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Abstract The success of many nanotechnologies depends on our ability to
understand and control the mechanics of nano objects, such as nanotubes and
nanobelts. Because of the numerous experimental difficulties encountered at this
scale, simulation can emerge as a powerful predictive tool. For this, new multi-
scale simulation methods are needed in which a continuum model emerges from a
precise, quantum mechanical description of the atomic scale. Because computing
nanomechanical responses requires large systems, computationally affordable but
less accurate classical atomistic treatments of the atomic scale are widely adopted
and only multiscale classical atomistic-to-continuum bridging is achieved. As a first
step towards achieving accurate multiscale models for nano objects, based on a
quantum-mechanical description of chemical bonding, here we present an inge-
nious symmetry-adapted atomistic scheme that performs calculations under heli-
cal boundary conditions. The utility of the microscopic method is illustrated with
examples discussing the nanomechanical response of carbon nanotubes and ther-
modynamical stability of silicon nanowires.

1 Introduction

The discovery of quasi one-dimensional organizations of matter with distinct
shapes – nanotubes [1, 2], and nanowires [3, 4] – opened a new frontier in sci-
ence and engineering. Understanding the behavior of these structures is not only of
fundamental but also of practical importance, because by capitalizing on the science
emerging from the newly accessible size range, engineers can develop technologies
that will benefit humankind. The success of these nanotechnologies depends on our
ability to understand and control the nanoscale mechanics. As experimental difficul-
ties are numerous on this small scale, computer simulations emerge as a powerful
predictive tool with great effects on technological innovation.
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It should be noted that atomistic simulation methods are required at the
nanoscale. However, because of the structure of interest extent over several microm-
eters or more in one direction, a full atomistic treatment is prohibitive. This situation
demands new simulation methods and the vision is that nanoscale modeling will
be achieved through a multiscale approach, where the continuum emerges from a
precise, quantum mechanical description of the atomic scale [5].

The first important step to achieve multiscale modeling is designing an atomistic
scheme to compute the nanomechanical response with high accuracy. Based on the
obtained result, one can further construct a continuum model of the nano objects.
The chapter is addressing this first critical step by presenting a symmetry-adapted
microscopic modeling approach applicable to a large class of quasi one-dimensional
nanostructures.

Since computing nanomechanical response requires relatively large systems (at
least a few hundred of atoms), computationally affordable but less accurate classical
atomistic treatments of the atomic scale are heavily adopted [6–11]. To date, only
multiscale classical atomistic-to-continuum bridging is achieved [12–19]. Unfor-
tunately, the inaccuracy of the “parent” atomistic model directly transfers to the
continuum one and this severely limits our predictive power. The accurate atomistic
tools to study the properties of matter are the methods that explicitly account for
the quantum mechanics of the electrons. Originally developed in the context of
quantum chemistry and condensed matter physics, these powerful methods com-
bine fundamental quantum-mechanical predictive power with atomic resolution in
length and time. These methods include density-functional theory [20–22] and tight
binding [23, 24] molecular dynamics.

An accurate atomistic description is highly desirable in computational nanome-
chanics. In order to deliver quantitative prediction, suited for further engineering
use, the accurate quantum-mechanical description of chemical bonding is needed.
Furthermore, because the electronic subsystem is treated explicitly, electronic, opti-
cal or piezoelectric properties can be also derived. Unfortunately, the size range
covered by quantum-mechanical methods (of a few hundred atoms) is the major
impediment for using these methods in nanomechanics. (This is in spite of the face
that the size limit increases rapidly due to parallel computing.)

This work does not intend to advance nanomechanics by trying to enlarge the
current computational limit for number of atoms that can be treated with quantum
mechanical accuracy. Instead, within the current computational limits, the main idea
is to introduce a substantial simplification in the atomistic computations by making
recourse to the helical symmetry of the nano objects.

The concept is illustrated in Fig. 1 for a single walled carbon nanotube structure,
which can be viewed as the result of rolling up into a seamless tube a flat sheet
of graphite, called graphene. The hexagonal structure of graphene, see Fig. 1a, is
described by translating a two-atom cell (orange shaded) along the lattice vectors T1
and T2. Rolling into a tube can be performed under various curvatures in different
directions. For example, Fig. 1b shows a chiral tube obtained by rolling the graphene
along the circumference vector C having distinct components (6 and 3, respectively)
along T1 and T2. Through folding, the T1 and T2 directions wind up in helixes. To
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Fig. 1 Translational cell of a (6,3) nanotube in the (a) unfolded and (b) folded representation

describe the resulting tube structure, one must apply both translations (T1 and T2)
and rotations (θ1 and θ2) around the tube axis to a two-atom cell.

When computing properties of a system with crystalline order, current implemen-
tations operating under periodic boundary condition, make recourse to the specific
translational symmetry of the structure to simplify the problem to the extent that
microscopic calculations are performed on the small translational repeating cells.
For example, to obtain bulk properties of graphene (Fig. 1a), a calculation on the
two-atom unit cell suffices [25]. However, in a system with helical symmetry the
translational periodicity doesn’t bring the same advantage. For example, Fig. 1b
shows that the translational cell of a chiral nanotube (with axial periodicity T ) con-
tains a large number of atoms. Often such translational cells are even too large to
allow a quantum treatment. However, calculations would become as convenient as
in the flat graphene, if one can take advantage of the helical symmetry and further
reformulate the problem with augmented repetition rule to include translations and
rotations.

The use of helical symmetry at the nanoscale is very much in its infancy. To
date, it has attracted the interest of the research community working on carbon nan-
otubes [26–28]. Fortunately, the type of simplification portrayed in Fig. 1 actually
applies to a large category of quasi one-dimensional nanostructures, recently called
objective structures [29, 30].

In the first part, our main objective is to outline the tight binding computa-
tional tool able to operate under the new helical boundary condition. We will call
symmetry-adapted modeling, the new scheme that operates under helical boundary
condition. It is not necessary to create this capability from scratch. Instead, the strat-
egy is to implement the new helical boundary condition into an existing tight binding
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solver, now able to operate with the translational periodic boundary conditions. We
detail the necessary steps that were undertaken to modify the existing computational
package Trocadero [31]. By using this code we inherited important features such as
atomistic models for various chemical elements as well as numerical algorithms
(such as dynamics under constant temperature) that can be immediately used in
conjunction with the new symmetry-adapted boundary conditions.

In the second part, our goal is to illustrate how the created computational capa-
bility can be used to obtain the accurate modeling and the nanomechanical response
of carbon nanotubes and silicon nanowires. Besides the immediate interest, these
results are of great interest for multiscale modeling since such data is needed to
construct and validate continuum models. (However, this aspect is beyond the scope
of the present chapter.)

