≥ lim inf
ε→0

ε log{νε ◦ g−1(G′)}

≥ −I(g(y)) = −I ′(y) .

Since I ′(y) = α, it follows by combining this inequality and (4.2.5) that

lim inf
ε→0

ε log νε(G) ≥ −I ′(y) .

The proof is complete, since the preceding holds for every y ∈ Y and every
neighborhood G of y.

Corollary 4.2.6 Let {με} be an exponentially tight family of probability
measures on X equipped with the topology τ1. If {με} satisfies an LDP with
respect to a Hausdorff topology τ2 on X that is coarser than τ1, then the
same LDP holds with respect to the topology τ1.

Proof: The proof follows from Theorem 4.2.4 by using as g the natural
embedding of (X , τ1) onto (X , τ2), which is continuous because τ1 is finer
than τ2. Note that, since g is continuous, the measures με are well-defined
as Borel measures on (X , τ2).

Exercise 4.2.7 Suppose that X is a separable regular space, and that for all
ε > 0, (Xε, Yε) is distributed according to the product measure με × νε on
BX × BX (namely, Xε is independent of Yε). Assume that {με} satisfies the
LDP with the good rate function IX(·), while νε satisfies the LDP with the
good rate function IY (·), and both {με} and {νε} are exponentially tight.
Prove that for any continuous F : X × X → Y , the family of laws induced on
Y by Zε = F (Xε, Yε) satisfies the LDP with the good rate function

IZ(z) = inf
{(x,y):z=F (x,y)}

IX(x) + IY (y) . (4.2.8)

Hint: Recall that BX ×BX = BX×X by Theorem D.4. To establish the LDP
for με × νε, apply Theorems 4.1.11 and 4.1.18.

Exercise 4.2.9 (a) Prove that Theorem 4.2.4 holds even when the exponen-
tially tight {νε : ε > 0} are not Borel measures on Y , provided {νε◦g−1 : ε > 0}
are Borel probability measures on X .
(b) Show that in particular, Corollary 4.2.6 holds as soon as B contains the
Borel σ-field of (X , τ2) and all compact subsets of (X , τ1).
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4.2.2 Exponential Approximations

In order to extend the contraction principle beyond the continuous case, it
is obvious that one should consider approximations by continuous functions.
It is beneficial to consider a somewhat wider question, namely, when the
LDP for a family of laws {μ̃ε} can be deduced from the LDP for a fam-
ily {με}. The application to approximate contractions follows from these
general results.

Definition 4.2.10 Let (Y , d) be a metric space. The probability measures
{με} and {μ̃ε} on Y are called exponentially equivalent if there exist probabil-
ity spaces {(Ω,Bε, Pε)} and two families of Y-valued random variables {Zε}
and {Z̃ε} with joint laws {Pε} and marginals {με} and {μ̃ε}, respectively,
such that the following condition is satisfied:

For each δ > 0, the set {ω : (Z̃ε, Zε) ∈ Γδ} is Bε measurable, and

lim sup
ε→0

ε log Pε(Γδ) = −∞ , (4.2.11)

where

Γδ
�
={(ỹ, y) : d(ỹ, y) > δ} ⊂ Y × Y . (4.2.12)

Remarks:
(a) The random variables {Zε} and {Z̃ε} in Definition 4.2.10 are called ex-
ponentially equivalent.
(b) It is relatively easy to check that the measurability requirement is satis-
fied whenever Y is a separable space, or whenever the laws {Pε} are induced
by separable real-valued stochastic processes and d is the supremum norm.

As far as the LDP is concerned, exponentially equivalent measures are
indistinguishable, as the following theorem attests.

Theorem 4.2.13 If an LDP with a good rate function I(·) holds for the
probability measures {με}, which are exponentially equivalent to {μ̃ε}, then
the same LDP holds for {μ̃ε}.

Proof: This theorem is a consequence of the forthcoming Theorem 4.2.16.
To avoid repetitions, a direct proof is omitted.

As pointed out in the beginning of this section, an important goal in
considering exponential equivalence is the treatment of approximations. To
this end, the notion of exponential equivalence is replaced by the notion of
exponential approximation, as follows.
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Definition 4.2.14 Let Y and Γδ be as in Definition 4.2.10. For each ε > 0
and all m ∈ ZZ+, let (Ω,Bε, Pε,m) be a probability space, and let the Y-valued
random variables Z̃ε and Zε,m be distributed according to the joint law Pε,m,
with marginals μ̃ε and με,m, respectively. {Zε,m} are called exponentially
good approximations of {Z̃ε} if, for every δ > 0, the set {ω : (Z̃ε, Zε,m) ∈
Γδ} is Bε measurable and

lim
m→∞

lim sup
ε→0

ε log Pε,m(Γδ) = −∞ . (4.2.15)

Similarly, the measures {με,m} are exponentially good approximations of
{μ̃ε} if one can construct probability spaces {(Ω,Bε, Pε,m)} as above.

It should be obvious that Definition 4.2.14 reduces to Definition 4.2.10 if
the laws Pε,m do not depend on m.

The main (highly technical) result of this section is the following relation
between the LDPs of exponentially good approximations.

Theorem 4.2.16 Suppose that for every m, the family of measures {με,m}
satisfies the LDP with rate function Im(·) and that {με,m} are exponentially
good approximations of {μ̃ε}. Then
(a) {μ̃ε} satisfies a weak LDP with the rate function

I(y)
�
= sup

δ>0
lim inf
m→∞

inf
z∈By,δ

Im(z) , (4.2.17)

where By,δ denotes the ball {z : d(y, z) < δ}.
(b) If I(·) is a good rate function and for every closed set F ,

inf
y∈F

I(y) ≤ lim sup
m→∞

inf
y∈F

Im(y) , (4.2.18)

then the full LDP holds for {μ̃ε} with rate function I.

Remarks:
(a) The sets Γδ may be replaced by sets Γ̃δ,m such that the sets {ω :
(Z̃ε, Zε,m) ∈ Γ̃δ,m} differ from Bε measurable sets by Pε,m null sets, and
Γ̃δ,m satisfy both (4.2.15) and Γδ ⊂ Γ̃δ,m.
(b) If the rate functions Im(·) are independent of m, and are good rate
functions, then by Theorem 4.2.16, {μ̃ε} satisfies the LDP with I(·) = Im(·).
In particular, Theorem 4.2.13 is a direct consequence of Theorem 4.2.16.

Proof: (a) Throughout, let {Zε,m} be the exponentially good approxima-
tions of {Z̃ε}, having the joint laws {Pε,m} with marginals {με,m} and
{μ̃ε}, respectively, and let Γδ be as defined in (4.2.12). The weak LDP is
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obtained by applying Theorem 4.1.11 for the base {By,δ}y∈Y,δ>0 of (Y , d).
Specifically, it suffices to show that

I(y) = −inf
δ>0

lim sup
ε→0

ε log μ̃ε(By,δ) = − inf
δ>0

lim inf
ε→0

ε log μ̃ε(By,δ) . (4.2.19)

To this end, fix δ > 0, y ∈ Y. Note that for every m ∈ ZZ+ and every ε > 0,

{Zε,m ∈ By,δ} ⊆ {Z̃ε ∈ By,2δ} ∪ {(Z̃ε, Zε,m) ∈ Γδ} .

Hence, by the union of events bound,

με,m(By,δ) ≤ μ̃ε(By,2δ) + Pε,m(Γδ) .

By the large deviations lower bounds for {με,m},

− inf
z∈By,δ

Im(z) ≤ lim inf
ε→0

ε log με,m(By,δ)

≤ lim inf
ε→0

ε log [μ̃ε(By,2δ) + Pε,m(Γδ)] (4.2.20)

≤ lim inf
ε→0

ε log μ̃ε(By,2δ) ∨ lim sup
ε→0

ε log Pε,m(Γδ) .

Because {με,m} are exponentially good approximations of {μ̃ε},

lim inf
ε→0

ε log μ̃ε(By,2δ) ≥ lim sup
m→∞

{
− inf

z∈By,δ

Im(z)
}

.

Repeating the derivation leading to (4.2.20) with the roles of Zε,m and Z̃ε

reversed yields

lim sup
ε→0

ε log μ̃ε(By,δ) ≤ lim inf
m→∞

{
− inf

z∈By,2δ

Im(z)
}

.

Since By,2δ ⊂ By,3δ , (4.2.19) follows by considering the infimum over δ >
0 in the preceding two inequalities (recall the definition (4.2.17) of I(·)).
Moreover, this argument also implies that

I(y) = sup
δ>0

lim sup
m→∞

inf
z∈By,δ

Im(z) = sup
δ>0

lim sup
m→∞

inf
z∈By,δ

Im(z) .

(b) Fix δ > 0 and a closed set F ⊆ Y. Observe that for m = 1, 2, . . ., and
for all ε > 0,

{Z̃ε ∈ F} ⊆ {Zε,m ∈ F δ} ∪ {(Z̃ε, Zε,m) ∈ Γδ} ,

where F δ = {z : d(z, F ) ≤ δ} is the closed blowup of F . Thus, the large
deviations upper bounds for {με,m} imply that for every m,

lim sup
ε→0

ε log μ̃ε(F ) ≤ lim sup
ε→0

ε log με,m(F δ) ∨ lim sup
ε→0

ε log Pε,m(Γδ)

≤ [− inf
y∈F δ

Im(y)] ∨ lim sup
ε→0

ε log Pε,m(Γδ) .
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Hence, as {Zε,m} are exponentially good approximations of {Z̃ε}, consider-
ing m → ∞, it follows that

lim sup
ε→0

ε log μ̃ε(F ) ≤ − lim sup
m→∞

inf
y∈F δ

Im(y) ≤ − inf
y∈F δ

I(y) ,

where the second inequality is just our condition (4.2.18) for the closed set
F δ. Taking δ → 0, Lemma 4.1.6 yields the large deviations upper bound
and completes the proof of the full LDP .

It should be obvious that the results on exponential approximations
imply results on approximate contractions. We now present two such results.
The first is related to Theorem 4.2.13 and considers approximations that
are ε dependent. The second allows one to consider approximations that
depend on an auxiliary parameter.

Corollary 4.2.21 Suppose f : X → Y is a continuous map from a Haus-
dorff topological space X to the metric space (Y , d) and that {με} satisfy the
LDP with the good rate function I : X → [0,∞]. Suppose further that for
all ε > 0, fε : X → Y are measurable maps such that for all δ > 0, the set
Γε,δ

�
={x ∈ X : d(f(x), fε(x)) > δ} is measurable, and

lim sup
ε→0

ε log με(Γε,δ) = −∞ . (4.2.22)

Then the LDP with the good rate function I ′(·) of (4.2.2) holds for the
measures με ◦ f−1

ε on Y.

Proof: The contraction principle (Theorem 4.2.1) yields the desired LDP
for {με ◦ f−1}. By (4.2.22), these measures are exponentially equivalent to
{με ◦ f−1

ε }, and the corollary follows from Theorem 4.2.13.

A special case of Theorem 4.2.16 is the following extension of the con-
traction principle to maps that are not continuous, but that can be approx-
imated well by continuous maps.

Theorem 4.2.23 Let {με} be a family of probability measures that satisfies
the LDP with a good rate function I on a Hausdorff topological space X ,
and for m = 1, 2, . . ., let fm : X → Y be continuous functions, with (Y , d) a
metric space. Assume there exists a measurable map f : X → Y such that
for every α < ∞,

lim sup
m→∞

sup
{x:I(x)≤α}

d(fm(x), f(x)) = 0 . (4.2.24)

Then any family of probability measures {μ̃ε} for which {με ◦ f−1
m } are ex-

ponentially good approximations satisfies the LDP in Y with the good rate
function I ′(y) = inf{I(x) : y = f(x)}.
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Remarks:
(a) The condition (4.2.24) implies that for every α < ∞, the function f
is continuous on the level set ΨI(α) = {x : I(x) ≤ α}. Suppose that in
addition,

lim
m→∞

inf
x∈ΨI(m)c

I(x) = ∞ . (4.2.25)

Then the LDP for με◦f−1 follows as a direct consequence of Theorem 4.2.23
by considering a sequence fm of continuous extensions of f from ΨI(m) to
X . (Such a sequence exists whenever X is a completely regular space.) That
(4.2.25) need not hold true, even when X = IR, may be seen by considering
the following example. It is easy to check that με = (δ{0} + δ{ε})/2 satisfies
the LDP on IR with the good rate function I(0) = 0 and I(x) = ∞, x �= 0.
On the other hand, the closure of the complement of any level set is the
whole real line. If one now considers the function f : IR → IR such that
f(0) = 0 and f(x) = 1, x �= 0, then με ◦ f−1 does not satisfy the LDP with
the rate function I ′(y) = inf{I(x) : x ∈ IR, y = f(x)}, i.e., I ′(0) = 0 and
I ′(y) = ∞, y �= 0.
(b) Suppose for each m ∈ ZZ+, the family of measures {με,m} satisfies the
LDP on Y with the good rate function Im(·) of (4.2.26), where the continu-
ous functions fm : DI → Y and the measurable function f : DI → Y satisfy
condition (4.2.24). Then any {μ̃ε} for which {με,m} are exponentially good
approximations satisfies the LDP in Y with good rate function I ′(·). This
easy adaptation of the proof of Theorem 4.2.23 is left for the reader.

Proof: By assumption, the functions fm : X → Y are continuous. Hence,
by the contraction principle (Theorem 4.2.1), for each m ∈ ZZ+, the family
of measures {με ◦ f−1

m } satisfies the LDP on Y with the good rate function

Im(y) = inf{I(x) : x ∈ X , y = fm(x)} . (4.2.26)

Recall that the condition (4.2.24) implies that f is continuous on each
level set ΨI(α). Therefore, I ′ is a good rate function on Y with level sets
f(ΨI(α)) (while the corresponding level set of Im is fm(ΨI(α))).

Fix a closed set F and for any m ∈ ZZ+, let

γm
�
= inf

y∈F
Im(y) = inf

x∈f−1
m (F )

I(x) .

