Chapter 2
Basics of Lasers and Laser Optics

Michelle Shinn

Abstract The purpose of this chapter is to introduce the entering professional or
graduate student to the basics of laser physics and optics. I start with the various
types of lasers, some rather exotic, and the ever-increasing span of wavelengths that
has resulted since the laser’s invention in 1960. I then discuss typical techniques
as well as the “rules of thumb” used to transport and manipulate the laser output
so it can be used for materials processing. The chapter concludes with a discus-
sion of laser damage, as these physical processes limit the ability to transport and
manipulate high intensity beams.

2.1 Introduction

When this book is published, the laser will be just months from the 50th anniversary
of its first demonstration on May 16, 1960. That first laser operated in millisec-
ond long bursts at 694 nm [1]. Since then, lasers have operated with wavelengths
spanning mm to angstroms, and were found to occur naturally in the atmospheres
of Mars and other planets [2]. In this section, we touch briefly on the optical
arrangement that makes laser action possible, then discuss how this enables lasers
to span such an enormous spectral range. While some spectral ranges may seem less
amenable to use in a laser processing application than others, one never knows what
future opportunities might yet arise.

2.2 Optical Processes

Quantum mechanics has been quite successful in explaining the absorption and
emission of light in atomic systems, no matter what state of matter they find them-
selves in. Bound states exist due to the behavior of electrons moving in the central
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potential of the nucleus, modulo perturbations due to the bonding of atoms to one
another, as in the case of liquids and solids [3-5]. Electrons transitioning between
states do so through several processes, namely through stimulated absorption from
one state to a more energetic state, followed by spontaneous emission, and, as will
be explained shortly, stimulated emission from this higher state to the same, or
another, lower state. Absorption and spontaneous emission occur around us all the
time, because these are processes that occur in systems in thermal equilibrium, e.g.,
the emission of photons from an incandescent light. Stimulated emission requires
that more electrons be in the upper, or excited state than the state they will transi-
tion to. This is known as population inversion. Population inversion requires energy
in excess of that provided by thermal equilibrium, e.g., a laser diode pumping an
energy level in a laser crystal. It is the EM field from the photons whose energy
matches the transition energy of the excited electrons in the vicinity that stimulates
them to emit coherently. As the field propagates through the excited ensemble of
electrons, the field grows exponentially stronger. For laser action to occur, the gain
per pass through the system must be greater than the loss. The population inver-
sion process has been diagrammed in many publications, the reader is referred to
Figs.1.21,1.27, and 1.28 in [3].

In many cases, particularly in systems where the gain for each pass through the
medium is low, mirrors are used. One mirror is as completely reflective as practical,
with the value Ryg, the other is a partially transmissive (typical reflectivities are
in the range 70-99%), with the value Roc and is known as the outcoupler. This
is the configuration one generally conjurs up when thinking of a laser; and this
configuration is shown in Fig. 2.1.

The threshold condition for laser oscillation occurs when the gain per unit
length g for each pass just equals the loss (absorption, scattering, etc.) per unit
length o:

RHRROC = CXp(g — (1)21 =1 (21)

Where [ is the length of the gain region. Different arrangements of these mirrors
are used to create a resonant EM field that selects and provides positive feedback
to the stimulating field. On the early passes through the gain medium, the number
of photons increases exponentially, as expressed in (2.1). This is called the small
signal regime. However, the stimulating field increases the stimulated emission rate
to the point that the upper level population becomes depleted at exactly the excita-
tion rate. At this point, the gain and loss become equivalent, and the gain is said to
be saturated and in most cases is equal to the transmission of the outcoupling mirror.
A discussion of optical resonators is given in [3, 5, 6].
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Fig. 2.1 The laser resonator
configuration
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A pumped gain medium without mirrors still undergoes stimulated and spon-
taneous emission. Without further intervention, such a system would emit in all
directions, at a rate sufficient to bring the populations in the lower and upper states
to equilibrium. But, if one unidirectionally introduces light in resonance with the
energy difference, stimulated emission amplifies the light as it traverses the medium.
The pumped gain medium is termed a laser amplifier. For decades, systems com-
posed of the exciting laser oscillator pumping the laser amplifiers have been used
to achieve output powers unachievable using just an oscillator. Systems as small as
erbium doped fiber amplifers (EDFA) are used in fiber optic communications sys-
tems to extend the distance between repeater stations [7, 8]. On the other end of the
scale, the National Ignition Facility (NIF) starts with an injected energy of 0.75nJ
and amplifies it to over 1 MJ [9].

