
Chapter 2
Waveform Encoding

2.1 Introduction

‘Any natural signal is in analog form’. To respect the said statement and to meet
the basic requirement of any type of digital signal processing and digital com-
munication, the essential and prior step is converting the electrical form (through
transducer) of the natural analog signal into digital form, as digital modulator or any
type of digital signal processor does not accept analog signal as its input. Therefore,
to consider the digital transmission of analog signal, it is very important to encode
the waveform 1st. This process of waveform encoding is done through sampling,
quantization and encoding; finally the analog information is converted to digital
data.

The digitally coded analog signal produces a rugged signal with high immunity to
distortion, interference and noise. This source coding also allows the uses of regen-
erative repeater for long distance communication. In the process of quantization,
the approximation results in quantization noise and with a target of removing the
noise, the bandwidth becomes comparable to the analog signal. Hence, a trade-off
between the noise and bandwidth is to be established.

According to the specification in terms of accuracy-bandwidth trade off different
schemes of source encoding are employed. The basic procedure of digital trans-
mission of analog signal is coded pulse modulation or PCM. Quantization can be
made non-uniformly [4] to catch up intimate details. To reduce the bandwidth in
an efficient way, the process of differential pulse code modulation (DPCM) and
delta-modulation (DM) [7] are used. In the prediction process of DM, reduction of
hardware can be ensured by a nice engineering called as delta-sigma modulation
(DSM). At the end of the chapter, the linear prediction is discussed with the help of
Genetic Algorithm (GA).

2.2 Pulse Code Modulation (PCM)

Pulse code modulation (PCM) is a digital transmission system of analog signal having an
analog to digital converter (ADC) at the input and a digital to analog converter (DAC) at the
output.
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From the previous discussion it is granted that, the analog signals found in nature
are essentially continuous time continuous valued signal. To make the signal
compatible to feed into digital communication system, the signal needs to be con-
verted to another form which is essentially represented using digits only. This
analog-to-digital conversion follows principally three chronological steps namely,
(a) Sampling, (b) Quantization and (c) Encoding. By the process of sampling, the
time continuity is broken taking care of sufficiently large (almost 1) probability
of regeneration. Quantization reshapes each sample height in voltage or in current
mode. Here we get defined levels of voltage/current with respect to defined instants
of time. That’s why this signal obtained after quantization is called as discrete time
discrete valued signal. Now, the remaining task is the representation of the defined
set of finite number of probable time and voltage/current values. That can be done by
mapping each of the elements of the set to a digital code. Automatically an encoder
can map the entire signal into digit space.

When the digits are received un-erroneously (for the simplicity of understanding,
it’s assumed that no errors occur into the communication channel; if error comes,
the problem can be taken care of by error detection and correction in channel coding
to be discussed in the Chap. 9) at the destination end, formation of the word is
essential. Each word is the tag of each quantization level. Next, a synchronized clock
oscillating in sampling frequency can segregate the levels, define the time instants
respective of the each level and then a discrete time discrete valued signal is obtained
here again merely identical to the input signal of the encoder of the transmitter. The
signal is obviously a multi-frequency signal where high frequency component arises
due to the process of sampling. Now a low pass filter can reconstruct the original
signal with some quantization error, which can be minimized by just increasing the
number of quantization levels, i.e., by increasing the number of bits to represent
each level.

Here a question of bandwidth noise trade-off arises. The objective of com-
munication must play an important role here. There may a priority on accuracy,
may be a priority of speed, or there may exist a compromise between these two.
Depending upon the user or system requirement, a lot of variations of PCM are
designed.

2.2.1 Process of Sampling

The word ‘sample’ means a small portion of physical element/phenomena which
singularly or collectively has all the characteristics of the original physical ele-
ment/phenomena. As discussed in Chap.1, this is the 1st step towards analog to
digital signal conversion. Let’s consider the signal m(t) of bandwidth B Hz. When
the signal is multiplied by a train of impulses, the resultant signal is obviously the
sampled version of m(t). The impulses are equi-spaced by an amount of time TS.
After sampling, the signal g(t) becomes discrete in time domain (Fig. 2.1).
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Fig. 2.1 The process of sampling to get discrete time signal

To establish the relationship between the analog signal and discrete (sampled)
signal, let’s take the example of sampling of a sinusoid s(t), sampled at a rate of FS,
i.e., sampling interval TS.

The analog signal is given by,

S(t) = A sin (�t + φ) (2.1)

where,

A is the amplitude,
� is the analog angular frequency = 2πF,
F is the analog frequency,
φ is the initial phase

After sampling, we are taking the signal at t = 0, TS, 2TS.,. . .NTS.
Or, t=nTS, (n=1,2,3,. . .N), N=number of samples.
Therefore, from Eq. (2.3),

S(nTS) = A sin (2πFnTS + φ)

⇒ S(n) = A sin

(
2π × F

FS
+ φ

)
as TS = 1/FS

⇒ S(n) = A sin (2π × f + φ)

⇒ S(n) = A sin (ωn+ φ)

(2.2)
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taking

f = F

FS

From Eq. (4.1) and (4.2), the correspondence of sampling is shown. The sequence
formed as S(n) and the input signal S(t) to the sampler, are correspondent.

Looking closely regarding the units of the different variations of frequencies,
generated as a bi-product of the process of sampling, we have the following derived
units.

Unit of F= cycles/s
Unit of FS= samples/s

Therefore,

Unit of digital frequency, f=cycles/sample
Unit of analog angular frequency, �, i.e., 2πF = rad.cycles/s
Unit of digital angular frequency ω=rad/samples.

Here, if one decrease the spacing between the samples (TS), i.e., increase the
rate of sampling FS, the reconstruction would be easier at the receiver side. But,
the bandwidth of transmission would be increased thereafter, it will affect the pro-
cessing time of the sampled signal. So, there is a trade-off between noise and
transmission bandwidth. However, it’s really important to know the lower limit of
the choice of the sampling frequency for successful reconstruction.

2.2.1.1 Sampling Theorem

An analog signal can be reconstructed from its sampled values un-erroneously, if the
sampling frequency is at least twice the bandwidth of the analog signal.

Say an analog signal m(t) has three different frequency components f1, f2, and f3, or
combination of all of them, where f1 < f2< f3 then the bandwidth of that m(t) signal
must be f3. For ease of calculation, we are taking bandwidth of that signal B Hz, in
general.

Therefore we can say the spectrum M(ω) is band limited by 2πB in ω scale,
and band limited by B Hz in f scale. Now, sampled signal is nothing but the signal
obtained by multiplying m(t) by unit impulse train �nTs(t). From the figure the
sampled signal is g(t) = m(t) × �nTs (t). Time period of the impulse train is Ts.
therefore frequency is fs= 1/ Ts. Let’s now expand the �nTs(t) signal in Fourier
series so that we can study the spectrum of g(t) signal. As �nTS (t) is even function
of time, By Fourier series,

�nTS (t) = a0 +
∞∑

n=1

(an cos nωst + bn sin nωst) (2.3)
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Here,

a0 = 1

TS

∫
TS

�nTS (t) dt = 1

TS

an = 2

TS

∫
TS

�nTS (t) cos nω0tdt = 2

TS

bn = 0, for even function

Here,
∫

TS
signifies integration within upper limit to lower limit difference TS.