Assume first that γ�
= lim infm→∞ γm < ∞, and pass to a subsequence of m’s

such that γm → γ and supm γm = α < ∞. Since I(·) is a good rate function
and f−1

m (F ) are closed sets, there exist xm ∈ X such that fm(xm) ∈ F and
I(xm) = γm ≤ α. Now, the uniform convergence assumption of (4.2.24)
implies that f(xm) ∈ F δ for every δ > 0 and all m large enough. Therefore,
infy∈F δ I ′(y) ≤ I ′(f(xm)) ≤ I(xm) = γm for all m large enough. Hence,
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for all δ > 0,
inf

y∈F δ
I ′(y) ≤ lim inf

m→∞
inf
y∈F

Im(y) .

(Note that this inequality trivially holds when γ = ∞.) Taking δ → 0, it
follows from Lemma 4.1.6 that for every closed set F ,

inf
y∈F

I ′(y) ≤ lim inf
m→∞

inf
y∈F

Im(y) . (4.2.27)

In particular, this inequality implies that (4.2.18) holds for the good rate
function I ′(·). Moreover, considering F = By,δ, and taking δ → 0, it follows
from Lemma 4.1.6 that

I ′(y) = sup
δ>0

inf
z∈By,δ

I ′(z) ≤ sup
δ>0

lim inf
m→∞

inf
z∈By,δ

Im(z)
�
=Ī(y) .

Note that Ī(·) is the rate function defined in Theorem 4.2.16, and conse-
quently the proof is complete as soon as we show that Ī(y) ≤ I ′(y) for all
y ∈ Y . To this end, assume with no loss of generality that I ′(y) = α < ∞.
Then, y ∈ f(ΨI(α)), i.e., there exists x ∈ ΨI(α) such that f(x) = y.
Note that ym = fm(x) ∈ fm(ΨI(α)), and consequently Im(ym) ≤ α for all
m ∈ ZZ+. The condition (4.2.24) then implies that d(y, ym) → 0, and hence
Ī(y) ≤ lim infm→∞ Im(ym) ≤ α, as required.

Exercise 4.2.28 [Based on [DV75a]] Let Σ = {1, · · · , r}, and let Yt be
a Σ-valued continuous time Markov process with irreducible generator A =
{a(i, j)}. In this exercise, you derive the LDP for the empirical measures

Ly
ε (i) = ε

∫ 1/ε

0

1i(Yt)dt, i = 1, . . . , r .

(a) Define

Ly
ε,m(i) =

ε

m

�m
ε �∑

j=1

1i(Y j
m

), i = 1, . . . , r .

Show that {Ly
ε,m} are exponentially good approximations of {Ly

ε }.
Hint: Note that

|Ly
ε (i) − Ly

ε,m(i)| ≤ ε

m

{
total number of jumps in
the path Yt, t ∈ [0, 1/ε]

}
�
=

ε

m
Nε ,

and Nε is stochastically dominated by a Poisson(c/ε) random variable for some
constant c < ∞.
(b) Note that Ly

ε,m is the empirical measure of a Σ-valued, discrete time Markov

process with irreducible transition probability matrix eA/m. Using Theorem
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3.1.6 and Exercise 3.1.11, show that for every m, Ly
ε,m satisfies the LDP with

the good rate function

Im(q) = m sup
u
0

r∑

j=1

qj log
[

uj

(eA/mu)j

]

,

where q ∈ M1(Σ).

(c) Applying Theorem 4.2.16, prove that {Ly
ε } satisfies the LDP with the good

rate function

I(q) = sup
u
0

{
−

r∑

j=1

qj
(Au)j

uj

}
.

Hint: Check that for all q ∈ M1(Σ), I(q) ≥ Im(q), and that for each fixed

u � 0, Im(q) ≥ −
∑

j qj
(Au)j

uj
− c(u)

m for some c(u) < ∞.

(d) Assume that A is symmetric and check that then

I(q) = −
r∑

i,j=1

√
qi a(i, j)

√
qj .

Exercise 4.2.29 Suppose that for every m, the family of measures {με,m}
satisfies the LDP with good rate function Im(·) and that {με,m} are exponen-
tially good approximations of {μ̃ε}.
(a) Show that if (Y , d) is a Polish space, then {μ̃εn} is exponentially tight for
any εn → 0. Hence, by part (a) of Theorem 4.2.16, {μ̃ε} satisfies the LDP
with the good rate function I(·) of (4.2.17).
Hint: See Exercise 4.1.10.
(b) Let Y = {1/m,m ∈ ZZ+} with the metric d(·, ·) induced on Y by IR and
Y-valued random variables Ym such that P (Ym = 1 for every m) = 1/2, and
P (Ym = 1/m for every m) = 1/2. Check that Zε,m

�
=Ym are exponentially

good approximations of Z̃ε
�
=Y[1/ε] (ε ≤ 1), which for any fixed m ∈ ZZ+ satisfy

the LDP in Y with the good rate function Im(y) = 0 for y = 1, y = 1/m, and
Im(y) = ∞ otherwise. Check that in this case, the good rate function I(·)
of (4.2.17) is such that I(y) = ∞ for every y �= 1 and in particular, the large
deviations upper bound fails for {Z̃ε �= 1} and this rate function.

Remark: This example shows that when (Y , d) is not a Polish space one can
not dispense of condition (4.2.18) in Theorem 4.2.16.

Exercise 4.2.30 For any δ > 0 and probability measures ν, μ on the metric
space (Y , d) let

ρδ(ν, μ)
�
= sup{ν(A) − μ(Aδ) : A ∈ BY } .

(a) Show that if {με,m} are exponentially good approximations of {μ̃ε} then

lim
m→∞

lim sup
ε→0

ε log ρδ(με,m, μ̃ε) = −∞ . (4.2.31)
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(b) Show that if (Y , d) is a Polish space and (4.2.31) holds for any δ > 0, then
{με,m} are exponentially good approximations of {μ̃ε}.
Hint: Recall the following consequence of [Str65, Theorem 11]. For any open
set Γ ⊂ Y2 and any Borel probability measures ν, μ on the Polish space (Y , d)
there exists a Borel probability measure P on Y2 with marginals μ, ν such that

P (Γ) = sup{ν(G)−μ({ỹ : ∃y ∈ G, such that (ỹ, y) ∈ Γc}) : G ⊂ Y open } .

Conclude that Pε,m(Γδ′) ≤ ρδ(με,m, μ̃ε) for any m, ε > 0, and δ′ > δ > 0.

Exercise 4.2.32 Prove Theorem 4.2.13, assuming that {με} are Borel prob-
ability measures, but {μ̃ε} are not necessarily such.

4.3 Varadhan’s Integral Lemma

Throughout this section, {Zε} is a family of random variables taking val-
ues in the regular topological space X , and {με} denotes the probability
measures associated with {Zε}. The next theorem could actually be used
as a starting point for developing the large deviations paradigm. It is a
very useful tool in many applications of large deviations. For example, the
asymptotics of the partition function in statistical mechanics can be derived
using this theorem.

Theorem 4.3.1 (Varadhan) Suppose that {με} satisfies the LDP with a
good rate function I : X → [0,∞], and let φ : X → IR be any continuous
function. Assume further either the tail condition

lim
M→∞

lim sup
ε→0

ε log E
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]
= −∞ , (4.3.2)

or the following moment condition for some γ > 1,

lim sup
ε→0

ε log E
[
eγφ(Zε)/ε

]
< ∞ . (4.3.3)

Then
lim
ε→0

ε log E
[
eφ(Zε)/ε

]
= sup

x∈X
{φ(x) − I(x)} .

Remark: This theorem is the natural extension of Laplace’s method to
infinite dimensional spaces. Indeed, let X = IR and assume for the mo-
ment that the density of με with respect to Lebesgue’s measure is such that
dμε/dx ≈ e−I(x)/ε. Then

∫

IR

eφ(x)/εμε(dx) ≈
∫

IR

e(φ(x)−I(x))/εdx .
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Assume that I(·) and φ(·) are twice differentiable, with (φ(x)−I(x)) concave
and possessing a unique global maximum at some x. Then

φ(x) − I(x) = φ(x) − I(x) +
(x − x)2

2
(φ(x) − I(x))′′|x=ξ ,

where ξ ∈ [x, x]. Therefore,
∫

IR

eφ(x)/εμε(dx) ≈ e(φ(x)−I(x))/ε

∫

IR

e−B(x)(x−x)2/2εdx ,

where B(·) ≥ 0. The content of Laplace’s method (and of Theorem 4.3.1)
is that on a logarithmic scale the rightmost integral may be ignored.

Theorem 4.3.1 is a direct consequence of the following three lemmas.

Lemma 4.3.4 If φ : X → IR is lower semicontinuous and the large devia-
tions lower bound holds with I : X → [0,∞], then

lim inf
ε→0

ε log E
[
eφ(Zε)/ε

]
≥ sup

x∈X
{φ(x) − I(x)} . (4.3.5)

Lemma 4.3.6 If φ : X → IR is an upper semicontinuous function for which
the tail condition (4.3.2) holds, and the large deviations upper bound holds
with the good rate function I : X → [0,∞], then

lim sup
ε→0

ε log E
[
eφ(Zε)/ε

]
≤ sup

x∈X
{φ(x) − I(x)} . (4.3.7)

Lemma 4.3.8 Condition (4.3.3) implies the tail condition (4.3.2).

Proof of Lemma 4.3.4: Fix x ∈ X and δ > 0. Since φ(·) is lower
semicontinuous, it follows that there exists a neighborhood G of x such that
infy∈G φ(y) ≥ φ(x) − δ. Hence,

lim inf
ε→0

ε log E
[
eφ(Zε)/ε

]
≥ lim inf

ε→0
ε log E

[
eφ(Zε)/ε1{Zε∈G}

]

≥ inf
y∈G

φ(y) + lim inf
ε→0

ε log με(G) .

By the large deviations lower bound and the choice of G,

inf
y∈G

φ(y) + lim inf
ε→0

ε log με(G) ≥ inf
y∈G

φ(y) − inf
y∈G

I(y) ≥ φ(x) − I(x) − δ .

The inequality (4.3.5) now follows, since δ > 0 and x ∈ X are arbitrary.

Proof of Lemma 4.3.6: Consider first a function φ bounded above, i.e.,
supx∈X φ(x) ≤ M < ∞. For such functions, the tail condition (4.3.2)
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holds trivially. Fix α < ∞ and δ > 0, and let ΨI(α) = {x : I(x) ≤ α}
denote the compact level set of the good rate function I. Since I(·) is lower
semicontinuous, φ(·) is upper semicontinuous, and X is a regular topological
space, for every x ∈ ΨI(α), there exists a neighborhood Ax of x such that

inf
y∈Ax

I(y) ≥ I(x) − δ , sup
y∈Ax

φ(y) ≤ φ(x) + δ . (4.3.9)

From the open cover ∪x∈ΨI(α)Ax of the compact set ΨI(α), one can extract
a finite cover of ΨI(α), e.g., ∪N

i=1Axi . Therefore,

E
[
eφ(Zε)/ε

]
≤

N∑

i=1

E
[
eφ(Zε)/ε1{Zε∈Axi

}

]
+ eM/εμε

(( N⋃

i=1

Axi

)c )

≤
N∑

i=1

e(φ(xi)+δ)/εμε(Axi ) + eM/εμε

(( N⋃

i=1

Axi

)c )

where the last inequality follows by (4.3.9). Applying the large deviations
upper bound to the sets Axi , i = 1, . . . , N and (∪N

i=1Axi)
c ⊆ ΨI(α)c, one

obtains (again, in view of (4.3.9)),

lim sup
ε→0

ε log E
[
eφ(Zε)/ε

]

≤ max
{

N
max
i=1

{φ(xi) + δ − inf
y∈Axi

I(y) }, M − inf
y∈(∪N

i=1Axi
)c

I(y)
}

≤ max
{

N
max
i=1

{φ(xi) − I(xi) + 2δ}, M − α
}

≤ max
{

sup
x∈X

{φ(x) − I(x)}, M − α
}

+ 2δ .

Thus, for any φ(·) bounded above, the lemma follows by taking the limits
δ → 0 and α → ∞.

To treat the general case, set φM (x) = φ(x) ∧ M ≤ φ(x), and use the
preceding to show that for every M < ∞,

lim sup
ε→0

ε log E
[
eφ(Zε)/ε

]

≤ sup
x∈X

{φ(x) − I(x)} ∨ lim sup
ε→0

ε log E
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]
.

The tail condition (4.3.2) completes the proof of the lemma by taking the
limit M → ∞.

Proof of Lemma 4.3.8: For ε > 0, define Xε
�
= exp((φ(Zε) − M)/ε), and
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let γ > 1 be the constant given in the moment condition (4.3.3). Then

e−M/εE
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]
= E

[
Xε 1{Xε≥1}

]

≤ E [(Xε)γ ] = e−γM/εE
[
eγφ(Zε)/ε

]
.

Therefore,

lim sup
ε→0

ε log E
[
eφ(Zε)/ε 1{φ(Zε)≥M}

]

≤ −(γ − 1)M + lim sup
ε→0

ε log E
[
eγφ(Zε)/ε

]
.

The right side of this inequality is finite by the moment condition (4.3.3).
In the limit M → ∞, it yields the tail condition (4.3.2).

Exercise 4.3.10 Let φ : X → [−∞,∞] be an upper semicontinuous function,
and let I(·) be a good rate function. Prove that in any closed set F ⊂ X on
which φ is bounded above, there exists a point x0 such that

φ(x0) − I(x0) = sup
x∈F

{φ(x) − I(x)} .

Exercise 4.3.11 [From [DeuS89b], Exercise 2.1.24]. Assume that {με} sat-
isfies the LDP with good rate function I(·) and that the tail condition (4.3.2)
holds for the continuous function φ : X → IR. Show that

lim inf
ε→0

ε log
(∫

G

eφ(x)/εdμε

)

≥ sup
x∈G

{φ(x) − I(x)}, ∀G open ,

lim sup
ε→0

ε log
(∫

F

eφ(x)/εdμε

)

≤ sup
x∈F

{φ(x) − I(x)}, ∀F closed .