However, in systems with sufficient gain, it is possible to obtain laser emission
without the use of an optical cavity. This phenomena, termed self-amplified stimu-
lated emission (SASE) makes lasers possible at wavelengths where laser resonators
can not easily be constructed, such as the soft X-ray spectral region (sub 5nm).
Table-top realizations of such systems were demonstrated in 1994 by J.J. Rocca and
a coworkers [12], who demonstrated lasing at 46.9 nm by creating a long capillary
discharge in Ne gas. A schematic of this system is shown in Fig. 2.2.

The region termed the laser channel in the figure contains a region of highly
excited Ar ions in a highly inverted population. Spontaneous emission from the
region near the switch is amplified by the confined region of the discharge, and
amplified as they traverse it. Using the same principles, but with a different gas, the
same group has produced a laser emitting at 13.9 nm.

Other techniques for achieving laser emission in the soft X-ray region include
laser ablation and high harmonic generation (HHG) in gases. These are discussed
in more detail in Chap. 4. While one might consider such wavelengths irrelevant
for laser processing applications, consider the fact that the shorter the wavelength,
the smaller the spot at focus, and, as discussed in later chapters, processing need
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not be ablative, it can also be physicochemical. Thus, these soft X-ray lasers open
possibilities for lithography and even ablative processes [13].

2.3 Time Dependence

So far we have concentrated on the interplay of the three electronic processes,
absorption, spontaneous emission, and stimulated emission, to explain the lasing
process, without regard to the time dependence of the laser output. So long as there
is a population inversion that provides sufficient gain to overcome losses laser action
will occur. But it is possible to introduce a time dependence on the laser output, and
this greatly expands laser’s increasingly important role in both the sciences and tech-
nology, so they deserve a brief mention. More lengthy (and excellent) discussions
are found in [3, 6].

2.3.1 Q-Switching

In atomic systems where the lifetime of the upper state (the inverse of the sponta-
neous emission rate) is relatively long, of order 100 jus or more, it is then possible
to let the population build by suppressing stimulated emission until the population
saturates. At that time, the suppressant is removed and stimulated emission begins.
Since the upper state population is so much larger than it would have been other-
wise, the rate is much higher and a larger percentage of the population suddenly
transitions to the lower state. The output, rather than being continuous, becomes
a brief burst, the duration of the burst being dependent on the technology used to
create, then remove the stimulated emission suppressant. Resonant cavities have a
quality factor Q rigorously defined as the ratio of energy stored to power dissipated
per unit angular frequency. However, we will take the more common approach of
defining the laser cavity Q as the ratio of the mirror reflectivities:

0= m L 22

" Roc  Roc

Since the reflectivity of the HR mirror is so close to 1, the approximation to unity
is quite good. So, the cavity Q typically ranges from 3 to 100. When the suppressor
is active, the Q is essentially infinite. The device that changes the cavity is called a
Q switch, and the phenomena, once called giant pulsing, is now called Q-switching.
A schematic representation of the phenomena is shown in Fig. 26.1 from [3].

Typically, the pulselength of Q-switched pulses is of the order 10ns. As much
of the upper level population is depleted in a very short time, peak power can be
several orders of magnitude greater than the average power.
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2.3.2 Mode-Locking

In any laser system in a resonator configuration, as opposed to one that operates
via SASE, there are a number of longitudinal modes, analogous to the tones on a
plucked string, that satisfy the round trip condition. As the resonator length is short,
relative to the distance traveled by light in a second, a great number of closely-
spaced longitudinal modes exist in a laser resonator. Mode selection occurs to some
extent by the spectral width, and hence the frequency span over which there is suf-
ficient gain. If one sets the cavity length of the resonator very accurately (to within
microns) of that required to support the longitudinal mode so it precisely fulfills the
requirement that:

c
f= 3L (2.3)

Then this one mode predominates. The resonator, instead of producing a cw (time
independent) output, produces a continuous train of short pulses. Pulse widths rang-
ing from a few ps to 100 ps have been demonstrated, with repetition rates ranging
from 10’s of MHz to GHz. While these lasers have generally been used in scientific
applications, there are material processing applications as well.