Therefore,

�nTS (t) = 1

TS
(1+ 2 cos ωst + 2 cos 2ωst + 2 cos 3ωst + ............)

⇒ g(t) =m(t)×�nTS (t)

= 1

TS
(m(t)+ 2m(t) cos ωst + 2m(t) cos 2ωst + 2m(t) cos 3ωst + ........)

= 1

TS

(
m(t)+ 2m(t)× e jωst + e−jωst

2
+ 2m(t)× e2jωst + e−2jωst

2

+2m(t)× e3jωst + e−3jωst

2
+ .....

)

= 1

TS

(
m(t)+ m(t)

(
e jωst + e−jωst)+ m(t)

(
e2jωst + e−2jωst

)

+m(t)
(

e3jωst + e−3jωst
)
+ .....

)
(2.4)

From the 1st term of the equation above, it is very clear that spectrum of g(t) will be
similar to M(ω) except the amplitude. Amplitude will be 1/ Ts times of that of G(ω).
2nd term indicates M(ω) shifted in both sides by the amount of ωs (using negative
frequency concept). Similarly 3rd term indicates M(ω) shifted in both sides by the
amount of 2ωs and so on.

Now if we can extract the central spectrum by low pass filter from the assembly
of spectrum, then we can easily reconstruct the m(t) signal.

Case I

From the Fig. 2.2 above specific fs i.e. ωs is taken into account. It is very
clear that central spectrum can be extracted using LPF. Therefore it is success of
reconstruction.

Here ωs− 2πB = 2πB
Or, ωs= 4πB
Or, fs= 2B
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G(ω)
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Fig. 2.2 Sampled spectra for fS=B

Case II

From the Fig. 2.3 above other fs i.e. ωs is taken into account. It is very clear that cen-
tral spectrum cannot be extracted using LPF; because, there is an overlap region of
two spectra. The error due to this overlap region is called as aliasing error. Therefore
it is failureof reconstruction.

Here ωs− 2πB < 2πB
Or, ωs< 4πB
Or, fs< 2B

G(ω)

–fS–B –fS –fS+B 0 fS–B fS fS+B

–B 0 B f

Fig. 2.3 Sampled spectra for
fS <B

Case III

From the Fig. 2.4 above specific fs i.e. ωs is taken into account. It is very clear that
central spectrum can be extracted using LPF more easily than case I. Therefore it is
success of reconstruction.

Here ωs− 2πB > 2πB
Or, ωs> 4πB
Or, fs> 2B

Therefore collectively we can say fs > 2B i.e., sampling theorem is proved. The
minimum frequency of sampling for successful reconstruction is Nyquist sampling
rate (fs= 2B)
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Fig. 2.4 Sampled spectra for fS>B

Collectively, the condition for successful reconstruction of the message signal
can be derived therefore as,

fS ≥ 2B (2.5)

2.2.1.2 Aliasing

Say, two sequences are there s1(n) and s2(n). If the digital angular frequency differ-
ence between these two sequences is integral multiple of 360◦, the sequences would
be identical.

Say,

s1(n) = A sin (ω1n+ φ)

s2(n) = A sin (ω2n+ φ)
(2.6)

and

ω1 = ω2 + 2π

Then,

s1(n) = A sin (ω2n+ φ + 2πn) = A sin (ω2n+ φ) (2.7)

It is a severe error. The above equation signifies, after sampling the uniqueness of
the signal destroys. Two different sinusoids map to a single sequence after sampling
(Fig. 2.5). This error is called as aliasing error and these two sequences are called
as alias of other.

To overcome the problem of aliasing, the choice of ω should be such that, any ω

must reside within ±π . Then only the difference between any two ω’s be restricted
within the range of 2π as shown in the Fig. 2.6.
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Fig. 2.5 Illustration of the sampling theorem
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Fig. 2.6 Solution to the error
of aliasing

Therefore, for 0 aliasing, the digital angular frequency should be as follows

|ω| ≤ π

⇒ 2π
F

Fs
≤ π

⇒ F ≤ Fs

2
⇒ Fs ≤ 2F

(2.8)

Equation (2.8) is indeed the mathematical model for statement of the sampling the-
orem, and the process of sampled sinusoid signal correspondence is another way to
prove the sampling theorem.

2.2.2 Process of Quantization

After sampling what we get is a sequence of impulses with value continuity. The
impulses are separated by an amount of the sampling time TS, but one cannot infer
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about the amplitude of the signal even after sampling in terms of discontinuity. It
means, a set can be defined with finite number of time elements but a set with finite
number of probable amplitude elements cannot be defined yet. The amplitude may
be anything between the Amax and Amin. As for an example, if the signal is within
voltage range +5 V and −5 V, at an instant of sampling the amplitude may be
3.0000000029 V. And we do not have the control over the accuracy permission, i.e.,
how many decimal digits we should allow, or truncate or round off and so on. This
signal is therefore a discrete time continuous valued (DTCV) signal after sampling.
Now, we need to make it properly a discrete time discrete valued (DTDV) signal.
The process by which a set of finite number of amplitude values are also defined
is called as quantization. Say, a set is defined with voltage values 1, 2, 3, 4, 5 and
their negative counterpart volts. Then any original value obtained by sampling will
be approximated to the closest defined value. For some cases, the sampled values
may be quantized high; sometimes they may be quantized low with respect to the
defined levels (Fig. 2.7).

To understand closely, let’s consider the signal of Fig. 2.8. The maximum and
minimum values are designated as Amax and Amin. Now, the entire range Amax
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Fig. 2.8 Illustration of
uniform quantization and
encoding

to Amin is equally divided into 4 regions of width S. The 4 regions are named as
�0 to �3. The middle of each of the �-regions is our defined probable amplitude
level. The levels are called as q-levels or quantization levels. The algorithm of quan-
tization states, ‘If the sampled signal amplitude lies within �i region, the amplitude
will be quantized (approximated) to the amplitude qi’. Figure 2.8 clearly depicts the
process.

The shaded signal in the above figure is the staircase representation of the quan-
tized signal. Next, each q-level can easily be encoded to through 2 bit encoder or
MUX to get proper digital representation of the input analog signal. After quanti-
zation, the signal xq (kTS) is represented as q2, q3, q2, q2, q3, q0, q0, q0, q0, q1. And
after encoding, each level is inferred by a pair of digits in parallel. Next, by employ-
ing a parallel to serial converter, the serial bit stream is obtained which is the
corresponding digital representation of the input analog signal.

There are two types of uniform quantizer namely,

(a) Midtread quantizer
(b) Midrise quantizer

Figure 2.9 shows the input-output characteristics of the two types of the uniform
quantizer. In midtread type quantizer, the origin lies in the middle of the tread of
the staircase like graph. In midrise type, the origin the graph lies in the middle of
a rising part of the staircase like graph. It can be noticed that, both midtread and
midrise graphs are symmetric about the origin.