2 Methodology

2.1 Tight Binding Preliminaries

Tight binding is a basic semi-empirical method which offers a satisfying description
of the electronic structure and bonding of covalent systems in an intuitive local-
ized picture. The tight-binding method of modelling materials lies between the very
accurate, very expensive, ab initio methods and the fast but limited empirical meth-
ods. When compared with ab initio methods, tight binding is typically two to three
orders of magnitude faster, but suffers from a reduction in transferability due to the
approximations made; when compared with empirical methods, tight binding is two
to three orders of magnitude slower, but the quantum mechanical nature of bonding
is retained, ensuring that the angular nature of bonding is correctly described far
from equilibrium structures. Tight binding is therefore useful for the large number of
situations in which quantum mechanical effects are significant, but the system size
makes ab initio calculations impractical. More specifically, with relatively modest
resources up to about 500 atoms can be comfortably treated with tight binding.

Invoking the Born-Oppenheimer approximation, from the electronic structure
one can extract a tight binding potential that can be used to carry out tight binding
molecular dynamics simulations.

2.1.1 Formulation of Tight Binding Molecular Dynamics
in a One-Dimensional Bravais Lattice

In tight binding the electronic states of a periodic structure are obtained by solving
the one-electron Schrödinger equation

[
− h̄2

2m
�2 +V (r)

]
| j〉 = εj | j〉, (1)
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where m is the electron mass, h̄ the Plank’s constant, V (r) an effective periodic
potential, and | j〉 and εj are the one-electron wavefunction and energy for the state
j , respectively. This equation is solved with the ansatz that the single electron states
can be represented in terms of atomic orbitals located on each single atom. The
number of atomic orbitals nα is usually taken equal with the number of valence
electrons for the atomic species (for example nα = 4 for carbon and silicon). Let
Nt (usually a large number) the number of translational cells over which periodic
boundary condition are imposed and let N0 be the number of atoms in each cell. If no
explicit recourse to translational symmetry is made, the one-electron eigenfunctions
| j〉 are represented in terms of localized orbitals functions |αn〉, where α labels the
orbital symmetry (s, px , py, pz for our case) and n the atomic location:

| j〉 =
∑

α,n

Cαn( j)|αn〉, j = 1, ..., N . (2)

The number of eigenstates N = nα ·N0 ·Nt equals the total number of valence elec-
trons in the Nt translational cells considered. The expansion coefficients grouped
in the vector C( j) should be obtained from the one-electron generalized N × N
eigenvalue problem

H · C( j) = εj S · C( j), j = 1, . . . , N , (3)

which can be easily obtained by substituting Eq. (2) into (1). Equation (3) is known
as the matrix form of the Schrödinger equation. In tight binding, the matrix the
elements of the Hamiltonian H matrix – e0

α diagonal and t0
α′,α off-diagonal – and

of the overlap S matrix s0
α′,α are not explicitly calculated. They are replaced with a

parameter which depends only on the internuclear distance and the symmetry of the
orbitals involved. The parameterization is performed by using the available experi-
mental data or by making recourse to more accurate but computationally expensive
first principles [32, 33] calculations.

The total energy contained in the electronic states writes:

Eband = 2
N∑

j=1

f jεj , (4)

where f is the Fermi distribution function.

2.1.2 Tight Binding Under Periodic Boundary
Condition – The Electronic Structure

Of course, in a crystalline structure with N on the order of 1023, the N × N eigen-
value problem (3) cannot be solved directly. The usual approach is to introduce a sig-
nificant computational simplification by explicitly accounting for the translational
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symmetry. For simplicity, we are next presenting this approach only for the one-
dimensional crystal. (The expansion to the three-dimensional case is trivial.)

Let T be the lattice periodicity vector and {Xn : n = 1, . . . , N0} the atomic posi-
tions within the unit cell. The atomic locations in one-dimensional periodic structure
can be obtained with

Xn,ζ = ζT+ Xn, (5)

where ζ = 0, . . . , Nt − 1, and n = 1, . . . , N0. To incorporate the translational
symmetry, instead of Eq. (2) the one-electron solutions are represented in terms of
the Bloch sums:

|αn, k〉 = 1√
Nt

∑

ζ

eikT ζ |αn, ζ 〉, (6)

where the wavenumber k takes Nt uniformly spaced values in the interval −π/T ≤
k < π/T , with δk = 2π/T Nt . |αn, ζ 〉 represents the orbital α located on atom
n located in the translational cell ζ , with ζ = 1, ..., Nt . The advantage is that in
the representation (6), the tight binding Hamiltonian and overlap matrix elements
between two 〈αn′, k′| and |αn, k〉 sums are vanishing unless k = k′. Thus, the
eigenvalue problem becomes block-diagonal and it can be solved separately for each
Nt block labeled by k and having dimension (N/Nt )×(N/Nt ):

H(k) · C( j, k) = εj (k)S(k) · C( j, k), j = 1, ..., N/Nt . (7)

In other words, instead of solving the single N × N eigenvalue problem (3) to
obtain the N electronic states, one solves instead Nt eigenvalue problems (7) of size
N/Nt × N/Nt to obtain the same N electronic states, now labeled by j and k.

Formally, in the two-center approximation, the k-dependent elements of Hamil-
tonian H and overlap S matrices write:

〈α′n′, k|H |αn, k〉=
∑

ζ

e−ikT ζ t0
α′α(Xn′,ζ − Xn), (8)

〈α′n′, k|αn, k〉=
∑

ζ

e−ikT ζ s0
α′,α(Xn′ζ − Xn). (9)

As before, Xn represent the atomic coordinates in the initial ζ = 0 cell.

2.1.3 Tight Binding Molecular Dynamics Under Periodic Boundary Condition

In the translational formulation, the total energy contained in the electronic states
writes:
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Eband = 2

N/Nt
∑δk(Nt−1)/2

k =−δk(Nt−1)/2∑

j=1

f j (k)E j (k), (10)

and depends parametrically on the coordinates of the nuclei. In the framework of
the Born-Oppenheimer approximation [34], once the electronic energy is found, it
can be directly used to give the motion of the nuclei, which are treated classically.
More precisely, to perform molecular dynamics, the forces acting on the N0 atoms
located in the initial cell, are needed. In tight binding molecular dynamics, the force
due to the band energy on the atom at Xm located in the initial cell due to the band
energy, Fm = −∂Eband/∂Xm , writes:

Fm= −2
∑

j,k

f j (k)

(
C†( j, k)· ∂H(k)

∂Xm
· C( j, k)− εj (k)C†( j, k) · ∂S(k)

∂Xm
· C( j, k)

)
,

(11)

which is the Hellmann-Feynman force. Typical derivatives of the tight binding
Hamiltonian and overlap matrix elements are:

∂〈α′n′, κ|H |αm, κ〉
∂Xm

= 1

Nt

∑

ζ

e−iκζ
∂t0
α′,α(Xn′,(ζ ) − Xm)

∂Xm
, (12)

∂〈α′n′, k|αm, k〉
∂Xm

= 1

Nt

∑

ζ

e−ikζ
∂s0
α′,α(Xn′,(ζ ) − Xm)

∂Xm
. (13)

In tight binding one assumes a form for the Hamiltonian and overlap matrix ele-
ments without specifying anything about the atomic orbitals except their symmetry.
The values of the matrix elements may be derived approximately or may be fitted to
experiment or other theory.

