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Abstract The cell envelopes of rhodococci and their closest relatives are domi-

nated by the presence of large branched chain fatty acids, the mycolic acids. Here we

review the structural features underlying the incorporation of the mycolic acids into

the rhodococcal cell envelope, notably their covalent anchoring to the peptidogly-

can–arabinogalactan complex and their organisation into an outer lipid permeability

barrier. Rhodococcal cell envelopes also accommodate diverse non-covalently

associated components such as channel-forming porin proteins, free lipids,
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lipoglycans, lipoproteins and capsules or cell envelope polysaccharides. Based on the

extensive studies of cell envelope biogenesis in corynebacteria and mycobacteria,

we have used a comparative genomics approach to examine the pathways for the

biosynthesis of the major cell envelope components of Rhodococcus jostii RHA1.

1 Introduction

The genus Rhodococcus belongs to the suborder Corynebacterineae, a distinctive

lineage within the phylum Actinobacteria (G€urtler et al. 2004; Jones and Good-

fellow in press; Zhi et al. 2009). The members of this taxon are characterised by

distinctive cell envelopes typically dominated by large branched chain lipids, the

mycolic acids, and collectively they are often referred to as the mycolata. In

addition to the mycolic acids, these bacteria share a number of other common

cell envelope features, most notably an arabinogalactan (AG) cell wall polysaccha-

ride that is covalently attached to the cell wall peptidoglycan and in turn provides a

scaffold for the covalent anchoring of mycolic acids. Thus, the chemistry and

organisation of these components in a distinctive cell envelope architecture repre-

sents one of the defining features of the biology of the mycolata. The mycolate cell

envelope has received extensive study in the context of understanding the targets of

several crucial antibiotics that are used against the pathogenic mycobacteria, most

notably Mycobacterium tuberculosis (Dover et al. 2008a). These studies have been
vital in providing comparative insights into cell envelope biology in the genus

Rhodococcus (Sutcliffe 1998; G€urtler et al. 2004). Here we review recent progress

in understanding of the composition, architecture and biosynthesis of the mycolate

cell envelope, with particular reference to the rhodococci. In particular insights into

the biosynthesis of these cell envelope components are now possible using a

comparative genomics approach, based on the recently published genome sequence

of Rhodococcus jostii RHA1 (McLeod et al. 2006).

2 Cell Envelope Composition in the Genus Rhodococcus:
Covalently Associated Components

The mycolyl–arabinogalactan–peptidoglycan complex represents the defining

covalently interlinked structure of the cell envelope of the mycolata. These com-

ponents and their linkages are reviewed in the following sections.

2.1 Mycolic Acids

Mycolic acids are 2-alkyl branched, 3-hydroxy long chain fatty acids, which vary in

size and complexity with the different genera of the mycolata (Fig. 1). Those of the
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corynebacteria are typically the smallest (size range 22–38 total carbons) and those

of the mycobacteria are the most complex, with a size range of 60–90 carbons and a

greater diversity of meromycolate chain functional groups such as cyclopropane,

methoxy- and keto- modifications (Dover et al. 2004; G€urtler et al. 2004; Takayama
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Fig. 1 Structures of representative mycolic acids from Corynebacterium, Rhodococcus and
Mycobacterium species, illustrating their differing complexity. M. tuberculosis methoxymycolate

is an example of the most complex mycolic acids. The less complex M. smegmatis mycolates

encompass either double or single unsaturations whilst retaining the longer chain length. Rhodo-
coccus sp. mycolates are of an intermediate size. They present an aliphatic 2-alkyl chain varying

from 12 to 16 carbons, whilst the 3-hydroxyl meromycolate typically contains 18–40 carbons (i.e.

x, y and z total 18–40). The rhodomeromycolates have relatively simple modifications containing

up to four unsaturations at presently undetermined positions. Corynebacterium sp. mycolates are

the simplest known mycolates. For simplicity, corynemycolates are represented as the typical

32–36 carbon aliphatic mycolic acids but a proportion of the total cell wall mycolates may also

contain single or double unsaturations
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et al. 2005). Members of the genus Rhodococcus produce mycolic acids of an

intermediate size, typically with 28–54 carbons in total (Alshamaony et al. 1976;

Klatte et al. 1994; Sutcliffe 1998; Stratton et al. 1999; Nishiuchi et al. 2000). One

important feature of mycolic acid structure is the length of the main meromycolate

chain compared to the alkyl side branch. In rhodococci, the alkyl side branch is

typically a saturated alkyl chain of 10–16 carbons in length, whereas the meromy-

colate is a longer chain (C20–C42) with up to four carbon–carbon double bonds

(Fig. 1). Thus consideration of the detailed profile of the mycolates present in

Rhodococcus rhodochrous (Stratton et al. 1999) reveals that the lengths of each

meromycolate chain will extend beyond that of its alkyl partner (Fig. 2) and similar

data are evident for other rhodococci (Nishiuchi et al. 2000). The positions of the

unsaturated bonds have not been determined unequivocally but studies of the

mycolic acids of Nocardia asteroides suggest it is likely that they are localised in

the distal regions of the meromycolate chain (Minnikin and O’Donnell 1984;

Sutcliffe 1998). This would mean the region of the meromycolate chain proximal

to the ester-linked terminus is effectively a saturated chain and would pack closely

with the saturated alkyl branch. Thus these features need to be considered when

predicting the arrangement of the mycolates esterified to AG within the rhodococ-

cal cell envelope (see below).

2.2 The Peptidoglycan–Arabinogalactan Complex

As in other members of the mycolata, the peptidoglycan structure of members of

the genus Rhodococcus has been determined to be of the A1g type, i.e. with the

diamino acid meso-diaminopimelic acid forming direct cross-linkages between

Fig. 2 Lengths of the meromycolate main chain extensions in the mycolic acids of Rhodococcus
rhodochrous. The data of Stratton et al. (1999) was re-analysed to calculate the number of carbons

by which the meromycolate main chain exceeded the length of the alkyl side branch. Data are

presented with respect to the proportion of the different mycolic acid types within the total

mycolates
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the stem peptides (Jones and Goodfellow in press). The muramic acid residues of

the glycan strands are N-glycolyated, which is a comparatively unusual peptido-

glycan modification (Uchida and Aida 1979; Vollmer 2008; Jones and Good-

fellow in press). N-glycolylation is likely carried out during cytoplasmic

peptidoglycan precursor biosynthesis, prior to lipid II formation (Raymond

et al. 2005; Vollmer 2008; Jones and Goodfellow in press). A clear orthologue

of the NamH protein recently identified as the Mycobacterium smegmatis oxy-

gen-dependent hydroxylase responsible for N-glycolylation was identified in the

R. jostii RHA1 genome (Raymond et al. 2005; RHA1_ro04045). Although the

physiological function of N-glycolyation remains unclear, it is notable that

deletion of namH in M. smegmatis increased susceptibility to lysozyme and

b-lactam antibiotics (Raymond et al. 2005). As an extra hydroxyl group is

introduced to the glycan chain, there may be additional hydrogen binding

possibilities within the cell envelope, which could contribute to novel aspects

of its supramolecular organisation.

The AG of the cell envelope is phosphodiester linked to the peptidoglycan by a

well conserved linker unit (LU) of L-rhamnose-D-N-acetylglucosamine phosphate

(Daffé et al. 1993). Mycobacterial AG has been extensively structurally charac-

terised as the scaffold for the attachment of the mycolic acids (Besra et al. 1995;

Bhamidi et al. 2008) and the target for the action of the anti-tubercular ethambutol

(EMB; Takayama and Kilburn 1989). The heteropolymer is divided into distinct

homopolymer galactan and arabinan domains. A galactan anchored to the peptido-

glycan via the LU will typically carry three arabinan domains, the branched termini

of which carry the mycolic acids. Comparatively little is known of the fine structure

of AG from most mycolic acid containing bacteria, although an important compar-

ative study revealed that the AG of Rhodococcus equi and R. rhodochrous have a
similar domain organisation of a linear homogalactan bearing discrete arabinan

domains (Daffé et al. 1993). The galactan of R. equi contained both 1!3, 1!5 and

1!6 glycosidic linkages whereas that of R. rhodochrous contained 1!2 and 1!5

linkages. Further galactan diversity was revealed in the galactans of Nocardia spp.

The arabinan domains of the AG also exhibit similar variations, that of mycobac-

teria typically present pentaarabinosyl branched termini, which can carry four

mycolates each (Besra et al. 1995; Bhamidi et al. 2008). In contrast, in R. equi, a
range of arabinose termini are present including a linear arabinan, a triarabinosyl

branched terminus and termini bearing mannose caps (Daffé et al. 1993). As minor

variations on the AG core structure have been reported in Tsukamurella paurome-
tabolum (Tropis et al. 2005a), it appears that AG is likely to be subject to genus and

species-specific variations in fine structure, which may also extend to the presence

of substituents such as succinate (Bhamidi et al. 2008). This may have implications

regarding the extent to which rhodococcal cells are covered with covalently bound

mycolates, the significance of which is discussed later.

In addition to the “secondary” cell wall polymers, Gram-positive bacteria also

anchor proteins to their peptidoglycan through the action of sortase transpeptidase

enzymes (Marraffini et al. 2006). Sortase substrates have a characteristic LPXTG

motif (or variants thereof), of which the threonine residue is targeted for the
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transpeptidation reaction. Sortase-mediated anchoring of proteins to the cell wall

does not appear to be as prominent in Actinobacteria compared to Firmicute Gram-

positive bacteria; important examples include the anchoring of the larger chaplins

during production of aerial hyphae by Streptomyces coelicolor (Di Berardo et al.

2008) and the polymerisation and anchoring of pili in Corynebacterium diphtheriae
(Mandlik et al. 2008a, b). Bioinformatic analyses have identified only a single

sortase encoded in the R. jostii RHA1 genome (see PFAM family PF04203 at

http://pfam.sanger.ac.uk//family/pf04203) and no members of the LPXTG family

(PF00746) of canonical sortase substrates. In R. jostii, the sortase protein

RHA1_ro03500 is apparently encoded in an operon with an adjacent coding

sequence (RHA1_ro03501), which has the requisite C-terminal features, including

an HPETG motif, that suggest RHA1_ro03501 might be the sortase substrate.

However, this pairing aside, it is clear that sortase-anchored proteins are not numer-

ically abundant in the predicted proteome of R. jostii.

3 Organisation of the Rhodococcal Cell Envelope

Determining how significant quantities of high molecular weight lipids (i.e. the

mycolic acids) are organised within the cell envelope presented a significant

challenge in earlier studies of the mycolata. However, the landmark studies of

Minnikin (1982, 1991) provided a model that, following extensive biochemical,

biophysical and structural analyses, has become accepted as the definitive model of

the mycobacterial cell envelope (Brennan and Nikaido 1995; Daffé and Draper

1998). Subsequently, this model has been applied to models of the corynebacterial

(Puech et al. 2001; Dover et al. 2004) and rhodococcal cell envelopes (Sutcliffe

1997, 1998). Recently, excellent cryo-electron microscopic studies have provided

clear visualisations of this structure for both Corynebacterium and Mycobacterium
spp. (Hoffmann et al. 2008; Zuber et al. 2008) and variations on this theme are most

likely applicable to all mycolic-acid containing actinomycetes.