2.3.3 Ultrashort Pulse Generation

The quest to understand the details of electronic excitation and de-excitation has
driven the laser technology for producing ultrashort (less than 1 ps) pulse lengths.
This is due to the fact that the timescales for these processes can be as short as
some 10’s of femtoseconds. In order to create laser pulses of such short duration,
modulation of the cavity population is sometimes done using mode-locking. In addi-
tion, ultrashort pulses can only be generated by materials that have a sufficiently
wide spectral (and thus frequency) bandwidth. This is because the time-bandwidth
product satisfies the equation:

AtAv = const 2.4)

The value for the constant depends on the lineshape, for most ultrafast solid state
lasers it is 0.33. The original technique for producing ultrashort pulses, colliding
pulse amplification (CPA) has been largely replaced by Kerr lens mode-locking
(KLLM), and the reader should consult [14] for more information.

2.3.4 Harmonic Generation

When short (fs-ns) laser pulses are focused sufficiently to create high intensities
(typically >10® W/cm?) in materials, the electric field strengths (in V/m) become
so great that nonlinearities in material properties emerge. Chief among them is the
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index of refraction, n. Thought a constant of the material, and a manifestation its
bonding, at high intensity, nonlinear terms become evident. One that is exploited
is that of harmonic generation, where light of some frequency (expressed as ) is
focused into a material and some of this light is converted to higher frequencies,
either 2w or 3w, depending on the material. These can then be focused into other
materials to generate 4w, Sw, etc., although the efficiency drops rapidly, so typically
only these harmonics are generated. While these nonlinearities can be created in the
appropriate gases, liquids, or solids, from a practical, and sustainable point of view,
solids are preferable and the norm. A good review of the processes and applications
may be found in [6].

2.4 Free-Electron Lasers

So far we have discussed lasers based on bound electron systems. It is possible to
have laser action using an ensemble of free electrons. At first blush, elementary
quantum mechanics would lead one to think that since a free electron has a contin-
uous set of energy levels to choose from, there is no upper or lower energy level to
transition between. As we will see below, it is possible to create such a pair of states.
What is notionally correct, based on elementary quantum theory is that one can set
the transition energy over an enormous range. Laser action has been demonstrated
at millimeter wavelengths to as short as 6.5 nm (at this time), with plans to operate
at a scientific user facility at 0.15 nm in the next couple of years. Since these lasers
use free electrons, they are called free-electron lasers (FEL).

The first FEL was operated at 3.4 pm in 1976 [15]. A recent review of FELs is
found in [16]. A schematic view of an FEL, using superconducting linear accelerator
technology to achieve high average power, is shown in Fig. 2.3.

Recirculating Electrons
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M Laser pulse releases MW Microwave cavities Be. electron energy to
am dum :

electrons from accelerate electrons g 006 eleclron]: i light (10 urm to 0.1 wm)
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Fig. 2.3 Schematic diagram of a free-electron lasers (FEL) (courtesy Jefferson Lab)
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As shown in the figure, bunches of free electrons (the charge per bunch is in
the range of 10’s of pC to about a nC) are accelerated to relativistic speeds and
enter a structure known as a “wiggler”, a periodically-spaced arrangement of mag-
nets. As the electron’s trajectory oscillates, they radiate through the well-known
phenomenon of synchrotron radiation [17]. This radiation interacts with the mag-
netic field of the wiggler to form a ponderomotive wave, which appears at rest with
respect to the electrons. The electrons bunch in the troughs of this wave, and form
energy levels. There is a natural population inversion, as the electrons have a lot of
kinetic energy. The photons that are present from spontaneous emission serve as the
seed for stimulating emission from the electrons. Each bunch is separated by one
wavelength from the adjacent bunch, so the light adds coherently.

As described, this arrangement has gain. In most cases, the gain is low for each
pass through the wiggler, so mirrors are used to form a resonator, as shown in
Fig.2.3. This raises the stimulating field, or thinking in terms of photons, the flux,
which increases the gain. However, the gain enhancement only occurs if the photons
produced by a previous electron bunch arrive in time to stimulate a fresh electron
bunch in the wiggler. Thus, the optical cavity length must be precisely set, to within
a few microns, so the following equation is satisfied:

L_nc

S af

Where f is the electron bunch frequency,and n = 1,2, 3, ... to allow for longer
cavity lengths that are also in synchronism [18].