2.2 Detailed Formulation of the Symmetry-Adapted Tight Binding
Molecular Dynamics

A major disadvantage of tight binding is still its high computational cost: Computing
the electronic structure energy and forces from a tight binding Hamiltonian by direct
diagonalization results in a cubic scaling of the computational time with the number
of electrons considered [O(N 3)]. This limits the system size to about 1000 Si or C
atoms. In a Bravais lattice, the number of atoms is small. Thus, the above approach
is suitable in simulations of bulk crystals. However, the simplifications due to the
periodic boundary condition are insufficient for comprehensive calculations of quasi
one-dimensional objects such as nanowires and nanotubes. This is because the num-
ber of atoms in the translational unit cells can be very large, leading to a large-size
matrix equation for the electronic problem. Note that there is a current research line



36 T. Dumitrica

that attempts to alleviate this notorious dependence of computation time with O(N )
methods. However, the errors introduced in the electronic band structure could affect
the outcome.

2.2.1 Symmetry-Adapted Tight Binding Molecular Dynamics
in the “Angular-Helical” Representation

Figure 1 suggests that the nanotube structures could be described by applying
successive commuting helical transformations. However such “helical-helical” rep-
resentation is not convenient for a quantum mechanical implementation. For this
reason, here we introduce the “helical-angular” representation [25].

An infinitely-long CNT exhibits translational symmetry. When its unrolled unit
cell is projected on the graphene layer, Fig. 2, the circumference turns into the chiral

vector Ch = l1a1 + l2a2 of modulus |Ch | = a
√

l2
1 + l2

2 + l1l2. Here a is the lattice
constant for the flat honeycomb lattice. The CNT axis aligns to the translational
vector T = t1a1 + t2a2, where t1 = (2l2 + l1)/dR and t2 = −(2l1 + l2)/dR .
Here dR =gcd(2l1 + l2, 2l2 + l1), where gcd indicates the greatest common divisor
of the two number within the brackets. The length of the translational vector is
|T| = √3|Ch |/dR . The translational unit cell of the CNT is delineated by T and Ch .
It also follows [25] that the number of carbon pairs inside the translational unit cell
writes N = 2(l2

1 + l1l2 + l2
2)/dR .

The translational representation of the infinitely long CNT is widely used for
computing the elastic response. One disadvantage is that it requires the explicit treat-
ment of all N atoms, and N scales with the CNT’s diameter and chirality angle χ .
Only a small number of carbon nanotubes (small-diameter and achiral ones) have
N computationally affordable for tight binding and density functional theory.

In addition to translation, carbon nanotubes exhibit angular and helical sym-
metries [25], also conveniently described by vectors in the example of Fig. 2. For
angular symmetry, note that while gcd(t1, t2) = 1 (indicating that T never spans in
the axial direction two identically-oriented carbon pairs), d = gcd(l1, l2) can take
any value between 1 and n (supposing that 0 ≤ l2 ≤ l1). Thus, Ch spans d

Fig. 2 Unfolded representation of a (4,2) CNT. The big rectangle shows the translational unit
cell bounded by the chiral Ch and translational T vectors. The small parallelogram shows the
“helical-angular” cell bounded by the rotational Ch/d and screw Z vectors. It contains atoms 1
and 2. Graphene’s lattice vectors a1 and a2 are also shown
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identically-oriented carbon pairs in the circumferential direction and the rotation
vector is given by Ch/d. For helical symmetry, we note that among the N − 1 non-
equivalent vectors connecting the graphene lattice points within the translational
unit cell, d − 1 correspond to pure angular rotations, while the remaining N − d
correspond to distinct screw operations. Among these vectors, here we are con-
cerned only with vector Z = ua1+ va2, which has the smallest components in both
axial and circumferential directions [25]. Using simple geometric considerations, it
follows that integers u and v must satisfy l2u − l1v = d and 0 < t1v − t2u < N/d.
More useful, Z is decomposed along T and Ch as [25]:

NZ = DCh + dT, (14)

where D = t1v − t2u. The infinitely-long CNT is alternatively described from the
two-atom reduced cell bounded by the vectors Ch/d and Z. For example, one can
see from eq. (14) that N operations of Z extend over d translational cells. The rest
of (d − 1)N carbon pairs of the d translational cells are filled by d − 1 applications
of Ch/d.

Moving to the rolled-up geometry, a (l1, l2) CNT is described the “angular-
helical” as an objective molecular structure with

Xn,ζ1,ζ2 = Rζ22 Rζ11 Xn + ζ1T1, j = 1, N0. (15)

The rotational matrix R2 corresponds to vector Ch/d and indicates an angular rota-
tion of angle θ2 = 2π/d. Rotational matrix R1 of angle θ1 = 2πD/N and the
axial vector T1 = dT/N correspond to the screw vector Z. Index n runs over the
two atoms (the molecule) at locations X j inside the reduced computational domain.
Integers ζ1 and ζ2, with −∞ < ζ1 < ∞ and 0 ≤ ζ2 ≤ d − 1, label the various
replicas of the initial domain.

We will accommodate this representation into the one-electron wavefunction
solutions by representing them in terms of symmetry-adapted sums of localized
orbitals, suitable for the helical and angular symmetry. We discuss next the steps that
will be undertaken to enhance to symmetry-adapted modeling the current periodic
boundary condition implementation in the computational package Trocadero [31].
We remind the reader that the microscopic model of interest is the nonorthogo-
nal density functional theory-based tight binding model with two-center terms of
Porezag et al. [32].

2.2.2 Symmetry-Adapted Tight Binding – Treatment
of the Electronic Structure

Consider Ns the number of screw operations (typically ∞) over which the helical
boundary condition is imposed and let Na be the number of θ2 rotations needed to
fill the circumference of the quasi one-dimensional nanostructure. The symmetry-
adapted Bloch sums write
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|αn, lκ〉 = 1√
Na · Ns

Ns−1∑

ζ1=0

Na−1∑

ζ2=0

eilθ2ζ2+iκζ1 |αn, ζ1ζ2〉, (16)

where the Bloch factors are the eigenvalues of the commuting rotation and screw
operators [27]. Here l = 0, 1, ..., (Na − 1) represents the angular number. To
avoid the discomfort of introducing helical distances, −π ≤ κ < π represents
the helical wavevector already normalized by the helical periodicity. As in Eq. (15),
index n runs over the atoms located in the symmetry-adapted computational cell
and |αn, ζ1ζ2〉 refers to the orbital with symmetry α located on atom n, all in the
symmetry-adapted cell indexed by ζ1 and ζ2. Lastly, to satisfy the generalized Bloch
theorem, the |αn, ζ1ζ2〉 orbitals are obtained by applying a R(ζ1,ζ2) rotation to the
orbitals |αn〉 located in the (ζ1, ζ2) cell that are parallel with those situated in the
initial (0, 0) cell. Specifically, for the sp case:

⎛

⎜⎜⎝

|sn, ζ1ζ2〉
|px n, ζ1ζ2〉
|pyn, ζ1ζ2〉
|pzn, ζ1ζ2〉

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1 0 0 0
0 cos(ζ1θ1 + ζ2θ2) − sin(ζ1θ1 + ζ2θ2) 0
0 sin(ζ1θ1 + ζ2θ2) cos(ζ1θ1 + ζ2θ2) 0
0 0 0 1

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝

|sn〉
|px n〉
|pyn〉
|pzn〉

⎞

⎟⎟⎠ .