The central tenet of the Minnikin model is that the mycolic acids covalently

attached to the AG have a perpendicular orientation with respect to the plane of the

plasma membrane (Fig. 3). Thus, the mycolates form the basis of a second hydro-

phobic permeability barrier outside of the plasma membrane. This structure is

analogous to the outer membranes of Gram-negative bacteria but is chemically

and structurally distinct, most notably in that the defining feature of the permeabil-

ity barrier is not a bilayer but the monolayer of bound mycolates. Nevertheless,

depending on the extent to which bound mycolates are able to provide coverage of

the whole bacterial cell surface, additional components may be needed to “plug”

potential gaps in the mycolyl layer, a role proposed to be taken most likely by

mycolic acid containing-glycolipids (see Sect. 4.3; Sutcliffe 1998; Puech et al.

2001; Zuber et al. 2008). Indeed, trehalose mycolates are likely to act as carriers for

incorporation on newly synthesised mycolic acids into the cell envelope (Tropis

et al. 2005b).
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Linkage unitPeptidoglycanArabinogalactan

Membrane
lipid

Fig. 3 Model for the organisation of the rhodococcal cell envelope. This adaptation of the classic
Minnikin model (Minnikin 1991) emphasises that vertically orientated mycolic acids form the

basis of the outer lipid permeability barrier. Components of the model in panel A are identified in

panel B. No specific conformation for the peptidoglycan–AG complex is favoured in this sche-

matic representation. Consideration of the sizes and conformations of rhodococcal mycolates

suggest that there may be filler lipids (and possibly lipoglycans and lipoproteins) associated with

the outer surface of mycolate layer (grey box) but this remains hypothetical. Not shown are the

outermost layers composed of the cell envelope polysaccharides and/or capsules that are known to

be present in many rhodococci
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A second consideration is the extent to which the longer meromycolate chains of

the mycolic acids project beyond the alkyl branches that are packed alongside them

(Sect. 2.1) and, with longer chain mycolates, the extent to which folded conforma-

tions can be adopted (Villeneuve et al. 2007). In rhodococci, we propose that as the

typical length of these meromycolate extensions corresponds most closely with the

lengths of typical fatty acyl lipids (Fig. 2), it is likely that the permeability barrier

provided by the mycolate layer is bolstered externally by the interaction of smaller

amphiphiles (e.g., acylglycerol-based lipids), which may vary on a species and

strain-specific basis, as discussed previously (Sutcliffe 1998; Puech et al. 2001).

Moreover, it is notable that rhodococcal mycolates lack both the length and chain

modifications necessary to achieve the more complex “Z” and “W” type conforma-

tions (e.g., see Villeneuve et al. 2007). Genus, species and strain-specific variations

in the length of the mycolic acids (Dover et al. 2004; G€urtler et al. 2004; Takayama

et al. 2005) dictate the precise configurations of the mycolates and so the extent to

which this necessitates their interactions with “filler” lipids is thus likely to vary in a

species-specific manner. Moreover, the mycolate layer is highly unlikely to be a

static barrier, and the permeability of this barrier is likely to be regulated, consistent

with studies showing that mycolic acid composition can vary with growth

conditions (Sutcliffe 1998; Sokolovská et al. 2003; Stratton et al. 2003).

The representation in Fig. 3 is in reasonable agreement with the recently pro-

posed “zippered” version of the classic Minnikin model, wherein free lipids are

shown intercalated with the mycolates (Zuber et al. 2008). This model is in reason-

able agreement with the measured thicknesses of the outer permeability barrier in

corynebacteria (4–5 nm) and mycobacteria (7–8 nm) (Hoffmann et al. 2008; Zuber

et al. 2008). However, specific studies are needed to further define the details of the

organisation of the rhodococcal cell envelope. Such studies will be of considerable

interest given that the length of the rhodococcal mycolates represents an intermedi-

ate stage between those of the corynebacterial and mycobacterial species whose cell

envelopes have been most extensively studied (Hoffmann et al. 2008; Zuber et al.

2008). Thus the extent to which the projecting meromycolate chains interact with

covering amphiphiles and other outermost components (notably capsules and other

polysaccharides; see Sect. 4.4) is an important question for future study, particularly

as these features will profoundly influence the cell surface hydrophobicity and thus

the possible biotechnological applications of rhodococcal strains.

The Minnikin model focuses primarily on the organisation of the mycolates

within the cell envelope. Thus, the organisation of the peptidoglycan in the myco-

lata has traditionally been assumed to be comparable to that of the peptidoglycan in

other bacteria, that is, a layered structured wherein the peptidoglycan strands are

orientated in parallel with the plane of the plasma membrane (Vollmer and Höltje

2004). Alternatively, it has been proposed that helical glycan strands of the pepti-

doglycan may have a novel vertical orientation (Dmitriev et al. 2005) and that in

mycobacteria this allows for helical galactan chains of the AG to be intercalated

within a grid of glycan “pillars” (Dmitriev et al. 2000). As yet this novel “scaffold”

hypothesis has not yet received extensive support from studies on other organisms

(Gan et al. 2008; Hayhurst et al. 2008) and it remains to be verified in the mycolata.
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Finally, the presence of an outer lipid permeability barrier suggests that the

location between this layer and the plasma membrane should be considered a

“pseudo-periplasm” and also dictates that pathways must exist for both solute

uptake (see Sect. 4.1) and secretion (notably of proteins but also of DNA). How-

ever, although there is a growing understanding of pathways of protein secretion in

mycobacteria (DiGiuseppe Champion and Cox 2007), no specific systems for the

export of proteins beyond the pseudoperiplasm have yet been identified.

4 Non-Covalently Associated Cell Envelope Components

As illustrated in Fig. 3, the mycolyl–arabinogalactan–peptidoglycan complex pro-

vides a scaffold upon which several crucial classes of cell envelope component can

be localised. These non-covalently associated cell envelope components are

reviewed in the following sections.

4.1 Channel Forming Porins

The organisation of the covalently linked mycolates and other cell envelope lipids

into an outer lipid permeability barrier suggests that channel forming proteins

(porins) need to be present to allow the accumulation of hydrophilic solutes. This

prediction was confirmed first for Mycobacterium chelonae (Trias et al. 1992) and
subsequently channel forming proteins have been identified in a considerable range

of mycolic acid containing actinomycetes (Nikaido 2003; Ziegler et al. 2008). The

channel forming proteins that have been best characterised to date, that is the cation

selective MspA channel ofM. smegmatis (Faller et al. 2004) and the anion selective
channel PorB of Corynebacterium glutamicum (Ziegler et al. 2008), are both

relatively small proteins that oligomerise to form their respective channels. MspA

forms a novel octameric 16-stranded b-barrel structure (Faller et al. 2004) whereas
PorB forms a putative pentameric structure that is unusual in containing a-helices
(Ziegler et al. 2008).

Three studies have confirmed the presence of porins in rhodococci. Cation

selective channels have been isolated from Rhodococcus (formerly Nocardia),
corynebacteroides (Rieb and Benz 2000) and Rhodococcus erythropolis (Lichtin-
ger et al. 2000), whilst complementary anion and cation selective channels were

identified in organic solvent extracts from R. equi (Rieb et al. 2003). The ca. 2-nm

wide cation selective channels of R. equi and R. erythropolis have similar biophysi-

cal properties. However, the N-terminal sequence determined for the R. erythropo-
lis protein (Lichtinger et al. 2000) does not at present generate any significant

homology matches to any known proteins. M. smegmatis MspA is the prototype of

a porin family (PF09203; http://pfam.sanger.ac.uk//family/PF09203) and three

members of this family (RHA1_ro03127; RHA1_ro04074; RHA1_ro08561) with
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significant sequence homology toM. smegmatisMspA can also be identified in the

R. jostii genome.

The identity of the anion selective channel of R. equi has yet to be determined,

and it is notable that the known anion selective channels of corynebacteria appear to

be unique to this genus (Ziegler et al. 2008). Thus other novel channel forming

proteins are likely to be present in rhodococcal cell envelopes.

In addition to the above porins, Rv1968 from M. tuberculosis was recently

described as the prototype for a new class of channel forming proteins (Siroy

et al. 2008). In vitro, Rv1968 forms channels with a weak selectivity for cations.

A single significant homologue of Rv1968 is encoded in the R. jostii genome

(RHA1_ro00932; 145/308 amino acid sequence identity) suggesting that channels

of this type are also likely to be present in rhodococcal cell envelopes.

4.2 Lipoglycans

The cell envelopes of most, but not all, Actinobacteria bacteria are characterised by

the presence of membrane-anchored polysaccharides, the lipoglycans (Sutcliffe

1994; Rahman et al. 2009). In all mycolic acid-containing Actinobacteria studied

to date, the lipoglycans present belong to the lipoarabinomannan (LAM) family

(Nigou et al. 2003, 2008; Gilleron et al. 2005). As with AG, this lipoglycan family

is characterised by a conserved core structure that then exhibits considerable

species and strain-specific variation in fine structure. The core structure is defined

by the presence of a phosphatidylinositolmannoside-based lipid anchor, which is

extended into a 1!6 linked mannan domain of variable length (Nigou et al. 2003).

In addition to mannose side chains, this mannan core will also carry arabinose or

arabinan branches, which in turn may carry a variety of substituent motifs, most

notable mannose caps in some strains (Nigou et al. 2003).

Three species of Rhodococcus have been investigated as to their lipoglycan

structure. The structure of the LAM-like lipoglycan of R. equi (ReqLAM) was

found to be the first known example of a ‘truncated’ LAM wherein the typical

phosphatidylinositol-anchored lipomannan core is decorated with 1!2 linked

mannose branches, some of which bear a single capping by t-arabinofuranose
residues (Garton et al. 2002). Thus, the substantial arabinan domains of mycobac-

terial LAM are not present in this structure, which has immunomodulatory proper-

ties that may be relevant to the pathogenesis of disease in foals (Garton et al. 2002;

Nigou et al. 2008). Likewise, the lipoarabinomannan of Rhodococcus ruber (Rru-
LAM) is also a truncated LAM structure in which the lipomannan core is directly

substituted with t-arabinofuranose residues (Gibson et al. 2003b). These truncated

LAMs are thus closely structurally related yet distinct from each other and it is

apparent that truncated LAMs represent as distinct subfamily within the LAM

archetype (Gilleron et al. 2005). A LAM-like lipoglycan has also been identified

in Rhodococcus rhodnii (Flaherty et al. 1996) but has not yet received full structural
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characterisation. However, the arabinose content determined by gas chromatogra-

phy suggests that this LAM might be more extensively arabinosylated (Flaherty

et al. 1996). Notably, in these rhodococci, the LAM-like lipoglycans appear to be

the sole membrane-anchored polysaccharides, whereas in mycobacteria, the LAM

is accompanied in the membrane by a structurally inter-related lipomannan (Nigou

et al. 2003).