With the enhancement provided by the resonant cavity, small signal gains of the
order of 10’s to over 100% per pass can be achieved with short wigglers of a couple
of meters length, or less. With a superconducting radiofrequency (SRF) linac, it is
possible to continuously produce fresh bunches of electrons, so the output power
can be quite high. At the Thomas Jefferson National Accelerator Facility, we have
produced over 14kW of average power at 1.61 wm, and kilowatt levels of power
through the near-IR to mid-IR spectral range [18]. A schematic depiction of this
machine is shown in Fig. 2.4. These machines are always big, typically many 10’s
of meters in length, so they tend to be installed as part of multiuser facilities. At
present, there are over a dozen of such facilities around the world. Given the wave-
length flexibility of FELs, there has been a growing trend to build them to produce
X-rays. The proper electron bunch parameters and the use of longer wigglers allow
the gain through the wiggler to reach many orders of magnitude, typically 103-107.
In these cases, lasing of the SASE type occurs. This is how the 6.5 nm laser was
produced [19].

With high repetition rates (MHz), ultrashort pulse lengths, and tunable wave-
length output, FELs are being used in science and technology to answer questions
in the fields of medicine, materials research, and as a tool for materials processing.
It is not clear whether stand alone facilities for materials processing will be built
solely for materials processing, but clearly it has the ability to map out a parameter
space in order to optimize a process [20, 21].

(2.5)
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Fig. 2.4 Schematic layout of the FEL at the Thomas Jefferson National Accelerator Facility
(USA)

2.5 Laser Optics

A laser without optics to transport and condition the beam to meet the goals of the
experiment or process is like having an automobile engine without the transmission
and tires necessary to use it; it may deliver impressive performance, but not be too
useful. The light emitted from the laser naturally has a divergence set by the radius
of the source, the properties of the outcoupler mirror, and the wavelength. Left to
freely propagate to the plane of interest, the irradiance (in W/cm?) or fluence (in
J/ecm?) will probably not be sufficient. Hence, the user must place intervening optics
to correct for the divergence and any pathlength requirements imposed by the space
available, then condition the beam to achieve the desired beam conditions at the
surface being irradiated, as diagramed in Fig.2.6. This section discusses the basic
optics required to achieve simple beam propagation and conditioning, subsequent
sections treat more recent and complicated means for beam conditioning. This has
been well-covered elsewhere, so in my treatment, I will tend to emphasize the tricks
of the trade (Fig.2.5).
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Fig. 2.5 Generic diagram of a laser and its optical system

2.5.1 Optical Propagation

When thinking about how to design an optical transport system or to optimize one
you have acquired, there are two ways to come to an answer; using geometrical
optics, or by using physical optics. Geometrical optics treats light as traveling in rays
and as these rays propagate, they are manipulated by optical elements such as lenses
in precise ways, and from a starting point, known as the object, one propagates to
an image, which can be either at a particular point or plane in space. Geometrical
optics works well when thinking how to first set up an optical system as it directly
addresses the spacing of optical elements. It does not handle the very real (and
obvious when using a laser source) ramifications of the wave nature of light, such as
diffraction and interference. To properly treat these cases, one moves into physical
optics, which treats light as being composed of electromagnetic waves. The mathe-
matical treatment of light propagation is more complicated than that employed for
geometrical optics, but it has great validity when considering the size of optical
elements, and on the diameter of the final image, as I will discuss later.

While there are a number of formulae relating to geometrical optics, only a few
are needed for most applications. For an optical system with a net focal length f, a
distance from the source to the focal plane o (object distance), and a distance from
the focal plane to the target i (image distance)

1 1 1
?:;4_7 (2.6)

There is a sign convention for focal lengths and the object and images distances.
These are covered in detail in elementary physics and optics textbooks [22-24].
These references also explain and have examples on how to solve for the image
position when using a combination of lenses and mirrors. Or, one can use optical
modeling software, which will be discussed later in this chapter.