Exercise 4.3.12 The purpose of this exercise is to demonstrate that some
tail condition like (4.3.2) is necessary for Lemma 4.3.6 to hold. In particular,
this lemma may not hold for linear functions.

Consider a family of real valued random variables {Zε}, where P(Zε = 0) =
1 − 2pε, P(Zε = −mε) = pε, and P(Zε = mε) = pε.
(a) Prove that if

lim
ε→0

ε log pε = −∞ ,

then the laws of {Zε} are exponentially tight, and moreover they satisfy the
LDP with the convex, good rate function

I(x) =

{
0 x = 0

∞ otherwise .
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(b) Let mε = −ε log pε and define

Λ(λ) = lim
ε→0

ε log E
(
eλZε/ε

)
.

Prove that

Λ(λ) =

{
0 |λ| ≤ 1

∞ otherwise ,

and its Fenchel–Legendre transform is Λ∗(x) = |x|.
(c) Observe that Λ(λ) �= supx∈IR {λx − I(x)}, and Λ∗(·) �= I(·).

4.4 Bryc’s Inverse Varadhan Lemma

As will be seen in Section 4.5, in the setting of topological vector spaces,
linear functionals play an important role in establishing the LDP, partic-
ularly when convexity is involved. Note, however, that Varadhan’s lemma
applies to nonlinear functions as well. It is the goal of this section to de-
rive the inverse of Varadhan’s lemma. Specifically, let {με} be a family of
probability measures on a topological space X . For each Borel measurable
function f : X → IR, define

Λf
�
= lim

ε→0
ε log

∫

X
ef(x)/εμε(dx) , (4.4.1)

provided the limit exists. For example, when X is a vector space, then
the {Λf} for continuous linear functionals (i.e., for f ∈ X ∗) are just the
values of the logarithmic moment generating function defined in Section
4.5. The main result of this section is that the LDP is a consequence of
exponential tightness and the existence of the limits (4.4.1) for every f ∈ G,
for appropriate families of functions G. This result is used in Section 6.4,
where the smoothness assumptions of the Gärtner–Ellis theorem (Theorem
2.3.6) are replaced by mixing assumptions en route to the LDP for the
empirical measures of Markov chains.

Throughout this section, it is assumed that X is a completely regular
topological space, i.e., X is Hausdorff, and for any closed set F ⊂ X and
any point x /∈ F , there exists a continuous function f : X → [0, 1] such that
f(x) = 1 and f(y) = 0 for all y ∈ F . It is also not hard to verify that such
a space is regular and that both metric spaces and Hausdorff topological
vector spaces are completely regular.

The class of all bounded, real valued continuous functions on X is de-
noted throughout by Cb(X ).
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Theorem 4.4.2 (Bryc) Suppose that the family {με} is exponentially ti-
ght and that the limit Λf in (4.4.1) exists for every f ∈ Cb(X ). Then {με}
satisfies the LDP with the good rate function

I(x) = sup
f∈Cb(X )

{f(x) − Λf} . (4.4.3)

Furthermore, for every f ∈ Cb(X ),

Λf = sup
x∈X

{f(x) − I(x)} . (4.4.4)

Remark: In the case where X is a topological vector space, it is tempting
to compare (4.4.3) and (4.4.4) with the Fenchel–Legendre transform pair
Λ(·) and Λ∗(·) of Section 4.5. Note, however, that here the rate function
I(x) need not be convex.

Proof: Since Λ0 = 0, it follows that I(·) ≥ 0. Moreover, I(x) is lower
semicontinuous, since it is the supremum of continuous functions. Due
to the exponential tightness of {με}, the LDP asserted follows once the
weak LDP (with rate function I(·)) is proved. Moreover, by an application
of Varadhan’s lemma (Theorem 4.3.1), the identity (4.4.4) then holds. It
remains, therefore, only to prove the weak LDP, which is a consequence of
the following two lemmas.

Lemma 4.4.5 (Upper bound) If Λf exists for each f ∈ Cb(X ), then, for
every compact Γ ⊂ X ,

lim sup
ε→0

ε log με(Γ) ≤ − inf
x∈Γ

I(x) .

Lemma 4.4.6 (Lower bound) If Λf exists for each f ∈ Cb(X ), then, for
every open G ⊂ X and each x ∈ G,

lim inf
ε→0

ε log με(G) ≥ −I(x) .

Proof of Lemma 4.4.5: The proof is almost identical to the proof of part
(b) of Theorem 4.5.3, substituting f(x) for 〈λ, x〉. To avoid repetition, the
details are omitted.

Proof of Lemma 4.4.6: Fix x ∈ X and a neighborhood G of x. Since X
is a completely regular topological space, there exists a continuous function
f : X → [0, 1], such that f(x) = 1 and f(y) = 0 for all y ∈ Gc. For m > 0,
define fm(·)�=m(f(·) − 1). Then

∫

X
efm(x)/εμε(dx) ≤ e−m/εμε(Gc) + με(G) ≤ e−m/ε + με(G) .
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Since fm ∈ Cb(X ) and fm(x) = 0, it now follows that

max{ lim inf
ε→0

ε log με(G), −m }

≥ lim inf
ε→0

ε log
∫

X
efm(x)/εμε(dx) = Λfm

= −[fm(x) − Λfm ] ≥ − sup
f∈Cb(X )

{f(x) − Λf} = −I(x) ,

and the lower bound follows by letting m → ∞.

This proof works because indicators on open sets are approximated well
enough by bounded continuous functions. It is clear, however, that not all
of Cb(X ) is needed for that purpose. The following definition is the tool for
relaxing the assumptions of Theorem 4.4.2.

Definition 4.4.7 A class G of continuous, real valued functions on a topo-
logical space X is said to be well-separating if:
(1) G contains the constant functions.
(2) G is closed under finite pointwise minima, i.e., g1, g2 ∈ G ⇒ g1∧g2 ∈ G.
(3) G separates points of X , i.e., given two points x, y ∈ X with x �= y, and
a, b ∈ IR, there exists a function g ∈ G such that g(x) = a and g(y) = b.

Remark: It is easy to check that if G is well-separating, so is G+, the class
of all bounded above functions in G.

When X is a vector space, a particularly useful class of well-separating
functions exists.

Lemma 4.4.8 Let X be a locally convex, Hausdorff topological vector space.
Then the class G of all continuous, bounded above, concave functions on X
is well-separating.

Proof: Let X ∗ denote the topological dual of X , and let G0
�
={λ(x) + c :

λ ∈ X ∗, c ∈ IR}. Note that G0 contains the constant functions, and by
the Hahn–Banach theorem, G0 separates points of X . Since G0 consists of
continuous, concave functions, it follows that the class of all continuous,
concave functions separates points. Moreover, as the pointwise minimum
of concave, continuous functions is concave and continuous, this class of
functions is well-separating. Finally, by the earlier remark, it suffices to
consider only the bounded above, continuous, concave functions.

The following lemma, whose proof is deferred to the end of the sec-
tion, states the specific approximation property of well-separating classes
of functions that allows their use instead of Cb(X ). It will be used in the
proof of Theorem 4.4.10.
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Lemma 4.4.9 Let G be a well-separating class of functions on X . Then
for any compact set Γ ⊂ X , any f ∈ Cb(Γ), and any δ > 0, there exists an
integer d < ∞ and functions g1, . . . , gd ∈ G such that

sup
x∈Γ

|f(x) − d
max
i=1

gi(x)| ≤ δ

and
sup
x∈X

gi(x) ≤ sup
x∈Γ

f(x) < ∞ .

Theorem 4.4.10 Let {με} be an exponentially tight family of probability
measures on a completely regular topological space X , and suppose G is a
well-separating class of functions on X . If Λg exists for each g ∈ G, then
Λf exists for each f ∈ Cb(X ). Consequently, all the conclusions of Theorem
4.4.2 hold.

Proof: Fix a bounded continuous function f(x) with |f(x)| ≤ M . Since the
family {με} is exponentially tight, there exists a compact set Γ such that
for all ε small enough,

με(Γc) ≤ e−3M/ε .

Fix δ > 0 and let g1, . . . , gd ∈ G, d < ∞ be as in Lemma 4.4.9, with
h(x)�= maxd

i=1 gi(x). Then, for every ε > 0,

d
max
i=1

{∫

X
egi(x)/εμε(dx)

}

≤
∫

X
eh(x)/εμε(dx) ≤

d∑

i=1

∫

X
egi(x)/εμε(dx) .

Hence, by the assumption of the theorem, the limit

Λh = lim
ε→0

ε log
∫

X
eh(x)/εμε(dx)

exists, and Λh = maxd
i=1 Λgi . Moreover, by Lemma 4.4.9, h(x) ≤ M for all

x ∈ X , and h(x) ≥ (f(x) − δ) ≥ −(M + δ) for all x ∈ Γ. Consequently, for
all ε small enough, ∫

Γc

eh(x)/εμε(dx) ≤ e−2M/ε

and ∫

Γ

eh(x)/εμε(dx) ≥ e−(M+δ)/εμε(Γ) ≥ 1
2

e−(M+δ)/ε.

Hence, for any δ < M ,

Λh = lim
ε→0

ε log
∫

Γ

eh(x)/εμε(dx) .
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Since supx∈Γ |f(x) − h(x)| ≤ δ,

lim sup
ε→0

ε log
∫

Γ

ef(x)/εμε(dx) ≤ δ + lim sup
ε→0

ε log
∫

Γ

eh(x)/εμε(dx)

= δ + Λh = δ + lim inf
ε→0

ε log
∫

Γ

eh(x)/εμε(dx)

≤ 2δ + lim inf
ε→0

ε log
∫

Γ

ef(x)/εμε(dx) .

Thus, taking δ → 0, it follows that

lim
ε→0

ε log
∫

Γ

ef(x)/εμε(dx)

exists. This limit equals Λf , since, for all ε small enough,
∫

Γc

ef(x)/εμε(dx) ≤ e−2M/ε ,

∫

Γ

ef(x)/εμε(dx) ≥ 1
2

e−M/ε .

Proof of Lemma 4.4.9: Fix Γ ⊂ X compact, f ∈ Cb(Γ) and δ > 0. Let
x, y ∈ Γ with x �= y. Since G separates points in Γ, there is a function
gx,y(·) ∈ G such that gx,y(x) = f(x) and gx,y(y) = f(y). Because each of
the functions f(·) − gx,y(·) is continuous, one may find for each y ∈ Γ a
neighborhood Uy of y such that

inf
u∈Uy

{f(u) − gx,y(u)} ≥ −δ .

The neighborhoods {Uy} form a cover of Γ; hence, Γ may be covered by
a finite collection Uy1 , . . . , Uym of such neighborhoods. For every x ∈ Γ,
define

gx(·) = gx,y1(·) ∧ gx,y2(·) ∧ · · · ∧ gx,ym(·) ∈ G .

Then
inf
u∈Γ

{f(u) − gx(u)} ≥ −δ . (4.4.11)

Recall now that, for all i, gx,yi(x) = f(x) and hence gx(x) = f(x). Since
each of the functions f(·) − gx(·) is continuous, one may find a finite cover
V1, . . . , Vd of Γ and functions gx1 , . . . , gxd

∈ G such that

sup
v∈Vi

{f(v) − gxi(v)} ≤ δ . (4.4.12)

By the two preceding inequalities,

sup
v∈Γ

|f(v) − d
max
i=1

gxi(v)| ≤ δ .
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To complete the proof, observe that the constant M�
= supx∈Γ f(x) belongs

to G, and hence so does gi(·) = gxi(·) ∧ M , while for all v ∈ Γ,

|f(v) − d
max
i=1

gi(v)| ≤ |f(v) − d
max
i=1

gxi(v)| .

The following variant of Theorem 4.4.2 dispenses with the exponential
tightness of {με}, assuming instead that (4.4.4) holds for some good rate
function I(·). See Section 6.6 for an application of this result.

Theorem 4.4.13 Let I(·) be a good rate function. A family of probability
measures {με} satisfies the LDP in X with the rate function I(·) if and only
if the limit Λf in (4.4.1) exists for every f ∈ Cb(X ) and satisfies (4.4.4).

Proof: Suppose first that {με} satisfies the LDP in X with the good rate
function I(·). Then, by Varadhan’s Lemma (Theorem 4.3.1), the limit Λf

in (4.4.1) exists for every f ∈ Cb(X ) and satisfies (4.4.4).

Conversely, suppose that the limit Λf in (4.4.1) exists for every f ∈
Cb(X ) and satisfies (4.4.4) for some good rate function I(·). The rela-
tion (4.4.4) implies that Λf − f(x) ≥ −I(x) for any x ∈ X and any
f ∈ Cb(X ). Therefore, by Lemma 4.4.6, the existence of Λf implies that
{με} satisfies the large deviations lower bound, with the good rate function
I(·). Turning to prove the complementary upper bound, it suffices to con-
sider closed sets F ⊂ X for which infx∈F I(x) > 0. Fix such a set and
δ > 0 small enough so that α�

= infx∈F Iδ(x) ∈ (0,∞) for the δ-rate func-
tion Iδ(·) = min{I(·) − δ, 1

δ}. With Λ0 = 0, the relation (4.4.4) implies
that ΨI(α) is non-empty. Since F and ΨI(α) are disjoint subsets of the
completely regular topological space X , for any y ∈ ΨI(α) there exists a
continuous function fy : X → [0, 1] such that fy(y) = 1 and fy(x) = 0
for all x ∈ F . The neighborhoods Uy

�
={z : fy(z) > 1/2} form a cover

of ΨI(α); hence, the compact set ΨI(α) may be covered by a finite col-
lection Uy1 , . . . , Uyn of such neighborhoods. For any m ∈ ZZ+, the non-
negative function hm(·)�=2mmaxn

i=1 fyi(·) is continuous and bounded, with
hm(x) = 0 for all x ∈ F and hm(y) ≥ m for all y ∈ ΨI(α). Therefore,
by (4.4.4),

lim sup
ε→0

ε log με(F ) ≤ lim sup
ε→0

ε log
∫

X
e−hm(x)/εμε(dx)

= Λ−hm = − inf
x∈X

{hm(x) + I(x)} .