The physiological functions of these lipoglycans remain obscure (Sutcliffe

2005) but recent advance in understanding the genetic basis of LAM biosynthesis

have led to the generation of mutants abrogated in various stages of the LAM

biosynthesis pathway. Mutation of an early stage in LAM biosynthesis (assembly

of the mannan core) was achieved in C. glutamicum, although at a low frequency

of homologous recombination and the mutant obtained exhibited notably poor

in vitro growth (Mishra et al. 2008b). This provides the clearest evidence to date

that LAM lipoglycans may not be essential for the growth of mycolic acid-

containing Actinobacteria but that they are likely to be necessary for optimal

growth.

By analogy with both lipoteichoic acids and other lipoglycans (Sutcliffe 1994;

Rahman et al. 2009), it has generally been assumed that LAM family lipoglycans

are anchored to the outer leaflet of the plasma membrane with the glycan polymer

projecting into the ‘pseudo-periplasm’. However, it remains possible that a sub-

fraction of lipoglycans is surface exposed through trafficking and intercalation of

the lipid anchor into the outer mycolate-based lipid layer (Fig. 3), as recently

discussed for mycobacterial LAM (Pitarque et al. 2008). These two subfractions

can be usefully distinguished as ‘parietal’ LAM (associated with the mycolate

layer) and ‘cellular’ LAM (associated with the plasma membrane) (Gilleron et al.

2000; Pitarque et al. 2008).

4.3 Cell Envelope Lipids

The cell envelopes of rhodococci are rich sources of structurally diverse lipids,

some of which have pronounced surfactant properties that facilitate the growth of

the bacteria on hydrophobic substrates and may be of biotechnological signifi-

cance (Lang and Philp 1998; Kuyukina, this volume; Sutcliffe 1998). These lipids

are typically glycolipids including both acyl- and mycolyl-glycolipids (Table 1).

There is also a rich diversity of lipopeptides and glycolipopeptides known to be

produced by rhodococci (Table 1). The nature of the associations and the specific

functions of these lipids within the rhodococcal cell envelope are largely unknown

but it is likely that they can interact/intercalate with the covalently bound mycolic

acids (see above). Whether the roles of these lipids are simply structural (i.e. as

fillers to complete to the outer lipid permeability barrier) or more dynamic (e.g. in

modulating surface physicochemical properties) remain to be determined.
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4.4 Capsules and Cell Envelope Polysaccharides

The capsular polysaccharides of Rhodococcus spp. have received surprisingly little
attention. Seven capsular serotypes of R. equi were initially defined by Prescott

(1981), and the structures of six of these have been extensively characterised by

Richards and co-workers (Richards 1994; Severn and Richards 1999). These poly-

saccharides are structurally diverse acidic heteropolysaccharides, typically charac-

terised by the presence of acetal-linked pyruvate or lactic acid ether substituents. In

many cases, the acidic character in part stems from the presence of glucuronic acid

in the polymer repeating unit, although the structure of the serotype 4 capsule is

notable for containing a 5-amino-3,5-dideoxynonulosonic (rhodaminic) acid

(Richards 1994; Severn and Richards 1999). A recent study showed that inactiva-

tion of a gene encoding a putative mycolic acid transferase (fbpA) resulted in a

failure to correctly encapsulate R. equi strain 103 (Sydor et al. 2008), possibly due

to a failure to correctly incorporate capsule polymer into the cell envelope. Intrigu-

ingly, although the capsule has long been considered a potential virulence factor of

R. equi, it was found that the fbpA mutant strain was not attenuated in macrophage

or mouse infection models (Sydor et al. 2008).

A cell envelope polysaccharide of R. jostii has recently been characterised

as having a tetrasaccharide repeating unit containing D-glucuronic acid, D-glucose,

2-acetyl-D-galactose and L-fucose (Perry et al. 2007). Close association of the

polysaccharide with the cell envelope was suggested by the need to use hot

(60�C) 50% aqueous phenol to extract significant yields of the polymer, an extrac-

tion method similar to that used for lipoglycans (Garton et al. 2002; Gilleron et al.

Table 1 Representative cell envelope lipids of rhodococci

Lipid Species

Glycerol monomycolates R. erythropolis Ioneda and Ono (1996)

Glycosyl monomycolates R. erythropolis Kurane et al. (1995)

R. rhodochrous de Almeida and Ioneda (1989)

R. ruber Matsunaga et al. (1996)

Trehalose mycolates R. corynebacteroides Powalla et al. (1989)

R. erythropolis Kretschmer et al. (1982);

Kurane et al. (1995)

R. opacus Niescher et al. (2006)

R. rhodochrous Asselineau and Asselineau

(1978); de Almeida and

Ioneda (1989)

R. ruber Matsunaga et al. (1996)

Acylated carotenoid glucosides R. rhodochrous Takaichi et al. (1997)

Acyl pentaglucoside R. corynebacteroides Powalla et al. (1989)

Succinylated acyl trehaloses R. erythropolis Uchida et al. (1989)

Rhodococcus sp. Tokumoto et al. (2009)

R. wratislaviensis Tuleva et al. (2008)

Peptidolipids (lipopeptides),

mycolylpeptidolipids and

peptidoglycolipids

R. erythropolis Koronelli (1988)

Rhodococcus sp. Chiba et al. (1999);

Peng et al. (2008)
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2005). Similarly, an extracellular polysaccharide has also been isolated and char-

acterised from R. rhodochrous as having a tetrasaccharide repeating unit containing
D-glucuronic acid, D-glucose, D-galactose and D-mannose (Urai et al. 2006b). Small

quantities of C16 and C18 fatty acids were found to be esterified to this polymer,

suggesting that these might represent a mechanism for anchoring the polysaccha-

ride to the cell envelope. A third polymer, named mucoidan, was identified in R.
erythropolis PR4 and characterised as having a pentasaccharide repeat unit contain-
ing D-glucuronic acid, two D-glucose, N-acetylglucosamine and L-fucose (Urai et al.

2007b). The same strain also produces another polysaccharide, named PR4

FACEPS (fatty acid-containing extracellular polysaccharide), with a tetrasacchar-

ide repeating unit containing D-glucuronic acid, D-glucose, D-galactose and pyru-

vylated D-mannose, which is esterified with small quantities of fatty acids, as in the

R. rhodochrous polysaccharide (Urai et al. 2007a). The polysaccharide component

of PR4 FACEPS is notably identical to the previously described extracellular

polysaccharide of Rhodococcus sp. 33 (Urai et al. 2006a).

The above rhodococcal cell envelope polysaccharides share some structural

features in common with the capsular polysaccharides of R. equi. Interestingly, the
structural motif of an acetal-linked pyruvic acid (1-carboxyethylidene) substituent,

which is present in the R. equi serotype 1, 2 and 7 capsules (Richards 1994), was also
identified in the polysaccharide from Rhodococcus sp. 33 and PR4 FACEPS from R.
erythropolis (Urai et al. 2006a, 2007a). To date, 27 antigenically distinct capsular

types have been defined by serotyping inR. equi alone (Nakazawa et al. 1983), so it is
likely that the structural diversity of cell envelope and capsular polysaccharides

produced by rhodococci is high. Therefore, this remains an interesting area for future

study, particularly as these surface polymers may facilitate the ability of the bacteria

to utilise hydrophobic substrates; (Urai et al. 2006b; Perry et al. 2007).

4.5 Lipoproteins

Bacteria are capable of covalently modifying proteins by attachment of a lipid

group to a cysteine residue, which becomes the N-terminus of the mature protein,

that is, synthesising lipoproteins (Hutchings et al. 2009). This provides an important

mechanism for localising proteins to bacterial cell membranes. Bacterial lipopro-

teins are readily identifiable by bioinformatic methods, and analyses of sequenced

bacterial genomes have revealed that putative lipoproteins typically represent

ca. 2% of the predicted proteomes of Gram-positive bacteria (Sutcliffe and

Harrington 2004; Babu et al. 2006; Rahman et al. 2008). As such, bacterial

lipoproteins are a functionally diverse and numerically significant class of cell

envelope proteins in Actinobacteria. In Gram-positive bacteria, lipoproteins are

de facto anchored to the outer leaflet of the plasma membrane, and this is likely to

be the major destination of lipoproteins in mycolic-acid containing Actinobacteria,

although it remains possible that some lipoproteins are also associated with the

mycolate layer (Fig. 3; Sutcliffe and Harrington 2004).
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As inM. tuberculosis (Sutcliffe and Harrington 2004), bioinformatic analyses of

the R. jostii genome indicates that ca. 2.0% (>100 proteins) of the predicted

proteome are putative lipoproteins (our unpublished observations). As in other

Gram-positive bacteria, substrate binding proteins of ABC transport systems for

diverse substrates are well represented. Related to this is the recent demonstration

that the mce4 operon of R. jostii constitutes a complex ABC transport system

variant for cholesterol uptake (Mohn et al. 2008) and it is notable that the Mce4E

proteins of both R. jostii (RHA1_ro04702) and M. tuberculosis are predicted

lipoproteins (unpublished observations; Sutcliffe and Harrington 2004). Indeed,

the mceE proteins associated with each of the multiple mce loci ofM. tuberculosis,
Nocardia farcinica and R. jostii are putative lipoproteins (Sutcliffe and Harrington

2004; our unpublished observations). Collectively, mce operons may encode puta-

tive ABC-related transport systems for various (probably hydrophobic) substrates

(Casali and Riley 2007). The putative lipoproteins may thus interact with the other

membrane-associated/secreted components to form a cell envelope complex

involved in substrate scavenging and delivery to the membrane permease.

Consistent with their location in proximity to both the cell membrane and wall,

various putative lipoprotein enzymes including cell wall active enzymes can be

distinguished. As noted in other Gram-positive bacteria (Hutchings et al. 2009),

several putative lipoproteins predicted to be involved in membrane-associated

redox processes can be identified (e.g. R. jostii RHA1_ro02035, a ResA homologue

likely to be involved in cytochrome c biogenesis, and RHA1_ro01137, the cyto-

chrome c oxidase subunit II CtaC). Moreover, at least two putative lipoproteins

(RHA1_ro06090 and RHA1_ro06326) appear to be involved in ‘three component

systems’ involved in cell envelope sensing and signalling processes (Hoskisson and

Hutchings 2006; Ortiz de Orué Lucana and Groves 2009). Finally, as in other

bacteria, significant numbers of conserved hypothetical proteins of unknown func-

tion were identified as putative lipoproteins.

In addition to these canonical lipoproteins, the immunodominant VapA viru-

lence factor of R. equi (Jain et al. 2003) has also been reported to be an acylated

protein (Tan et al. 1995) , which may explain its association with the rhodococcal

cell surface (Sutcliffe 1997). The VapA protein lacks any cysteine and thus cannot

be a conventional lipoprotein of the above described type, as a cysteine containing

signal peptide is central to the lipid modification pathway (Hutchings et al. 2009).

Whether VapA is a unique post-translationally acylated protein or represents the

prototype of a novel family of lipid-modified proteins (e.g. in other mycolata)

remains an important question for future study. It is notable that the other members

of the VapA family are not thought to be lipid-modified but to be surface-associated

or secreted proteins (Byrne et al. 2001; Meijer and Prescott 2004).