2.2.3 PCM Transmitter and Receiver

2.2.3.1 PCM Transmitter

The entire principle of analog to digital conversion is now unveiled to us. Therefore,
we can just club up all the procedural blocks to construct the PCM transmitter as
shown in Fig. 2.10. We have already discussed the functioning of the blocks. First
the input analog signal x(t) is being passed through a low pass filter of bandwidth
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Fig. 2.10 PCM transmitter

B Hz to restrict the bandwidth of the signal for prevention of aliasing error. Next,
the three basic steps of analog to digital conversion (ADC) is being followed
i.e., sampling-quantization-encoding, as discussed before. But here the encoded bit
stream is essentially parallel in form, although the objective is to get serial bit stream
in response to serial analog signal input [1].

The encoder works with M-ary digits (if M=2, it becomes binary) and produces
a codeword consisting of ν digits in parallel, corresponding to each sample. Since
there are Mν (in binary, 2ν) possible M-ary codewords, with ν digits per word,
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unique coding of the q different quantization levels requires that, Mν ≥ q. The
parameters should be chosen removing the inequality, such that,

q = Mν or, ν = logM q (2.9)

For binary PCM, number of bits per q-level can be calculated as ν = log2 q.
Finally, the successive code words are read out serially. The parallel to serial con-

version also needs the clocking by sampling frequency. Otherwise, either one word
would superimpose or overwrite the other, or one code word would be converted
twice. In both the cases, we get improper conversion. Therefore, clocking in the
parallel to serial converter is essential.

As, each encoded sample is represented using ν digits, so the signaling rate at the
output becomes r = νfS. Therefore, for transmission of PCM signal, the bandwidth
needed is

B.W.tr ≥ 1

2
r = 1

2
νfS ≥ νB (2.10)

2.2.3.2 PCM Receiver

The transmitted PCM signal is now passed through transmission channel towards
the receiver. Contamination of noise is almost obvious during the traversal of the
signal through transmission path. Though the received signal is noise accumulated,
the process of regeneration yields a nearly errorless signal as the SNR becomes
sufficiently large. In the receiver section ultimately we need to get the reconstructed
analog signal. Therefore, one digital to analog conversion (DAC) is to be designed.
As shown in the Fig. 2.11, the DAC operation is just the opposite, i.e., serial to
parallel conversion (for getting proper form of input to the next stage, i.e. decoder),
M-ary decoding and sample and hold. The output of the sample and hold circuit is
the staircase type waveform, xq(t).

The waveform shown in Fig. 2.12 may be regarded as a staircase approximation
x(t). A low pass filter is then employed for smoothening. The low pass filtering
produces the reconstructed analog signal x̃(t), which differs from x(t) to the extent
that the quantized samples

(
xq (kTS)

)
differ from the exact sampled values (x (kTS)).
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Fig. 2.11 PCM receiver
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2.2.4 Quantization Error

It is now understood that, the process of quantization is nothing but approximation to
nearer level of voltage/current. Due to this approximation, there a random amount of
difference occurs between actual and quantized value, named as quantization error.
As the error is like a random number and adds noise to modulation process, the error
can also be viewed as a noise called as quantization noise Fig. 2.13.
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Fig. 2.13 Quantization error characteristics
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The noise is now to be calculated as mean-square quantization error, e2 where
e is the difference between the actual and approximated value of voltage/current.

The peak to peak amplitude of the sampled signal xs (t) is divided into M equal
levels each of width S. At the centre of each level of width the quantization levels
are located as x1, x2, . . . xM as shown the Fig. 2.14. Since, in the figure xs (t) happens
to be the closest to the level xk, the quantizer output will be xk and obviously, the
quantization error is e = xs(t)− xk.

xS

xk

x3

x2

x1

Fig. 2.14 Interpretation of
quantization error

Let, p(x) dx be the probability that xs (t) lies in the voltage/current range x+dx/2
to x− dx/2. Then the mean square quantization error [3] is

e2 =
x1+S/2∫

x1−S/2

p(x) (x− x1)
2 dx+

x2+S/2∫
x2−S/2

p(x) (x− x2)
2 dx+ . . . (2.11)

Now, the PDF (probability density function) p(x) of the message signal will not
certainly be constant throughout each division. Assuming large M, i.e., with suffi-
ciently small S, p(x) can be taken as constant throughout each division. Then, the 1st
term of the right hand side of the Eq. (2.11), p(x) = p(1)=constant. The 2nd term is
p(x) = p(2), and so on. Hence, the constant terms may be taken out of the integration
sign. If we now substitute y ≡ x− xk, the expression in Eq. (2.11) becomes

e2 =
(

p(1) + p(2) + . . .
) S/2∫
−S/2

y2dy

=
(

p(1) + p(2) + . . .
) S3

12

=
(

p(1)S+ p(2)S+ . . .
) S2

12

(2.12)

Now, according to definition, p(1)S be the probability that the signal lies within the
1st quantization range, p(2)S be the probability that the signal lies within the 2nd
quantization range, and so on. Hence, the sum of the terms in the bracket in the
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Eq. (2.12) must have unity value, as signal must lie within the peak-to-peak value,
i.e., summation of all quantization range. Therefore, the mean square quantization
error is

e2 = S2

12
(2.13)

2.2.5 Signal to Noise Ratio (SNR) for Quantized Pulses

A signal with maximum and minimum amplitudes as +A and –A is assumed. The
signal is quantized in M levels with each of width S. Then the peak to peak range of
amplitude (voltage or current) is App=A− (−A)=2A. As understood from the graph
shown in Fig. 2.13, the maximum value of quantization error is S/2 or –S/2 in either
direction. Therefore, the degradation of the signal is limited to the amount of S/2
in additive or subtractive manner. It is obvious that, the peak to peak amplitude can
also be expressed in terms of number and width or quantization levels as App=M×S.

The peak power of the analog signal (normalized to 1 �) can be expressed as

Ap
2 =

(
App

2

)2

=
(

MS

2

)2

= M2S2

4
(2.14)

Now, we do have already the expression for quantization noise. Therefore, from
Eq. 2.13 and Eq. 2.14 we can derive the signal to noise ratio for uniformly quantized
pulses as [6]

St

Nq
=

M2S2

4
S2

12

= 3 M2 (2.15)

The above equation supports our common understanding that, SNR will be
improved as the number of levels to be squared is increased. As a limit if M→∞,
the PCM signals will be converted to PAM signal, i.e., no quantization will be done.

Example 2.1 Consider an audio signal as given
s(t) = 3 cos 500π t V

(i) Find the SNR when s(t) is quantized using 10 bit PCM.
(ii) How many bits of quantization is needed for achieving SNR of 40 dB.