(17)

Note that the s orbitals are not affected because of their intrinsic symmetry while
the pz ones are invariant as they are oriented along the long axis.

The symmetry-adapted Bloch elements between different angular and helical
numbers of the Hamiltonian and overlap matrices vanish. Therefore, the eigenvalue
problem for the atoms contained in the Ns ·Na symmetry-adapted domains becomes
block-diagonal and it can be solved separately for each block labeled by l and κ:

H(lκ) · C( j, lκ) = εj (lκ)S(lκ) · C( j, lκ), j = 1, ..., N . (18)

The elements of eigenvector C represent the expansion coefficients in the basis (16)
of the one-electron wavefunction solutions of the Schrödinger equation. Having [32]
the elements of the Hamiltonian matrix – ε0

α diagonal and t0
α′,α off-diagonal – and of

the overlap matrix s0
α′,α , the elements of lκ-dependent Hamiltonian H and overlap

S matrices are:

〈α′n′, lκ|H |αn, lκ〉 = ε0
αδnn′δαα′ +

∑

ζ2,ζ1

e−ilθ2ζ2−iκζ1 tα′α(Xn′,(ζ1,ζ2) − Xn), (19)

〈α′n′, lκ|αn, lκ〉 = δnn′δαα′ +
∑

ζ2,ζ1

e−ilθ2ζ2−iκζ1 sα′,α(Xn′,(ζ1,ζ2) − Xn), (20)

where

tα′α(Xn′,(ζ1,ζ2) − Xn) =
nα∑

α′′=1

t0
α′′,α(Xn′,(ζ1,ζ2) − Xn)R

(ζ1,ζ2)

α′,α′′ , (21)



Computational Nanomechanics of Quasi-one-dimensional Structures 39

sα′,α(Xn′,(ζ1,ζ2) − Xn) =
nα∑

α′′=1

s0
α′′,α(Xn′,(ζ1,ζ2) − Xn)R

(ζ1,ζ2)

α′,α′′ . (22)

In comparison with the tight binding under periodic boundary conditions [24], in
Eq. (18) we obtained a size reduction of the eigenvalue problem at the expense of
carrying out diagonalizations at additional lκ points. In view of the O(N 3) compu-
tational time scaling, the advantage of the symmetry-adapted basis is evident.

2.2.3 Symmetry-Adapted Tight Binding Molecular Dynamics

The total electronic energy contained in the Ns · Na symmetry-adapted domains
writes:

Eband = 2
nαN0∑

j=1

δκ(Ns−1)/2∑

κ=−δκ(Ns−1)/2

Na−1∑

l=0

f j (lκ)εj (lκ), (23)

where f is the Fermi function and δκ = 2π/Ns . Because Eband is invariant under
the screw and angular rotations as well as under the permutations of atoms, the
conditions for carrying out Symmetry-adapted MD from the tight binding potential
are fulfilled. To perform MD, the forces acting on the N0 atoms are needed. The
force on the atom at Xm located due to the band energy, Fm = −∂Eband/∂Xm ,
writes:

Fm=− 2
∑

j,lκ

f j (lκ)

(
C†( j, lκ)· ∂H(lκ)

∂Xm
· C( j, lκ)

− εj (lκ)C†( j, lκ) · ∂S(lκ)
∂Xm

· C( j, lκ)

)
, (24)

which is the Hellmann-Feynman force. The above expressions are considered as
Ns →∞ and κ becomes continuous. The derivatives of the Hamiltonian and over-
lap matrix elements are:

∂〈α′n′, lκ|H |αm, lκ〉
∂Xm

= 1

Na Ns

∑

ζ2,ζ1

e−ilθ2ζ2−iκζ1
nα∑

α′′=1

∂t0
α′′,α(Xn′,(ζ1,ζ2) − Xm)

∂Xm
R(ζ1,ζ2)
α′,α′′ .

(25)

∂〈α′n′, lκ|αm, lκ〉
∂Xm

= 1

Na Ns

∑

ζ2,ζ1

e−ilθ2ζ2−iκζ1
nα∑

α′′=1

∂s0
α′′,α(Xn′,(ζ1,ζ2) − Xm)

∂Xm
R(ζ1,ζ2)
α′,α′′ .

(26)

Derivatives ∂t0
α′′,α/∂Xm and ∂s0

α′′,α/∂Xm are given in [32]. We note that the two-
body repulsive part of the tight binding potential [32] does not necessitate specific
adjustments for symmetry-adapted molecular dynamics.
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3 Applications of Symmetry-Adapted Modeling
in Nanomechanics

3.1 Linear- and Nonlinear-Elastic Response of Carbon Nanotubes

3.1.1 Linear-Elastic Response

We now illustrate the applicability of the method in the linear-elastic deformation
regime. One could carry out microscopic calculations of relaxed, elongated, and
twisted carbon nanotubes described from a two-atom domain with Eq. (15) serving
as the objective boundary conditions. The electronic states are modeled with the
presented symmetry-adapted scheme coupled with the non-orthogonal two-centre
tight binding model of carbon [32], implemented in the package Trocadero [31].

In order to define infinitesimal elastic moduli of a nanotube, we first identified the
stress-free equilibrium geometries. We find that the structural parameter predictions
given by the roll-up are adequate. The isometric mapping that wraps the graphene
sheet into the cylindrical geometry is not precisely a nanotube at equilibrium as
the carbon-carbon bond lengths will differ in general from their values in the flat
geometry. We identified the equilibrium carbon nanotubes through conjugate gradi-
ent potential energy surface scans performed on the two-atom cell under different
|T1| values.

Figure 3a plots the obtained strain energy (W0), defined as the energy (mea-
sured per atom) of the equilibrium CNT configuration measured with respect to the
graphene, as a function of the CNT diameter (2R). The characteristic behavior W0 =
C/2R2 is obtained with C = 4.13 eVÅ2/atom, in very good agreement with density
functional theory data [35]. Note the large difference with the 2.2 eVÅ2/atom and
1.8 eVÅ2/atom values given by the first- and second-generation Brenner’s poten-
tials, respectively. No χ -dependence was obtained, as can be seen also from the
insert showing W0 versus χ for an equal-radius CNT family. Adopting a surface-
without-thickness membrane [13] representation of graphene, the associated bend-
ing rigidity is Db = C/S0, where S0 = 2.6 Å2 is the surface per atom defined by
the CNT at equilibrium.