5 Biosynthesis of Key Cell Envelope Components

As described in Sects. 2 and 4, the mycolate cell envelope is dominated by several

distinctive covalently and non-covalently associated components. The biosynthesis

and coordinated assembly of these components is reviewed in the following sections.
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5.1 Mycolic Acid Biosynthesis

Few studies have directly addressed the production of rhodococcal mycolic acids

but the fundamental processes involved in biosynthesis have been extensively

investigated in mycobacteria. The synthesis of the component parts of the mycolic

acids is, in the main, a straightforward fatty acid biosynthesis, which occurs via the

repetition of a cycle of four reactions, where each cycle accomplishes an extension

of the alkyl chain by a two-carbon unit.

Two types of fatty acid synthase (FAS) are known. The mammalian-like type

FAS-I system is a homo-dimer containing all the necessary functions to achieve de

novo fatty acid synthesis (Smith et al. 2003). In contrast, most bacteria utilise a

FAS-II system wherein the growing fatty acyl chain is transferred between the

active sites of dissociable component enzymes as an acyl thioester of a highly acidic

acyl carrier protein (ACP). As with most other mycolata, R. jostii is unusual in that
both FAS systems are present. FAS-I (fas) has been identified as RHA1_ro01426

showing 1965/3100 (63%) amino acid sequence identity to its counterpart in

M. tuberculosis H37Rv. This FAS-I will be responsible for the de novo fatty acid

synthesis, producing fatty acids of C14–C24 carbon chain length. For meromycolic

acid biosynthesis, the further extension of the fatty acids produced by FAS-I is

performed by a dissociable FAS-II system (Kremer et al. 2001b; Takayama et al.

2005). LikeM. tuberculosisAcpM, the R. jostiiAcpM (RHA1_ro01200) that serves

FAS-II contains a C-terminal extension relative to other bacterial ACPs (data not

shown). The significance of this C-terminal extension is still unknown but a

sequence alignment of AcpM from representative mycolata reveals a correlation

between the larger mycolates and the size of this extended region (data not shown).

Thus it could be speculated that the length of this extension plays a role in the

ability of the bacterium to produce longer meromycolates.

The key enzyme that links FAS-I and FAS-II, the b-ketoacyl-ACP synthase III

FabH, can be identified as RHA1_ro05206 showing 56% amino acid sequence

identity to M. tuberculosis H37Rv mtFabH (Choi et al. 2000; Brown et al. 2005).

FabH elongates the acyl-CoA primers derived from FAS-I by condensing these

with a malonyl-thioester of AcpM to form a b-keto-acyl-AcpM thioester product

(Choi et al. 2000; Brown et al. 2005). The malonyl-AcpM substrate is produced by

the acyl-CoA/ACP transacylase FabD (RHA1_ro01199), which is encoded within a

syntenic gene cluster in M . tuberculosis H37Rv (Fig. 4; Kremer et al. 2001b). The

b-keto-acyl-AcpM product of FabH is reduced by the b-keto-acyl-reductase, FabG
(MabA, RHA1_ro07213) (Banerjee et al. 1998) and its b-hydroxy-acyl-AcpM prod-

uct is dehydrated by a FabZ-type protein complex. Recently, Rv0635–Rv0637

(FabZ0, FabZ, FabZ00, respectively) inM. tuberculosis H37Rv were identified as the

three component subunits required to perform the dehydration reaction in this species

(Brown et al. 2007; Sacco et al. 2007). Interestingly,R. jostii carries only homologues

of FabZ0 (RHA1_ro01983) and FabZ (RHA1_ro01984). The core unit of the dehy-

dratase complex, FabZ, associates with the chain length specific subunits FabZ0 and
FabZ00 and therefore the absence of FabZ00, which is associated with the later stages of
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meromycolate chain extension, is consistent with the shorter mycolate chain lengths

observed inR. jostiiRHA1. The trans-2-enoyl-AcpMproduct of the FabZZ0 complex

then participates in the final step of the FAS-II reaction cycle, catalysed by the enoyl-

ACP reductase FabI (InhA, RHA_ro07214), which is encoded adjacent to fabG, as in
mycobacteria (Kikuchi andKusaka 1984; Banerjee et al. 1994). Completing the cycle

thus produces an aliphatic acyl-ACP two carbons longer than its acyl primer (Bane-

rjee et al. 1994).

In M. tuberculosis, the subsequent rounds of acyl extension by FAS-II are

thought to be initiated by the highly similar b-keto-acyl-AcpM synthases, KasA

and KasB (Kremer et al. 2000, 2002a; Schaeffer et al. 2001). These enzymes extend

acyl-AcpM thioesters, rather than acyl-CoAs, by condensing them with malonyl-

AcpM. Both enzymes require acyl-AcpM primers of at least 16 carbons, consistent

with a role of FAS-II in extending FAS-I products towards the biosynthesis of long

chain fatty acids (Kremer et al. 2002a). KasA, which is responsible for the exten-

sion intermediate chain length meromycolate precursors (Kremer et al. 2000),

is present in R. jostii (RHA1_ro01201, 67% amino acid sequence identity to

M. tuberculosis KasA). Bhatt et al. (2007) confirmed that KasB functions predomi-

nantly in the extension of long-chain length meromycolate precursors. A DkasB
null mutant in M. tuberculosis synthesised shorter mycolic acids compared to the

parent strain. Significantly, the only gene missing from the R. jostii kasA gene

cluster compared to that observed in all mycobacteria (Fig. 4) is a KasB homologue,

further supporting the hypothesis that the production of intermediate chain length

meromycolates in rhodococci is due to the absence of the requisite machinery to

perform further elongation cycles.

Introduction of C¼C double bonds into fatty acids and mycolic acids requires

fatty acid desaturases. Two putative long-chain fatty acyl ACP desaturases are

encoded in the genome of M. tuberculosis H37Rv, Rv0824c (DesA1) and Rv1094
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(DesA2), respectively (Cole et al. 1998). DesA1 was originally detected as an

exported component of an M. tuberculosis PhoA fusion library processed in

M. smegmatis (Lim et al. 1995). The protein contains two copies of the characteris-

tic (D/E)ENXH motif (Jackson et al. 1997) of the class II diiron-oxo proteins to

which acyl-ACP desaturases belong (Fox et al. 1994). Two homologues of DesA1

are present in R. jostii, RHA1_ro02258 and RHA1_ro04869. Both exhibit 58%

amino acid sequence identity to DesA1, and the gene for the latter is situated in a

conserved locus comparable with that of M. tuberculosis DesA1. M. tuberculosis
DesA2 does not contain the (D/E)ENXH motifs observed in other acyl-ACP

desaturases, although it does possess an EEHXH motif as well as showing a high

degree of homology throughout with stearoyl-ACP desaturases. RHA1_ro05863

appears to be an orthologue of DesA2 (37% amino acid sequence identity) in

R. jostii and like theM. tuberculosis DesA2 retains only an EENXH motif. Neither

of the M. tuberculosis gene products have yet been characterised in terms of

desaturase activity and the significance of DesA1 secretion remains unknown.

A membrane-associated fatty acyl-CoA desaturase gene is encoded in the genome

of M. tuberculosis H37Rv (Rv3229c, DesA3; Phetsuksiri et al. 2003). Phetsuksiri

et al. (2003) demonstrated that DesA3 was involved in the production of oleate

from stearoyl-CoA and therefore it was designated as a D9-desaturase. R. jostii has
six other DesA homologues, five of which (RHA1_ro06336, RHA1_ro03422,

RHA1_ro01720, RHA1_ro6335 and RHA1_ro3346) show greater than 55%

amino acid sequence homology to M. tuberculosis DesA3 and may thus play

roles in fatty acid and/or mycolic acid desaturation. The sixth DesA3 homologue,

RHA1_ro04464, is noted to contain a significant N-terminal deletion and so may be

inactive.

The presence of complex mycolates in mycobacteria can be attributed to the

numerous methyltransferases that are involved in functional group formation at

proximal and distal modifications sites initially occupied by an unsaturated bond

(Dover et al. 2004; Takayama et al. 2005). The absence of modifications in the

relatively short mycolic acids of C. diphtheriae has been attributed to the absence of
similar modification enzymes as well as to the absence of any fatty acyl desaturase

DesA homologues that would provide the requisite unsaturation for further modifi-

cation by the methyltransferases (Dover et al. 2004). Rhodococcal mycolates are

intermediate in terms of both length and complexity compared to mycobacterial and

corynebacterial mycolates (Fig. 1), containing up to four double bonds (Alshama-

ony et al. 1976; Barton et al. 1989; Stratton et al. 1999; Nishiuchi et al. 2000) in the

distal part of the meromycolate. It is tempting to speculate that the multiple DesA

homologues identified above may be involved in the formation of multiply unsatu-

rated mycolates. As in C. diphtheriae, the absence of methoxyl mycolic acid

synthases and cyclopropane mycolic acid synthases from the genome of R. jostii
RHA1 is consistent with the simpler mycolate profiles of rhodococci.

The penultimate step in the synthesis of mycolic acids involves the Claisen-type

condensation of an acyl-S-CoA (that contributes the alkyl branch) with a meromy-

colyl-AMP (Takayama et al. 2005; Gokhale et al. 2007). Recently a polyketide

synthase (Pks13, Rv3800 in M. tuberculosis) has been implicated in this process
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(Gande et al. 2004; Portevin et al. 2004; Gokhale et al. 2007). Gene disruption

experiments of Cg-pks in C. glutamicum generated a viable mutant devoid of

corynomycolates (Gande et al. 2004). In R. jostii, RHA1_ro04065 exhibits 1005/

1751 (57%) amino acid sequence identity to Rv3800 inM. tuberculosis. The region
encompassing pks13 is highly conserved throughout the mycolata (see Sect. 5;

Vissa and Brennan 2001; Dover et al. 2004), including R. jostii, due to the essential
functions these gene products perform in cell wall biosynthesis (Fig. 5). The pks13
locus also appears conserved in R. rhodochrous (Portevin et al. 2004). As in

M. tuberculosis, the specific fatty acyl-AMP ligase (FadD32) responsible for the

conversion of the meromycolyl-S-AcpM derived from the FAS-II system to mer-

omycolyl-AMP (Trivedi et al. 2004) is present in R. jostii adjacent to the pks13 gene
(RHA1_ro04064). In mycobacteria, the precursor of the 2-alkyl branch is carboxy-

lated by an acyl-CoA carboxylase composed of AccD4 and AccD5, in complex

with an e-subunit and AccBC, to yield 2-carboxyl-acyl-CoA (Gande et al. 2007).