Note that hm(x) + I(x) ≥ m for any x ∈ ΨI(α), whereas hm(x) + I(x) ≥ α
for any x /∈ ΨI(α). Consequently, taking m ≥ α,

lim sup
ε→0

ε log με(F ) ≤ −α .
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Since δ > 0 is arbitrarily small, the large deviations upper bound holds (see
(1.2.11)).

Exercise 4.4.14 Let {με} be an exponentially tight family of probability mea-
sures on a completely regular topological space X . Let G be a well-separating
class of real valued, continuous functions on X , and let G+ denote the functions
in G that are bounded above.
(a) Suppose that Λg exists for all g ∈ G+. For g /∈ G+, define

Λg = lim inf
ε→0

ε log
∫

X
eg(x)/εμε(dx) .

Let Î(x) = supg∈G+{g(x) − Λg} and show that

Î(x) = sup
g∈G

{g(x) − Λg} .

Hint: Observe that for every g ∈ G and every constant M < ∞, both
g(x) ∧ M ∈ G+ and Λg∧M ≤ Λg.
(b) Note that G+ is well-separating, and hence {με} satisfies the LDP with the
good rate function

I(x) = sup
f∈Cb(X )

{f(x) − Λf} .

Prove that I(·) = Î(·).
Hint: Varadhan’s lemma applies to every g ∈ G+. Consequently, I(x) ≥ Î(x) .
Fix x ∈ X and f ∈ Cb(X ). Following the proof of Theorem 4.4.10 with the
compact set Γ enlarged to ensure that x ∈ Γ, show that

f(x) − Λf ≤ sup
d<∞

sup
gi∈G+

{
d

max
i=1

gi(x) − d
max
i=1

Λgi

}
= Î(x) .

(c) To derive the converse of Theorem 4.4.10, suppose now that {με} satisfies
the LDP with rate function I(·). Use Varadhan’s lemma to deduce that Λg

exists for all g ∈ G+, and consequently by parts (a) and (b) of this exercise,

I(x) = sup
g∈G

{g(x) − Λg} .

Exercise 4.4.15 Suppose the topological space X has a countable base. Let
G be a class of continuous, bounded above, real valued functions on X such
that for any good rate function J(·),

J(y) ≤ sup
g∈G

inf
x∈X

{ g(y) − g(x) + J(x) } . (4.4.16)

(a) Suppose the family of probability measures {με} satisfies the LDP in X
with a good rate function I(·). Then, by Varadhan’s Lemma, Λg exists for
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g ∈ G and is given by (4.4.4). Show that I(·) = Î(·)�= supg∈G{g(·) − Λg}.
(b) Suppose {με} is an exponentially tight family of probability measures, such
that Λg exists for any g ∈ G. Show that {με} satisfies the LDP in X with the

good rate function Î(·).
Hint: By Lemma 4.1.23 for any sequence εn → 0, there exists a subsequence
n(k) → ∞ such that {μεn(k)} satisfies the LDP with a good rate function. Use
part (a) to show that this good rate function is independent of εn → 0.
(c) Show that (4.4.16) holds if for any compact set K ⊂ X , y /∈ K and α, δ > 0,
there exists g ∈ G such that supx∈X g(x) ≤ g(y) + δ and supx∈K g(x) ≤
g(y) − α.
Hint: Consider g ∈ G corresponding to K = ΨJ(α), α ↗ J(y) and δ → 0.
(d) Use part (c) to verify that (4.4.16) holds for G = Cb(X ) and X a completely
regular topological space, thus providing an alternative proof of Theorem 4.4.2
under somewhat stronger conditions.
Hint: See the construction of hm(·) in Theorem 4.4.13.

Exercise 4.4.17 Complete the proof of Lemma 4.4.5.

4.5 LDP in Topological Vector Spaces

In Section 2.3, it was shown that when a limiting logarithmic moment gen-
erating function exists for a family of IRd-valued random variables, then its
Fenchel–Legendre transform is the natural candidate rate function for the
LDP associated with these variables. The goal of this section is to extend
this result to topological vector spaces. As will be seen, convexity plays a
major role as soon as the linear structure is introduced. For this reason,
after the upper bound is established for all compact sets in Section 4.5.1,
Section 4.5.2 turns to the study of some generalities involving the convex
duality of Λ and Λ∗. These convexity considerations play an essential role
in applications. Finally, Section 4.5.3 is devoted to a direct derivation of a
weak version of the Gärtner–Ellis theorem in an abstract setup (Theorem
4.5.20), and to a Banach space variant of it.

Throughout this section, X is a Hausdorff (real) topological vector space.
Recall that such spaces are regular, so the results of Sections 4.1 and 4.3
apply. The dual space of X , namely, the space of all continuous linear func-
tionals on X , is denoted throughout by X ∗. Let Zε be a family of random
variables taking values in X , and let με ∈ M1(X ) denote the probability
measure associated with Zε. By analogy with the IRd case presented in Sec-
tion 2.3, the logarithmic moment generating function Λμε : X ∗ → (−∞,∞]
is defined to be

Λμε(λ) = log E
[
e〈λ,Zε〉

]
= log

∫

X
eλ(x)με(dx) , λ ∈ X ∗ ,
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where for x ∈ X and λ ∈ X ∗, 〈λ, x〉 denotes the value of λ(x) ∈ IR.

Let

Λ̄(λ)
�
= lim sup

ε→0
εΛμε

(
λ

ε

)

, (4.5.1)

using the notation Λ(λ) whenever the limit exists. In most of the examples
considered in Chapter 2, when εΛμε(·/ε) converges pointwise to Λ(·) for
X = IRd and an LDP holds for {με}, the rate function associated with this
LDP is the Fenchel–Legendre transform of Λ(·). In the current setup, the
Fenchel–Legendre transform of a function f : X ∗ → [−∞,∞] is defined as

f∗(x)
�
= sup

λ∈X∗
{〈λ, x〉 − f(λ)} , x ∈ X . (4.5.2)

Thus, Λ̄∗ denotes the Fenchel–Legendre transform of Λ̄, and Λ∗ denotes
that of Λ when the latter exists for all λ ∈ X ∗.

4.5.1 A General Upper Bound

As in the IRd case, Λ̄∗ plays a prominent role in the LDP bounds.

Theorem 4.5.3
(a) Λ̄(·) of (4.5.1) is convex on X ∗ and Λ̄∗(·) is a convex rate function.
(b) For any compact set Γ ⊂ X ,

lim sup
ε→0

ε log με(Γ) ≤ − inf
x∈Γ

Λ̄∗(x) . (4.5.4)

Remarks:
(a) In Theorem 2.3.6, which corresponds to X = IRd, it was assumed, for
the purpose of establishing exponential tightness, that 0 ∈ Do

Λ. In the
abstract setup considered here, the exponential tightness does not follow
from this assumption, and therefore must be handled on a case-by-case
basis. (See, however, [deA85a] for a criterion for exponential tightness which
is applicable in a variety of situations.)
(b) Note that any bound of the form Λ̄(λ) ≤ K(λ) for all λ ∈ X ∗ implies
that the Fenchel–Legendre transform K∗(·) may be substituted for Λ̄∗(·) in
(4.5.4). This is useful in situations in which Λ̄(λ) is easy to bound but hard
to compute.
(c) The inequality (4.5.4) may serve as the upper bound related to a weak
LDP. Thus, when {με} is an exponentially tight family of measures, (4.5.4)
extends to all closed sets. If in addition, the large deviations lower bound
is also satisfied with Λ̄∗(·), then this is a good rate function that controls
the large deviations of the family {με}.



150 4. General Principles

Proof: (a) The proof is similar to the proof of these properties in the spe-
cial case X = IRd, which is presented in the context of the Gärtner–Ellis
theorem.

Using the linearity of (λ/ε) and applying Hölder’s inequality, one shows
that the functions Λμε(λ/ε) are convex. Thus, Λ̄(·) = lim supε→0 εΛμε(·/ε),
is also a convex function. Since Λμε(0) = 0 for all ε > 0, it follows that
Λ̄(0) = 0. Consequently, Λ̄∗(·) is a nonnegative function. Since the supre-
mum of a family of continuous functions is lower semicontinuous, the lower
semicontinuity of Λ̄∗(·) follows from the continuity of gλ(x) = 〈λ, x〉 − Λ̄(λ)
for every λ ∈ X ∗. The convexity of Λ̄∗(·) is a direct consequence of its
definition via (4.5.2).
(b) The proof of the upper bound (4.5.4) is a repeat of the relevant part
of the proof of Theorem 2.2.30. In particular, fix a compact set Γ ⊂ X
and a δ > 0. Let Iδ be the δ-rate function associated with Λ̄∗, i.e.,
Iδ(x)�= min{Λ̄∗(x) − δ, 1/δ}. Then, for any x ∈ Γ, there exists a λx ∈ X ∗

such that
〈λx, x〉 − Λ̄(λx) ≥ Iδ(x) .

Since λx is a continuous functional, there exists a neighborhood of x, de-
noted Ax, such that

inf
y∈Ax

{〈λx, y〉 − 〈λx, x〉} ≥ −δ .

For any θ ∈ X ∗, by Chebycheff’s inequality,

με(Ax) ≤ E
[
e〈θ,Zε〉−〈θ,x〉

]
exp

(

− inf
y∈Ax

{〈θ, y〉 − 〈θ, x〉}
)

.

Substituting θ = λx/ε yields

ε log με(Ax) ≤ δ −
{

〈λx, x〉 − εΛμε

(
λx

ε

)}

.

A finite cover, ∪N
i=1Axi , can be extracted from the open cover ∪x∈ΓAx of

the compact set Γ. Therefore, by the union of events bound,

ε log με(Γ) ≤ ε log N + δ − min
i=1,...,N

{

〈λxi , xi〉 − εΛμε

(
λxi

ε

)}

.

Thus, by (4.5.1) and the choice of λx,

lim sup
ε→0

ε log με(Γ) ≤ δ − min
i=1,...,N

{〈λxi , xi〉 − Λ̄(λxi)}

≤ δ − min
i=1,...,N

Iδ(xi) .
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Moreover, xi ∈ Γ for each i, yielding the inequality

lim sup
ε→0

ε log με(Γ) ≤ δ − inf
x∈Γ

Iδ(x) .

The proof of the theorem is complete by taking δ → 0.

Exercise 4.5.5 An upper bound, valid for all ε, is developed in this exercise.
This bound may be made specific in various situations (c.f. Exercise 6.2.19).
(a) Let X be a Hausdorff topological vector space and V ⊂ X a compact,
convex set. Prove that for any ε > 0,

με(V ) ≤ exp
(

−1
ε

inf
x∈V

Λ∗
ε (x)

)

, (4.5.6)

where

Λ∗
ε (x) = sup

λ∈X∗

{

〈λ, x〉 − εΛμε

(
λ

ε

)}

.

Hint: Recall the following version of the min–max theorem ([Sio58], Theorem
4.2’). Let f(x, λ) be concave in λ and convex and lower semicontinuous in x.
Then

sup
λ∈X∗

inf
x∈V

f(x, λ) = inf
x∈V

sup
λ∈X∗

f(x, λ) .

To prove (4.5.6), first use Chebycheff’s inequality and then apply the min–max
theorem to the function

f(x, λ) = [〈λ, x〉 − εΛμε(λ/ε)].

(b) Suppose that E is a convex metric subspace of X (in a metric compatible
with the induced topology). Assume that all balls in E are convex, pre-compact
subsets of X . Show that for every measurable set A ∈ E ,

με(A) ≤ inf
δ>0

{

m(A, δ) exp
(

−1
ε

inf
x∈Aδ

Λ∗
ε (x)

) }

, (4.5.7)

where Aδ is the closed δ blowup of A, and m(A, δ) denotes the metric entropy
of A, i.e., the minimal number of balls of radius δ needed to cover A.

4.5.2 Convexity Considerations

The implications of the existence of an LDP with a convex rate function to
the structure of Λ and Λ∗ are explored here. Building on Varadhan’s lemma
and Theorem 4.5.3, it is first shown that when the quantities εΛμε(λ/ε)
are uniformly bounded (in ε) and an LDP holds with a good convex rate
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function, then εΛμε(·/ε) converges pointwise to Λ(·) and the rate function
equals Λ∗(·). Consequently, the assumptions of Lemma 4.1.21 together with
the exponential tightness of {με} and the uniform boundedness mentioned
earlier, suffice to establish the LDP with rate function Λ∗(·). Alternatively,
if the relation (4.5.15) between I and Λ∗ holds, then Λ∗(·) controls a weak
LDP even when Λ(λ) = ∞ for some λ and {με} are not exponentially tight.
This statement is the key to Cramér’s theorem at its most general.

Before proceeding with the attempt to identify the rate function of the
LDP as Λ∗(·), note that while Λ∗(·) is always convex by Theorem 4.5.3,
the rate function may well be non-convex. For example, such a situation
may occur when contractions using non-convex functions are considered.
However, it may be expected that I(·) is identical to Λ∗(·) when I(·) is
convex.

An instrumental tool in the identification of I as Λ∗ is the following
duality property of the Fenchel–Legendre transform, whose proof is deferred
to the end of this section.

Lemma 4.5.8 (Duality lemma) Let X be a locally convex Hausdorff top-
ological vector space. Let f : X → (−∞, ∞] be a lower semicontinuous,
convex function, and define

g(λ) = sup
x∈X

{〈λ, x〉 − f(x)} .