Axial strain (ε) to an (l1, l2) CNT was applied by changing |T1| to (1 + ε)|T1|,
with ε in the (−0.5:0.5%) range. The intrinsic θ1 and θ2 angles were kept fixed.
The obtained size dependence of Ys = (1/So)d2W0/dε2 is displayed in Fig. 4b. In
contrast with other results, Ys appears insensitive to χ . The axial elasticity of carbon
nanotubes appears similar to the in-plane one of graphene apart from effects due the
tube curvature. Above∼1.25 nm Ys is practically constant and takes the 430 GPa nm
value of graphene. The agreement with previous tight binding calculations [36],
carried out in the translational representation of the carbon nanotubes, confirms
the validity of our scheme. For 2R < 1.25 nm Ys softens, which is in disagree-
ment for example with the data obtained using the second-generation Brenner’s
potential.

An axial twist rate (γ ) was imposed by varying the intrinsic angle θ1 to
θ1 + γ |T1|. Because the symmetry-adapted tight binding scheme doesn’t rely on
translational symmetry, any γ can be prescribed. By contrast, limited γ choices are
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Fig. 3 (a) Curvature-strain energy W0 (b) Young’s Ys and (c) shear modulus Gs as a function of
the CNT diameter 2R. Insert shows W0 dependence with χ at a constant diameter

available in the translational formulation, making calculations cumbersome. The
resulting shear strain ε′ = γ R was varied in the (−0.5%:0.5%) range, while |T1|
was kept constant. Figure 4c displays the obtained surface shear modulus (Gs),
defined as Gs = (1/So)d2W0/dε′2. For 2R > 1.25 nm, Gs is not sensitive to χ
and converges quickly to the 156 GPa nm value of graphene. This value is higher
than the 113 GPa nm given by the second-generation Brenner’s potential and is
in excellent agreement with the 157 GPa nm from density functional theory. For
2R < 1.25 nm there is a pronounced χ splitting with Gs bounded from above by
zig-zag and from below by armchair carbon nanotubes.

The χ -dependence for Gs for 2R < 1.25 nm unequivocally shows anisotropy.
Interestingly, the HiPco-produced carbon nanotubes fall within this size-range.
However, our tight binding data for 2R > 1.25 nm shows that both Ys and Gs

are practically converged to the values of isotropic graphene. Thus, the isotropic
CNT model is justified and we have Gs = Ys/2(1+ νs). The resulting Poisson
ratio νs = 0.38 is lower than the one obtained with the Brenner’s potential [13] but
still larger than in experiment. For practical reasons it is also useful to give a CNT
elastic thin-shell model. Thus, we expressed Db = Y h3/12 and Ys = Y h. Using
our data we obtained h = 0.8 Å and Y = 5.2 TPa.
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Fig. 4 (a) Rippling patterns in a (12,12) CNT under 10◦/nm twist. Colors correspond to distinct
azimuthal replicas of the objective domain. (b) Strain energy and (c) band gap vs. twist rate γ for
cylinder and rippling modes. Torque (in arbitrary units) for the two-lobe mode is plotted in order
to indicate the two stages of rippling, also marked with two gray levels

3.1.2 Nonlinear Elastic Response of Carbon Nanotubes in Torsion

Can the symmeyty-adapted modeling be useful beyond the linear elastic regime?
We illustrate now the use of the method for studying torsional rippling deforma-
tions. Rippling represents a way of lowering energy by creating an inhomogeneous
torsional strain coupled with the development of helicoidal ridges and furrows of
positive and negative curvature, respectively. Due to the distributed nature, the long-
range inter-wall interactions are also perturbed. For high fidelity modeling, accurate
accounting of both covalent and van der Waals forces is needed. In principle, quan-
tum mechanical calculations can provide both the morphological changes and the
electronic behavior. There is ample evidence that an explicit quantum mechanica
treatment of bonding gives an accurate description of carbon nanotube’s mechanics.
However, the usual translation-invariant formulation is computationally prohibitive
for long-range elastic deformations with helical symmetry. To reduce the com-
putational complexity, empirical classical potentials and continuum idealizations
derived from classical potentials are widely used. When compared with quantum
mechanical descriptions, these approaches are sometimes inaccurate, including for
describing the linear elastic regime. Another obvious disadvantage is that the elec-
tronic response is not revealed.
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We discuss single-wall carbon nanotubes in torsion under the constraint of con-
stant length. Renouncing the translational symmetry allows to compute in an eco-
nomical fashion the expected helical [13] rippling morphologies that characterize
the initial stages of the nonlinear elastic response. For example, the wave-like modes
for (12,12) CNT shown in Fig. 4a, were individually computed with objective MD
from three objective cells delineated by the translational vector T but different θ2
values, 180◦, 120◦, and 90◦. Because these cells contain only 24, 18, and 12 atoms,
respectively, the tight binding treatment can be comfortably applied. We studied in a
decoupled way the rippling morphologies, unambiguously identify the fundamental
(lowest-energy) mode, and pinpoint the level of twist beyond which the cylinder
shape becomes first unstable, i.e., the bifurcation point.

The importance range of the various modes can be judged from Fig. 4b, which
shows the computed strain-energies vs. γ . The curve obtained from a 4 atom objec-
tive cell with θ2 = 30◦ (thin line) is a useful reference as the CNT’s cylinder shape
is preserved. At lower strains this state is stable but when strain exceeds 4◦/nm
the two-lobe rippling significantly lowers the elastic energy. The perfect structure
can also assume the three- and four-lobe buckled states beyond 7◦/nm and 9◦/nm,
respectively, but the two-lobe morphology stays favorable by a large margin. We
conjecture that the various wave-like modes shown in Fig. 4a exist as distinct
metastable states and twisting doesn’t mix them by driving further circumferential
rippling.

The evolution of torque (energy derivative with γ ), Fig. 4b, further reveals that
the two-lobe rippling develops in two stages. The first is a transient one and initiates
at the bifurcation, where the linear torque variation is interrupted by a rather abrupt
drop. The cylinder shape develops ridges and furrows as the torque’s rate of change
is negative. The minimum distance between furrows decreases until a van der Waals
equilibrium distance of 3.4 Å is reached at 7.2◦/nm. Here the transient stage is
complete and torque’s rate of growth switches from negative to positive. In this
second stage there is no notable change in shape of the collapsed cross section.

Figure 4c shows the variations in the electronic band gap for the idealized cylin-
der and rippling modes. Band-gap information is important because of the rela-
tionship with the experimentally-relevant CNT resistance. For the idealized case,
the band gap is periodically modulated. During one period Δγ , it grows in a lin-
ear fashion, reaches a maximum at halfway, then decreases to zero. These features
are in agreement with predictions of Yang and Han [37] developed from the band
structure of graphene: uniformly twisted carbon nanotubes are metallic only when
the metallic wavefunction of graphene is commensurated with the CNT’s circum-
ference. Otherwise, they are semiconducting. Due to the linearity of the dispersion
relation of graphene near its Fermi level, band gap varies in a linear fashion with
a 3t0 R slope. R is the CNT’s radius and t0 is the tight binding hopping element. It
also follows [37] that Δγ = dC−C/R2, where dC−C is the C–C bond length. Fitting
to our data gives t0 = 2.72 eV and dC−C = 1.42 Å, in agreement with the actual
values of these parameters.

