Chapter 2
Ultraproducts and Los” Theorem

In this chapter, W denotes an infinite set, always used as an index set, on which
we fix a non-principal ultrafilter.! Given any collection of (first-order) structures
indexed by W, we can define their ultraproduct. However, in this book, we will
be mainly concerned with the construction of an ultraproduct of rings, an #ltra-
ring for short, which is then defined as a certain residue ring of their Cartesian
product. From this point of view, the construction is purely algebraic, although
it is originally a model-theoretic one (we only provide some supplementary back-
ground on the model-theoretic perspective). We review some basic properties
(deeper theorems will be proved in the later chapters), the most important of
which is Los” Theorem, relating properties of the approximations with their ul-
traproduct. When applied to algebraically closed fields, we arrive at a result that
is pivotal in most of our applications: the Lefschetz Principle (Theorem 2.4.3),
allowing us to transfer many properties between positive and zero characteristic.

2.1 Ultraproducts

We start with the classical definition of ultraproducts via ultrafilters; for different
approaches, see §§2.5 and 2.6 below.

2.1.1 Ultrafilters

By a (non-principal) ultrafilter 20 on W, we mean a collection of infinite subsets of
W closed under finite intersection, with the property that for any subset D C W,
either D or its complement —D belongs to 20. In particular, the empty set does
not belong to 20, and if D € 20 and E is an arbitrary set containing D, then also

1'We will drop the adjective ‘non-principal’ since these are the only ultrafilters we are interested
in; if we want to talk about principal ones, we just say principal filter; and if we want to talk
about both, we say maximal filter.
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8 2 Ultraproducts and £0§” Theorem

E € 20, for otherwise —E € 20, whence 0 = DN —E € 20, contradiction. Since
every set in 20 must be infinite, it follows that any co-finite set belongs to 20.
The existence of ultrafilters follows from the Axiom of Choice, and we make this
set-theoretic assumption henceforth. It follows that for any infinite subset of W,
we can find an ultrafilter containing this set.

More generally, a proper collection of subsets of W is called a filter if it is closed
under intersection and supersets. Any ultrafilter is a filter which is maximal with
respect to inclusion. If we drop the requirement that all sets in 20 must infinite,
then some singleton must belong to 20; such a filter is called principal, and these
are the only other maximal filters. A maximal filter is an ultrafilter if and only if it
contains the Frechet filter consisting of all co-finite subsets (for all these properties,
see for instance [81, §4] or [57, §6.4]).

In the remainder of these notes, unless stated otherwise, we fix an ultrafilter
2 on W, and (almost always) omit reference to this fixed ultrafilter from our
notation. No extra property of the ultrafilter is assumed, with the one exception
described in Remark 8.1.5, which is nowhere used in the rest of our work anyway.
Ultrafilters play the role of a decision procedure on the collection of subsets of W
by declaring some subsets ‘large’ (those belonging to 20) and declaring the remain-
ing ones ‘small’. More precisely, let 0,, be elements indexed by w € W, and let &2
be a property. We will use the expressions almost all o,, satisfy property & or o,
satisfies property & for almost all w as an abbreviation of the statement that there
exists a set D in the ultrafilter 20, such that property & holds for the element o,,,
whenever w € D. Note that this is also equivalent with the statement that the set
of all w € W for which o,, has property &2, lies in the ultrafilter (read: is large).

2.1.2 Ultraproducts

Let O,, be sets, for w € W. We define an equivalence relation on the Cartesian
product O :=I] Oy, by calling two sequences (ay,) and (by,), for w € W, equiv-
alent, if a,, and b,, are equal for almost all w. In other words, if the set of indices
w € W for which a,, = b,, belongs to the ultrafilter. We will denote the equivalence
class of a sequence (ay,) by

ulima,, or ulima,, or ay.

wW-—oo

The set of all equivalence classes on [0, is called the ultraproduct of the O,, and
is denoted
ulimO,,, or ulimO,, or O

W—00

If all O,, are equal to the same set O, then we call their ultraproduct the ultrapower
O; of O. There is a canonical map O — Oy, sometimes called the diagonal embed-
ding, sending an element o to the image of the constant sequence o in Oy. To see
that it is an injection, assume o’ has the same image as 0 in O;. This means that
for almost all w, and hence for at least one, the elements 0 and o' are equal.
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Note that the element-wise and set-wise notations are reconciled by the fact
that

ulim{o,} = {ulimo, }.
W-—o0 W—ro0

The more common notation for an ultraproduct one usually finds in the literature
is O*; in the past, I also have used O.., which in this book is reserved to denote
Cartesian products. The reason for using the particular notation Oy in these notes
is because we will also introduce the remaining chromatic products 0, and O (at
least for certain local rings; see Chapters 9 and 8 respectively).

We will also often use the following terminology: if o is an element in an
ultraproduct Oy, then any choice of elements o,, € O,, with ultraproduct equal to
o will be called an approximation of o. Although an approximation is not uniquely
determined by the element, any two agree almost everywhere. Below we will
extend our usage of the term approximation to include other objects as well.

2.1.3 Properties of Ultraproducts

For the following properties, the easy proofs of which are left as an exercise, let
O, be sets with ultraproduct O;.

2.1.1 If Q,, is a subset of O,, for each w, then ulim Q,, is a subset of Oy,

In fact, ulim Q,, consists of all elements of the form ulimo,,, with almost all o,,
in Q.