Then f(·) is the Fenchel–Legendre transform of g(·), i.e.,

f(x) = sup
λ∈X∗

{〈λ, x〉 − g(λ)} . (4.5.9)

Remark: This lemma has the following geometric interpretation. For every
hyperplane defined by λ, g(λ) is the largest amount one may push up the
tangent before it hits f(·) and becomes a tangent hyperplane. The duality
lemma states the “obvious result” that to reconstruct f(·), one only needs
to find the tangent at x and “push it down” by g(λ). (See Fig. 4.5.2.)

The first application of the duality lemma is in the following theorem,
where convex rate functions are identified as Λ∗(·).

Theorem 4.5.10 Let X be a locally convex Hausdorff topological vector
space. Assume that με satisfies the LDP with a good rate function I. Sup-
pose in addition that

Λ̄(λ)
�
= lim sup

ε→0
εΛμε(λ/ε) < ∞, ∀λ ∈ X ∗ . (4.5.11)
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Figure 4.5.1: Duality lemma.

Figure 4.5.2: Duality reconstruction. ci = f(xi) and xi is the point of
tangency of the line with slope λi to the graph of f(·).

(a) For each λ ∈ X ∗, the limit Λ(λ) = lim
ε→0

εΛμε(λ/ε) exists, is finite, and
satisfies

Λ(λ) = sup
x∈X

{〈λ, x〉 − I(x)} . (4.5.12)

(b) If I is convex, then it is the Fenchel–Legendre transform of Λ, namely,

I(x) = Λ∗(x)
�
= sup

λ∈X∗
{〈λ, x〉 − Λ(λ)} .

(c) If I is not convex, then Λ∗ is the affine regularization of I, i.e., Λ∗(·) ≤
I(·), and for any convex rate function f , f(·) ≤ I(·) implies f(·) ≤ Λ∗(·).
(See Fig. 4.5.3.)

Remark: The weak∗ topology on X ∗ makes the functions 〈λ, x〉 − I(x)
continuous in λ for all x ∈ X . By part (a), Λ(·) is lower semicontinuous
with respect to this topology, which explains why lower semicontinuity of
Λ(·) is necessary in Rockafellar’s lemma (Lemma 2.3.12).

Proof: (a) Fix λ ∈ X ∗ and γ > 1. By assumption, Λ̄(γλ) < ∞, and
Varadhan’s lemma (Theorem 4.3.1) applies for the continuous function
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Figure 4.5.3: Λ∗ as affine regularization of I.

λ : X → IR. Thus, Λ(λ) = limε→0 εΛμε(λ/ε) exists, and satisfies the
identity (4.5.12). By the assumption (4.5.11), Λ(·) < ∞ everywhere. Since
Λ(0) = 0 and Λ(·) is convex by part (a) of Theorem 4.5.3, it also holds that
Λ(λ) > −∞ everywhere.
(b) This is a direct consequence of the duality lemma (Lemma 4.5.8), ap-
plied to the lower semicontinuous, convex function I.
(c) The proof of this part of the theorem is left as Exercise 4.5.18.

Corollary 4.5.13 Suppose that both condition (4.5.11) and the assump-
tions of Lemma 4.1.21 hold for the family {με}, which is exponentially tight.
Then {με} satisfies in X the LDP with the good, convex rate function Λ∗.

Proof: By Lemma 4.1.21, {με} satisfies a weak LDP with a convex rate
function. As {με} is exponentially tight, it is deduced that it satisfies the
full LDP with a convex, good rate function. The corollary then follows from
parts (a) and (b) of Theorem 4.5.10.

Theorem 4.5.10 is not applicable when Λ(·) exists but is infinite at some
λ ∈ X ∗, and moreover, it requires the full LDP with a convex, good rate
function. As seen in the case of Cramér’s theorem in IR, these conditions
are not necessary. The following theorem replaces the finiteness conditions
on Λ by an appropriate inequality on open half-spaces. Of course, there is
a price to pay: The resulting Λ∗ may not be a good rate function and only
the weak LDP is proved.

Theorem 4.5.14 Suppose that {με} satisfies a weak LDP with a con-
vex rate function I(·), and that X is a locally convex, Hausdorff topo-
logical vector space. Assume that for each λ ∈ X ∗, the limits Λλ(t) =
limε→0 εΛμε(tλ/ε) exist as extended real numbers, and that Λλ(t) is a lower
semicontinuous function of t ∈ IR. Let Λ∗

λ(·) be the Fenchel–Legendre
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transform of Λλ(·), i.e.,

Λ∗
λ(z)

�
= sup

θ∈IR
{ θz − Λλ(θ) } .

If for every λ ∈ X ∗ and every a ∈ IR,

inf
{x:(〈λ,x〉−a)>0}

I(x) ≤ inf
z>a

Λ∗
λ(z) , (4.5.15)

then I(·) = Λ∗(·), and consequently, Λ∗ controls a weak LDP associated
with {με}.

Proof: Fix λ ∈ X ∗. By the inequality (4.5.15),

sup
x∈X

{〈λ, x〉 − I(x)} = sup
a∈IR

sup
{x:(〈λ,x〉−a)>0}

{〈λ, x〉 − I(x)}

≥ sup
a∈IR

{
a − inf

{x:(〈λ,x〉−a)>0}
I(x)

}
(4.5.16)

≥ sup
a∈IR

{
a − inf

z>a
Λ∗

λ(z)
}

= sup
z∈IR

{
z − Λ∗

λ(z)
}

.

Note that Λλ(·) is convex with Λλ(0) = 0 and is assumed lower semicontin-
uous. Therefore, it can not attain the value −∞. Hence, by applying the
duality lemma (Lemma 4.5.8) to Λλ : IR → (−∞,∞], it follows that

Λλ(1) = sup
z∈IR

{z − Λ∗
λ(z)} .

Combining this identity with (4.5.16) yields

sup
x∈X

{〈λ, x〉 − I(x)} ≥ Λλ(1) = Λ(λ) .

The opposite inequality follows by applying Lemma 4.3.4 to the continuous
linear functional λ ∈ X ∗. Thus, the identity (4.5.12) holds for all λ ∈ X ∗,
and the proof of the theorem is completed by applying the duality lemma
(Lemma 4.5.8) to the convex rate function I.

Proof of Lemma 4.5.8: Consider the sets X × IR and X ∗ × IR. Each of
these can be made into a locally convex, Hausdorff topological vector space
in the obvious way. If f is identically ∞, then g is identically −∞ and the
lemma trivially holds. Assume otherwise and define

E = {(x, α) ∈ X × IR : f(x) ≤ α} ,

E∗ = {(λ, β) ∈ X ∗ × IR : g(λ) ≤ β} .

Note that for any (λ, β) ∈ E∗ and any x ∈ X ,

f(x) ≥ 〈λ, x〉 − β .
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Therefore, it also holds that

f(x) ≥ sup
(λ,β)∈E∗

{〈λ, x〉 − β} = sup
λ∈X∗

{〈λ, x〉 − g(λ)} .

It thus suffices to show that for any (x, α) �∈ E (i.e., f(x) > α), there exists
a (λ, β) ∈ E∗ such that

〈λ, x〉 − β > α , (4.5.17)

in order to complete the proof of the lemma.

Since f is a lower semicontinuous function, the set E is closed (alter-
natively, the set Ec is open). Indeed, whenever f(x) > γ, there exists a
neighborhood V of x such that infy∈V f(y) > γ, and thus Ec contains a
neighborhood of (x, γ). Moreover, since f(·) is convex and not identically
∞, the set E is a non-empty convex subset of X × IR.

Fix (x, α) �∈ E . The product space X ×IR is locally convex and therefore,
by the Hahn–Banach theorem (Theorem B.6), there exists a hyperplane in
X × IR that strictly separates the non-empty, closed, and convex set E and
the point (x, α) in its complement. Hence, as the topological dual of X × IR
is X ∗ × IR, for some μ ∈ X ∗, ρ ∈ IR, and γ ∈ IR,

sup
(y,ξ)∈E

{〈μ, y〉 − ρξ} ≤ γ < 〈μ, x〉 − ρα .

In particular, since f is not identically ∞, it follows that ρ ≥ 0, for otherwise
a contradiction results when ξ → ∞. Moreover, by considering (y, ξ) =
(x, f(x)), the preceding inequality implies that ρ > 0 whenever f(x) < ∞.

Suppose first that ρ > 0. Then, (4.5.17) holds for the point (μ/ρ, γ/ρ).
This point must be in E∗, for otherwise there exists a y0 ∈ X such that
〈μ, y0〉 − ρf(y0) > γ, contradicting the previous construction of the sepa-
rating hyperplane (since (y0, f(y0)) ∈ E). In particular, since f(x) < ∞ for
some x ∈ X it follows that E∗ is non-empty.

Now suppose that ρ = 0 so that

sup
{y:f(y)<∞}

{〈μ, y〉 − γ} ≤ 0 ,

while 〈μ, x〉 − γ > 0. Consider the points

(λδ, βδ)
�
=

(μ

δ
+ λ0,

γ

δ
+ β0

)
, ∀δ > 0 ,

where (λ0, β0) is an arbitrary point in E∗. Then, for all y ∈ X ,

〈λδ, y〉 − βδ =
1
δ
(〈μ, y〉 − γ) + (〈λ0, y〉 − β0) ≤ f(y) .
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Therefore, (λδ, βδ) ∈ E∗ for any δ > 0. Moreover,

lim
δ→0

(〈λδ, x〉 − βδ) = lim
δ→0

{
1
δ
(〈μ, x〉 − γ) + (〈λ0, x〉 − β0)

}

= ∞ .

Thus, for any α < ∞, there exists δ > 0 small enough so that 〈λδ, x〉−βδ >
α. This completes the proof of (4.5.17) and of Lemma 4.5.8.

Exercise 4.5.18 Prove part (c) of Theorem 4.5.10.

Exercise 4.5.19 Consider the setup of Exercise 4.2.7, except that now X = Y
is a locally convex, separable, Hausdorff topological vector space. Let Zε =
Xε + Yε.
(a) Prove that if IX and IY are convex, then so is IZ .
(b) Deduce that if in addition, the condition (4.5.11) holds for both με—the
laws of Xε and νε—the laws of Yε, then IZ is the Fenchel–Legendre transform
of ΛX(·) + ΛY (·).

4.5.3 Abstract Gärtner–Ellis Theorem

Having seen a general upper bound in Section 4.5.1, we turn next to suffi-
cient conditions for the existence of a complementary lower bound. To this
end, recall that a point x ∈ X is called an exposed point of Λ̄∗ if there exists
an exposing hyperplane λ ∈ X ∗ such that

〈λ, x〉 − Λ̄∗(x) > 〈λ, z〉 − Λ̄∗(z) , ∀z �= x .

An exposed point of Λ̄∗ is, in convex analysis parlance, an exposed point of
the epigraph of Λ̄∗. For a geometrical interpretation, see Fig. 2.3.2.

Theorem 4.5.20 (Baldi) Suppose that {με} are exponentially tight prob-
ability measures on X .
(a) For every closed set F ⊂ X ,

lim sup
ε→0

ε log με(F ) ≤ − inf
x∈F

Λ̄∗(x) .

(b) Let F be the set of exposed points of Λ̄∗ with an exposing hyperplane λ
for which

Λ(λ) = lim
ε→0

εΛμε

(
λ

ε

)

exists and Λ̄(γλ) < ∞ for some γ > 1 . (4.5.21)

Then, for every open set G ⊂ X ,

lim inf
ε→0

ε log με(G) ≥ − inf
x∈G∩F

Λ̄∗(x) .
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(c) If for every open set G,

inf
x∈G∩F

Λ̄∗(x) = inf
x∈G

Λ̄∗(x) , (4.5.22)

then {με} satisfies the LDP with the good rate function Λ̄∗.

Proof: (a) The upper bound is a consequence of Theorem 4.5.3 and the
assumed exponential tightness.
(b) If Λ̄(λ) = −∞ for some λ ∈ X ∗, then Λ̄∗(·) ≡ ∞ and the large deviations
lower bound trivially holds. So, without loss of generality, it is assumed
throughout that Λ̄ : X ∗ → (−∞,∞]. Fix an open set G, an exposed point
y ∈ G ∩ F , and δ > 0 arbitrarily small. Let η be an exposing hyperplane
for Λ̄∗ at y such that (4.5.21) holds. The proof is now a repeat of the proof
of (2.3.13). Indeed, by the continuity of η, there exists an open subset of G,
denoted Bδ, such that y ∈ Bδ and

sup
z∈Bδ

{〈η, z − y〉} < δ .

Observe that Λ(η) < ∞ in view of (4.5.21). Hence, by (4.5.1), Λμε(η/ε) <
∞ for all ε small enough. Thus, for all ε > 0 small enough, define the
probability measures μ̃ε via

dμ̃ε

dμε
(z) = exp

[〈η

ε
, z

〉
− Λμε

(η

ε

)]
. (4.5.23)

Using this definition,

ε log με(Bδ) = ε Λμε

(η

ε

)
− 〈η, y〉 + ε log

∫

z∈Bδ

exp
(〈η

ε
, y − z

〉)
μ̃ε(dz)

≥ εΛμε

(η

ε

)
− 〈η, y〉 − δ + ε log μ̃ε(Bδ) .

Therefore, by (4.5.21),

lim inf
ε→0

ε log με(G) ≥ lim
δ→0

lim inf
ε→0

ε log με(Bδ) (4.5.24)

≥ Λ(η) − 〈η, y〉 + lim
δ→0

lim inf
ε→0

ε log μ̃ε(Bδ)

≥ −Λ̄∗(y) + lim
δ→0

lim inf
ε→0

ε log μ̃ε(Bδ) .

Recall that {με} are exponentially tight, so for each α < ∞, there exists a
compact set Kα such that

lim sup
ε→0

ε log με(Kc
α) < −α .
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If for all δ > 0 and all α < ∞,

lim sup
ε→0

ε log μ̃ε(Bc
δ ∩ Kα) < 0 , (4.5.25)

and for all α large enough,

lim sup
ε→0

ε log μ̃ε(Kc
α) < 0 , (4.5.26)

then μ̃ε(Bδ) → 1 when ε → 0 and part (b) of the theorem follows by (4.5.24),
since y ∈ G ∩ F is arbitrary.