Bioinformatic searches have revealed R. jostii RHA1 possesses all the genes

required for this function; accD5 is situated alongside the e-subunit
(RHA1_ro06292 and RHA1_ro06291, respectively). However, it is unclear which
of the two possible homologues of AccBC (RHA1_ro06282 and RHA1_ro03742)

is most likely to be involved, although the proximity of RHA1_ro06282 to
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RHA1_ro06291- RHA1_ro06292 is noted. RHA1_ro04066 represents the likely

AccD4 candidate showing 67% amino acid sequence identity to theM. tuberculosis
protein. The meromycolyl-S-AMP and 2-carboxyl-acyl-CoA are transferred to the

b-keto-acyl synthase domain of Pks13 for condensation of the two fatty acyl groups

(Gande et al. 2004). In most cases, the b-keto-mycolate product of Pks13 is reduced

to a (b-hydroxy)mycolate before export for integration into the cell envelope.

Recently M. tuberculosis Rv2509 was implicated in the catalysis of this final step

of mycolate synthesis (Lea-Smith et al. 2007; Bhatt et al. 2008). In R. jostii,
RHA1_ro01416 exhibits 69% amino acid sequence identity to M. tuberculosis
Rv2509 and so is the most likely candidate to perform this function.

5.2 Arabinogalactan Biosynthesis

The organisation of AG and its interactions with other wall components, such as

peptidoglycan, are likely to prove crucial to the formation of a functional outer lipid

permeability barrier in the mycolata by defining the relative spacing of the tethered

mycolates on which it is based. Accordingly, the biosynthesis of AG appears to be

highly conserved across the taxon, although some diversity, most notably in patterns

of arabinan branching and the glycosyl linkages of the galactan domain, have been

recorded (Daffé et al. 1993; Eggeling et al. 2008). Much of our current understand-

ing of the route to its production is derived from the study of various mycobacteria

and, more recently, C. glutamicum (Eggeling et al. 2008). The dominant driving

force behind this research has been the need to define the mechanisms of action of

cell wall inhibitors used in current tuberculosis therapies and, following the emer-

gence of extensively drug resistantM. tuberculosis, the need to define new targets in

the biosynthesis of the M. tuberculosis wall (Dover et al. 2008b).
The first insight into AG biosynthesis was derived from the observation of a

series of glycolipids elaborated by plasma membrane fractions ofM. smegmatis and
M. tuberculosis. Both preparations catalysed the incorporation of radioactivity from
UDP-[14C]-N-acetylglucosamine (GlcNAc) into two polyprenyl phosphate (Pol-P)-

based glycolipids (GL1 and GL2). The initial step was identified as the formation

of GL1, a Pol-P-P-GlcNAc unit (Mikušová et al. 1996). Incorporation of [14C]

Rhamnose (Rha) from dTDP-[14C]Rha into GL2 exclusively identified it as Pol-P-

P-GlcNAc-Rha (Mikušová et al. 1996). Addition of a cell wall enzyme preparation

resulted in the formation of the increasingly polar glycolipids, GL3 and GL4. The

inclusion of UDP-[14C]Galactose (Gal) resulted in exclusive labelling of GL3 and

GL4 indicating the initiation of a galactan chain on the GL2 primer (Mikušová et al.

1996). Subsequent analysis of the polymerised product resulting from these label-

ling experiments pointed to the formation of longer chain intermediates, eventually

resulting in a polymer containing 35–50 residues (Besra and Brennan 1997;

Mikušová et al. 2000). Glycosidic linkage analysis revealed that the bulk of the

galactan polymer consisted of alternating 5- and 6-linked linear galactofuran

residues, with a small amount of branching.
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The incorporation of radiolabel from synthetic Pol-P-[14C]-Arabinofuranose

(Araf) (Lee et al. 1995) into this same polymer (Mikušová et al. 2000) suggested

that the total synthesis of the AG arabinan domain might occur while it is linked

to the Pol-P carrier. This switch to Pol-P-derived sugar donor substrates is likely

indicative of a shift in the membrane topology of AG biogenesis. The exclusive

use of sugar nucleotides until the incorporation of Araf into the polymer suggests

that biosynthesis of galactan occurs at the cytosolic face of the plasma mem-

brane. In contrast, the use of Pol-P-based Araf donors suggests that arabinan

deposition occurs at the ‘periplasmic’ face of the membrane and implies that the

Pol-P-P-LU-galactan is translocated across the plasma membrane before further

modification.

5.2.1 Linker Unit Synthesis

The LU disaccharide is formed via the addition of first GlcNAc (to form GL1) and

then Rha (to form GL2) at the cytoplasmic face of the plasma membrane. The first

glycosyltransferase is often purported to be a homologue of E. coli Rfe (WecA)

(Meier-Dieter et al. 1992) inM. tuberculosis (Rfe, Rv1302) though this designation
remains presumptive. The RHA1_ro01480 and RHA1_ro01091 proteins are clearly

members of the glycosyltransferase family 4 typified by the UDP-GlcNAc/Mur-

NAc:polyprenol-P GlcNAc/MurNAc-1-P transferases (Pfam PF00953, http://pfam.

sanger.ac.uk/family?acc¼PF00953) (Lehrman 1994). The former displays 67%

amino acid identity with M. tuberculosis Rfe, and as RHA1_ro01480 is located

within a highly syntenic locus in R. jostii, it is likely to represent an orthologue.

RHA1_ro01091 forms part of an operon that is devoted to the production of

peptidoglycan precursors and is clearly the phospho-N-acetylmuramoyl-pentapep-

tide-transferase (MraY).

The complementation of a wbbL mutant of E. coli, which is deficient in Rha

transfer for lipopolysaccharide biosynthesis, with Rv3265c (wbbL1) ofM. tubercu-
losis implicates its product as the probable rhamnosyltransferase involved in GL2

synthesis (McNeil 1999). A WbbL1 homologue (63% amino acid identity) is

encoded by RHA1_ro06306. Confidence regarding its designation as a rhamnosyl-

transferase and thus its orthology with M. tuberculosis WbbL1 is derived from

analysis of its genetic context. The M. tuberculosis enzymes providing the dTDP-

Rha donor substrate have all been identified and expressed in E. coli (Ma et al.

1997, 2001). RmlA to RmlD have been characterised as an a-D-glucose-1-phos-
phate thymidylyltransferase, dTDP-D-glucose 4,6-dehydratase, dTDP-4-keto-6-

deoxy-D-glucose 3,5 epimerase and dTDP-Rha synthase, respectively (Ma et al.

2001). Homologues of RmlA (RHA1_ro04097, 73% amino acid identity), RmlB

(RHA1_ro04098, 70% amino acid identity), RmlC (RHA1_ro04096, 56% amino

acid identity) and RmlD (RHA1_ro06305, 54% amino acyl identity) are apparent

within the R. jostii genome. In both genomes, rmlD and wbbL1 potentially form an

operon supporting their coordinated function and ultimately a role in rhamnosyl-

transfer to the LU precursor.
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5.2.2 Galactan Synthesis

The galactose (Gal) residues of AG occur in the relatively uncommon furanose (f)
form (McNeil et al. 1987). The requisite UDP-Galf nucleotide sugar donor in

M. tuberculosis is provided via two sequential reactions from UDP-Glucose (p,
pyranose form; UDP-Glcp). The first is catalysed by UDP-Glcp epimerase to form

UDP-Galp, which is then converted to UDP-Galf by UDP-Galp mutase. Weston

et al. (1997) purified a protein with UDP-glucose 4-epimerase activity from

M. smegmatis. N-terminal sequence analysis suggested that the protein was related

to the product ofM. tuberculosis Rv3634. A similar strategy was used to identifyM.
tuberculosis Rv3809c (Glf) as an orthologue of M. smegmatis UDP-Galp mutase;

the designation was confirmed by molecular cloning and analysis of crude extracts

containing the recombinant protein (Weston et al. 1997).

Two galactosyltransferases involved in M. tuberculosis galactan synthesis have

now been identified. The product of Rv3808c appeared to be a good candidate in

that it occupied the locus adjacent to glf. This putative transferase also contained the
signature QXXRW motif, which is found only in processive enzymes, i.e. those

which carry out multiple sugar transfers (Saxena et al. 1995). Over-expression of

Rv3808c in M. smegmatis caused an increased yield of a galactofuran polymer in

the over-producing strain (Mikušová et al. 2000). Analyses of the incorporation of

Galf into artificial Galf disaccharides by membranes of recombinant E. coli expres-
sing Rv3808c demonstrated that, consistent with the alternating b(1!5) and

b(1!6) linkages of the native galactan, the incoming sugar adopted a (1!6)

linkage when using a (1!5) linked disaccharide acceptor and vice versa (Kremer

et al. 2001a). Furthermore, larger oligosaccharide products were also formed in

these assays confirming that the product of Rv3808c, now designated GlfT2, is a

processive enzyme and, consequently, is likely to produce the bulk of the galactan

deposited in the M. tuberculosis cell wall (Kremer et al. 2001a). The importance

of galactan synthesis to mycobacteria was demonstrated by the disruption of glf in
M. smegmatis; growth was only supported when functional copies of both glf and
glfT2 were provided on complementing plasmids (Pan et al. 2001).

R. jostii orthologues of Glf (RHA1_ro04053, 82% amino acid identity) and GlfT2

(RHA1_ro04054, 69% amino acid identity) are apparent, and as inM. tuberculosis,
they are encoded by adjacent genes; glfT2 lies immediately downstream of and

overlaps with glf by four nucleotides. Little is known regarding the mechanism by

which GlfT2 introduces the distinctive alternating glycosyl linkage pattern that

characterisesM. tuberculosis galactan and thus far the enzyme has proven intracta-

ble in structural studies. The genomes of all galactan-producing species sequenced

to date contain GlfT2 homologues. A combination of galactan characterisation and a

structural genomics survey of GlfT2 homologues or potential alternative galacto-

furanosyltransferases would provide structural details and illuminate the molecular

basis for galactan heterogeneity in the mycolata (Sect. 2.2).

Biophysical analyses of recombinant M. tuberculosis GlfT2 confirmed the

intuition that, although capable of depositing the bulk of the Galf residues, the
enzyme would require a galactosyl primer to extend towards galactan; specifically
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GlfT2 bound and donated Galf to both b5- and b6-linked Galf–Galf disaccharides
but could not donate Galf to an artificial b-D-Gal-(1!4)-a-L-Rha acceptor, which

mimics the reducing terminus of galactan (Alderwick et al. 2008). Bioinformatic

analyses led to the identification of a second M. tuberculosis galactosyltansferase
(Rv3782) that participates in the biogenesis of GL4, the Pol-P-LU-Galf2 (Mikušová

et al. 2006; Alderwick et al. 2008). E. coli extracts containing recombinant Rv3782

(now designated GlfT1) transferred galactosyl residues to artificial acceptors

designed to emulate LU and LU-Galf (Alderwick et al. 2008; Beláňová et al.

2008). These combined data suggest that GlfT1 might represent an even more

versatile bifunctional protein than GlfT2, able not only to produce both b-(1!4)

and b-(1!5) linkages but also to utilise diverse acceptor groups, that is a rhamnosyl

acceptor in the initial reaction.

The R. jostii genome encodes a convincing GlfT1 orthologue in RHA1_ro04113

(68% amino acid identity with M. tuberculosis GlfT1) and, as in M. tuberculosis,
the gene is clustered with two others encoding an apparent polysaccharide export-

ing ABC transporter (RHA1_ro04114 and RHA1_ro04115). This transport complex

represents an attractive candidate to facilitate the export of Pol-P-LU-galactan to

the periplasm for arabinosylation.