2.1.2 Ifeach O, is the graph of a function f,: A,, — By, then Oy is the graph of
a function Ay — By, where Ay and B, are the respective ultraproducts of A,,
and B,,. We will denote this function by

ulimf,, or fi.
W—ro0
Moreover, we have an equality

ulim(fy,(ay)) = (ulim f,)(ulima,,), 2.1)
W-—oo W—00 W—o0
for a,, € A,,.
2.1.3 Ifeach O,, comes with an operation *,,: O, X Oy, — O, then

*p 1= ulims,,

W—o0
is an operation on Oy. If all (or, almost all) O,, are groups with multipli-
cation *,, and unit element 1, then Oy is a group with multiplication *,

and unit element 1y := ulim 1,,. If almost all O,, are Abelian groups, then
s0 15 Oy,
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2.1.4 If each O,, is a (commutative) ring under the addition +,, and the
multiplication -, then Oy is a (commutative) ring with addition +y and
multiplication -y.

In fact, in that case, Oy is just the quotient of the product O.. := [10,, modulo
the null-ideal, the ideal consisting of all sequences (0,,) for which almost all o,,
are zero (for more on this ideal, see §2.5 below). From now on, we will drop
subscripts on the operations and denote the ring operations on the O,, and on O,
simply by + and -.

2.1.5 If almost all O,, are fields, then so is Oy. More generally, if almost each O,
is a domain with field of fractions K., then the ultraproduct Ky of the K.,
is the field of fractions of O.

Just to give an example of how to work with ultraproducts, let me give the
proof: if a € Oy is non-zero, with approximation a,, (recall that this means that
ulima,, = a), then by the previous description of the ring structure on Oy, almost
all a,, will be non-zero. Therefore, letting b, be the inverse of a,, whenever this
makes sense, and zero otherwise, one verifies that ulimb,, is the inverse of a. O

2.1.6 If C,, are rings and O,, is an ideal in C,,, then Oy is an ideal in Cy :=
ulimC,,. In fact, O, is equal to the subset of all elements of the form ulimo,,
with almost all o,, € O,,. Moreover, the ultraproduct of the C,,/O,, is iso-
morphic to Cy/Oy. If almost every O,, is generated by e elements, then so
15 Oy,

In other words, the ultraproduct of ideals O,, C C,, is equal to the image of
the ideal [TO,, in the product C. := ] C,, under the canonical residue homomor-
phism C.. — Cj. As for the last assertion, suppose 01y, . .- s 0¢(w),w generate Oy, for
each w, and let 0;; be the ultraproduct of the 0;,,,, where we put the latter equal
to 0 if i > e(w). The ideal generated by the 0;; can be strictly contained in O (an
example is the ideal of infinitesimals, defined below in 2.4.13), but it is equal to it
if almost all e,, are equal, say, to e. Indeed, any element o, of O, is an ultraprod-
uct of elements o,, € O,,, which therefore can be written as a linear combination
Ow = FiwO1w + 4 TewOe,w, for some r;,, € Cy,. Let 1y € Cy be the ultraproduct
of the r; , fori =1,...,e. By Lo§’ Theorem (see Theorem 2.3.2 below), we have
Oy = F1g01y + -+ + FepOey.

2.1.7 If fuw: Ay — By, are ring homomorphisms, then the ultraproduct fy is

again a ring homomorphism. In particular, if G, is an endomorphism on
A, then the ultraproduct Gy is a ring endomorphism on A, := ulimA,,.

2.2 Model-theory in Rings

e previous examples are just instances of the general principle that ‘alge-
The p pl just inst f the g lp ple that ‘alg
raic structure’ carries over to the ultraproduct. The precise formulation of this
b truct to the ultraproduct. The p f lat f th
principle is called £os’ Theorem (Los is pronounced ‘wdsh’) and requires some
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terminology from model-theory. However, for our purposes, a weak version of
L.o§* Theorem (namely Theorem 2.3.1 below) suffices in almost all cases, and its
proof is entirely algebraic. Nonetheless, for a better understanding, the reader is
invited to indulge in some elementary model-theory, or rather, an ad hoc version
for rings only (if this not satisfies him/her, (s)he should consult any textbook,
such as [57,67,81)).

2.2.1 Formulae

By a guantifier free formula without parameters in the free variables & =

(&1,...,&), we will mean an expression of the form
(p(é) = \/f]j =0AN...Afsj=0Agy; #O/\.../\g;j #£0, 2.2)
=1

where each fj; and g;; is a polynomial with integer coefficients in the variables
&, and where A and V are the logical connectives and and or. If instead we al-
low the f;; and g;; to have coefficients in a ring R, then we call ¢(&) a quantifier
free formula with parameters in R. We allow all possible degenerate cases as well:
there might be no variables at all (so that the formula simply declares that certain
elements in Z or in R are zero and others are non-zero) or there might be no equa-
tions or no negations or perhaps no conditions at all. Put succinctly, a quantifier
free formula is a Boolean combination of polynomial equations using the connec-
tives A, V and — (negation), with the understanding that we use distributivity and
De Morgan’s Laws to rewrite this Boolean expression in the (disjunctive normal)
form (2.2).

By a formula without parameters in the free variables &, we mean an expression
of the form

0():=(Q &) Q&) W(E, L),

where w(€, {) is a quantifier free formula without parameters in the free variables
& and § = ({1,...,8,) and where Q; is either the universal quantifier V or the
existential quantifier 3. If instead y(&,&) has parameters from R, then we call
©(&) a formula with parameters in R. A formula with no free variables is called a
sentence.