To establish (4.5.25), let Λμ̃ε(·) denote the logarithmic moment gener-
ating function associated with the law μ̃ε. By the definition (4.5.23), for
every θ ∈ X ∗,

εΛμ̃ε

(
θ

ε

)

= εΛμε

(
θ + η

ε

)

− εΛμε

(η

ε

)
.

Hence, by (4.5.1) and (4.5.21),

Λ̃(θ)
�
= lim sup

ε→0
εΛμ̃ε

(
θ

ε

)

= Λ̄(θ + η) − Λ(η) .

Let Λ̃∗ denote the Fenchel–Legendre transform of Λ̃. It follows that for all
z ∈ X ,

Λ̃∗(z) = Λ̄∗(z) + Λ(η) − 〈η, z〉 ≥ Λ̄∗(z) − Λ̄∗(y) − 〈η, z − y〉 .

Since η is an exposing hyperplane for Λ̄∗ at y, this inequality implies that
Λ̃∗(z) > 0 for all z �= y. Theorem 4.5.3, applied to the measures μ̃ε and the
compact sets Bc

δ ∩ Kα, now yields

lim sup
ε→0

ε log μ̃ε(Bc
δ ∩ Kα) ≤ − inf

z∈Bc
δ
∩Kα

Λ̃∗(z) < 0 ,

where the strict inequality follows because Λ̃∗(·) is a lower semicontinuous
function and y ∈ Bδ.

Turning now to establish (4.5.26), consider the open half-spaces

Hρ = {z ∈ X : 〈η, z〉 − ρ < 0} .

By Chebycheff’s inequality, for any β > 0,

ε log μ̃ε(Hc
ρ) = ε log

∫

{z:〈η,z〉≥ρ}
μ̃ε(dz)

≤ ε log
[∫

X
exp

(
β〈η, z〉

ε

)

μ̃ε(dz)
]

− βρ

= εΛμ̃ε

(
βη

ε

)

− βρ .
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Hence,
lim sup

ε→0
ε log μ̃ε(Hc

ρ) ≤ inf
β>0

{Λ̃(βη) − βρ} .

Due to condition (4.5.21), Λ̃(βη) < ∞ for some β > 0, implying that for
large enough ρ,

lim sup
ε→0

ε log μ̃ε(Hc
ρ) < 0 .

Now, for every α and every ρ > 0,

lim sup
ε→0

ε log μ̃ε(Kc
α ∩ Hρ)

= lim sup
ε→0

ε log
∫

Kc
α∩Hρ

exp
[〈η

ε
, z

〉
− Λμε

(η

ε

)]
με(dz)

< ρ − Λ(η) − α .

Finally, (4.5.26) follows by combining the two preceding inequalities.
(c) Starting with (4.5.22), the LDP is established by combining parts (a)
and (b).

In the following corollary, the smoothness of Λ(·) yields the identity
(4.5.22) for exponentially tight probability measures on a Banach space,
resulting in the LDP. Its proof is based on a theorem of Brønsted and
Rockafellar whose proof is not reproduced here. Recall that a function
f : X ∗ → IR is Gateaux differentiable if, for every λ, θ ∈ X ∗, the function
f(λ + tθ) is differentiable with respect to t at t = 0.

Corollary 4.5.27 Let {με} be exponentially tight probability measures on
the Banach space X . Suppose that Λ(·) = limε→0 εΛμε(·/ε) is finite valued,
Gateaux differentiable, and lower semicontinuous in X ∗ with respect to the
weak∗ topology. Then {με} satisfies the LDP with the good rate function
Λ∗.

Remark: For a somewhat stronger version, see Corollary 4.6.14.

Proof: By Baldi’s theorem (Theorem 4.5.20), it suffices to show that for
any x ∈ DΛ∗ , there exists a sequence of exposed points xk such that xk → x
and Λ∗(xk) → Λ∗(x). Let λ ∈ ∂Λ∗(x) iff

〈λ, x〉 − Λ∗(x) = sup
z∈X

{〈λ, z〉 − Λ∗(z)} ,

and define
dom ∂Λ∗�={x : ∃λ ∈ ∂Λ∗(x)} .

Note that it may be assumed that the convex, lower semicontinuous
function Λ∗ : X → [0,∞] is proper (i.e., DΛ∗ is not empty). Therefore,
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by the Brønsted–Rockafellar theorem (see [BrR65], Theorem 2), for every
x ∈ DΛ∗ , there exists a sequence xk → x such that xk ∈ dom ∂Λ∗ and
Λ∗(xk) → Λ∗(x).

It is therefore enough to prove that when Λ is Gateaux differentiable
and weak∗ lower semicontinuous, any point in dom ∂Λ∗ is also an exposed
point. To this end, fix x ∈ dom∂Λ∗ and λ ∈ ∂Λ∗(x). Observe that X ∗ when
equipped with the weak∗ topology is a locally convex, Hausdorff topological
vector space with X being its topological dual. Hence, it follows by apply-
ing the duality lemma (Lemma 4.5.8) for the convex, lower semicontinuous
function Λ : X ∗ → IR that

Λ(λ) = sup
z∈X

{〈λ, z〉 − Λ∗(z)} = 〈λ, x〉 − Λ∗(x) .

Therefore, for any t > 0, and any θ ∈ X ∗,

〈θ, x〉 ≤ 1
t
[Λ(λ + tθ) − Λ(λ)] .

Thus, by the Gateaux differentiability of Λ, it follows that

〈θ, x〉 ≤ lim
t↘0

1
t
[Λ(λ + tθ) − Λ(λ)]

�
=DΛ(θ) .

Moreover, DΛ(θ) = −DΛ(−θ), and consequently 〈θ, x〉 = DΛ(θ) for all
θ ∈ X ∗. Similarly, if there exists y ∈ X , y �= x, such that

〈λ, x〉 − Λ∗(x) = 〈λ, y〉 − Λ∗(y) ,

then, by exactly the same argument, 〈θ, y〉 = DΛ(θ) for all θ ∈ X ∗. Since
〈θ, x − y〉 = 0 for all θ ∈ X ∗, it follows that x = y. Hence, x is an exposed
point and the proof is complete.

4.6 Large Deviations for Projective Limits

In this section, we develop a method of lifting a collection of LDPs in
“small” spaces into the LDP in the “large” space X , which is their projec-
tive limit. (See definition below.) The motivation for such an approach is
as follows. Suppose we are interested in proving the LDP associated with
a sequence of random variables X1, X2, . . . in some abstract space X . The
identification of X ∗ (if X is a topological vector space) and the computa-
tion of the Fenchel–Legendre transform of the moment generating function
may involve the solution of variational problems in an infinite dimensional
setting. Moreover, proving exponential tightness in X , the main tool of get-
ting at the upper bound, may be a difficult task. On the other hand, the
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evaluation of the limiting logarithmic moment generating function involves
probabilistic computations at the level of real-valued random variables, al-
beit an infinite number of such computations. It is often relatively easy
to derive the LDP for every finite collection of these real-valued random
variables. Hence, it is reasonable to inquire if this implies that the laws of
the original, X -valued random variables satisfy the LDP.

An affirmative result is derived shortly in a somewhat abstract setting
that will serve us well in diverse situations. The idea is to identify X with
the projective limit of a family of spaces {Yj}j∈J with the hope that the
LDP for any given family {με} of probability measures on X follows as the
consequence of the fact that the LDP holds for any of the projections of με

to {Yj}j∈J .

To make the program described precise, we first review a few standard
topological definitions. Let (J,≤) be a partially ordered, right-filtering
set. (The latter notion means that for any i, j in J , there exists k ∈ J
such that both i ≤ k and j ≤ k.) Note that J need not be countable.
A projective system (Yj , pij)i≤j∈J consists of Hausdorff topological spaces
{Yj}j∈J and continuous maps pij : Yj → Yi such that pik = pij ◦ pjk

whenever i ≤ j ≤ k ({pjj}j∈J are the appropriate identity maps). The
projective limit of this system, denoted by X = lim←−Yj , is the subset of
the topological product space Y =

∏
j∈J Yj , consisting of all the elements

x = (yj)j∈J for which yi = pij(yj) whenever i ≤ j, equipped with the
topology induced by Y . Projective limits of closed subsets Fj ⊆ Yj are
defined analogously and denoted F = lim←−Fj . The canonical projections of
X , which are the restrictions pj : X → Yj of the coordinate maps from Y
to Yj , are continuous. Some properties of projective limits are recalled in
Appendix B.

The following theorem yields the LDP in X as a consequence of the
LDPs associated with {με ◦ p−1

j , ε > 0}. In order to have a specific example
in mind, think of X as the space of all maps f : [0, 1] → IR such that
f(0) = 0, equipped with the topology of pointwise convergence. Then
pj : X → IRd is the projection of functions onto their values at the time
instances 0 ≤ t1 < t2 < · · · < td ≤ 1, with the partial ordering induced on
the set J = ∪∞

d=1{(t1, . . . , td) : 0 ≤ t1 < t2 < · · · < td ≤ 1} by inclusions.
For details of this construction, see Section 5.1.

Theorem 4.6.1 (Dawson–Gärtner) Let {με} be a family of probability
measures on X , such that for any j ∈ J the Borel probability measures
με ◦ p−1

j on Yj satisfy the LDP with the good rate function Ij(·). Then {με}
satisfies the LDP with the good rate function

I(x) = sup
j∈J

{ Ij(pj(x)) } , x ∈ X . (4.6.2)
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Remark: Throughout this section, we drop the blanket assumption that
BX ⊆ B. This is natural in view of the fact that the set J need not be
countable. It is worthwhile to note that B is required to contain all sets
p−1

j (Bj), where Bj ∈ BYj .

Proof: Clearly, I(x) is nonnegative. For any α ∈ [0,∞) and j ∈ J , let
ΨIj (α) denote the compact level set of Ij , i.e., ΨIj (α)�={yj : Ij(yj) ≤ α}.
Recall that for any i ≤ j ∈ J , pij : Yj → Yi is a continuous map and
με ◦ p−1

i = (με ◦ p−1
j ) ◦ p−1

ij . Hence, by the contraction principle (Theorem
4.2.1), Ii(yi) = infyj∈p−1

ij
(yi)

Ij(yj), or alternatively, ΨIi(α) = pij(ΨIj (α)).
Therefore,

ΨI(α) = X ∩
∏

j∈J

ΨIj (α) = lim←−ΨIj (α) , (4.6.3)

and I(x) is a good rate function, since by Tychonoff’s theorem (Theorem
B.3), the projective limit of compact subsets of Yj , j ∈ J , is a compact
subset of X .

In order to prove the large deviations lower bound, it suffices to show
that for every measurable set A ⊂ X and each x ∈ Ao, there exists a j ∈ J
such that

lim inf
ε→0

ε log με(A) ≥ −Ij(pj(x)) .

Since the collection {p−1
j (Uj) : Uj ⊂ Yj is open} is a base of the topology

of X , there exists some j ∈ J and an open set Uj ⊂ Yj such that x ∈
p−1

j (Uj) ⊂ Ao. Thus, by the large deviations lower bound for {με ◦ p−1
j },

lim inf
ε→0

ε log με(A) ≥ lim inf
ε→0

ε log(με ◦ p−1
j (Uj) )

≥ − inf
y∈Uj

Ij(y) ≥ −Ij(pj(x)) ,

as desired.

Considering the large deviations upper bound, fix a measurable set A ⊂
X and let Aj

�
=pj(A ). Then, Ai = pij(Aj) for any i ≤ j, implying that

pij(Aj) ⊆ Ai (since pij are continuous). Hence, A ⊆ lim←−Aj . To prove the
converse inclusion, fix x ∈ (A)c. Since (A)c is an open subset of X , there
exists some j ∈ J and an open set Uj ⊆ Yj such that x ∈ p−1

j (Uj) ⊆ (A)c.
Consequently, for this value of j, pj(x) ∈ Uj ⊆ Ac

j , implying that pj(x) /∈
Aj . Hence,

A = lim←−Aj . (4.6.4)

Combining this identity with (4.6.3), it follows that for every α < ∞,

A ∩ ΨI(α) = lim←−
(
Aj ∩ ΨIj (α)

)
.
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Fix α < infx∈A I(x), for which A ∩ ΨI(α) = ∅. Then, by Theorem B.4,
Aj ∩ ΨIj (α) = ∅ for some j ∈ J . Therefore, as A ⊆ p−1

j (Aj ), by the LDP
upper bound associated with the Borel measures {με ◦ p−1

j },

lim sup
ε→0

ε log με(A) ≤ lim sup
ε→0

ε log με ◦ p−1
j (Aj) ≤ −α .

This inequality holds for every measurable A and α < ∞ such that A ∩
ΨI(α) = ∅. Consequently, it yields the LDP upper bound for {με}.

The following lemma is often useful for simplifying the formula (4.6.2)
of the Dawson–Gärtner rate function.

Lemma 4.6.5 If I(·) is a good rate function on X such that

Ij(y) = inf{I(x) : x ∈ X , y = pj(x)} , (4.6.6)

for any y ∈ Yj, j ∈ J , then the identity (4.6.2) holds.

Proof: Fix α ∈ [0,∞) and let A denote the compact level set ΨI(α). Since
pj : X → Yj is continuous for any j ∈ J , by (4.6.6) Aj

�
=ΨIj (α) = pj(A)

is a compact subset of Yj . With Ai = pij(Aj) for any i ≤ j, the set
{x : supj∈J Ij(pj(x)) ≤ α} is the projective limit of the closed sets Aj , and
as such it is merely the closed set A = ΨI(α) (see (4.6.4)). The identity
(4.6.2) follows since α ∈ [0,∞) is arbitrary.

The preceding theorem is particularly suitable for situations involving
topological vector spaces that satisfy the following assumptions.