5.2.3 Arabinan Synthesis

The structure of the arabinan portion ofM. tuberculosis AG is much more complex

than that of its galactan partner A series of branches contributes to the formation of

the characteristic terminal pentaarabinofuranosyl motif that provides the esterifica-

tion sites for AG-linked mycolates. Until the recent development of the genetically

tractable C. glutamicum as a model for AG biosynthesis (Alderwick et al. 2005;

Eggeling et al. 2008), much of our insight into arabinan biogenesis emerged from

studies related to the mode of action and resistance against the important anti-

tubercular drug EMB (reviewed in Dover et al. 2008a). In vivo pulse-chase label-

ling experiments in M. smegmatis suggested that the Araf residues ultimately

deposited in AG derive directly from a Pol-P-Araf sugar donor (Wolucka et al.

1994). EMB, which inhibits biosynthesis of both AG and LAM (Takayama and

Kilburn 1989), led to the accumulation of Pol-P-Araf (Wolucka et al. 1994)

suggesting the drug caused a lesion in arabinosyltransfer. Application of a synthetic

Pol-P-[14C]Araf (Lee et al. 1995) in a cell-free assay system led to deposition of

radiolabel in all recognised cell wall arabinan moieties, defining Pol-P-Araf as the
major arabinosyl donor in mycobacteria (Xin et al. 1997). However, the possibility

of both UDP-Ara (Singh and Hogan 1994) and GDP-Ara (Takayama and Kilburn

1989) inM. smegmatis, as well as an undefined soluble Araf donor in C. glutamicum
(Tatituri et al. 2007), have all been proposed and cannot yet be ruled out as minor

cell envelope Araf donors.
Pol-P-Araf appears to arise from 5-phosphoribose pyrophosphate (pRPP) with a

20 epimerase mediating the ribose!arabinose conversion at an intermediate stage

(Scherman et al. 1996). M. tuberculosis Rv3806c (UbiA) was identified as the
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pRPP/polyprenyl-phosphate 5-phosphoribosyltransferase and represents the first

committed step towards Pol-P-Araf synthesis (Huang et al. 2005). Mikušová et al.

(2005) hypothesised that Pol-P-b-D-5-phosphoribose is dephosphorylated to form

Pol-P-b-D-ribose before epimerisation of the 20 hydroxyl group is achieved in a

two-stage process. First, oxidation of the hydroxyl probably forms Pol-P-2-keto-

b-D-erythro-pentofuranose, which is subsequently reduced to generate Pol-P-b-
D-Araf. Two candidate gene products were identified in M. tuberculosis through

their similarity to Noe proteins implicated in the arabinosylation of the Azorhizo-
bium caulidans nodulation factor. Rv3790 and Rv3791 were annotated as a putative
FAD-dependent oxidoreductase and a probable short-chain dehydrogenase/reduc-

tase, respectively, both functions consistent with the reaction schemes hypothesised

(Mikušová et al. 2005; Wolucka 2008). Together the purified recombinant proteins

were able to catalyse the epimerisation reaction despite neither protein being

sufficient to promote the initial oxidation step independently (Mikušová et al.

2005). The enzyme that catalyses the dephosphorylation of Pol-P-b-D-5-phosphor-
ibose that precedes this epimerisation remains unidentified but a candidate is the

putative phosphatase encoded by Rv3807c i.e. adjacent to ubiA (Wolucka 2008).

The genome of R. jostii encodes proteins that represent likely orthologues for each

of these Pol-P-Araf biosynthetic enzymes (Table 2).

The products of the emb locus of Mycobacterium avium were identified as the

targets for EMB. Overexpression of embA and embB from M. avium conferred

EMB resistance in M. smegmatis (Belanger et al. 1996). Taken together with the

immediate inhibition of [14C]Ara incorporation into both AG and LAM on EMB

Table 2 Comparison of the enzymology for arabinogalactan biosynthesis in R. jostii and

M. tuberculosis

Function M. tuberculosis
archetype

RHA1 orthologue %

Identity

Pol-P arabinose precursor synthesis
pRPP: Pol-P 5-phosphoribosyltransferase Rv3806c RHA1_ro04056 71

pRPP: Pol-P 5-phosphoribosyl phosphatase Rv3807c RHA1_ro04055 62

Pol-P-Ribose 20 epimerisation

FAD-dependent oxidoreductase Rv3790 RHA1_ro04078 77

Short chain dehydrogenase Rv3791 RHA1_ro04077 78

Arabinosyltransferases (AraT)
a(1!5) AraT EmbA (Rv3794) Absent

a(1!5) AraT EmbB (Rv3795) RHA1_ro04068 51

EmbC (Rv3793) RHA1_ro04069 50

EmbC (Rv3793) RHA1_ro01774a 47

Galactan priming a(1!3) AraT AftA (Rv3792) RHA1_ro04076 56

Arabinan branching a(1!3) AraT AftC (Rv2673) RHA1_ro06863 54

Arabinan terminating b(1!2) AraT AftB (Rv3805c) RHA1_ro04057 50
aThe R. jostii genome contains three clear Emb proteins. This one is located outside of the locus

containing the EmbA/EmbB arabinosyl transferases likely to be involved in arabinogalactan

biosynthesis (see Sect. 5.2.3)
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treatment of M. smegmatis (Takayama and Kilburn 1989) and the accumulation of

Pol-P-Araf (Wolucka et al. 1994), a hypothesis that explains this resistance pheno-

type at the molecular level is that Emb proteins are the arabinosyltransferases

contributing to AG biosynthesis. However, their possession of glycosyltransferase

activities has yet to be demonstrated through their over-production in a heterolo-

gous organism.

As in M. tuberculosis, M. smegmatis possesses three closely related emb genes,

clustered embCAB, whilst despite possessing only one emb gene, C. glutamicum
produces a similar AG to the mycobacteria (Eggeling et al. 2008). Gene knock out

studies inM. smegmatis have shed light on the apparent redundancy in its emb locus
(Escuyer et al. 2001). Individual mutants inactivated in embC, embA and embB
were characterised. All three strains were viable but of them, the embB�mutant was

most profoundly affected. Cell wall integrity seemed to be compromised as mor-

phological changes were evident, and the cells displayed increased sensitivity to

hydrophobic drugs and detergents. The arabinose content of the AG was diminished

for both the embA� and embB� strains. Nuclear magnetic resonance studies showed

that these mutations resulted in considerable effects upon the formation of the

terminal pentaarabinofuranosyl motifs, specifically the addition of the b-D-Araf-
(1!2)-b-D-Araf disaccharide to the 3 position of the 3,5-linked Araf residue

resulting in a linear terminal motif. However, AG formation in the embC� strain

seemed unaffected whereas arabinan deposition in LAM was abolished. These data

support the hypothesis that Emb proteins are intimately involved in the process of

cell envelope arabinan deposition and that EmbA and EmbB are crucial to the

formation of the pentaarabinofuranosyl motifs of AG that are crucial for the

deposition of mycolic acids.

Construction of a knock out mutant in the single emb gene of C. glutamicum
(Alderwick et al. 2005) heralded a period of rapid progress towards the definition of

arabinan biosynthesis. The mutant exhibited a slow growing phenotype and was

significantly depleted in arabinan. Residual arabinosylation of galactan at the 30

positions of its 5-linked 8th, 10th and 12th Galf residues by a single Araf residue
was detected. This modification was not present in the galactan of a strain disrupted

in ubiA that lacks Pol-P-Araf (Alderwick et al. 2005). Deletion of the gene imme-

diately upstream of C. glutamicum emb, now designated aftA, which encodes a

member of the GT-C glycosyl transferase superfamily, resulted in an arabinan

deficient strain (Alderwick et al. 2006). Clearly, AftA represents a novel arabino-

syltransferase that primes arabinan biosynthesis on galactan by addition of a single

Araf residue that is presumably elaborated upon by EmbA/B or possibly another

Ara transferase. Systematic deletion of other GT-C transferases that might contrib-

ute to the biosynthesis of cell envelope polysaccharides in C. glutamicum and

mycobacteria has recently revealed two further conserved Araf transferases. AftC
represents a a-(1!3)-Araf transferase that is essential for the branching of the

arabinan towards its reducing end and may also contribute to the formation of the

pentaarabinofuranosyl motif (Birch et al. 2008). AftB is another GT-C enzyme that

forms the b-D-Araf-(1!2)-b-D-Araf structure that effectively terminates arabinan

and also provides one of the sites for mycolylation (Seidel et al. 2007).
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Although the R. jostii RHA1 AG has not been characterised, it appears that the

bacterium possesses orthologues of all of the enzymes implicated inM. tuberculosis
and C. glutamicum arabinan biosynthesis (Table 2). Two homologues of the Emb

proteins, as well as the enzymes that initiate and terminate arabinan biosynthesis,

AftA and AftB, respectively, are all encoded in a highly conserved cluster of 31

genes first recognised inM. tuberculosis by Belanger and Inamine (2000) incorpor-

ating Rv3779–Rv3809c and occupying 48.5 kb or�1% of the chromosome (Fig. 5).

Among these genes are glf and glfT (galactan polymerisation), embCAB, aftA and
aftB (arabinan deposition), pks13 and associated enzymes (mycolyl condensation)

and fbpA (mycolyltransfer). Significantly, the region is well conserved inM. leprae,
the aetiological agent of leprosy (Vissa and Brennan 2001). This bacterium is an

obligate intracellular pathogen and exemplifies an extreme case of reductive evolu-

tion as less than half of its genome contains functional genes (Cole et al. 2001). The

retention of function over such a large syntenous genomic region in M. leprae
clearly emphasises the essentiality of the cell wall to the pathogenic mycobacteria.

Comparison of theM. tuberculosis cell wall locus with the equivalent from the more

distantly related bacterium C. diphtheriae showed that the overall genetic arrange-

ment remained well conserved but was split into two discontinuous segments

resulting in the emb homologue of C. diphtheriae lying over 460 kB away from

the glfT homologue (Dover et al. 2004). Likewise in R. jostiiRHA1, two clusters are
apparent, encompassing RHA1_ro04050 to RHA1_ro04079 and RHA1_ro04098 to

RHA1_ro04118 (Fig. 5); each shows evidence of rearrangement and carry addi-

tional genes relative to M. tuberculosis, although it is not clear whether these

represent rhodococcal acquisitions or mycobacterial losses or, indeed, whether

they contribute to the construction of the rhodococcal cell envelope.

5.2.4 Macromolecular Ligation

Thus far, we have considered the independent biosyntheses of AG and the mycolic

acids but these components must be brought together in the pseudoperiplasm and

covalently combined to form the massive mycolyl–arabinogalactan–peptidoglycan

complex. This process will require export of each of the structural components

as well the enzymes responsible for mycolyl transfer to the terminal Araf residues
of AG.