2.2.2 Satisfaction

Let (&) be a formula in the free variables & = (&,...,&,) with parameters from
R (this includes the case that there are no parameters by taking R = Z and the
case that there are no free variables by taking n = 0). Let A be an R-algebra and let
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a= (aj,...,a,) be a tuple with entries from A. We will give meaning to the ex-
pression a satisfies the formula @(€) in A (sometimes abbreviated to @(a) holds in
A or is true in A) by induction on the number of quantifiers. Suppose first that
@(&) is quantifier free, given by the Boolean expression (2.2). Then ¢(a) holds in
A, if for some jo, all f;;,(a) = 0 and all g;j,(a) # 0. For the general case, suppose
(&) is of the form (38) w(&,8) (respectively, (V&) w(€,{)), where the satisfac-
tion relation is already defined for the formula w(&, ). Then ¢(a) holds in A, if
there is some b € A such that y(a,b) holds in A (respectively, if y(a,b) holds in
A, for all b € A). The subset of A" consisting of all tuples satisfying ¢ (&) will be
called the subser defined by ¢, and will be denoted @(A). Any subset that arises in
such way will be called a definable subset of A™.

Note that if n = 0, then there is no mention of tuples in A. In other words, a
sentence is either true or false in A. By convention, we set A equal to the singleton
{0} (that is to say, A® consists of the empty tuple 0). If ¢ is a sentence, then the
set defined by it is either {0} or @, according to whether ¢ is true or false in A.

2.2.3 Constructible Sets

There is a connection between definable subsets and Zariski-constructible subsets,
where the relationship is the most transparent over algebraically closed fields, as
we will explain below. In general, we can make the following observations.

Let R be a ring. Let @(&) be a quantifier free formula with parameters from
R, given as in (2.2). Let X ¢) denote the constructible subset of A = Spec(R[E])
consisting of all prime ideals p which, for some jo, contain all fj;, and do not
contain any gjj,. In particular, if n = 0, so that A% is by definition Spec(R), then
the constructible subset X, associated to ¢ is a subset of Spec(R).

Let A be an R-algebra and assume moreover that A is a domain (we will never
use constructible sets associated to formulae if A is not a domain). For an n-tuple
a over A, let p, be the (prime) ideal in A[£] generated by the & — a;, where & =
(&1,...,&). Since A[E]/pa =2 A, we call such a prime ideal an A-rational point of
A[&]. It is not hard to see that this yields a bijection between n-tuples over A and
A-rational points of A[§], which we therefore will identify with one another. In
this terminology, ¢(a) holds in A if and only if the corresponding A-rational point
Pa lies in the constructible subset X&) (strictly speaking, we should say that it lies
in the base change X&) X spec(r) Spec(A), but for notational clarity, we will omit
any reference to base changes). If we denote the collection of A-rational points
of the constructible set Xy, ) by Zy(g)(A), then this latter set corresponds to the
definable subset ¢(A) under the identification of A-rational points of A[E] with
n-tuples over A. If ¢ is a sentence, then X, is a constructible subset of Spec(R)
and hence its base change to Spec(A) is a constructible subset of Spec(A). Since
A is a domain, Spec(A) has a unique A-rational point (corresponding to the zero-
ideal) and hence ¢ holds in A if and only if this point belongs to .
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Conversely, if X is an R-constructible subset of A%, then we can associate to it a
quantifier free formula @x(§) with parameters from R as follows. However, here
there is some ambiguity, as a constructible subset is more intrinsically defined
than a formula. Suppose first that X is the Zariski closed subset V(I), where I is
an ideal in R[&]. Choose a system of generators, so that I = (f1,...,fs)R[{] and
set @z (&) equal to the quantifier free formula f1 (&) =--- = f;(§) = 0. Let A be an
R-algebra without zero-divisors. It follows that an n-tuple a is an A-rational point
of X if and only if a satisfies the formula @s. Therefore, if we make a different
choice of generators I = (f{,..., f;)R[§], although we get a different formula ¢/,
it defines in any R-algebra A without zero-divisors the same definable subset, to
wit, the collection of A-rational points of 2. To associate a formula to an arbitrary
constructible subset, we do this recursively by letting @z A @y, @5V @y and —@s
correspond to the constructible sets ZNY¥, X U¥ and —X respectively.

We say that two formulae ¢(&) and w(&) in the same free variables & =
(&1,...,&n) are equivalent over a ring A, if they hold on exactly the same tuples
from A (that is to say, if they define the same subsets in A"). In particular, if ¢ and
Y are sentences, then they are equivalent in A if they are simultaneously true or
false in A. If (&) and w(&) are equivalent for all rings A in a certain class ¢/, then
we say that (&) and (&) are equivalent modulo the class ¢ . In particular, if X is
a constructible subset in A}, then any two formulae associated to it are equivalent
modulo the class of all R-algebras without zero-divisors. In this sense, there is a
one-one correspondence between constructible subsets of A} and quantifier free
formulae with parameters from R up to equivalence.

2.2.4 Quantifier Elimination

For certain rings (or classes of rings), every formula is equivalent to a quantifier
free formula; this phenomenon is known under the name Quantifier Elimination.
We will only encounter it for the following class.

Theorem 2.2.1 (Quantifier Elimination for Algebraically Closed Fields). If
K is the class of all algebraically closed fields, then any formula without parameters is
equivalent modulo A to a quantifier free formula without pavameters.

More generally, if F is a field and 2 (F) the class of all algebraically closed fields
containing F, then any formula with pavameters from F is equivalent modulo # (F)
to a quantifier free formula with parameters from F.