(i) SNR = St

N
= 12PS

S2
,
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where PS is the RMS signal power defined as,

PS = 32

2
= 4.5 W

S = VH − VL

M
= 3− (−3)

2× 1010
= 5.86 mV

∴ SNR = St

N
= 12× 4.5

(5.46× 10−3)2
= 1.56× 106

⇒ SNR |dB = St

N

∣∣∣∣
dB
= 10 log

(
1.57× 106

)
≈ 62 dB

(ii) We know, 40 dB = 4× 10 log 10 = 10 log 104

Therefore, to find out the number of bits of quantization,

12× 4.5

(6/2ν)2
= 104

⇒ 22ν

(6)2
= 104

12× 4.5

⇒ 22ν = 36× 104

12× 4.5

Taking log2 of both sides, we get

⇒ 2ν = log2

(
36× 104

12× 4.5

)
= 12.7027

∴ ν =
⌈

12.7

2

⌉
= 7 bits

2.2.6 Non-uniform Quantization: Companding

For most of the voice communication channels, very low speech volumes predom-
inate for more than half of the times, the voltage characterizing detected speech
energy is 25% of the RMS value. Large amplitude values are relatively rare; only
10–15% of the time the voltage exceeds the RMS value. This is a peculiar statis-
tics of speech signals. Therefore, the spacing at the high amplitude level becomes
an wastage and for incorporation of that unused q-levels, we do have to go for
high bandwidth transmission of low accuracy transmission, if we employ uniform
quantization.

In case of the design of uniform quantization, the quantization error varies
directly proportional to the square of the uniform width of quantization levels,
i.e., the quantization error is inversely proportional to the square of number of
quantization levels. Now, to reduce the error, if we plan to increase the number



2.2 Pulse Code Modulation (PCM) 31

of q-levels, it requires more number of bits to represent each level. Hence, the trans-
mission bandwidth will be increased significantly. To bypass the trade-off between
these two (transmission bandwidth and quantization error), an overall reduction of
quantization error is achieved by judicially choosing the widths (non-uniformly) of
the levels keeping the total number of quantization levels unchanged [4, 5].

The ratio of voltage levels covered by voice signals from peaks of loud talk to the
weak passages of weak talk is of the order of 1000:1. Such variation is taken care of
by non-uniform quantization of the signal. The non-uniform quantization helps the
practical variability is such a way that, the step size automatically increases as the
separation from the origin of the input-output amplitude characteristics is increased.
In weak passages, the step size becomes smaller and the details are not missed at
all. On the other hand, by employing uniform quantization, either number of steps
should be made higher or the weaker signal details have to be compromised.

The procedure for getting non-uniformly quantized samples is compression fol-
lowed by uniform quantization. At the receiver side also, the reverse operation, i.e.,
expanding followed by uniform quantization is done, as shown in Fig. 2.15. The
inclusion of COMpression and exPANDING renames the process of non-uniform
quantization as a contraction COMPANDING (Fig. 2.16).

It does can be easily understood that, the compression characteristic and
parameter of the characteristic is really an important factor to know for reliable
and successful communication. A typical compressor characteristic is shown in

Non-uniform Quantization 
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Fig. 2.15 Uniform quantization vs. non-uniform quantization
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Compressor
Uniform
quantizer

Expander
Uniform de-

quantizer

Non-uniform quantization Non-uniform de-quantization

Fig. 2.16 The process of COMPANDING

S1min

S1max

S2min

S2max Compression

No compressionOutput, S2

Input, S1

Fig. 2.17 Compressor
characteristics

Fig. 2.17. A lot of compressor laws with different parameter orientation are there.
Among them A-law and μ law are accepted by CCITT1 and are discussed here.

μ law are mainly used in North America and Japan. A-law is used in Europe and
rest of the country.

2.2.6.1 µ-Law

The compression algorithm following μ-law is given by

|s2| = log (1+ μ|s1|)
log (1+ μ)

(2.16)

where, s1 and s2 are normalized input and output voltage/current respectively. μ is
a non-negative parameter which determine the degree of compression. For μ = 0,
we obtain uniform quantization. The plot of the normalized output with normalized

1CCITT is the contraction of Consultative Committee for International Telegraphy and Telephony.
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Fig. 2.18 Compression by μ-law

input with different values of μ is shown in Fig. 2.18. The quantization step is
defined as the reciprocal of the slope of the compression curve given by

d |s1|
d |s2| =

log (1+ μ)

μ
(1+ μ |s1|) (2.17)

For lower values of input, μ |s1| << 1, therefore,

|s2| ≈ μ |s1|
log (1+ μ)

(2.18)

and

d |s1|
d |s2| ≈

log (1+ μ)

μ
(2.19)

For higher values of input, μ |s1| >> 1, therefore,

|s2| ≈ log (μ |s1|)
log (1+ μ)

(2.20)

and

d |s1|
d |s2| ≈ |s1| log (1+ μ) (2.21)

Therefore, the μ-law is linear at low input levels and approximately logarithmic at
high input levels.
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2.2.6.2 A-Law

Another well known compression algorithm following A-law is given by

|s2| = A |s1|
1+ log A

; 0 ≤ |s1| ≤ 1

A
(2.22)

|s2| = 1+ log (A |s1|)
1+ log A

;
1

A
≤ |s1| ≤ 1 (2.23)

Here also, A is a non-negative parameter of compression. A=1 signifies uniform-
quantization. The plot of the normalized output with normalized input with different
values of A is shown in Fig. 2.19. The quantization step is defined as the reciprocal
of the slope of the compression curve given by

d |s1|
d |s2| =

⎧⎪⎪⎨
⎪⎪⎩

1+ log A

A
; 0 ≤ |s1| ≤ 1

A

(1+ log A) |s1| ; 1

A
≤ |s1| ≤ 1

(2.24)

Thus, the quantization steps over the central linear segment are diminished by fac-
tor A/(1+logA). These steps over the linear segment have a dominant effect on
small signals and are diminished practically by about 25 dB as compared to uniform
quantization.

A = 100

A = 5

↑s2

→s1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

A = 1

Fig. 2.19 Compression by A-law

Example 2.2 When a 256 level quantization is employed for a sinusoid with peak
voltage 40 Volts, what is the voltage interval without compression?

For μ = 255, what is the maximum and minimum separation between the
levels?
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(i) For uniform quantization, the step size, S can be determined easily
as

S = 2× V

256
= 2× 40

256
= 312.5 mV

(ii) To apply μ-law for non-uniform quantization, for μ = 255
The smallest height h would be increased in GP as

h+ 2 h+ 4 h+ 8 h+ 16 h+ 32 h+ 64 h+ 128 h = 2 V

⇒ 255 h = 2 V

⇒ h = 0.0078 V = 7.8 mV

⇒ 128 h = 1.0039 V

Therefore the maximum and minimum step size employing μ-law for non-
uniform quantization, for μ = 255 are 1.0039 V and 7.8 mV respectively.

2.3 Differential Pulse Code Modulation (DPCM)

In analog messages we can make a good guess about a sampled value from the
knowledge of the past sampled values. In other words, the sampled values are
not independent, and generally there is a great deal of redundancy in the Nyquist
samples. Proper exploitation of this redundancy leads to encoding a signal with
lesser number of bits. Consider a sampling scheme where instead of transmitting
the sampled values, we transmit the difference between the successive samples. By
employing the technique of transmitting the quantized difference values of the suc-
cessive samples we can efficiently use the bandwidth provided by the transmitting
channel.

2.3.1 Cumulative Error in PCM

In general PCM system, a quantization error eqi is added to the quantized output
while quantizing the ith sample. Now just take a look on how the quantization error
affects the DPCM output.
Here Zi is the sampled value at ith instant and Ẑi is the predicted sample (considered
as delayed sample) at ith instant.