Although their role in galactan export remains to be confirmed, M. tuberculosis
rfbDE and R. jostii RHA1_ro04114 and RHA1_ro04115 appear to represent a

conserved polysaccharide-exporting ABC transporter (Content and Peirs 2008)

and, as both are clustered with a gene encoding the galactan-priming Galf transfer-
ase GlfT1(RHA1_ro04113), their coordinated function in galactan biosynthesis and

export is likely. Once translocated, the arabinosylation of galactan can commence

with AftA. On completion, AG units must be integrated into the growing murein

sacculus; little is known regarding the process other than ligation requires simulta-

neous synthesis of both AG and peptidoglycan (Hancock et al. 2002). The enzy-

mology of AG ligation remains enigmatic.
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An interesting Pol-P-based mycolylated glycolipid, 6-O-mycolyl-b-D-manno-

pyranosyl-1-monophosphoryl-heptaprenol (Myc-PL), was purified from M. smeg-
matis and suggested to be the carrier of newly synthesised mycolic acid during

translocation across the plasma membrane (Besra et al. 1994). A similar lipid had

also been reported in C. diphtheriae (Datta and Takayama 1993) suggesting a

conserved means for translocation of mycolates across the membrane for the

synthesis of trehalose dimycolates and cell wall mycolates.

While prospecting for genes involved in mycolate biosynthesis and processing,

Wang et al. (2006) isolated a slow-growing transposon insertion mutant of Coryne-
bacterium matruchotii with an apparent impairment in corynomycolate production.

The transposon had inserted within a probable orthologue of C. diphtheriae
DIP1297, an integral membrane protein encoded by the first of a four gene cluster

of which the latter three genes had been annotated as encoding an antibiotic

transporter (Braibant et al. 2000). The genes of the equivalent cluster in C. gluta-
micum were apparently cotranscribed on a polycistronic mRNA suggesting coordi-

nated function. Application of comparative genomics techniques demonstrated the

conservation of the cluster in M. tuberculosis (rv1459c, rv1458c–rv1456c), other
mycobacteria, corynebacteria and nocardiae and, by supposition, across the Cor-
ynebacterineae but not in other Actinobacteria (Wang et al. 2006). A similar cluster

also occurs in R. jostii (RHA1_ro07191 to RHA1_ro07194). Analysis of mycolic

acid chain length in the C. matruchotii mutant revealed that shorter chain-length

corynomycolates (C24–C32 rather than C34–C36) were under-represented (Wang

et al. 2006) leading the authors to suggest that this represented an export complex

for short-chain mycolates (Wang et al. 2006). However, such short-chain mycolates

are likely to be, at best, infrequent modifications to the cell wall of mycobacteria.

As there was effective export of the larger mycolate subpopulation of corynomy-

colates in the C. matruchotii mutant, suggesting some redundancy in corynomyco-

late translocation, one might expect that other Corynebacterineae producing larger
mycolates would possess this alternate system.

Another important factor in the processing of mycolic acids is the requirement

for glucose or a-D-glucopyranosyl-containing oligosaccharides such as trehalose,

which is essential for the growth of the M. tuberculosis but not corynebacteria.

Despite M. tuberculosis possessing three potential routes to trehalose, inactivation

of a component of the OtsAB pathway (OtsB2, Rv3372; trehalose-6-phosphate

phosphatase) abrogated growth (Murphy et al. 2005). R. jostii possesses a single

homologue of M. tuberculosisOtsB2 (RHA_ro00045, 56% amino acid identity) and

two homologues of M. tuberculosis OtsA (trehalose-6-phosphate synthase;

RHA_ro04708, 77% amino acid identity; RHA_ro04708, 69% amino acid identity).

In the absence of exogenous a-D-glucopyranosyl-containing oligosaccharides, a

multiply-mutated C. glutamicum strain incapable of trehalose synthesis exhibited

altered surface properties and lacked mycolic acids in its envelope. The mycolyl

residues synthesised by the mutant grown with suitable oligosaccharides were

transferred both onto the cell wall and free sugar acceptors. Furthermore, as the

mutant had shown no capacity for trehalose uptake, radioactive labelling experi-

ments with [14C]trehalose showed that the transfer of mycoloyl residues onto sugars
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occurs outside the plasma membrane (Tropis et al. 2005b). Thus trehalose appears

to be an important extracytoplasmic carrier for mycolates, allowing their deposition

in the cell wall.

A mycolyltransferase capable of exchanging mycolyl residues between mycolyl-

trehalose and the free disaccharide was purified from M. smegmatis and a role in

mycolyl deposition suggested (Sathyamoorthy and Takayama 1987). Belisle et al.

subsequently demonstrated that three members of the M. tuberculosis antigen 85

complex, Ag85A, Ag85B and Ag85C2 (encoded by fbpA, fbpB and fbpC2 respec-

tively) were able to catalyse mycolyltransferase reactions (Belisle et al. 1997). In

order to shed light upon this apparent redundancy in mycolyltransferases and to

ascertain the biological roles of the individual enzymes, fbpC2, fbpA and fbpB have

all been disrupted (Jackson et al. 1999; Armitige et al. 2000). The disruption of

fbpC2 in M. tuberculosis decreased transfer of mycolates to the cell wall by 40%

without affecting the profile of mycolate types esterified to AG or occurring as free

glycolipids. Thus FbpC2 is involved, either directly or indirectly, in the transfer of

mycolates onto the cell wall and is probably not specific for a given type of

mycolate, or at least the remaining mycolyltransferases are able to maintain the

balance between the mycolate types through their own broad specificity (Jackson

et al. 1999). Although an fbpAmutant grew as well as the parent strain in laboratory

media and macrophage-like cell lines, the fbpBmutant only grew well in laboratory

media. In macrophage-like cell lines, the strain grew very poorly, if at all (Armitige

et al. 2000; Puech et al. 2002).

Corynebacteria possess genes with significant homology to those encoding the

antigen 85 complex (Joliff et al. 1992). Disruption of csp1 encoding the secreted

Fbp-like protein PS1 of C. glutamicum led to a 50% decrease in the amount of cell

wall-linked corynomycolates and an alteration in the cell wall permeability (Puech

et al. 2000). The expression of fbpA, fbpB and fbpC2 from M. tuberculosis in this

csp1-deficient strain restored the cell wall-linked mycolate content and the outer

permeability barrier of the mutant. The enormous structural differences between

corynomycolates and their mycobacterial counterparts (Fig. 1) suggest that these

enzymes possess a broad specificity (Puech et al. 2002). All three enzymes are able

to transfer mycolates to AG and display no preference for mycolyltransfer to the

terminal or 2-linked Araf residues of the pentaarabinosyl motifs of AG (Puech et al.

2002). Redundancy in mycolyltransferase activity is apparently a common theme

among the mycolata.

R. jostii RHA1 appears to possess 13 (RHA1_ro04059, ro04058, ro04960,

ro04060, ro04126, ro04189, ro05513, ro02206, ro02143, ro05007, ro05217,

ro05431, ro03469) potential mycolyltransferases (BLASTP query, M. tuberculosis
FbpA; cut off, E 10�21) and, consistent with a periplasmic location, signal peptides

were predicted for all 13 proteins and all retained a conserved triad of active site

residues (Belisle et al. 1997; Kremer et al. 2002c). Similarly, Sydor et al. (2008)

suggested that R. equi might possess up to 13 FbpA homologues. RHA1_ro04060 is

distinct from the mycobacterial mycolyltransferases because of its larger size (640

amino acids, i.e. almost double the size ofM. tuberculosis FbpA and the other R. jostii
homologues, which are ca. 330 amino acids) and is likely to represent an orthologue of
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PS1/Cop1 of C. glutamicum (Joliff et al. 1992; Brand et al. 2003). RHA1_r-
o04058–RHA1_ro04060 are situated within one of the large cell wall biosynthetic

clusters (Fig. 5) in a position analogous to fbpAC2, that is, immediately downstream

from AftB which supplies terminal Araf residues to which mycolates are ultimately

esterified by mycolyltransferases. Thus RHA1_ro04058 and RHA1_ro04059 are

almost certainly mycolyltransferases. A thorough biochemical characterisation of

this group of rhodococcal proteins will determine whether these and their R. equi
counterparts represent astonishing redundancy in mycolyltransfer activity or

whether some represent a series of paralogous secreted esterases that have signifi-

cance in the metabolism of the rhodococci. As noted (Sect. 4.4), mutation of a fbpA
homologue in R. equi affected capsule incorporation, but a detailed mycolate profile

of mutant compared to wild type was not reported (Sydor et al. 2008).

Like C. glutamicum PS1, the N-terminus of RHA1_ro04060 exhibits significant

amino acid identity withM. tuberculosis fbpA over its full length (Joliff et al. 1992)

with the remaining sequence representing a C-terminal extension that carries three

LGFP repeats (Pfam08310) (Adindla et al. 2004). The four LGFP repeats of

C. glutamicum PS1 are hypothesised to anchor the protein to the wall and may be

important for maintaining cell wall integrity (Ramulu et al. 2006). Deletion of

C. glutamicum PS1 results in a tenfold increase in cell volume and implicates the

corresponding proteins in cell shape formation (Brand et al. 2003).

5.3 LAM Biosynthesis

As with the biosynthesis of other cell envelope polymers, understanding of LAM

biosynthesis has been greatly advanced by comparative studies on mycobacteria

and corynebacteria. Consistent with the structural elements of the lipoglycans, the

biosynthetic pathway can be divided into distinct stages, with initial synthesis of

phosphatidylinositol mannosides (PIM) at the cytoplasmic face of the plasma

membrane preceding ‘flipping’ of the glycophospholipid prior to mannose chain

extension and arabinosylation at the outer face of the plasma membrane. As in

many other actinomycete genomes, and consistent with the widespread distribution

of PIM glycophospholipids, an operon containing the phosphatidylinositol

synthase, an acyltransferase and PimA mannosyltransferase required for the bio-

synthesis of acylated phosphatidylinositol monomannoside (PIM1; Korduláková

et al. 2002, 2003) is present in the R. jostii RHA1 genome (RHA1_ro06880–R-
HA1_ro06882). The mannose in PIM1 is added to the inositol C2 position. The

second mannose, added to the inositol C6 position in PIM1, is added by the recently

defined PimB0 mannosyltransferase, which generates PIM2 (Lea-Smith et al. 2008;

Mishra et al. 2008b, 2009). Both PimA and PimB are cytoplasmic enzymes that

utilise GDP-mannose as the mannose donor. In R. jostii, RHA1_ro01122 can be

clearly identified as PimB0 by its homology with C. glutamicum NCgl2106 and

M. tuberculosis Rv2188c (Lea-Smith et al. 2008; Mishra et al. 2008b, 2009).
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The mono- and dimannosylated ‘lower’ PIMs, notably acylated PIM2, are

readily observed as free lipids in the membranes of rhodococci and other mycolata