The laser manufacturer typically specifies the output diameter, which we will
define as 2w, where ® is the beam radius measured at the 1/e? point (in either irra-
diance or fluence) as well as the divergence 6. It is important to note whether the
divergence is the full angle or half-angle, there is no standard. This is the source
point in the calculations done either analytically, or by using optical modeling soft-
ware. From this information, one can calculate the beam diameter at the first optical
element, and on through the system. This brings us to an important consequence of
physical optics, the size of the optical elements.
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2.5.2 Sizing Optical Elements and Other Tricks of the Trade

A premise of physical optics is that the waves traveling away from the source are
smoothly-varying functions in both space and time. Hence, if the beam is “too big”
when it intercepts an optical element, the wavefront will be truncated (clipped is
the vernacular term). While the effects of this truncation are subtle while the beam
is relatively large in extent, when brought to a focus, one will see intensity fringes
within and surrounding the central spot. It is surprising just how little of the clear
aperture of the optic can be filled before these effects become apparent. As discussed
in detail in [3], to be assured of minimum fringing it is best to have the clear aperture
of the optic be about four times the beam radius. This “4®” criterion will transmit
99.96% of the incident power and have about 1.1% of the power in the fringes
when brought to focus. As tempting as it might be to let the beam fill more of the
aperture (especially when trying to save money), consider what happens if you use
a o criterion. While the transmission remains high, 99%, now 17% of the power
has been moved into the diffraction fringes. This can be a serious problem if you
are trying to remove material in the smallest area, as the diffraction ripple causes
uneven ablation and prevents the laser from focusing to the smallest spot, as “Airy
rings” around the central lobe can also induce ablation. Another factor impacting
final image quality is the orientation of lenses in the beam path. One learns in an
optics class that the “principle of reversibility” states that rays of light will trace the
same path through an optic independent of direction. However, with optics made to
some wavefront tolerance (e.g., A/10), there is a difference. In general, it is best to
place the curved surface of the optic toward the beam path, if the beam is collimated
(object at infinity). An exception to this rule is when a high power; especially high
peak power laser beam is incident on a concave surface. The concave surface forms
a virtual image before it, and the intensity can become high enough that you get
breakdown of the air at the focal point. If that focal point happens to lie on or within
another optical element, you can damage that element.

Finally, always check the optics you buy, at least for focal length. Vendors state
a precision in their specs, but production parts are checked at the level of a percent
or so, and parts with 5% error can easily pass inspection. If one is tightly toler-
ancing their optical beam train, some care to confirm the optical elements meet
specifications will ensure that the desired performance is obtained.

2.5.3 Fiber Optics

No discussion of laser transmission is complete without at least a passing refer-
ence to fiber optics. As the name implies, rather than propagating a laser through
free space, the beam is propagated down a thin (about 5 um to 1 mm) fiber, usu-
ally made of fused silica glass. The size of the fiber is chosen for the application —
a bundle of fibers will carry more power than a single fiber, but the divergence
of the output will suffer due to the fact that without some effort, the individual
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beams are not coherently locked in phase to one another. For cw laser systems in
the kW class, transmission with fiber optics is the norm, particularly in industrial
installations, as there are fewer surfaces to become contaminated or misaligned.
For pulsed systems, particularly when the pulselength is in the 100’s of femtosec-
onds and shorter, fiber optics need to be carefully chosen or avoided entirely. The
dimensionally-constrained environment in the fiber raises the electric field (and
hence, the intensity) within it, and short pulses can easily push this field to the dam-
age limit (see the following section on this phenomena). For femtosecond pulses,
the fiber’s dispersion (index variation with wavelength) can result in undesirable
pulse lengthening. For more detail, the reader should consult [25].

2.5.4 Managing Diffraction

The previous discussion on the deleterious role that aperturing of laser beams has
on beam properties might lead one to believe that diffraction is to be avoided at all
cost. However, diffraction can be tailored to shape the beam’s intensity profile to
enhance the processing effectiveness. Consider the fact that the low order transverse
mode output of a laser usually results in a Gaussian output. If the laser is multimode,
the output is at least smoothly-varying, with the maximum intensity at the center. In
most cases, this is not the most efficient beam profile to ablatively remove material,
because the wings of the beam profile do not deposit enough power into the material
to heat it to vaporization. At best, it has wasted power, at worst, it creates a heat-
affected zone around the region being processed. The best way to avoid this is to
reshape the beam profile from a gaussian to a flat-top, where the power is constant
with respect to the beam radius to a certain diameter, then falls quickly to zero.
There are several ways to obtain this profile, one is with aspheric lenses, the other
way is with holographic optical elements (HOE) sometimes called diffractive optical
elements (DOE). We will examine both.