Proof (Sketch of proof). These statements can be seen as translations in model-
theoretic terms of Chevalley’s Theorem which says that the projection of a
constructible subset is again constructible. I will only explain this for the first
assertion. As already observed, a quantifier free formula @(&) (without parame-
ters) corresponds to a constructible set X z) in A7 and the tuples in K" satisfying
¢(&) are precisely the K-rational points X,e)(K) of Zye). The key observa-
tion is now the following. Let w(£,{) be a quantifier free formula and put
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Y(8):=(E8)w(E,8), where & = (&1,...,&n) and & = ({1, Gn). Let ¥ = y(K)
be the subset of k"1™ defined by w(&,{) and let I' := y(K) be the subset of K"
defined by y(&). Therefore, if we identify K" with the collection of K-rational
points of A%t then

=2y 0)(K).

Moreover, if p: AR — Al is the projection onto the first n coordinates then
p(¥) =T'. By Chevalley’s Theorem (see for instance [27, Corollary 14.7] or
[39, IL. Exercise 3.19]), p(Zy£,¢)) (as a subset in A7) is again constructible, and
therefore, by our previous discussion, of the form X, ) for some quantifier free
formula y(§). Hence I' = X, (£)(K), showing that ¥(&) is equivalent modulo K
to x(&). Since (&) does not depend on K, we have in fact an equivalence of
formulae modulo the class .#". To get rid of an arbitrary chain of quantifiers, we
use induction on the number of quantifiers, noting that the complement of a set
defined by (V&) w(&,{) is the set defined by (3¢) ~w(&, ), where —(-) denotes
negation.

For some alternative proofs, see [57, Corollary A.5.2] or [67, Theorem 1.6]. O

2.3 Lo$’ Theorem

Thanks to Quantifier Elimination (Theorem 2.2.1), when dealing with alge-
braically closed fields, we may forget altogether about formulae and use con-
structible subsets instead. However, we will not always be able to work just in
algebraically closed fields and so we need to formulate a general transfer principle
for ultraproducts. For most of our purposes, the following version suffices:

Theorem 2.3.1 (Equational Lo$’ Theorem). Suppose each A,, is an R-algebra, and
let Ay denote their ultraproduct. Let & be an n-tuple of variables, let f € R[E], and
let a,, be n-tuples in A,, with ultraproduct a,. Then f(ay) =0 in A, if and only if
f(ay) =0in A, for almost all w.

Moreover, instead of a single equation f = 0, we may take in the above statement
any system of equations and negations of equations over R.

Proof. Let me only sketch a proof of the first assertion. Suppose f(a;) = 0. One
checks (do this!), making repeatedly use of (2.1), that f(ay) is equal to the ultra-
product of the f(a,,). Hence the former being zero simply means that almost all
f(ay,) are zero. The converse is proven by simply reversing this argument. O

On occasion, we might also want to use the full version of Los’ Theorem,
which requires the notion of a formula as defined above. Recall that a sentence is
a formula without free variables.

Theorem 2.3.2 (Los’ Theorem). Let R be a ring and let A,, be R-algebras. If ¢ is a
sentence with parameters from R, then @ holds in almost all A,, if and only if ¢ holds
in the ultraproduct Ay,
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More generally, let ¢(&1,...,&,) be a formula with parameters from R and let a,,
be an n-tuple in A,, with ultraproduct a,. Then ¢@(ay,) holds in almost all A,, if and
only if p(ay) holds in A,

The proof is tedious but not hard; one simply has to unwind the definition of
formula (see [57, Theorem 9.5.1] for a more general treatment). Note that A; is
naturally an R-algebra, so that it makes sense to assert that ¢ is true or false in Ay.
Applying L.o§’ Theorem to a quantifier free formula proves Theorem 2.3.1.

2.4 Ultra-rings

An ultra-ring is simply an ultraproduct of rings. Probably the first examples of
ultra-rings appearing in the literature are the so-called non-standard integers, that
is to say, the ultrapowers Zy of Z,* and the hyper-reals, that is to say, the ultra-
power R of the reals, which figure prominently in non-standard analysis (see, for
instance, [36,80]). Ultra-rings will be our main protagonists, but for the moment
we only establish some very basic facts about them.

2.4.1 Ultra-fields

Let K, be a collection of fields and K}, their ultraproduct, which is again a field by
2.1.5 (or by an application of Lo§’ Theorem). Any field which arises in this way
is called an wultrafield.> Since an ultraproduct is either finite or uncountable, Q is
an example of a field which is not an ultra-field.

2.4.1 If for each prime number p, only finitely many K, have characteristic p,
then Ky, has characteristic zero.

Indeed, for every prime number p, the equation p§ — 1 =0 has a solu-
tion in all but finitely many of the K, and hence it has a solution in Kj, by
Theorem 2.3.1. We will call an ultra-field K}, of characteristic zero which arises
as an ultraproduct of fields of positive characteristic, a Lefschetz field (the name is
inspired by Theorem 2.4.3 below); and more generally, an ultra-ring of character-
istic zero given as the ultraproduct of rings of positive characteristic will be called
a Lefschetz ring (see §7.2.1 for more).

2 Logicians study these under the guise of models of Peano arithmetic, where, instead of Zj, one
traditionally looks at the sub-semi-ring N, the ultrapower of N (see, for instance, [63]). Caveat:
not all non-standard models are realizable as ultrapowers.

3In case the K, are finite but of unbounded cardinality, their ultraproduct Kj is also called a
psendo-finite field; in these notes, however, we prefer the usage of the prefix #ltra-, and so we

would call such fields instead ultra-finite fields.
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2.4.2 If almost all K,, are algebraically closed fields, then so is K.

The quickest proof is by means of L£0s” Theorem, although one could also give
an argument using just Theorem 2.3.1.