(Minnikin et al. 1977; Barton et al. 1989). Further to PIM2 biosynthesis, subsequent

mannosyltransferase activities are needed to convert these ‘lower’ PIMs to the

‘higher’ PIMs that are found in mycobacteria (notably phosphatidylinositol hex-

amannoside, PIM6). Some relevant mannosyltransferases have been identified but

the extent to which there is redundancy in this pathway is not yet clear (Kremer

et al. 2002c; Morita et al. 2006; Crellin et al. 2008). Moreover, at an as-yet

undefined stage, PIMs are ‘flipped’ from the inner leaflet of the plasma membrane

to the outside leaflet such that the final steps of PIM mannosylation are carried out

by GT-C family glycosyltransferases, using Pol-P-linked mannose (see below) as

the mannose donor (Berg et al. 2007). After PIM translocation, PIM4 can be either

shunted towards lipomannan/LAM biosynthesis by the LpqW lipoprotein (Kova-

cevic et al. 2006; Marland et al. 2006; Crellin et al. 2008) or, in mycobacteria,

mannosylated with a1!2 linked mannose to generate PIM6 (Morita et al. 2006;

Crellin et al. 2008). The PIM4 precursor is mannosylated to generate the a1!6

lipomannan core of LAM by the sequential action of the MptB (Mishra et al. 2008a)

and MptA GT-C mannosyltransferases (Kaur et al. 2007; Mishra et al. 2007), each

using Pol-P-mannose as mannose donor. Branching a1!2 mannose units on the

mannan core can be introduced by the Rv2181 GT-C mannosyltransferase (Kaur

et al. 2008). Further to the generation of the lipomannan core unit, arabinosylation

of mycobacterial LAM is carried out by the EmbC arabinosyltransferase (Zhang

et al. 2003; Goude et al. 2008). However, as an embC mutant of M. smegmatis still
incorporated two to three arabinosyl units per lipomannan (Zhang et al. 2003), it is

likely that the initial ‘priming’ arabinose units are added by a separate arabinosyl-

transferase in a manner analogous to the priming by AftA in arabinogalactan

synthesis (Alderwick et al. 2006). Thus a nearly complete pathway for mycobacte-

rial LAM biosynthesis has been defined, with the crucial remaining questions

including the nature and substrate(s) of the PIM ‘flippase’ and the mannosyltrans-

ferase(s) that convert PIM2 to PIM4, and the arabinosyl ‘priming’ activity.

From the above a near complete pathway for the biosynthesis of rhodococcal

LAM can be reconstructed from the R. jostii genome. In addition to the above

described acyl PIM1 biosynthethic locus and PimB0, clear homologues of all the key

enzymes identified in corynebacteria and/or mycobacteria can be identified

(Table 3). In corynebacteria, higher PIMs are apparently not synthesised as free

lipids, as indicated by the buildup of PIM2 in C. glutamicum mutants unable to

synthesise LAM or the Pol-P-mannose sugar donor (Gibson et al. 2003a; Mishra

et al. 2008a). Thus PIM2 is most likely flipped and elaborated into LAM (Mishra

et al. 2008a). Intriguingly, the R. jostii genome contains a locus (RHA1_ro05934,

RHA1_ro05929) comparable to that in mycobacterial genomes, which contains

homologues of both the lipoprotein LpqW required to shunt PIM4 towards LAM

biosynthesis and the PimE mannosyl transferase required to synthesise PIM6 from

PIM4 (Kovacevic et al. 2006; Marland et al. 2006; Morita et al. 2006; Crellin et al.

2008). Thus, R. jostii may be able to synthesise both a LAM-like lipoglycan (as in

other rhodococci, see Sect. 4.2) and higher PIMs. PIMs larger than PIM2 have not
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been reported previously in rhodococci but have been reported in some mycolata

other than mycobacteria (e.g. Khuller 1977; Furneaux et al. 2005). This may reflect

the nature of the solvent systems used for extraction and analysis in early studies

(Minnikin et al. 1977) and so a re-evaluation of the distribution of higher PIMs in

rhodococci and other mycolate bacteria is warranted.

The extracytoplasmic stages of LAM biosynthesis rely on Pol-P-linked mannose

and arabinose sugar donors. The requisite genes for the biosynthesis of each are

present in the R. jostii genome (Sect. 5.2.3; Tables 2 and 3). Intriguingly, a ubiA
mutant of C. glutamicum can still produce a truncated LAM-variant (Tatituri et al.

2007). In conjunction with the above described apparent residual arabinosylation of

LAM in an M. smegmatis embC mutant (Zhang et al. 2003), it is possible to

speculate that an alternative arabinose donor may be needed to prime the core

lipomannan during LAM biosynthesis and that this might occur during the

Table 3 Conservation in the pathway for LAM-like lipoglycan biosynthesis in R. jostii

Step M. tub. C. glut. RHA1 Identity

Polyprenyl-P-sugar precursor biosynthesis
UbiA, polyprenyl phosphoribose

50phosphate synthase
Rv3806c NCgI2781 Ro04056 216/302 (71%)

Polyprenyl phosphoribose

5- phosphate phosphatase

Rv3807c NCgI2782 Ro04055 86/138 (62%)

Polyprenyl phosphoribose

2-epimerase (heterodimer)

Rv3790 NCgI0187 Ro04078 362/466 (77%)

Rv3791 NCgI0186 Ro04077 198/253 (78%)

Ppm1, Polyprenylphosphate

mannosyl transferase

Rv2051c NCgI1423 Ro00145 164/242 (67%)

PIM biosynthesis
PimA, mannosyl transferase Rv2610c NCgI1603 Ro06882 254/367 (69%)

PIM1 acyltransferase Rv2611c NCgI1604 Ro06880 131/209 (62%)

PgsA, phosphatidylinositol

synthase

Rv2612c NCgI1605 Ro06881 192/300 (64%)

PimB0, mannosyl transferase Rv2188c NCgl2106 Ro01122 213/287 (74%)

PimC MT1800a Absentb Ro04052 219/365 (60%)

PIMn extension to lipomannan
LpqW, lipoprotein delivering

PIMn to MptB

Rv1166 Absentb Ro05934 304/620 (49%)

MptB, mannosyl transferase Rv1459c NCgl1505 Ro07194 315/564 (55%)

MptA, mannosyl transferase Rv2174 NCgl2093 Ro01108 255/460 (55%)

Branching mannosyl transferase Rv2181 NCgl2100 Ro01114 175/394 (44%)

Arabinosyltransferases
Priming arabinosyl transferase Unidentified Unidentified Unidentified

EmbC Rv3793 NCgl0184 Ro01774c 508/1091 (46%)

Capping mannosyltransferase Rv1635c Absentb Ro04110 200/507 (39%)
aPimC is a redundant mannosyltransferase capable of synthesising PIM3. However, this protein is

absent from the genome of M. tuberculosis H37Rv (Kremer et al. 2002b)
bNo clear orthologue (cut off, E 10�35) identified
cThe R. jostii genome contains three clear homologues of EmbC. This one is located outside of the

locus containing the EmbA/EmbB arabinosyl transferases likely to be involved in arabinogalactan

biosynthesis (see Sect. 5.2.3)
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cytoplasmic stages of biosynthesis (Tatituri et al. 2007). This priming activity alone

might therefore be sufficient to generate the truncated LAM types observed in

R. equi and R. ruber (Sect. 4.2). In R. jostii, the presence of a third Emb family

protein (RHA1_ro01774; Table 3) might be related to LAM or AG biosynthesis,

although its gene is located outside of the cell wall biosynthetic loci (Fig. 5).

Further investigation of both the LAM structure in R. jostii and the functional

redundancy of the Emb proteins is needed. In this respect, it is intriguing that the

R. jostii genome contains a clear orthologue (Table 3) of the Rv1635c mannosyl-

transferase that is involved in adding the mannan caps to the arabinans of myco-

bacterial LAM (Dinadayala et al. 2006; Appelmelk et al. 2008).

A PIM-anchored lipomannan as well as a second lipomannan most likely

anchored by a mannosylglucosyluronic acid glycolipid have recently been iden-

tified in C. glutamicum (Tatituri et al. 2007; Lea-Smith et al. 2008). Synthesis

of the mannosylglucosyluronic acid glycolipid from glucosyluronic acid-diacyl-

glycerol depends on the mannosyltransferase MgtA (NCgl0452). An orthologue

of MgtA, ro01995 (64%, 248/382 amino acid sequence identity) is encoded in

the R. jostii genome raising the possibility that this species also synthesises novel

mannosylglucosuronic acid based glycolipid(s). However, it is notable that

extracts of R. equi and R. ruber that contain the truncated LAMs of these species

do not contain a separate lipomannan fraction (Garton et al. 2002; Gibson et al.

2003b).

Finally, in addition to providing mannose for lipomannan biosynthesis, Pol-

P-linked mannose can also be the sugar donor for protein glycosylation in Actino-

bacteria (VanderVen et al. 2005; Mahne et al. 2006; Wehmeier et al. 2009). R. jostii
RHA1_ro05660 encodes a clear homologue of these protein mannosyltransferases,

suggesting some cell envelope or secreted proteins are glycosylated.

6 Concluding Comments

The presence of a mycolic acid containing cell envelope is clearly one of the

defining features that influences the biology of members of the genus Rhodococcus.
Significant studies have confirmed the presence of all of the components typical of

the cell envelopes of the mycolata, notably a peptidoglycan–arabinogalactan–my-

colic acid complex, mycolyl glycolipids, channel-forming porins and LAM-like

lipoglycans. As reviewed here and previously (Sutcliffe 1997, 1998), understanding

of the general principles underlying the organisation of these components can be

drawn from both theoretical models and experimental evidence obtained with other

mycolata, notably members of the genera Corynebacterium and Mycobacterium.
However, it is equally clear that there are likely to be genus, species and strain-

specific variations in the fine detail of the organisation of these cell envelopes.

Further to these models of cell envelope organisation, a comparative genomics

approach should allow a rapid growth in knowledge of the pathways leading to the

biosynthesis and assembly of cell envelope components, as illustrated herein by our
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analyses of the genome of R. jostii RHA1. These developments are likely to herald a

productive era in defining both the basic biology and the biotechnological potential

of members of this fascinating genus.
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Ortiz de Orué Lucana D, Groves MR (2009) The three-component signalling system HbpS-SenS-

SenR as an example of a redox sensing pathway in bacteria. Amino Acids 37(3):479–486

Pan F, Jackson M, Ma Y, McNeil M (2001) Cell wall core galactofuran synthesis is essential for

growth of mycobacteria. J Bacteriol 183:3991–3998

Peng F, Wang Y, Sun F, Liu Z, Lai Q, Shao Z (2008) A novel lipopeptide produced by a Pacific

Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 105:698–705

Perry MB, MacLean LL, Patrauchan MA, Vinogradov E (2007) The structure of the exocellular

polysaccharide produced by Rhodococcus sp. RHA1. Carbohydr Res 342:2223–2229

The Rhodococcal Cell Envelope: Composition, Organisation and Biosynthesis 67



Phetsuksiri B, Jackson M, Scherman H, McNeil M, Besra GS, Baulard AR, Slayden RA, DeBarber

AE, Barry CE 3rd, Baird MS, Crick DC, Brennan PJ (2003) Unique mechanism of action of the

thiourea drug isoxyl on Mycobacterium tuberculosis. J Biol Chem 278:53123–53130
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