The generality of the above behavior is demonstrated in Fig. 5, summariz-
ing results from a series of similar calculations performed on armchair carbon
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(a) (b)

Fig. 5 (a) Critical shear strain vs. CNT’s diameter for SW (open circles) and MW (full circles)
armchair carbon nanotubes. (b) Changes in the band gap with the shear strain for armchair SWcar-
bon nanotubes

nanotubes. During torsion the ideal CNT wall experiences a shear strain ε = γR.
Figure 5a plots the obtained critical shear εc, which exhibits a scaling εc =
0.1([nm]/2R)0.99. Figure 5b reveals the band gap dependence with ε. In agreement
with the idealized model, the linear regime data collapses onto a common line with
a 3t0 slope. However, beyond εc, the idealized model based on the homogeneous
strain assumption cannot be used.

3.2 Stability of Polycrystalline and Hexagonal Si Nanowires

In spite of a large body of experimental [38–40] and theoretical [41–49] research,
the ground state of quasi one-dimensional silicon structure at the lowest diameters
is not yet known. Relying on thermodynamic arguments, one conjectures that in rel-
atively thick nanowires the influence of surfaces is less important and arrangements
with bulklike cores are more likely. However, as the diameter is decreased, surfaces
are becoming increasingly important in the nanowire energetic balance [45], and
quasi one-dimensional organizations with non-cubic core structures but low surface
energies are possible.

To describe the ground state Si nanowire structure at sizes of below 10 nm, sev-
eral candidates have been already envisioned: It was predicted [45] that an enhanced
stability can be obtained in polycrystalline achiral Si nanowires constructed with
five identical crystalline prisms exposing only low energy (001) Si surfaces. In
another recent study [46], hexagonal nanowires with hexagonal cross sections were
found to be the most stable. Note that although nanowires with hexagonal cores
are prevalent in III-V zinc-blende semiconductors [50], they have been synthe-
sized also in Si [40]. Finally, icosahedral Si quantum dots [51, 52] constructed
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from tetrahedral blocks were proposed. Because of the low formation energy of
the exposed (111) surfaces, these dots are very stable. One-dimensional nanowires
assembled from icosahedral dots appeared [48] more favorable than the achiral pen-
tagonal nanowires of [45].

3.2.1 Structures of Polycrystalline and Hexagonal Si Nanowires

We now discus the structure of the three nanowire motifs presented in Figs. 6 and 7.
Although all three motifs have translational symmetry, they can be more economi-
cally described in the “angular-helical" representation discussed earlier.

Table 1 summarizes the exact values of the domain parameters θ1 and θ2 as well
as algebraic expressions for the number of atoms N0 and the number of surface
atoms Ns f in the Symmetry-adapted domain as a function of the number of atomic
layers L . The precise T1 value is model dependent and will be determined by simu-
lations.

The nanowire shown in Fig. 6a, labeled P , exhibits a five-fold rotational sym-
metry. The exposed five equivalent (001) surfaces have dimer rows oriented parallel
with respect to the nanowire axis. At the center of this nanowire there is a channel of
pentagonal rings. The symmetry-adapted computational domain shown in blue (dark
gray) is a triangular prism limited by two (111) and one (001) surfaces. The asso-
ciated angular parameters are θ1 = 0 and θ2 = 2π/5 while T1 equals the periodic
boundary condition periodicity T . Thus, in comparison with the traditional periodic
boundary condition scheme, symmetry-adapted molecular dynamics reduces to 1/5
the number of atoms that need to be accounted for. Note that to form the nanowire,
the (111) surfaces of the symmetry-adapted domains are connected through low
energy stacking fault defects. Because in the bulk Si the two (111) planes of the

Fig. 6 (a) Pentagonal Si nanowire (labeled P). Surface is shown in a reconstruction with symmetric
dimers, as described with a Tersoff potential. Dotted lines indicate the stacking fault planes. The
computational “angular-helical” domains are shown in blue atoms. (b) Hexagonal Si nanowire
(labeled H ) with hexagonal cross section. The surface is shown as unrelaxed. Domains with same
ζ1 are shown in same color. For both nanowires only axial views are shown
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Fig. 7 (a) A tetrahedron building block truncated from the bulk Si exposes four (111) surfaces.
(b) Icosahedral Si dot composed of twenty equivalent tetrahedron building blocks. With a domain
composed of three tetrahedron blocks, shown in (c), a nanowire (labeled I ) with pentagonal cross
section, shown in (d), can be constructed based on formula describing the nanowire in the “angular-
helical” and parameters entered in Table 1 corresponding to L = 5. Alternatively, the I nanowire
can be constructed from aligned icosahedral Si dots sharing the tetrahedron building blocks shown
in gray

Table 1 Comparison of the symmetry-adapted cells for the P , H , and I nanowires. L is the number
of layers, N0 is the total number of atoms, and Ns f is the number of surface atoms

Nanowire P H I

θ1 0 π/3 π/5
θ2 2π/5 2π/3 2π/5
N0 2(L − 1)(2L − 1) 2L2 0.5L(L + 1)(2L + 1)
Ns f 2(L − 1) 2L L(L + 1)

triangular prism form an angle θ = 2 tan−1(1/
√

2), which is slightly different from
θ2, each domain stores elastic energy corresponding to a shear deformation with
ε = θ2 − θ .

Figure 6b shows the structure of a nanowire motif with a hexagonal cross sec-
tion, but three-fold rotational symmetry. This nanowire, labeled H , has a hexag-
onal core structure. Although its surfaces are equivalent, they are shifted in an
alternating manner along the nanowire axis by half of the translational period T .
The symmetry-adapted computational domain represents 1/6 of the translational
domain. Its parameters are θ1 = π/3, T1 = 0.5T , and θ2 = 2π/3. The non-zero
value of θ1 indicates that the H nanowires is generated by repeated screw and pure
rotations.

The last nanowire motif considered, labeled I , also exhibits a five-fold rotational
symmetry. The tetrahedron block shown in Fig. 7a is truncated directly from the
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bulk. It exposes only low-energy (111) surfaces and all faces are equilateral trian-
gles. Twenty such blocks are combined through low-energy stacking faults to form
the dot shown in Fig. 7b, having icosahedral Ih symmetry. The combination of three
blocks shown in Fig. 7c represents the symmetry-adapted domain for the I nanowire
shown in Fig. 7d. The associated angular parameters are θ1 = π/5, θ2 = 2π/5.
Thus, with Eq. (15) this nanowire is built from screw and pure rotation isometries.