Assumption 4.6.7 Let W be an infinite dimensional real vector space,
and W ′ its algebraic dual, i.e., the space of all linear functionals λ �→
〈λ, x〉 : W → IR. The topological (vector) space X consists of W ′ equipped
with the W-topology, i.e., the weakest topology such that for each λ ∈ W,
the linear functional x �→ 〈λ, x〉 : X → IR is continuous.

Remark: The W-topology of W ′ makes W into the topological dual of X ,
i.e., W = X ∗.

For any d ∈ ZZ+ and λ1, . . . , λd ∈ W , define the projection pλ1,...,λd
:

X → IRd by pλ1,...,λd
(x) = (〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉) .

Assumption 4.6.8 Let (X ,B, με) be probability spaces such that:
(a) X satisfies Assumption 4.6.7.
(b) For any λ ∈ W and any Borel set B in IR, p−1

λ (B) ∈ B.

Remark: Note that if {με} are Borel measures, then Assumption 4.6.8
reduces to Assumption 4.6.7.
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Theorem 4.6.9 Let Assumption 4.6.8 hold. Further assume that for every
d ∈ ZZ+ and every λ1, . . . , λd ∈ W, the measures {με ◦ p−1

λ1,...,λd
, ε > 0}

satisfy the LDP with the good rate function Iλ1,...,λd
(·). Then {με} satisfies

the LDP in X , with the good rate function

I(x) = sup
d∈ZZ+

sup
λ1,...,λd∈W

Iλ1,...,λd
((〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉)) . (4.6.10)

Remark: In most applications, one is interested in obtaining an LDP on E
that is a non-closed subset of X . Hence, the relatively effortless projective
limit approach is then followed by an application specific check that DI ⊂
E , as needed for Lemma 4.1.5. For example, in the study of empirical
measures on a Polish space Σ, it is known a priori that με(M1(Σ)) = 1 for
all ε > 0, where M1(Σ) is the space of Borel probability measures on Σ,
equipped with the B(Σ)-topology, and B(Σ) = {f : Σ → IR, f bounded,
Borel measurable}. Identifying each ν ∈ M1(Σ) with the linear functional
f �→

∫
Σ

fdν, ∀f ∈ B(Σ), it follows that M1(Σ) is homeomorphic to E ⊂ X ,
where here X denotes the algebraic dual of B(Σ) equipped with the B(Σ)-
topology. Thus, X satisfies Assumption 4.6.7, and E is not a closed subset
of X . It is worthwhile to note that in this setup, με is not necessarily a
Borel probability measure.

Proof: Let V be the system of all finite dimensional linear subspaces
of W, equipped with the partial ordering defined by inclusion. To each
V ∈ V, attach its (finite dimensional) algebraic dual V ′ equipped with the
V -topology. The latter are clearly Hausdorff topological spaces. For any
V ⊆ U and any linear functional f : U → IR, let pV,U(f) : V → IR be
the restriction of f on the subspace V . The projections pV,U : U ′ → V ′

thus defined are continuous, and compatible with the inclusion ordering of
V. Let X̃ be the projective limit of the system (V ′, pV,U). Consider the
map x �→ x̃ = (pV (x)) ∈ X̃ , where for each V ∈ V, pV (x) ∈ V ′ is the
linear functional λ �→ 〈λ, x〉, ∀λ ∈ V . This map is a bijection between
W ′ and X̃ , since the consistency conditions in the definition of X̃ imply
that any x̃ ∈ X̃ is determined by its values on the one-dimensional lin-
ear subspaces of W, and any such collection of values determines a point
in X̃ . By Assumption 4.6.7, X consists of the vector space W ′ equipped
with the W-topology that is generated by the sets {x : |〈λ, x〉 − ρ| < δ}
for λ ∈ W, ρ ∈ IR, δ > 0. It is not hard to check that the image of these
sets under the map x �→ x̃ generates the projective topology of X̃ . Con-
sequently, this map is a homeomorphism between X and X̃ . Hence, if for
every V ∈ V, {με ◦ p−1

V , ε > 0} satisfies the LDP in V ′ with the good rate
function IV (·), then by Theorem 4.6.1, {με} satisfies the LDP in X with the
good rate function supV ∈V IV (pV (·)).
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Fix d ∈ ZZ+ and V ∈ V, a d-dimensional linear subspace of W. Let
λ1, . . . , λd be any algebraic base of V . Observe that the map f �→ (f(λ1),
. . . , f(λd)) is a homeomorphism between V ′ and IRd under which the image
of pV (x) ∈ V ′ is pλ1,...,λd

(x) = (〈λ1, x〉, . . . , 〈λd, x〉) ∈ IRd. Consequently, by
our assumptions, the family of Borel probability measures {με ◦ p−1

V , ε > 0}
satisfies the LDP in V ′, and moreover, IV (pV (x)) = Iλ1,...,λd

((〈λ1, x〉, . . . ,
〈λd, x〉)). The proof is complete, as the preceding holds for every V ∈ V,
while because of the contraction principle (Theorem 4.2.1), there is no need
to consider only linearly independent λ1, . . . , λd in (4.6.10).

When using Theorem 4.6.9, either the convexity of Iλ1,...,λd
(·) or the

existence and smoothness of the limiting logarithmic moment generating
function Λ(·) are relied upon in order to identify the good rate function
of (4.6.10) with Λ∗(·), in a manner similar to that encountered in Section
4.5.2. This is spelled out in the following corollary.

Corollary 4.6.11 Let Assumption 4.6.8 hold.
(a) Suppose that for each λ ∈ W, the limit

Λ(λ) = lim
ε→0

ε log
∫

X
eε−1〈λ,x〉με(dx) (4.6.12)

exists as an extended real number, and moreover that for any d ∈ ZZ+ and
any λ1, . . . , λd ∈ W, the function

g((t1, . . . , td))
�
=Λ(

d∑

i=1

tiλi) : IRd → (−∞,∞]

is essentially smooth, lower semicontinuous, and finite in some neighborhood
of 0.
Then {με} satisfies the LDP in (X ,B) with the convex, good rate function

Λ∗(x) = sup
λ∈W

{〈λ, x〉 − Λ(λ)} . (4.6.13)

(b) Alternatively, if for any λ1, . . . , λd ∈ W, there exists a compact set
K ⊂ IRd such that με ◦p−1

λ1,...,λd
(K) = 1, and moreover {με ◦p−1

λ1,...,λd
, ε > 0}

satisfies the LDP with a convex rate function, then Λ : W → IR exists, is
finite everywhere, and {με} satisfies the LDP in (X ,B) with the convex,
good rate function Λ∗(·) as defined in (4.6.13).

Remark: Since X satisfies Assumption 4.6.7, the only continuous linear
functionals on X are of the form x �→ 〈λ, x〉, where λ ∈ W. Consequently,
X ∗ may be identified with W, and Λ∗(·) is the Fenchel–Legendre transform
of Λ(·) as defined in Section 4.5.
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Proof: (a) Fix d ∈ ZZ+ and λ1, . . . , λd ∈ W. Note that the limiting loga-
rithmic moment generating function associated with {με ◦ p−1

λ1,...,λd
, ε > 0}

is g((t1, . . . , td)). Hence, by our assumptions, the Gärtner–Ellis theorem
(Theorem 2.3.6) implies that these measures satisfy the LDP in IRd with
the good rate function Iλ1,...,λd

= g∗ : IRd → [0,∞], where

Iλ1,...,λd
((〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉))

= sup
t1,...,td∈IR

{ d∑

i=1

ti〈λi, x〉 − Λ
( d∑

i=1

tiλi

)}
.

Consequently, for every x ∈ X ,

Iλ1,...,λd
((〈λ1, x〉, 〈λ2, x〉, . . . , 〈λd, x〉)) ≤ Λ∗(x) = sup

λ∈W
Iλ(〈λ, x〉) .

Since the preceding holds for every λ1, . . . , λd ∈ W, the LDP of {με} with
the good rate function Λ∗(·) is a direct consequence of Theorem 4.6.9.
(b) Fix d ∈ ZZ+ and λ1, . . . , λd ∈ W . Since με ◦ p−1

λ1,...,λd
are supported on

a compact set K, they satisfy the boundedness condition (4.5.11). Hence,
by our assumptions, Theorem 4.5.10 applies. It then follows that the limit-
ing moment generating function g(·) associated with {με ◦ p−1

λ1,...,λd
, ε > 0}

exists, and the LDP for these probability measures is controlled by g∗(·).
With Iλ1,...,λd

= g∗ for any λ1, . . . , λd ∈ W, the proof is completed as in
part (a).

The following corollary of the projective limit approach is a somewhat
stronger version of Corollary 4.5.27.

Corollary 4.6.14 Let {με} be an exponentially tight family of Borel prob-
ability measures on the locally convex Hausdorff topological vector space E.
Suppose Λ(·) = limε→0 εΛμε(·/ε) is finite valued and Gateaux differentiable.
Then {με} satisfies the LDP in E with the convex, good rate function Λ∗.

Proof: Let W be the topological dual of E . Suppose first that W is an
infinite dimensional vector space, and define X according to Assumption
4.6.7. Let i : E → X denote the map x �→ i(x), where i(x) is the linear func-
tional λ �→ 〈λ, x〉, ∀λ ∈ W. Since E is a locally convex topological vector
space, by the Hahn–Banach theorem, W is separating. Therefore, E when
equipped with the weak topology is Hausdorff, and i is a homeomorphism
between this topological space and i(E) ⊂ X . Consequently, {με ◦ i−1}
are Borel probability measures on X such that με ◦ i−1(i(E)) = 1 for all
ε > 0. All the conditions in part (a) of Corollary 4.6.11 hold for {με ◦ i−1},
since we assumed that Λ : W → IR exists, and is a finite valued, Gateaux
differentiable function. Hence, {με ◦ i−1} satisfies the LDP in X with the
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convex, good rate function Λ∗(·). Recall that i : E → X is a continuous
injection with respect to the weak topology on E , and hence it is also con-
tinuous with respect to the original topology on E . Now, the exponential
tightness of {με}, Theorem 4.2.4, and the remark following it, imply that
{με} satisfies the LDP in E with the good rate function Λ∗(·).

We now turn to settle the (trivial) case where W is a d-dimensional
vector space for some d < ∞. Observe that then X is of the same dimension
as W. The finite dimensional topological vector space X can be represented
as IRd. Hence, our assumptions about the function Λ(·) imply the LDP in
X associated with {με ◦ i−1} by a direct application of the Gärtner–Ellis
theorem (Theorem 2.3.6). The LDP (in E) associated with {με} follows
exactly as in the infinite dimensional case.

Exercise 4.6.15 Suppose that all the conditions of Corollary 4.6.14 hold ex-
cept for the exponential tightness of {με}. Prove that {με} satisfies a weak
LDP with respect to the weak topology on E , with the rate function Λ∗(·)
defined in (4.6.13).
Hint: Follow the proof of the corollary and observe that the LDP of {με ◦ i−1}
in X still holds. Note that if K ⊂ E is weakly compact, then i(K) ⊂ i(E) is a
compact subset of X .

4.7 The LDP and Weak Convergence in
Metric Spaces

Throughout this section (X , d) is a metric space and all probability measures
are Borel. For δ > 0, let

Aδ,o�={y : d(y,A)�= inf
z∈A

d(y, z) < δ} (4.7.1)

denote the open blowups of A (compare with (4.1.8)), with A−δ = ((Ac)δ,o)c

a closed set (possibly empty). The proof of the next lemma which summa-
rizes immediate relations between these sets is left as Exercise 4.7.18.

Lemma 4.7.2 For any δ > 0, η > 0 and Γ ⊂ X
(a) (Γ−δ)δ,o ⊂ Γ ⊂ (Γδ,o)−δ.
(b) Γ−(δ+η) ⊂ (Γ−δ)−η and (Γδ,o)η,o ⊂ Γ(δ+η),o.
(c) G−δ increases to G for any open set G and F δ,o decreases to F for any
closed set F .
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Let Q(X ) denote the collection of set functions ν : BX → [0, 1] such
that:

(a) ν(∅) = 0.

(b) ν(Γ) = inf{ν(G) : Γ ⊂ G open} for any Γ ∈ BX .

(c) ν(∪∞
i=1Γi) ≤

∑∞
i=1 ν(Γi) for any Γi ∈ BX .

(d) ν(G) = limδ→0 ν(G−δ) for any open set G ⊂ X .

Condition (b) implies the monotonicity property ν(A) ≤ ν(B) whenever
A ⊂ B.

The following important subset of Q(X ) represents the rate functions.

Definition 4.7.3 A set function ν : BX → [0, 1] is called a sup-measure if
ν(Γ) = supy∈Γ ν({y}) for any Γ ∈ BX and ν({y}) is an upper semicontinu-
ous function of y ∈ X . With a sup-measure ν uniquely characterized by the
rate function I(y) = − log ν({y}), we adopt the notation ν = e−I .

The next lemma explains why Q(X ) is useful for exploring similarities
between the LDP and the well known theory of weak convergence of prob-
ability measures.

Lemma 4.7.4 Q(X ) contains all sup-measures and all set functions of the
form με for μ a probability measure on X and ε ∈ (0, 1].

Proof: Conditions (a) and (c) trivially hold for any sup-measure. Since
any point y in an open set G is also in G−δ for some δ = δ(y) > 0, all sup-
measures satisfy condition (d). For (b), let ν({y}) = e−I(y). Fix Γ ∈ BX
and G(x, δ) as in (4.1.3), such that

eδν({x}) = e−(I(x)−δ) ≥ e− infy∈G(x,δ) I(y) = sup
y∈G(x,δ)

ν({y}) .

It follows that for the open set Gδ = ∪x∈ΓG(x, δ),

eδν(Γ) = eδ sup
x∈Γ

ν({x}) ≥ sup
y∈Gδ

ν({y}) = ν(Gδ) .

Taking δ → 0, we have condition (b) holding for an arbitrary Γ ∈ BX .