Now, from the Fig. 2.20,

di = Zi − Ẑi

= Zi − Zi−1

Or recovered sample at the receiver is Zi = d̂i + Zi−1

(2.25)

For the 1st sample, i=1. So, Z1 = d̂1 + Z0
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di

Transmitter Receiver

iZ^
di

Quantizer 
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Zi

^
Zi

–

Zi−1

Delay

Fig. 2.20 Basic DPCM communication system

= d̂1 + Z0(As at 0th instant Z0 = Z0)

And the quantized difference

d̂i = di + eqi (2.26)

So, from the diagram presented in Fig. 2.20,

Z1 = d1 + eq1 + Z0

Or Z1 = Z1 + eq1

(2.27)

Now, for i=2, we get from Eq. (2.25),

Z2 = d̂2 + Z1

Z2 = d2 + eq2 + Z1 + eq1

Z2 = Z2 + eq1 + eq2

(2.28)

Proceeding in this way we can see

Zn = Zn +
n∑

i=1

eqi (2.29)

So, here we see that in case of basic configuration of DPCM, the output at nth instant
is affected not only by the quantization error of nth instant, but also by the errors
of previous instants. The error becomes severe as the term of samples increases. To
overcome the problem, a new configuration is designed.

2.3.2 Prevention of Cumulative Error by Applying Feedback

In the receiver section, a delay feedback path is used for proper recovery of the
message sample. To solve the problem of cumulative quantization error in the trans-
mitted samples, we have just copied the feedback loop of the receiver section and
pasted to the transmitter section as shown in Fig. 2.21.
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Fig. 2.21 DPCM
communication system
with error suppressor

feedback circuit has been added to the transmitter side. The feedback circuit is basi-
cally same as the receiver circuit. Now let us analyze the transmitter. Here the block
Z−1signifies 1 unit delay (delay by an amount of TS).

At ith instant

di = Zi − Zi−1 and d̂i + Zi−1 = Zi (2.30)

Also,

d̂i = di + eqi (2.31)

For the 1st sample, i.e. for i=1,

d̂1 = d1 + eq1

So, Z1 = d̂1 + Z0

= d1 + Z0 + eq1

= Z1 + eq1

(2.32)

For i=2, from Eq. (2.31) we get

d̂2 = d2 + eq2 (2.33)

Now,

d̂2 + Z1 = Z2

So,

Z2 = d2 + eq2 + Z1

= Z2 + eq2

(2.34)



38 2 Waveform Encoding

Proceeding in this way, we can say reconstructed output at any instant

Zn = Zn + eqn (2.35)

So, comparing Eqs. (2.29) and (2.35), we can say that in the present case, the recon-
structed output depends only on the quantization error of that particular instant. So
it’s free from cumulative error.

Thus if m[k] is the kth sample instead of transmitting m[k] we transmit the dif-
ference d[k] = m[k] − m[k − 1]. At the receiver knowing d[k] and the previous
sample m[k − 1], we reconstruct m[k] iteratively at the receiver. Now, the dif-
ferences between successive samples are generally much smaller than the sample
values. Thus the peak amplitude mp of the transmitted value is reduced consid-
erably because the quantization interval Av = mp/l, for a given l (no of bits per
sample) we can reduce the quantization noise given by A2

v/12. This also means that
for a given transmission bandwidth (which is related to number of bits per sample
as BW = l×samples/s

2 ) and for a given SNR we can reduce BW.
We can improve upon this scheme by estimating (predicting) the value of kth

sample m̂[k] from a knowledge of the previous sample. If this estimate is m̂[k], then
we transmit the difference (prediction error) d[k] = m[k] − m̂[k]). At the receiver
also, we determine the estimated m̂[k] from the previous sample, and then generate
m[k] by adding the received d̂[k] to the estimated m̂[k].

Now if our prediction is quite worth, the difference between m̂[k] and m[k] will
be much smaller than the difference between two sample values m[k] and m[k− 1].
Thus the number of bits required will be even lower than the previous case and
hence the bandwidth will also be lower.

In the basic assumption, the prediction for a particular sample is taken granted
as the delayed sample. In the next section, we’ll try to discuss the reason and logic
behind this assumption.

2.3.3 How We Can Predict the Future?

The approach to signal prediction (estimation) is discussed here using the spirit of
Taylor [2].

Let us consider, a signal m(t), which have derivatives of all order at t. Using
Taylor series we can express m(t + TS) as

m(t + TS) = m(t)+ TS

1! m(t)+ T2
S

2! m(t)+ ............. (2.36a)

≈ m(t)+ TSm(t) For small TS (2.36b)

Equation (2.36a) shows that from knowledge of the signal and its derivative at
instant t, we can predict a future signal at t = TS. In fact, even if we know
just the first derivative, we can still predict this value approximately, as shown in
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Eq. (2.36b). Let us denote the kth sample of m(t) as m[k], that is m(kTS) = m[k],
and m(kTS ± TS) = m[k ± 1].

Now, the derivative

m(kTS) ≈ m[kTS]− m(kTS − TS)

TS
.

So form Eq. (2.36b), we obtain

m[k + 1] ≈ m[k]+ TS

[
m[k]− m[k − 1]

TS

]

= 2m[k]− m[k − 1].
(2.37)

It shows that, we can find a crude prediction of the k + 1th sample from the two
previous samples. The approximation improves if we take more terms in Eq. (2.36a).
To determine the higher order derivatives in the services, we require more samples
from the past. Larger the number of past samples, we can get a better approximation.

m[k] ≈ a1m[k − 1]+ a2m[k − 2]+ · · · · · · + aNm[k − N] (2.38)

The right hand side is m̂[k] the predicted value of m[k]. Thus m̂[k] = a1m[k − 1]+
a2m[k − 2]+ · · · + aNm[k − N].

This is the equation of an Nth order prediction. Thus we can design one prediction
filter whose output is m̂[k] and input is m[k−1], m[k−2], . . . m[k−N]. But we can
get these by simply delaying m[k] by TS.

The parameters a1, a2, . . ., aN are called prediction coefficients. This is also
called linier prediction. It is actually a transversal filter (a tapped delay line), where
the tap gains are set equal to the prediction coefficients as shown in Fig. 2.22.

m[k]

∑ 

a1 a2 a3 aN

Delay
TS 

Delay
TS 

Delay
TS 

Delay
TS 

Output m̂[k]

Fig. 2.22 Basic idea of linear prediction
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2.3.4 Analysis of DPCM

DPCM transmit d[k], the difference between m[k] and m̂[k] and at receiver we gener-
ate m̂[k] from the past sample values to which the received d[k] is added to generate
m[k].

There is, however, one difficulty in this scheme. At the receiver, instead of past
sample m[k − 1], m[k − 2], . . . m[k − N] as well as d[k], we have there quantized
versions, mq[k − 2],. . . mq[k − N]. Hence, we cannot determine m̂[k]. We can only
determine m̂q[k] the predicted value of quantized sample from previous quantized
samples. This will increase the error in reconstruction (because the error is here
additive, error in each quantized signal is added together).

In such case, a better strategy is to determine m̂q[k], the estimate of mq[k] instead
of m[k] at the transmitter also from the quantized sample. The difference d[k] =
m[k] − m̂q[k] is now transmitted using PCM (Fig. 2.23). At the receiver, we can
generate m̂q[k], and from the received d[k], we can reconstruct mq[k] (Fig. 2.24).