In the I nanowire one can identify two types of blocks: blocks (shown with yel-
low/light gray and blue/dark gray) that, like in the Ih dot, expose one facet and
blocks (shown in gray) in which all facets are in contact with other blocks. As
discussed before [48], the I nanowire can be also thought of as being composed of
aligned polycrystalline Ih Si quantum dots that share the tetrahedron blocks shown
in gray (i.e., five tetrahedral blocks at each interface). In this respect, the two crosses
separated by a distance T1 in Fig. 7c mark the centers of two virtual Ih dots sharing
the gray blocks. This picture helps to comprehend the strain accumulated in the I
nanowire, discussed next.

As in the case of the P nanowires, the mismatch resulted when combining the
bulk tetrahedron blocks to form the Ih dot and the I nanowire introduces strain. In
the high symmetry of the Ih dot the 20 tetrahedron blocks are equivalent and thus
the mismatch strain will be equally distributed among them. More specifically, since
at each vortex a radial channel of pentagonal rings is formed, each tetrahedron block
around it accumulates elastic shear energy corresponding to a strain ε = θ2 − θ . As
each tetrahedron is delimited by three radial channels, it follows that the exposed
faces are equilateral triangles, as can be also noted from Fig. 7b. The symmetry
lowering to the I nanowire superposes additional elastic energy. In an icosahedron
the tetrahedron building blocks are not regular (i.e., the exposed faces are equilateral
while the internal ones are isosceles triangles). Thus, the (110) planes of the gray
blocks of Fig. 7b (to be shared in the I nanowire construction) are not perpendicular
on the nanowire long axis. Consequently, the internal blocks will undergo additional
elastic deformation, specifically by decreasing the angle made by the two (111)
facets that join into the circumferential edge, Fig. 7b, such that the middle transver-
sal (110) plane becomes perpendicular to the nanowire axis. The other tetrahedron
type will also be affected by this adjustment and the exposed faces will become
isosceles triangles in the one-dimensional structure. From this qualitative picture
one can immediately conjecture that the I nanowires will store a larger strain than
the P nanowires and the Ih dots.

We finally note that in the I nanowires the periodic boundary condition treatment
is unnatural as T is L-dependent and the number of atoms in the cell under periodic
boundary condition increases significantly (as ∼ L3). For example, for L = 6 there
are 2730 Si atoms in the cell under periodic boundary condition but only 273 atoms
in the symmetry-adapted one.

3.2.2 Structural Optimizations

Which non-bulk nanowire structural motif is in fact more energetically favorable
and therefore more likely to be stable? To answer this question we recognize that
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the accuracy of any microscopic investigation depends critically on the level of
theory behind the description of the Si-Si interatomic interactions. Unfortunately,
accurate ab initio methods formulated in the typical periodical boundary conditions
context are computationally demanding and studies employing these methods can
be carried out only at the smallest diameters [42, 44, 47]. They are used to com-
plement larger scale microscopic calculations based on empirical classical poten-
tials [53, 54], which are typically assumed to be less accurate only in the smallest
size range due to the enhanced role of surfaces.

Consider for instance the description of the surface reconstruction as obtained
with the widely used Stillinger-Weber [53] and Tersoff [54] classical potentials, both
used in [45, 46, 48] to describe the pentagonal nanowire that exposes (001) facets.
The (001) Si surface has been studied with these potentials [55] and a p(2 × 1)
symmetric dimer pattern was found to be the most stable. However, with density-
functional theory it was found that the alternating asymmetric buckling of surface
dimers p(2 × 2) is more favorable. Since the asymmetric buckling is not captured,
the classical treatment [53, 54] for the thinnest nanowires exposing (001) surfaces
will not be accurate.

We performed the structural optimization on the three selected nanowires by the
proposed symmetry-adapted tight binding molecular dynamics method, carried out
with a 1 fs time step, followed by conjugate gradient energy minimization scans for
several T1 parameter values until the optimal configuration was identified. Compu-
tations were carried out on the fundamental domains addressed in Table 1 for all
I nanowires and for the H nanowires with odd L . Larger domains, with 2T1 for
the P nanowires and 2θ2 for the H nanowires with even L , were also used in order
to describe the alternating reconstructions of the surfaces. Exploiting symmetry has
the potential danger of missing minima with lower symmetry. Our additional cal-
culations under periodic boundary condition carried out for the smallest nanowires
(with L = 2) showed agreement with the symmetry-adapted data.

Figure 8a presents the optimal surface reconstruction for two P nanowire
domains, showing an alternating buckled dimer reconstruction on top. Account-
ing correctly for the surface reconstruction appeared important especially for the
thinnest nanowires where the surface to volume ratio is largest. For example, we
obtained a 20 meV/atom energy lowering from the non-alternating buckled to the
alternating buckled pattern for the P nanowire with L = 2.

The H nanowire surface exposes dimer rows aligned perpendicularly on the
nanowire axis. Our symmetry-adapted tight binding molecular dynamics optimiza-
tion procedure obtained again an alternating buckled pattern of the surface dimers,
as presented in Figure 8b. This appears in disagreement with our obtained classical
description which does not account for the buckling effect. Regarding the surfaces
of the I nanowires, we noted that the characteristic surface buckling of the (111) sur-
face was severely reduced with the increase in diameter. In fact, above 2R = 2.5 nm
the surface was practically built up from flat hexagonal rings. The alternating buck-
led pattern was obtained on the edge surface dimer rows formed at the interface
between tetrahedrons. By contrast, the surface did not appear flattened and the edge
dimers did not buckle in the classical treatment.
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Fig. 8 (a) Symmetry-adapted domain (axial view) for the P nanowires with L = 2 and L = 4.
The alternating buckled dimer reconstruction pattern of the surface can be observed. (b) Side view
of the symmetry-adapted domain for the H nanowires with L = 3 of length 4T1, showing on top
the buckled dimer alternating pattern

In Figure 9 we report the obtained stability data for the three nanowire motifs as
described by the two microscopic models. As can be seen from Figure 9a, which
plots the nanowires formation energies E (measured with respect to atomic energy
values) in the tight binding model as a function of diameter 2R, the P and H
nanowire motifs emerge as the most favorable. (Practically the two curves are over-
lapping at diameters above 2 nm.) Surprisingly, the I nanowire is favorable only
at the very small diameters, below ∼2.5 nm, when the I curve intersects the P
one. Above this value, this nanowire becomes unfavorable. Interestingly, Figure 9b
shows that a very different conclusion can be obtained if one relies on the classical
potential data. The formation energy curves for the three nanowires are very close
together. In agreement with previous investigations [48], the I wire appears now
more favorable than the P one and the intersections between the I and P curves,
marked by the down arrow, is delayed until ∼9 nm. In agreement also with the
previous comparison [46] based on the classical Stillinger-Weber potential, the H
nanowire motif appears overall more favorable than the P one. Comparing now the
I and H nanowires, we see that below 6 nm in diameter the I nanowire is favored.
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Fig. 9 Size dependence of
the cohesive energy for the
P , H , and I Si nanowires.
The (a) density functional
theory-based tight binding
potential and (b) classical
Tersoff potential give
different energetic orderings.
Arrows mark intersections of
I and P energy curves