Proof. For each n > 2, consider the sentence o, given by

V&, 8)(3E) 8 =0V §E"+- -+ 5E+ =0

This sentence is true in any algebraically closed field, whence in almost all K,
and therefore, by £o$’ Theorem, in K;. However, a field in which every o, holds
is algebraically closed. o

We have the following important corollary which can be thought of as a model-

theoretic Lefschetz Principle (here Fj,lg is the algebraic closure of the p-element
field F; and, more generally, F2!8 denotes the algebraic closure of a field F).

Theorem 2.4.3 (Lefschetz Principle). Let W be the set of prime numbers, endowed

with some ultrafilter. The ultraproduct of the fields F pg is isomorphic with the field C
of complex numbers, that is to say, we have an isomorphism
= ulim ]F“lg

p—eo

Proof. Let Fy denote the ultraproduct of the fields Fi,lg. By 2.4.2, the field Fj is
algebraically closed, and by 2.4.1, its characteristic is zero. Using elementary set
theory, one calculates that the cardinality of IF; is equal to that of the continuum.
The theorem now follows since any two algebraically closed fields of the same
uncountable cardinality and the same characteristic are (non-canonically) isomor-
phic by Steinitz’s Theorem (see [57] or Theorem 2.4.7 below). O

Remark 2.4.4. We can extend the above result as follows: any algebraically closed
field K of characteristic zero and cardinality 2%, for some infinite cardinal x, is
a Lefschetz field. Indeed, for each p, choose an algebraically closed field K, of
characteristic p and cardinality k. Since the ultraproduct of these fields is then an
algebraically closed field of characteristic zero and cardinality 2%, it is isomorphic
to K by Steinitz’s Theorem (Theorem 2.4.7). Under the generalized Continuum
Hypothesis, any uncountable cardinal is of the form 2*, and hence any uncount-
able algebraically closed field of characteristic zero is then a Lefschetz field. We
will tacitly assume this, but the reader can check that nowhere this assumption is
used in an essential way.

Remark 2.4.5. Theorem 2.4.3 is an embodiment of a well-known heuristic prin-
ciple in algebraic geometry regarding transfer between positive and zero charac-
teristic, which Weil [113] attributes to Lefschetz. Essentially metamathematical
in nature, there have been some attempts to formulate this principle in a formal,
model-theoretic language in [10,28]; for a more general version than ours, see [32,
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Theorem 8.3]. In fact, Theorem 2.4.3 is a special instance of model-theoretic com-
pactness applied to the theory of algebraically closed fields. For instance, the next
result, due to Ax [8], is normally proven using compactness, but here is a proof
using Theorem 2.4.3 instead:

2.4.6 If a polynomial map C" — C" is injective, then it is surjective.

Indeed, by the Pigeon Hole Principle, the result is true if we replace C by any

finite field; since F,® is a union of finite fields, the assertion remains true over it;
an application of Theorem 2.4.3 then finishes the proof. O

Theorem 2.4.7 (Steinitz’s Theorem). If K and L are algebraically closed fields
of the same characteristic and the same uncountable cardinality, then they are
isomorphic.

Proof (Sketch of proof). Let k be the common prime field of K and L (that is to say,
either Q in characteristic zero, or F,, in positive characteristic p). Let I" and A
be respective transcendence bases of K and L over k. Since K and L have the same
uncountable cardinality, I' and A have the same cardinality, and hence there exists
abijection f: I' — A. This naturally extends to a field isomorphism k(I") — k(A).
Since K is the algebraic closure of k(I"), and similarly, L of k(A), this isomorphism
then extends to an isomorphism K — L. O

The previous results might lead the reader to think that the choice of ultrafilter
never matters. As we shall see later, for most of our purposes this is indeed true,
but there are many situations were the ultrafilter determines the ultraproduct. For
instance, consider the ultraproduct of fields F,,, where F\, is either F, or F3. Since
almost all F,, are therefore equal to one, and only one, among these two fields, so
will their ultraproduct be (to see the latter, note that there is a first-order sentence
expressing that a field has exactly two elements, and now use the model-theoretic
version of Lo§’ Theorem, Theorem 2.3.2). More precisely, the ultraproduct is
equal to F; if and only if the set I, of indices w for which F,, = F, belongs to
the ultrafilter. If I, is infinite, then there exists always an ultrafilter containing it,
and if I, is also co-finite, then there exists another one not containing I, so that
in the former case, the ultraproduct is equal to F,, and in the latter case to Fj.
We will prove a theorem below, Theorem 2.5.4, which tells us exactly all possible
ultraproducts a given collection of rings can produce (see also Theorem 2.6.4).

2.4.2 Ultra-rings

Let A, be a collection of rings. Their ultraproduct A; will be called, as already
mentioned, an ultra-ring.

2.4.8 Ifeach A,, is local with maximal ideal w,, and residue field k,, := A,,/m,,,
then Ay is local with maximal ideal w; := ulimm,, and residue field k, :=
ulimk,,.
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Indeed, a ring is local if and only if the sum of any two non-units is again a
non-unit. This statement is clearly expressible by means of a sentence, so that by
Lo§’ Theorem (Theorem 2.3.2), A; is local. Again we can prove this also directly,
or using the equational version, Theorem 2.3.1. The remaining assertions now
follow easily from 2.1.6. In fact, the same argument shows that the converse is
also true: if Ay is local, then so are almost all A,,.. ad

Recall that the embedding dimension of a local ring is the minimal number of
generators of its maximal ideal. The next result is therefore immediate from 2.1.6
and 2.4.8.