2.5.5 The Aspheric Lens Beamshaper

A common arrangement of two spherical optical elements, planoconvex and
planoconcave lenses, can be arranged to form a Galilean telescope. This arrange-
ment is shown in Fig.2.6. The Galilean telescope takes a collimated beam (object
distance at infinity) and either expands or condenses it by an amount equal to the
ratio of the focal distances.

However, this leaves the beam’s intensity profile unchanged, a Gaussian profile
remains Gaussian. If one uses aspheric lenses, the telescope becomes a beam shaper
as well, either expanding or condensing the beam and converting the Gaussian pro-
file to a flat top. First published by B. Frieden in 1965 [26], it was little noticed until
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the early years of this century [27] and can now be purchased from several optics
manufacturers in the USA and Europe.

These designs (Fig.2.7) require careful alignment of the beam shaper with
respect to the input beam, e.g., about 100rad angular and <50 wm in linear mis-
alignment, necessitating the use of lasers able to deliver a very stable input — these
include fiber lasers and laser diode-pumped laser systems.

2.5.6 Holographic Optical Elements

Another way to shape a beam so as to give the user a far larger set of patterns
to choose from is to use (or have fabricated) a HOE. As the name implies, these
elements are computer designed for a particular laser wavelength and set of beam
parameters, then holographically patterned. An advantage of a HOE over a beam
shaper is the relatively small size; an HOE usually looks like a rather thin substrate
with a characteristic spectrum of colors when a light source is viewed in reflec-
tion. A disadvantage (partially shared by the beam shaper) is the sensitivity to beam
parameters and angle.

Having covered how to shape and transmit a laser’s output to the target, we now
turn to the final optics used to adjust the irradiance to the desired value. Since the
irradiance through the transport must be low enough to not damage the transport
optics, it is the final optics that have the task to bring the irradiance to the desired
high value. The choice of the final optics is dictated by the geometry of the process-
ing site. Two geometries are common, as shown in Fig. 2.8, either a moving beam
or a moving target.
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Moving Beam Moving Target

Fig. 2.8 Two common laser processing target geometries

In the moving beam geometry, the f-theta lens is used. This optical system pro-
duces a focus at the target plane even though the angle of incidence of the beam is
changing. In the case of the moving target, the lens system may be as simple as a
planoconvex lens, or as complicated as the lenses used in UV lithography, which
may number as many as 20 elements. These lenses are now augmented with a fluid
placed between the lens and the target — the nonunity index of refraction effectively
makes the wavelength shorter by 30—40%, thus creating a tighter focus.