3.2.3 Comparison of the Tight Binding and Classical Potential
Simulation Results

To rationalize the differences between Fig. 9a, b we have analyzed in more detail
how the two microscopic models are describing each nanowire motif. Figure 10a,b,c
plots over a large diameter range the obtained E − Ebulk values for all nanowires
as obtained with the tight binding and Tersoff atomistic descriptions. We found
it instructive to perform a Wulff decomposition of the obtained cohesive energy
data as:

E − Ebulk = δEbulk + Esf + Ee, (27)

where Ebulk represents the cohesive energy of the crystalline nanowire bulk, i.e.,
cubic diamond bulk (−4.953 eV and−4.628 eV for tight binding and Tersoff poten-
tial, respectively) for the P and I nanowires and the hexagonal bulk Si (−4.943 eV
and −4.625 eV for the tight binding and Tersoff potential, respectively) for the
H nanowire. In Eq. (13) δEbulk is the bulk energy correction, which captures the
elastic strain stored in the nanowire core. The surface Esf and edge Ee energies have
analytic expressions constructed by taking into account the structural parameters of
the nanowires. A Wulff decomposition extrapolation approach was used before to
predict formation energies of nanowires at larger sizes [45]. Here, by identifying in
the atomistic data the magnitude of the various contributions, we use it to obtain
more insight about the differences between the two models.



Computational Nanomechanics of Quasi-one-dimensional Structures 51

Fig. 10 (a) P , (b) H , and
(c) I Si nanowires described
with the tight binding (full
markers) and Tersoff (open
markers) potential. The zero
of energy is taken to be the
cohesive energy of the cubic
diamond Si in (a) and (c), and
the hexagonal Si in (b). The
energy is measured in eV per
atom

In Fig. 10a we see that overall the tight binding description of the P nanowire
gives a lower energy. The differences are especially significant at the smaller sizes
(44 meV at L = 2) and they diminish as the nanowire diameter is increased. Using
the structural information entered in Table 1 and recognizing that this nanowire
structure has no edge energy penalty, we obtain that the cohesive energy should
scale with the number of layers L as

EP (L)− Ec
bulk = δEbulk + γP

2L − 1
, (28)

where γP is the surface energy penalty per surface atom and δEbulk represents
the shear elastic energy stored in these structures. Fitting to the atomistic data we
obtained γP of 1.25 eV/atom with tight binding and 1.39 eV/atom with Tersoff
description. For both models we found that δEbulk is small and can be neglected.
Thus, the energetic differences noted in Fig. 10a can be attributed mainly to
the inability of the Tersoff potential to correctly describe the exposed Si (001)
surfaces.

Moving on to the H nanowire, Fig. 10b shows similar differences with a
classical–tight binding agreement at large diameters. The H nanowire does not
contain edge and bulk correction terms. Relying on the algebraic form

EH (L)− Ewbulk =
γH

L
, (29)
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a least-squares fitting of the two data sets obtained γH as 0.88 eV/atom in tight
binding and 0.97 eV/atom with the classical potential.

Figure 10c shows even larger differences between the two I nanowire descrip-
tions. While at the lowest diameter the tight binding model yields a lower energy,
the classical potential-based modeling gives a lower energy for L ≥ 4 or 2R ≥ 2.5
nm. We fitted the data to the algebraic form

EI (L)− Ec
bulk = δEbulk + γI

L + 0.5
+ 12δ

(L + 1)(2L + 1)
, (30)

which was constructed based on the structural parameters entered in Table 1 and the
observation that there are 6L edge atoms in each computational domain. Due to the
different surface reconstruction above 2.5 nm in diameter, the first two tight binding
data points were not included in the fitting. For δEbulk we obtained 36 meV/atom
with tight binding versus 21 meV/atom with classical. Both models confirm the
I nanowire stores significant strain energy but due to the errors in reproducing
the elastic constants, the strain component is not well represented by the classical
model. Further, we found the flattened surface obtained with tight binding has a
higher 980 meV/atom cost when compared with the 900 meV/atom obtained classi-
cally. Finally, we found that the buckling of the dimers located on the edges lowers
the tight binding energy as δ = −37 meV/atom. A δ value of 38 meV/atom obtained
from the classical data agrees with our observation that this model does not capture
the dimer buckling. As can be seen from Eq. (30), the edge energy component is the
least important, and the tight binding description gives a higher energy because the
bulk correction and the surface energy count more in the energy balance. We have
summarized all the fitted data of the energy components in the Wulff decomposition
in Table 2.

Table 2 Summary of energy values obtained from the Wulff-like energy decomposition of the
three nanowires

Nanowire P H I

Ebulk(eV) Tight binding −4.953 −4.943 −4.953
Tersoff −4.628 −4.625 −4.628

δEbulk(meV) Tight binding 0 − 36
Tersoff 0 − 21

γ (eV) Tight binding 1.25 0.88 0.98
Tersoff 1.39 0.97 0.90

δ (meV) Tight binding − − −37
Tersoff − − 38
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4 Conclusion

In conclusion, symmetry adapted tight binding modeling is a versatile and effi-
cient computational technique for nanomechanics. Based on the obtained modeling
results, one has the possibility to next construct a continuum, computational effi-
cient model of the nano objects that can be used in engineering applications. Here
we proved the abilities of this method to uncover the linear and nonlinear elastic
response of carbon nanotubes from a density-functional-based tight binding mod-
eling of the covalent bond. The critical strain beyond which nanotubes behave
nonlinearly in torsion, the most favorable rippling morphology, and the twist- and
morphology-related changes in fundamental band gap were identified from a rigor-
ous atomistic description.

From the presented investigations on the stability of Si nanowires we see that
the use of a quantum-mechanical description of the atomic bonding is critical as
the classical potentials [54] introduces significant errors. Moreover, these errors are
not systematic: On one hand, for the P and H nanowires the errors are larger at
smaller diameters as they are mainly caused by the inability of the classical potential
to describe the surface reconstruction. On the other hand, for the I nanowire the
errors are large even at large diameters, as they are due to the inability to describe
the strain stored in the nanowire core as well as the higher surface energy penalty.
The magnitude of these errors are causing the energetic ordering of the nanowire
structures not to be identical in the two microscopic descriptions. Hence, different
stability conclusions [46, 48] can be reached from the two data sets. We note that
the usual approach [45, 46] of complementing the large scale classical calculations
with expensive quantum calculations carried out at the smallest diameters (i.e., that
assumes that corrections are needed at the smallest diameters only) should be used
with care. For example, judging the I nanowire stability by combining the Tersoff
data with the affordable first two tight binding data points under periodic boundary
condition would be deceiving.
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research.
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