2.4.9 IfA,, are local rings of embedding dimension e, then so is Ay. o

As being a domain is captured by the fact that the equation £§ = 0 has no
solution by non-zero elements; and being reduced by the fact that the equation

2 = 0 has no non-zero solutions, we immediately get from £0§’ Theorem:

2.4.10 Almost all A,, are domains (vespectively, reduced) if and only if Ay is a
domain (respectively, reduced). O

In particular, using 2.1.6, we see that an ultraproduct of ideals is a prime
(respectively, radical, maximal) ideal if and only if almost all ideals are prime (re-
spectively, reduced, maximal).

2.4.11 If I, are ideals in the local rings (A, m,), such that in (Ay,my), their
ultraproduct I is wy-primary, then almost all 1,, are m,,-primary.

Recall that an ideal I in a local ring (R,m) is called m-primary if its radical is
equal to m. So, m]hv C I for some N, and therefore, m,, C I,, for almost all w, by

Los’ Theorem. O

Note that here the converse may fail to hold: not every ultraproduct of
m,,-primary ideals need to be m;-primary (see Proposition 2.4.17 for a partial
converse). For instance, the ultraproduct of the m" is no longer mR,-primary in
the ultrapower Ry (see 8.1.3). An ideal in an ultra-ring is called an ultra-ideal, if it
is an ultraproduct of ideals.*

2.4.12 Any finitely generated, or more generally, any finitely related ideal o in an
ultra-ring Ay is an ultra-ideal, and Ay /o is again an ultra-ring.

Let Ay be the ultraproduct of rings A,,. Recall that an ideal a is called finitely
related, if it is of the form (I : J) with I and J finitely generated. Suppose
I=(fi,...,fn)A; and J = (g1,...,8m)A;. Choose fi,giw € Ay, with ultraproduct
equal to f; and g; respectively, and put

Ay 1= ((fIWa e 7fnw)Aw : (ng7"' 7gmw)Aw)~

*1n the literature, such ideals are often called internal ideals.
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It is now an easy exercise on Lo§’ Theorem, using 2.1.6, that a is the ultraproduct
of the a,,, and A; /a the ultraproduct of the A, /a,,. O

Not every ideal in an ultra-ring is an ultra-ideal; for an example, see the
discussion at the start of §4.2. Another counterexample is provided by the fol-
lowing ideal, which will play an important role in the study of local ultra-rings
(see Proposition 2.4.19 for an example).

Definition 2.4.13 (Ideal of Infinitesimals). For an arbitrary local ring (R,m),
define its ideal of infinitesimals, denoted Jg, as the intersection

jR = ﬂ m".

n>0

The m-adic topology on R is Hausdorff (=separated) if and only if Tz = 0.
Therefore, we will refer to the residue ring R/Jg as the separated quotient of R.
In commutative algebra, the ideal of infinitesimals hardly ever appears simply
because of:

Theorem 2.4.14 (Krull’s Intersection Theorem). If R is a Noetherian local ring,
then Jg = 0.

Proof. This is an immediate consequence of the Artin-Rees Lemma (for which
see [69, Theorem 8.5] or [7, Proposition 10.9]), or of its weaker variant proven
in Theorem 8.2.1 below. Namely, for x € Jg, there exists, according to the latter
theorem, some ¢ such that xRN m® C xm. Since x € m¢ by assumption, we get
x € xm, that is to say, x = ax with a € m. Hence (1 —a)x =0. As 1 —a is a unit in
R, we get x =0. O

It would be dishonest to claim that the above yields a non-standard proof of
Krull’s theorem via Theorem 8.2.1, as the latter proof uses the flatness of cat-
aproducts (Theorem 8.1.15), which is obtained via Cohen’s Structure Theorems,
and therefore, ultimately relies on Krull’s Intersection Theorem. The exact con-
nection between both results is given by Theorem 8.2.3.

Corollary 2.4.15. In a Noetherian local ring (R, m), every ideal is the intersection
of m-primary ideals.

Proof. For I C R an ideal, an application of Theorem 2.4.14 to the ring R/I shows
that 7 is the intersection of all /+m”", and the latter are indeed m-primary. g

Most local ultra-rings have a non-zero ideal of infinitesimals.

2.4.16 If Ry, are local rings with non-nilpotent maximal ideal, then the ideal of
infinitesimals of their ultraproduct R, is non-zero. In particular, R, is not
Noetherian.

Indeed, by assumption, we can find non-zero a,, € m" (let us for the moment
assume that the index set is equal to N) for all w. Hence their ultraproduct a; is
non-zero and lies inside Jp, . O
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As we shall see later, being Noetherian is not preserved under ultraproducts.
However, under certain restrictive conditions, of which the field case (2.1.5) is
a special instance, we do have preservation (this also gives a more quantitative
version of 2.4.11):

Proposition 2.4.17. An ultraproduct Ay of rings A,, is Artinian of length | if and
only if almost all A,, are Artinian of length L.

Proof. By the Jordan-Holder Theorem, there exist elements ag = 0,4y, ...,a; =1
in Ay such that

apAy & (ao,a1)Ay G (ag,a1,a2)A; G -+ G (ao,...,a1)A; = Ay

1s a maximal chain of ideals. Choose, for each i =0, .. ../, elements a;,, € A,, whose
ultraproduct is a;. By Los’ Theorem, for a fixed i < [, almost all inclusions

(a0W7 cen 7aiw)Aw - (a0W7 cen 7ai+lw)Aw (23)

are strict. This shows that almost all A,, have length at least /. If almost all of them
would have length bigger than /, then for at least one i, we can insert in almost
all inclusions (2.3) an ideal I,, different from both ideals. By Los’ Theorem, the
ultraproduct /; of the I,, would then be strictly contained between (ao, ... ,a;)A;
and (ao, . ..,ai41)Ay, implying that A; has length at least / + 1, contradiction. O

Proposition 2.4.18. An ultra-Dedekind domain, that is to say, an ultraproduct of
Dedekind domains, is a Priifer domain.