Here dq[k] = d[k] + q[k], where q[k] is the quantization error. The predictor
output m̂q[k] is fed back to its input so that the predictor input mq[k] is mq[k] =
m̂q[k]+ dq[k]

= m[k]− d[k]+ dq[k]

= m[k]+ q[k]
(2.39)

Quantizer 

Prediction filter 

Accumulator

mq[k−1]

^mq[k] ∑ 
–

+

dq[k]d[k]

∑

Fig. 2.23 DPCM transmitter

Predictor 

m̂q[k] mq[k]

dq[k] Output mq[k] 

∑ 

Fig. 2.24 DPCM receiver
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This shows that mq[k] is a quantized form of m[k]. The predictor input is indeed
mq[k] as assumed.

The receiver shown in Fig. 2.24 is identical to the shaded portion of the transmit-
ter. The inputs in both cases are also the same dq[k]. The predictor output must be
mq[k].

2.4 Delta Modulation

Sample correlation used in DPCM is further explained in Delta Modulation (DM)
by over sampling (typically 4 times the Nyquist rate) the baseband signal. This
increases the correlation between adjacent samples, which results in a small pre-
diction error that can be encoded using only one bit (no. of levels = 2). Thus DM
is basically a one bit DPCM, that is, a DPCM that uses only two levels (L=2) for
quantization of the m[k] − m̂q[k]. For more simple scheme the difference between
m[k] and m[k − 1] is encoded by only one bit. That is if m[k] is higher than m[k]
then 1 is transmitted, otherwise 0.

In comparison to PCM (and also DPCM), it is very simple method of A/D con-
version. In DM the word framing is unnecessary in transmitter and receiver. This
strategy allows us to use fewer bits per sample for encoding a base band signal.

In delta modulation, we use a first order predictor, which, as seen earlier, is just
a time delay of TS. Thus the DPCM transmitter and receiver can be reconfigured to
delta modulation as shown in the following Fig. 2.25.

Quantizer 

Delay TS 

Accumulator 

∑  

∑ 

m[k] dq[k]

mq[k−1]

mq[k]

Fig. 2.25 Delta modulation
as a special case of DPCM

Here

mq[k] = mq[k − 1]+ dq[k]

Hence,

mq[k − 1] = mq[k − 2]+ dq[k − 1]
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So,

mq[k] = mq[k − 2]+ dq[k − 1]+ dq[k] (2.40)

Proceeding iteratively in this manner and considering 0 initial condition, i.e.

mq[0] = 0, we have mq[k] =
k∑

n=0

dq[n] (2.41)

This shows that the receiver is just an accumulator. If the output dq[k] is repre-
sented by impulses, then the accumulator (receiver) may be realized by an integrator
because its output is the sum of the strengths of input impulses (sum of the areas
under the impulses). We may replace the feedback portion of the modulator (which
is identical to the demodulator) by an integrator. The demodulator output is mq[k],
which when passed through an LPF gives us the retrieved signal. The Fig. 2.26
bellows shows a practical implementation of the delta modulator and demodulator.

Sampler frequency fs

E 

– E 

Comparator 

Integrator 

∫

∑ 
dq(t)

^mq(t)

–

m(t) 

(a) 

Low pass filter ∫
dq[k]

^mq(t) ~m(t)

(b) 

m(t)
~

m(t)

Pi(t)

Po(t)

t

t

t

(c) 

Fig. 2.26 (a) Delta
modulator, (b) Delta
demodulator, (c) DM
waveforms
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2.4.1 Drawbacks of Delta Modulation

The waveform m̃(t) needs to closely follow the waveform of m(t) in order to the
recovered waveform m̃(t) resembles m(t). Taking a careful look at the waveform
shows situations where m̃(t) is unable to follow m(t) as the slope of m(t) is higher
than that of m̃(t). Also when m(t) is varying slowly, the change of m̃(t) is higher
enough to cause an error.

2.4.1.1 Slope Overloading

When, at any instant or any duration of time the slope of m(t) is higher then the slope
of m̃(t), i.e. step size/time period, m̃(t) is unable to follow the input message signal
m(t). So the recovered waveform will be distorted. Figure 2.27 shows the case.

Step size Δ

Time period TS 

m(t)
~~m(t)

Fig. 2.27 Slope overloading
error in delta modulation
(DM)

The condition for slope over loading is then,

dm(t)

dtmax
≥ �

TS
(2.42)

Example 2.3 For the signal s(t) = A sin 2π ft calculate the sampling frequency to
avoid slope overload error, considering 256 quantization levels and 1 kHz signal
frequency.

ds(t)

dt

∣∣∣∣
max
= A.2π f

∴ fs = 1

Ts
≤ 2Aπ f

�

⇒ fs ≤ Mπ f

[
∵ M = 2A

�

]
,

M = Number of levels,
2A = peak to peak amplitude.

Now, putting M=256, f=1,
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fS ≥ 256× 3.14× 1 kHz = 803.84 kHz

Therefore, to avoid the error of slope overload, the sampling frequency must be
greater than 803.84 kHz.

2.4.1.2 Granular Noise

In other hand, when the input message signal m(t) is varying slowly, the change in
m̃(t) is comparatively higher that causes error in reconstruction. This type of error
or distortion is called Granular noise. Figure 2.28 shows the case.

m(t)

Re constructed signal m(t)

Fig. 2.28 Granular noise
error in delta modulation

2.5 Adaptive Delta Modulation

The drawbacks of delta modulation are primarily due to the slope. These drawbacks
can be overcome by suitably changing the slop. Slope can be changed either by
changing the time period or the step size. Changing the time period will cause in
changing the frequency and bandwidth. So it is not possible to vary the time period
for a single message. Rather we can vary the step size instead to overcome the
limitation. One may question that, by increasing the step size we are increasing
the quantization error, because the quantization error is directly proportional to the
square of the step size. But here the basic assumption of squared error calculation is
missing and does not hold for the present case.

A Delta Modulation system with variable step size is known as the Adaptive
Delta Modulation (ADM).

The block diagram of an ADM system is shown in the following Fig. 2.29.
In the concept discussed above, the squaring circuit is responsible for the size

of step (�) adaptation (tuning). The shaded region shown in the figure above is the
‘adaptation algorithm’ in generic. Two other well known adaptation algorithms are
discussed below.

2.5.1 Song Algorithm

In the year of 1971, C. L. Song et al. [7] proposed a nice algorithm for step size
adaptation by which the step size of the predicted waveform (m̃ (t)) can nicely be
adapted. According to the algorithm, positive slope of the prediction with respect
to time results in the next prediction equal to the previous step size added with the



2.5 Adaptive Delta Modulation 45

Difference-
amplifier  

Integrator 
Variable-gain
amplifier 

   Modulator 

   Pulse generator 

Square law
device

Integrator

m(t)

~m(t)

Δ(t)

Po(t)
Pi(t)

(a) ADM transmitter 

Feedback circuit 

m̂(t)

(b) ADM receiver 

Quantizer Variable-gain
amplifier 

Integrator 

Integrator

Square law
device

LPF 

Adaptive
circuit  

Po(t)

Fig. 2.29 Adaptive delta
modulation (ADM)
communication system.

step size at 0th prediction(�0), similarly, for negative slope of the prediction with
respect to time results in the next prediction equal to the previous step size minus
the step size at 0th prediction (�0).