2.5.7 Laser Damage

Since this text treats the latest aspects of laser material processing, it is given that
lasers, used properly, will damage and ablate material. But what about those cases
when apparently transparent media, the optical elements the beam traverses, sud-
denly fails? What are the causes? Since it was first observed in the 1960s, laser
damage, the irreversible change in the optical properties (be they reflectance, trans-
mission, etc.) has been studied, and over the years both measurements and models
have advanced our understanding of the mechanisms that cause it. An annual con-
ference devoted to the topic has been held in Boulder, Colorado, since 1969 and the
proceedings of these conferences are available [29,30]. There is a good summary on
the subject in [5]. The underlying mechanisms for laser damage depend on whether
the source is pulsed or cw (or quasi-cw) and whether the duration of the pulse is less
than about 10 ps or not. In general, laser damage occurs because either an absorbing
defect raised its temperature above the melting point, or a flaw, be it a pit, scratch,
embedded nodule of the coating or polishing material results in a local increase of
the E-field intensity to the level that a few free electrons are accelerated to the point
that they impact and free other electrons. The free electron population increases to a
level that the region becomes absorbing enough to melt and/or vaporize the imme-
diate defect and its surroundings. This is known as the electron avalanche process.
Ultrashort pulses cause laser damage in a slightly different manner. The E-field is
sufficiently high that multiphoton absorption occurs, promoting electrons to the con-
duction band so they are free to move and collisionally promote other electrons to
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the conduction band. This impact ionization continues until the population is high
enough that the material becomes absorbing and damages as the material vaporizes.
Note the subtle difference—longer pulses require some free electrons, which may or
may not be present at the location the laser strikes, whereas ultrashort pulses al-ways
make them. Consequently, while long pulse damage is stochastic in nature, ultra-
short laser damage is deterministic. Moving from general comments about damage
mechanisms to more specific comments on how to prevent damage, doing all that
one can to minimize the introduction of contaminants on optical surfaces will raise
the damage threshold of a given optical element. Handling should be done with
gloved hands and speaking should be kept to a minimum (or, wear a face mask). If
the surfaces are observed to be contaminated, one can attempt to remove the con-
taminant with “canned air” or with a solvent like isopropal alcohol or acetone and
lens tissue. A thorough discussion of cleaning techniques and their efficacy is in
[31]. Depending on the irradiance (if the laser output is cw or quasi-cw) or fluence
(if pulsed), surface quality is important. Surface quality is still generally defined by
“scratch-dig” values, these have an advantage for the optics fabrication shop, but at
best are semiquantitative. Generally, a scratch-dig value of 20-10 is sufficient for cw
lasers, while 10-5 is necessary for ns pulsed lasers. Of course, in any optical trans-
port system the optics will be coated, and one can increase the damage threshold
by choosing the type of coating deposition technique that works best for the time
structure of the laser system. For long-pulsed (>few ns duration), electron beam
deposited films are best, for cw or quasi-cw lasers, ion beam deposited films per-
form better. Having touched on the “why” laser damage occurs, we turn now to the
how to design an optical system that would not damage. Over time experimenters
desired to have a standard for determining laser-induced damage thresholds (LIDT)
values, the testing procedures are given in ISO 11254. A recent summary of current
LIDT values was recently published [32], Tables 2.1 and 2.2 summarize the values
presented in this paper.

LIDT values are different for other substrates. An excellent discussion and data
are presented in [5].

Table 2.1 CW laser-induced damage thresholds for high reflectors as a function of spot size and
wavelength [31]

30-50 pm 100 pm >5mm
0.55 um >1 MW/cm? >500 kW/cm? 25 kW/cm?
1-2 um 50200 MW/cm? 10 MW/cm? 75 kW/cm?

Table 2.2 Pulsed laser-induced damage thresholds for different coating applications as a function
of pulse duration at 1,064 nm for IBS films on fused silica substrates [31]

1ps 10ps 10ns
AR - - >18 J/em?
Brewster angle polarizer - - >20 J/em?

HR >2.5 J/em? >8.5 J/cm? >20 J/cm?
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2.5.8 Optical Modeling Software

Throughout this chapter, we have relied on relatively straightforward examples that
are amenable to analytical solutions. For actual laser and transport system design,
this is more often than not too simplistic or too tedious to contemplate. The coher-
ence of laser sources is actually an asset when it comes to calculations, but also
drives the designer to eschew the typical ray-tracing design packages, in favor of
software designed for physical optics (see Sect.2.6) which properly treat diffrac-
tion from the edges of optical elements or other physical apertures. Of the various
software packages available, three that I typically use are Paraxia™ [33], GLAD™
[34], and OPC [35]. The first two software packages are commercial products while
the last is offered for free, noncommercial use. Paraxia has the advantage of an easy,
graphical interface, and the ability to “drop and drag” optical and free space ele-
ments into place. It does not have a way to incorporate gain regions. The other two
software packages use scripting languages to construct the optical system, although
one of my students has been developing a “user friendly” graphical front end to
OPC, known as the Jefferson Lab Interactive Front End (JLIFE) which is under
development [36]. GLAD, an acronym for General Laser Analysis and Design, has
commands that incorporate atmospheric and optical aberrations, OPC, an acronym
for Optical Propagation Code, both allow gain regions; the former can simulate the
gain from solid state or gas lasers, the latter is particularly good at treating free-
electron laser gain. For examples of the Paraxia or GLAD interfaces, consult the
software creator’s websites shown in [33, 34].

2.6 Conclusions

In this chapter, I have attempted to acquaint the reader with both conventional and
emerging laser sources. Fiber lasers and laser diodes create robust and easy-to-use
sources in the near infrared, while FELs offer the opportunity to exploit material
properties with power at wavelengths where conventional sources are not available.
In the chapters that follow, the applications of lasers are discussed in more detail.
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