Turning to the second part of the lemma, note that conditions (a)–(d)
hold when ν is a probability measure. Suppose next that ν(·) = f(μ(·))
for a probability measure μ and f ∈ Cb([0, 1]) non-decreasing such that
f(0) = 0 and f(p + q) ≤ f(p) + f(q) for 0 ≤ p ≤ 1 − q ≤ 1. By induction,
f(

∑k
i=1 pi) ≤

∑k
i=1 f(pi) for all k ∈ ZZ+ and non-negative pi such that

∑k
i=1 pi ≤ 1. The continuity of f(·) at 0 extends this property to k =
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∞. Therefore, condition (c) holds for ν by the subadditivity of μ and
monotonicity of f(·). The set function ν inherits conditions (b) and (d)
from μ by the continuity and monotonicity of f(·). Similarly, it inherits
condition (a) because f(0) = 0. In particular, this applies to f(p) = pε for
all ε ∈ (0, 1].

The next definition of convergence in Q(X ) coincides by the Portman-
teau theorem with weak convergence when restricted to probability mea-
sures νε, ν0 (see Theorem D.10 for X Polish).

Definition 4.7.5 νε → ν0 in Q(X ) if for any closed set F ⊂ X

lim sup
ε→0

νε(F ) ≤ ν0(F ) , (4.7.6)

and for any open set G ⊂ X ,

lim inf
ε→0

νε(G) ≥ ν0(G) . (4.7.7)

For probability measures νε, ν0 the two conditions (4.7.6) and (4.7.7) are
equivalent. However, this is not the case in general. For example, if ν0(·) ≡ 0
(an element of Q(X )), then (4.7.7) holds for any νε but (4.7.6) fails unless
νε(X ) → 0.

For a family of probability measures {με}, the convergence of νε = με
ε

to a sup-measure ν0 = e−I is exactly the LDP statement (compare (4.7.6)
and (4.7.7) with (1.2.12) and (1.2.13), respectively).

With this in mind, we next extend the definition of tightness and uniform
tightness from M1(X ) to Q(X ) in such a way that a sup-measure ν = e−I is
tight if and only if the corresponding rate function is good, and exponential
tightness of {με} is essentially the same as uniform tightness of the set
functions {με

ε}.

Definition 4.7.8 A set function ν ∈ Q(X ) is tight if for each η > 0,
there exists a compact set Kη ⊂ X such that ν(Kc

η) < η. A collection
{νε} ⊂ Q(X ) is uniformly tight if the set Kη may be chosen independently
of ε.

The following lemma provides a useful consequence of tightness in Q(X ).

Lemma 4.7.9 If ν ∈ Q(X ) is tight, then for any Γ ∈ BX ,

ν(Γ) = lim
δ→0

ν(Γδ,o) . (4.7.10)
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Remark: For sup-measures this is merely part (b) of Lemma 4.1.6.

Proof: Fix a non-empty set Γ ∈ BX , η > 0 and a compact set K = Kη for
which ν(Kc

η) < η. For any open set G ⊂ X such that Γ ⊂ G, either K ⊂ G

or else the non-empty compact set K ∩Gc and the closed set Γ are disjoint,
with infx∈K∩Gc d(x,Γ) > 0. In both cases, Γδ,o ∩ K = Γ

δ,o ∩ K ⊂ G for
some δ > 0, and by properties (b), (c) and monotonicity of set functions in
Q(X ),

ν(Γ) = inf{ν(G) : Γ ⊂ G open } ≥ lim
δ→0

ν(Γδ,o ∩ K)

≥ lim
δ→0

ν(Γδ,o) − η ≥ ν(Γ) − η .

The limit as η → 0 yields (4.7.10).

For ν̃, ν ∈ Q(X ), let

ρ(ν̃, ν)
�
= inf{δ > 0 : ν̃(F ) ≤ ν(F δ,o) + δ ∀ F ⊂ X closed,

ν̃(G) ≥ ν(G−δ) − δ ∀G ⊂ X open } (4.7.11)

When ρ(·, ·) is restricted to M1(X ) × M1(X ), it coincides with the Lévy
metric (see Theorem D.8). Indeed, in this special case, if δ > 0 is such that
ν̃(F ) ≤ ν(F δ,o) + δ for a closed set F ⊂ X , then ν̃(G) ≥ ν((F δ,o)c) − δ =
ν(G−δ) − δ for the open set G = F c.

The next theorem shows that in analogy with the theory of weak con-
vergence, (Q(X ), ρ) is a metric space for which convergence to a tight limit
point is characterized by Definition 4.7.5.

Theorem 4.7.12
(a) ρ(·, ·) is a metric on Q(X ).
(b) For ν0 tight, ρ(νε, ν0) → 0 if and only if νε → ν0 in Q(X ).

Remarks:
(a) By Theorem 4.7.12, the Borel probability measures {με} satisfy the LDP
in (X , d) with good rate function I(·) if and only if ρ(με

ε, e
−I) → 0.

(b) In general, one can not dispense of tightness of ν0 = e−I when relating
the ρ(νε, ν0) convergence to the LDP. Indeed, with μ1 a probability measure
on IR such that dμ1/dx = C/(1+ |x|2) it is easy to check that με(·)�=μ1(·/ε)
satisfies the LDP in IR with rate function I(·) ≡ 0 while considering the
open sets Gx = (x,∞) for x → ∞ we see that ρ(με

ε, e
−I) = 1 for all ε > 0.

(c) By part (a) of Lemma 4.7.2, F ⊂ G−δ for the open set G = F δ,o and
F δ,o ⊂ G for the closed set F = G−δ. Therefore, the monotonicity of the
set functions ν̃, ν ∈ Q(X ), results with

ρ(ν̃, ν) = inf{δ > 0 : ν̃(F ) ≤ ν(F δ,o) + δ and (4.7.13)
ν(F ) ≤ ν̃(F δ,o) + δ ∀F ⊂ X closed }.
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Proof: (a) The alternative definition (4.7.13) of ρ shows that it is a non-
negative, symmetric function, such that ρ(ν, ν) = 0 (by the monotonicity
of set functions in Q(X )). If ρ(ν̃, ν) = 0, then by (4.7.11), for any open set
G ⊂ X ,

ν̃(G) ≥ lim sup
δ→0

[ν(G−δ) − δ] = ν(G)

(see property (d) of set functions in Q(X )). Since ρ is symmetric, by same
reasoning also ν(G) ≥ ν̃(G), so that ν̃(G) = ν(G) for every open set G ⊂ X .
Thus, by property (b) of set functions in Q(X ) we conclude that ν̃ = ν.

Fix ν̃, ν, ω ∈ Q(X ) and δ > ρ(ν̃, ω), η > ρ(ω, ν). Then, by (4.7.11) and
part (b) of Lemma 4.7.2, for any closed set F ⊂ X ,

ν̃(F ) ≤ ω(F δ,o) + δ ≤ ν((F δ,o)η,o) + δ + η ≤ ν(F (δ+η),o) + δ + η .

By symmetry of ρ we can reverse the roles of ν̃ and ν, hence concluding by
(4.7.13) that ρ(ν̃, ν) ≤ δ + η. Taking δ → ρ(ν̃, ω) and η → ρ(ω, ν) we have
the triangle inequality ρ(ν̃, ν) ≤ ρ(ν̃, ω) + ρ(ω, ν).

(b) Suppose ρ(νε, ν0) → 0 for tight ν0 ∈ Q(X ). By (4.7.11), for any open
set G ⊂ X ,

lim inf
ε→0

νε(G) ≥ lim
δ→0

(ν0(G−δ) − δ) = ν0(G) ,

yielding the lower bound (4.7.7). Similarly, by (4.7.11) and Lemma 4.7.9,
for any closed set F ⊂ X

lim sup
ε→0

νε(F ) ≤ lim
δ→0

ν0(F δ,o) = ν0(F ) .

Thus, the upper bound (4.7.6) holds for any closed set F ⊂ X and so
νε → ν0.

Suppose now that νε → ν0 for tight ν0 ∈ Q(X ). Fix η > 0 and a compact
set K = Kη such that ν0(Kc) < η. Extract a finite cover of K by open
balls of radius η/2, each centered in K. Let {Γi; i = 0, . . . , M} be the finite
collection of all unions of elements of this cover, with Γ0 ⊃ K denoting the
union of all the elements of the cover. Since ν0(Γc

0) < η, by (4.7.6) also
νε(Γc

0) ≤ η for some ε0 > 0 and all ε ≤ ε0. For any closed set F ⊂ X there
exists an i ∈ {0, . . . ,M} such that

(F ∩ Γ0) ⊂ Γi ⊂ F 2η,o (4.7.14)

(take for Γi the union of those elements of the cover that intersect F ∩ Γ0).
Thus, for ε ≤ ε0, by monotonicity and subadditivity of νε, ν0 and by the
choice of K,

νε(F ) ≤ νε(F ∩ Γ0) + νε(Γc
0) ≤ max

0≤i≤M
{νε(Γi) − ν0(Γi)} + ν0(F 2η,o) + η.
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With ε0, M , and {Γi} independent of F , since νε → ν0, it thus follows that

lim sup
ε→0

sup
F closed

(νε(F ) − ν0(F 2η,o)) ≤ η. (4.7.15)

For an open set G ⊂ X , let F = G−2η and note that (4.7.14) still holds
with Γi replacing Γi. Hence, reverse the roles of ν0 and νε to get for all
ε ≤ ε0,

ν0(G−2η) ≤ max
0≤i≤M

{ν0(Γi) − νε(Γi)} + νε((G−2η)2η,o) + η. (4.7.16)

Recall that (G−2η)2η,o ⊂ G by Lemma 4.7.2. Hence, by (4.7.7), (4.7.16),
and monotonicity of νε

lim sup
ε→0

sup
G open

(ν0(G−2η) − νε(G)) ≤ η . (4.7.17)

Combining (4.7.15) and (4.7.17), we see that ρ(νε, ν0) ≤ 2η for all ε small
enough. Taking η → 0, we conclude that ρ(νε, ν0) → 0.

Exercise 4.7.18 Prove Lemma 4.7.2.

4.8 Historical Notes and References

A statement of the LDP in a general setup appears in various places, c.f.
[Var66, FW84, St84, Var84]. As mentioned in the historical notes referring
to Chapter 2, various forms of this principle in specific applications have
appeared earlier. The motivation for Theorem 4.1.11 and Lemma 4.1.21
comes from the analysis of [Rue67] and [Lan73].

Exercise 4.1.10 is taken from [LyS87]. Its converse, Lemma 4.1.23, is
proved in [Puk91]. In that paper and in its follow-up [Puk94a], Pukhalskii
derives many other parallels between exponential convergence in the form
of large deviations and weak convergence. Our exposition of Lemma 4.1.23
follows that of [deA97a]. Other useful criteria for exponential tightness
exist; see, for example, Theorem 3.1 in [deA85a].

The contraction principle was used by Donsker and Varadhan [DV76]
in their treatment of Markov chains empirical measures. Statements of
approximate contraction principles play a predominant role in Azencott’s
study of the large deviations for sample paths of diffusion processes [Aze80].
A general approximate contraction principle appears also in [DeuS89b].
The concept of exponentially good approximation is closely related to the
comparison principle of [BxJ88, BxJ96]. In particular, the latter motivates
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Exercises 4.2.29 and 4.2.30. For the extension of most of the results of
Section 4.2.2 to Y a completely regular topological space, see [EicS96]. Fi-
nally, the inverse contraction principle in the form of Theorem 4.2.4 and
Corollary 4.2.6 is taken from [Io91a].

The original version of Varadhan’s lemma appears in [Var66]. As men-
tioned in the text, this lemma is related to Laplace’s method in an abstract
setting. See [Mal82] for a simple application in IR1. For more on this
method and its refinements, see the historical notes of Chapters 5 and 6.
The inverse to Varadhan’s lemma stated here is a modification of [Bry90],
which also proves a version of Theorem 4.4.10.

The form of the upper bound presented in Section 4.5.1 dates back (for
the empirical mean of real valued i.i.d. random variables) to Cramér and
Chernoff. The bound of Theorem 4.5.3 appears in [Gär77] under additional
restrictions, which are removed by Stroock [St84] and de Acosta [deA85a].
A general procedure for extending the upper bound from compact sets
to closed sets without an exponential tightness condition is described in
[DeuS89b], Chapter 5.1. For another version geared towards weak topolo-
gies see [deA90]. Exercise 4.5.5 and the specific computation in Exercise
6.2.19 are motivated by the derivation in [ZK95].

Convex analysis played a prominent role in the derivation of the LDP. As
seen in Chapter 2, convex analysis methods had already made their en-
trance in IRd. They were systematically used by Lanford and Ruelle in their
treatment of thermodynamical limits via sub-additivity, and later applied
in the derivation of Sanov’s theorem (c.f. the historical notes of Chap-
ter 6). Indeed, the statements here build on [DeuS89b] with an eye to the
weak LDP presented by Bahadur and Zabell [BaZ79]. The extension of the
Gärtner–Ellis theorem to the general setup of Section 4.5.3 borrows mainly
from [Bal88] (who proved implicitly Theorem 4.5.20) and [Io91b]. For other
variants of Corollaries 4.5.27 and 4.6.14, see also [Kif90a, deA94c, OBS96].

The projective limits approach to large deviations was formalized by
Dawson and Gärtner in [DaG87], and was used in the context of obtaining
the LDP for the empirical process by Ellis [Ell88] and by Deuschel and
Stroock [DeuS89b]. It is a powerful tool for proving large deviations state-
ments, as demonstrated in Section 5.1 (when combined with the inverse
contraction principle) and in Section 6.4. The identification Lemma 4.6.5
is taken from [deA97a], where certain variants and generalizations of The-
orem 4.6.1 are also provided. See also [deA94c] for their applications.

Our exposition of Section 4.7 is taken from [Jia95] as is Exercise 4.1.32.
In [OBV91, OBV95, OBr96], O’Brien and Vervaat provide a comprehen-
sive abstract unified treatment of weak convergence and of large deviation
theory, a small part of which inspired Lemma 4.1.24 and its consequences.
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