If the nth prediction sample is �(n), the algorithm prescribes the adaptation as
shown in the following two equations.

�(n) = �(n− 1)+�0 if m(t) > m̃(t) (2.43)

�(n) = �(n− 1)−�0 if m(t) < m̃(t) (2.44)

This addition and subtraction is called as accumulation in other terms. To combine
the Eqs. (2.43) and (2.44) let us assume another parameter called as discrepancy
parameter (dn) as

dn =
{
+1 if m(t) > m̃(t)

−1 if m(t) < m̃(t)
(2.45)

Now, combining Eqs. (2.43) and (2.44), the nth sample can be calculated using
song algorithm of adaptation as
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�(n) = |�(n− 1) dn +�0dn−1| (2.46)

The song algorithm can now be used for digitization of any type of analog sig-
nal shape. Let us take a typical step size analog signal for prediction through
accumulation. The ADM waveform through song algorithm is shown below.

The level of decrement is controlled by the new algorithm. In the previous section
(adaptation by squaring), the increment and decrement amount is only the step size
of 0th instant (�0). But, as shown in the Fig. 2.30, the ADM predicted waveform
is showing undue oscillation for typically step like analog signal. For low slope and
high slope signals of other types can be tracked more efficiently by this method of
adaptation. The slope overload problem is solved totally by the song algorithm. The
undue oscillation can be viewed as a special type of granular noise.

~m(t) by Delta modulation

(t) by ADM (Song Algorithm)~m

Undue oscillation
during constant

level of m(t)

4Δ 0 3Δ 0

3Δ 0

2Δ 0

Δ 0

Fig. 2.30 Adaptive delta
modulation by song
algorithm

2.5.2 Space-Shuttle Algorithm

Space-shuttle algorithm is a modification over song algorithm only. We have seen
that, the negative slope or maintenance of constant levels of the analog signal cannot
be properly tracked by the prediction through adaptive delta modulation by song
algorithm. The step size of the accumulated waveform is incremented and decre-
mented by same amount (�0). But, allowance of this linear decrement gives rise to
an undue oscillation during constant level of m(t). The new algorithm only changes
the rule of decrement. Instead of linear decrement space shuttle algorithm suggests
constant decrement of amount �0.

�(n) = �(n− 1)+�0 if m(t) > m̃(t) (2.47)

�(n) = �0 if m(t) < m̃(t) (2.48)
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Otherwise, the algorithm is very much similar to the song algorithm. Here also,
the step size is incremented if the direction of the step at the current clock edge
is the same as the previous clock edge. If the direction is opposite, the step size is
decremented.

2.6 Sigma-Delta Modulation (SDM)

Delta modulation requires two integrators for modulation and demodulation pro-
cesses as shown in Fig. 2.31 below. Since integration is a linear operation, the
second integrator can be moved before the modulator without altering the overall
input/output characteristics. Furthermore, the two integrators in Fig. 2.31a can be
combined into a single integrator by the linear operation property (Fig. 2.31b).

Analog
signal

Analog
signal  

Analog
signal 

(a) 

+ _ 

Channel ∑

∫

 ∫ LPF

(b) 

+ _ 

Channel Analog
signal  

 ∫

 ∫∑ LPF

1 bit
quantizer 

Fig. 2.31 (a) Delta modulator and demodulator, (b) Modification of (a) by integrator matching

The arrangement shown in Fig. 2.32 is the design diagram of a Sigma-Delta
(S-D) Modulation system. This structure, besides being simpler, can be considered
as being a ‘smoothed version’ of a 1-bit pulse code modulation (delta modulator).
Here, the smoothness signifies low pass filtering (i.e., integrated) of the comparator

Analog
signal  

Analog
signal 

+ _ 
Channel ∑  ∫ LPF

Fig. 2.32 Sigma-Delta modulator with a single integrator
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output as shown in Fig. 2.32 and 1 bit PCM signifies a hard limiter of 2 output levels
of saturation at the output (Fig. 2.26).

The name Sigma-Delta modulator comes from putting the integrator (sigma) in
front of the delta modulator. The use of the integrator in the manner described here
has also the following benefits:

1. The low frequency content of the input analog signal is pre-emphasized.
2. Correlation between adjacent samples of the delta modulator input is increased,

which improves the overall system performance by reducing the variance of the
error signal at the quantizer input.

3. Design of the receiver is simplified.
4. Noise performance is improved as discussed in the following section.

2.6.1 Noise Performance

Sometimes, the S-D modulator is referred to as an interpolative coder. The quantiza-
tion noise characteristic (noise performance) of such a coder is frequency dependent
in contrast to delta modulation. As will be discussed further, this noise-shaping
property is well suited to signal processing applications such as digital audio and
communication. Like delta modulators, the S-D modulators use a simple course
quantizer (comparator). However, unlike delta modulators, these systems encode
the integral of the signal itself and thus their performance is insensitive to the rate
of change of the signal (Fig. 2.33).

Fig. 2.33 Delta-Sigma modulation in frequency domain representation

• Signal transfer function (when N(S)=0):

Y(s) = [X(s)− Y(s)]× 1

s
(2.49)

Y(s)

X(s)
=

1

s

1+ 1

s

= 1

1+ s
(2.50)

Clearly, it signifies transfer function of LPF.
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• Noise transfer function (when X(S)=0):

Y(s) = −Y(s)× 1

s
+ N(s) (2.51)

Y(s)

N(s)
= 1

1+ 1

s

= s

s+ 1
(2.52)

Clearly, it signifies transfer function of HPF.

Transfer function shown in Fig. 2.34 illustrates the modulator’s main action. As
the loop integrates the error between the sampled signal and the input signal, it low
pass filters the signal and high pass filters the noise. In other words, the signal is
left unchanged as long as its frequency content doesn’t exceed the filter’s cutoff fre-
quency, but the S-D loop pushes the noise into a higher frequency band. Grossly
over-sampling the input causes the quantization noise to spread over a wide band-
width and the noise density in the bandwidth of interest (baseband) to significantly
decrease.
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Fig. 2.34 Noise performance
of signal delta modulation

2.7 Linear Predictive Coder (LPC)

2.7.1 Concept

From the Sect. 2.3.3 (DPCM prediction), it is understood that, for prediction of the
next sample, only the delayed sample may not reduce the error of prediction to our
threshold level of satisfaction. For that, we have incorporated a series of delayed
samples with suitable scaling factors. The word ‘suitable’ is important in respect of
the design (Fig. 2.35)

The accuracy of the prediction is dependent on the proper choice of the scaling
factors. Here the predicted sample is expressible as linear combination of the series
of samples as under:
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Fig. 2.35 Linear predictive coding with optimization of fitness of prediction

m̂[k] = a1m[k − 1]+ a2m[k − 2]+ . . . aNm[k − N]

=
N∑

i=1

aim[k − i]
(2.53)

Next, the error is calculated with respect to real m[k] and the squared value of error
(or we can use one squaring circuit to make it sign free) is minimized by any opti-
mization algorithm to find out ‘suitable’ scaling factors ai

′s for proper prediction.
This is LSE (least square error) estimation algorithm. Once the scaling factors are
fixed for training samples, now our LPC (linear predictive coder) is ready to use
for the other query samples also. The optimization process needs to solve a huge
number of differential equations to find out proper ai

′s for good predictor design.
To overcome the hazard of solving the differential equations, we take help of soft
computing approaches like Genetic Algorithm (GA), to be discussed in the next
section.