Proof. Recall that a domain is Prifer if any localization at a maximal ideal is a
valuation ring. By [34, §1.4], this equivalent with the property that every finitely
generated ideal is projective, and so we verify the latter. Let A,, be Dedekind
domains, that is to say, one-dimensional normal domains, and let A; be their ul-
traproduct. Let I, be a finitely generated ideal. By 2.4.12, we can find non-zero
ideals I,, C A, such that their ultraproduct equals I;. Since each I,, is generated by
at most two elements we can find a split exact sequence

O—»JW—>AgV—>IW—>O

for some submodule J,, C A2. Since ultraproducts commute with direct sums, we
get an isomorphism I, ® J, = Ag, where J is the ultraproduct of the J,,, showing
that 1 is projective. O

Proposition 2.4.19. An ultra-discrete valuation ring Vy, that is to say, an ultraprod-
uct of discrete valuation rings V, is a valuation domain. Its ideal of infinitesimals Jy,

is an infinitely generated prime ideal, and the separated quotient V' /3y, —in Chapter 8
we will call this the cataproduct Vy of the V\,—is again a discrete valuation ring.
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Proof. Recall that a valuation ring is a domain such that for all @ in the field
of fractions of V, at least one of a or 1/a belongs to V. By 2.1.5, the field of
fractions K;; of V; is the ultraproduct of the field of fractions K, of the V,,. Let
a,, € K,, be an approximation of a € K;. For almost each w, either a,, or 1 / ay
belongs to V. Therefore, by Lo§’ Theorem, either a € V; or 1/a € Vy, proving
the first claim. If Jy, is finitely generated, then it is principal, say, of the form
b,Vy, since Vy is a valuation domain. Let b, € V,, be an approximation of by, and
let ¢y, := by/ 7\, where 7, is a uniformizing parameter of V. Since, for each n,
almost all b,, have order at least n, almost all ¢,, have order at least n — 1. Hence
their ultraproduct ¢; also belongs to Jy, = b;V. Let m; be the ultraproduct of
the m,,, so that it generates the maximal ideal m; of V; by the proof of 2.4.9. By
Los” Theorem, by/m; = ¢y, so that by € c;my C bymy, contradiction. Finally, to
show that V; :=V,/ Jy, is a discrete valuation ring, and hence, in particular, TJVh
is prime, observe that for any non-zero element a in Vy, there is a largest n such
that @ € m{’ = 7}'V;. The assignment a +— n is now easily seen to be a discrete
valuation. O

The previous proof in fact shows that an ultraproduct of valuation rings is
again a valuation ring.

2.4.3 Ultrapowers

An important instance of an ultra-ring is the ultrapower Ay of a ring A. It is
easy to see that the diagonal embedding A — A; is a ring homomorphism. We
will see in the next chapter that this embedding is often flat (see Corollary 3.3.3
and Theorem 3.3.4). However, an easy application of Lo§’ Theorem immediately
yields that this map is at least cyclically pure. Recall that a homomorphism A — B
is called cyclically pure, if IBNA =1 for all ideals I C A. Examples of cyclically pure
homomorphisms are, as we shall see, faithfully flat (Proposition 3.2.5) and split
maps (see 5.5.4). It follows from Proposition 2.4.17 that the ultrapower of an
Artinian ring is again Artinian. However, by 2.4.16 and Theorem 2.4.14, these
are the only rings whose ultrapower is Noetherian. The next result is immediate
from 2.1.6 and its proof:

2.4.20 If I is a finitely generated ideal in a ring A, then its ultrapower in the
ultrapower Ay of A is equal to IA,. In particular, the ultrapower of A/I
is Ay /1A,

The following is a counterexample if I is not finitely generated: let A be the
polynomial ring over a field in countably many variables &;, and let 1 be the ideal
generated by all these variables. The ultraproduct f of the polynomials f,, =
& +---+&, is an element in the ultrapower I; of I but does not belong to Ay, for
if it were, then f must be a sum of finitely many generators of I, say, &,...,&,
and therefore by 2.1.6, so must almost all f,, be, a contradiction whenever w > i.
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2.4.4 Ultra-exponentiation

Let Ay be an ultra-ring, given as the ultraproduct of rings A,,. Let Ny be the
ultrapower of the natural numbers, and let o € N, with approximations o,. The
ultra-exponentiation map on A with exponent o is defined as follows. Given x € A,
let x,, € A, be an approximation of x, that is to say, ulimx,, = x, and set

. Olyy
x% = ulimx,,”.

One easily verifies that this definition does not depend on the choice of approx-
imation of x nor of o: if ¥/, and o, are also respectively approximations of x
and o, then almost all x,, and x/, are the same, and so are almost all o, and o,

) /
whence almost all x," are equal to (¥,)*, and, therefore, they have the same
ultraproduct. By Lo§” Theorem, ultra-exponentiation satisfies the same rules as
regular exponentiation:

(0)*=x%y* and x* B =xP and ()P =P

forall x,y € Ay and all o, € N;,.

If A is local and x a non-unit, then x* is an infinitesimal for any o in Ny not
in N. In these notes, the most important instance will be the ultra-exponentiation
map obtained as the ultraproduct of Frobenius maps. More precisely, let Ay be
a Lefschetz ring, say, realized as the ultraproduct of rings A, of characteristic p
(here we assumed for simplicity that the underlying index set is just the set of
prime numbers, but this is not necessary). On each A, we have an action of the
Frobenius, given as Fp,(x) := x? (for more, see §5.1).