2.7.2 Genetic Algorithm Based Approach

Genetic algorithm is a biologically inspired algorithm based on Darwinian evolu-
tion, and is a nice algorithm for object optimization. Here, we can parallely discuss
about basic GA and application of GA to find out suitable ai’s for minimum squared
error.
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Genetic algorithms are implemented in a computer simulation in which a pop-
ulation of abstract representations (called chromosomes or the genotype of the
genome) of candidate solutions (called individuals, creatures, or phenotypes) to an
optimization problem evolves toward better solutions. Traditionally, solutions are
represented in binary as strings of 0s and 1s, but other encodings are also possible.
Here, we will use real-coded GA. The evolution usually starts from a population of
randomly generated individuals and allowed for reproduction. In each generation,
the fitness of every individual in the population is evaluated, multiple individuals
are stochastically selected from the current population (based on their fitness to the
particular problem), and modified (recombined and possibly randomly mutated) to
form a new population. The new population is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a maximum number
of generations has been produced, or a satisfactory fitness level has been reached
for the population. If the algorithm has terminated due to a maximum number of
generations, a satisfactory solution may or may not have been reached.

A typical genetic algorithm requires:

1. A genetic representation of the solution domain,
2. A fitness function to evaluate the solution domain.

Here, the gene is represented as an array of solutions in real code. The fitness
function is defined over the genetic representation and measures the quality of
the represented solution. The fitness function is always problem dependent. In the
present case, the fitness function f is defined as the squared error as given below:

f = ε2 = (m[k]− m̂[k]
)2 =

(
m[k]−

N∑
i=1

aim[k − i]

)2

(2.54)

After having the genetic representation and the fitness function defined, GA pro-
ceeds to initialize a population of solutions randomly, and then improve it through
repetitive application of mutation, crossover, inversion and selection operators.

Step1: Population
A genetic pool is created with 20 chromosomes each with N number of genes
with random values, covering the entire range of possible solutions. Here the
scaling factors must reside within 0 and 1. Therefore, the initialized random val-
ues must be fractions only. Say, the values of genes are the trial solutions of ai’s
(∀i) for minimum squared error.

Step2: Selection
During each successive generation, a proportion of the existing population is
selected to breed a new generation. Individual solutions are selected through a
fitness-based process. It means, from that 20 strings of arrays (20 chromosomes),
the most fit genes will be selected. The values of ai’s (∀i) (i.e., the genes) will
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be used to find the fitness value according to the Eq. (2) and from those 20
chromosomes (20 trial solutions) 10 better/ fitter will be selected.

Step3: Reproduction
The next step is to generate a second generation population of solutions from
those selected through genetic operators: crossover (also called recombination),
and/or mutation. The Fig. 2.36 clearly shows the process of crossover. The
crossover point should be chosen such that number of genes at the left of the
cross point of the X chromosome must be exactly equal to the number of genes
at the left of the cross point of the Y chromosome.
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1 2 3 4 
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Fig. 2.36 Process of crossover for a 5 variable (N=5) solution
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For each new solution to be produced, a pair of ‘parent’ solutions is selected
for breeding from the pool selected previously. By producing a ‘child’ solution
using the above methods of crossover and mutation, a new solution is created
which typically shares many of the characteristics of its ‘parents’. New parents
are selected for each new child, and the process continues until a new population
of solutions of appropriate size is generated.

Here we have assumed that, only 5 delays are responsible for the
prediction, i.e., N=5. So, two fit chromosomes are chosen as shown in
Fig. 2.36. In X chromosome, trial solution for a1 = 1

1+2+3+4+5 = 1
15 ,

a2 = 2
1+2+3+4+5 = 2

15 , a3 = 3
1+2+3+4+5 = 3

15 and so on. Similarly, in Y

chromosome, trial solution for a1 = 0
0+9+8+7+6 = 0, a2 = 9

0+9+8+7+6 = 9
30

and so on. After crossover, two new solutions for the scaling factors are created.
In the 1st child chromosome, a1 = 1

1+2+8+7+6 = 1
24 , a2 = 2

1+2+8+7+6 = 2
24 ,

a3 = 8
1+2+8+7+6 = 8

24 and so on. Similarly, in 2nd child chromosome, solution

for a1 = 0
0+9+3+4+5 = 0

21 = 0, a2 = 9
0+9+3+4+5 = 9

21 and so on.
The above example shows, the processes ultimately result in the next gen-

eration population of chromosomes that is different from the initial generation.
Generally the average fitness will have increased by this procedure for the pop-
ulation, since only the best organisms from the first generation are selected for
breeding.
Step4: Termination
This reproduction and offspring (or child) generation is continuously repeated
until a termination condition has been reached. Common terminating conditions
are:

• A solution is found that satisfies minimum criteria (threshold of fitness).
• Fixed number of generations reached.
• Allocated budget (computation time/money) reached
• The highest ranking solution’s fitness is reaching or has reached
• a plateau such that successive iterations no longer produce better results.
• Manual inspection.
• Combinations of the above.

2.8 MATLAB Programs

2.8.1 Aliasing

% In CD: ch2_1.m

% Aliasing

% Output: Fig. 2.5

% Programed by Apurba Das (Jan,’10)
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clear all;close all;

freq=100;phase=pi/3;
mag=2;fs=500;Ts=1/fs;
k=1; % number of repetations

num_points=200; % How many points to use, 200 makes it smooth

num_samples=11; % How many samples to simulate reading

% 11 puts “sampled” under “analog”

step=2/(freq∗num_points); % get a nice step size

t=0:step:2∗(1/freq);
n=0:num_samples-1;
% x and y are simulated analog functions

x= mag∗cos(2∗pi∗freq∗t+phase);
y= mag∗cos(2∗pi∗(freq+k∗fs)∗t+phase);
% x2 and y2 are simulated sampled version of x and y

x2(n+1)=mag∗cos(2∗pi∗freq∗n∗Ts+phase);
y2(n+1)=mag∗cos(2∗pi∗(freq+k∗fs)∗n∗Ts+phase);
% Plot the analog signal

subplot(2,1,1);

plot(t,x,’r.-’);hold on;plot(t,y,’b-’);

title(’Simulated analog signals, x=dots y=solid’);
xlabel(’Time’);ylabel(’Amplitude’);

% Plot “sampled” signals

subplot(2,1,2);

plot(n,x2,’rx’);hold on;plot(n,y2,’bo’);

title(’Simulated Sampled signals, x=x y=o’);
xlabel(’Time’);ylabel(’Samples’);

figure;

nn=0:0.002:0.02;
plot(t,x,’r.’);hold on;plot(t,y,’b-’);stem(nn,x2,’kv’);
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