Definition 2.4.21 (Ultra-Frobenius). The ultraproduct of these Frobenii yields
an endomorphism F; on Ay, called the ultra-Frobenius, given by Fy(x) := x™, where
m € Ny is the ultraproduct of all prime numbers. Since each Frobenius is an endo-
morphism, so is any ultra-Frobenius by 2.1.7. In particular, we have

() = "
for all x,y € Ay.

2.5 Algebraic Definition of Ultra-rings

Let A,,, for w € W, be rings with Cartesian product Ae := [],,A,, and direct sum
A(w) = DA, Note that A(.. is an ideal in A... Call an element a € A.. a strong
idempotent if each of its entries is either zero or one. In other words, an element
in A is a strong idempotent if and only if it is the characteristic function 1p
of a subset D C W. For any ideal a C A, let a° be the ideal generated by all
strong idempotents in a, and let 20, be the collection of subsets D C W such
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that 1 — 1p € a. Using the identities (1 —1p)(1 —1g) =1—1g for D C E and
1 —1png = 1g(1 = 1p) + 1 — 1g, one verifies that 2, is a filter.

2.5.1 Given an ideal a C A, the filter 0 is maximal if and only if a is a prime
ideal; it 1s principal if and only if the ideal a° is principal, if and only if a

does not contain the ideal Ay

Indeed, given an idempotent e, its complement 1 — e is again idempotent, and
the product of both is zero, that is to say, they are orthogonal. It follows that any
prime ideal contains exactly one among e and 1 —e. Hence, if a is prime, then 20,
consists of those subsets D C W such that 1p ¢ a. Since 1 — 1p is the characteristic
function of the complement of D, it follows that either D or its complement
belongs to 2. Moreover, if D € W, and D C E, then 1p- 1z = 1p does not belong
to a, whence neither does 1z, showing that E € 20,. This proves that 27, is a
maximal filter. It is not hard to see that if a° is principal, then it must be generated
by the characteristic function of the complement of a singleton, and hence 20,
must be principal (the other direction is immediate). The last equivalence is left
as an exercise to the reader. O

We can now formulate the following entirely algebraic characterization of an
ultra-ring.

2.5.2 Let B be a prime ideal of A« containing the direct sum ideal A..,. The
ultraproduct of the A,, with respect to the ultrafilter Wy 1s equal to Aw /B,
that is to say, B° is the null-ideal determined by Ws. Furthermore, any
ultra-ring having the A,, as approximations is of the form A« /B°, for some
prime ideal B containing A ...

Let n be the null-ideal determined by 20, that is to say, the collection of
sequences in A. almost all of whose entries are zero. If D € 2, then almost all
entries of 1 — 1p are zero, and hence 1 — 1p € n. Since this is a typical generator
of P°, we get P° C n. Conversely, suppose a = (a,,) € n. Hence a,, =0 for all w
belonging to some D € Wys. Since 1 — 1p € P° and a = a(1 — 1p), we get a € P°.

Conversely, if 20 is an ultrafilter with corresponding null-ideal n C A.., then
one easily checks that any prime ideal f containing n satisfies n = °. O

In fact, if P C O are prime ideals, then J3° = Q°, showing that already all
minimal prime ideals of A.. determine all possible ultrafilters.

Corollary 2.5.3. If all A,, are domains, then Ay is the coordinate ring of an irre-
ducible component of Spec(Ac./A(..y). More precisely, the residue rings Aw/®, for
® C A.. a minimal prime containing A(..), are precisely the ultraproducts A, hav-
ing the domains A,, for approximations. Moreover, these irreducible components are
then also the connected components of Spec(Aw /A (o)), that is to say, they are mutually
disjoint.

Proof. Since the ultraproduct A, determined by & is equal to A../&° by 2.5.2,
and a domain by 2.4.10, the ideal &° must be prime. By minimality, ° = &.
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To prove the last assertion, let &, and &; be two distinct minimal prime ideals of
A containing A(..). Suppose &1 + &, is not the unit ideal. Hence there exists a
maximal ideal 9 C A., such that &, ®, C 9, and hence

G =6 =M =65 =6,

contradiction. Hence &1 + &; = 1, showing that any two irreducible components
of Spec(Aw/A(.) are disjoint. 0

Note that the connected components of Spec(A..), apart from the Spec(A;),
are the Spec(A,,) corresponding to the principal (maximal) filters. In the following
structure theorem, Z.. := Z" denotes the Cartesian power of Z. Any Cartesian
product Ae. := []A,, is naturally a Z..-algebra.

Theorem 2.5.4. Any ultra-ring is a base change of a ring of non-standard integers
Zy. More precisely, the ultra-rings with approximation A,, are precisely the rings of the
form Ae. | SAw., where & is a minimal prime of L., containing the direct sum ideal.

Proof. If 9B is a prime ideal in A containing the direct sum ideal A(..), then the
generators of P° already live in Ze., and generate the null-ideal in Z.. correspond-
ing to the ultrafilter 2. By Corollary 2.5.3, the latter ideal therefore is a minimal
prime ideal & C Z.., of Z(w). Since BA.. = P°, one direction is clear from 2.5.2.
Conversely, again by Corollary 2.5.3, any minimal prime ideal & C Z.. is the
null-ideal determined by the ultrafilter 20, and one easily checks that the same
is therefore true for its extension GA... O

2.6 Sheaf-theoretic Definition of Ultra-rings

We say that a topological Hausdorff space X admits a Hausdorff compactification
XV, if X C X" such that for every compact Hausdorff space ¥ and every continu-
ous map f: X — Y, there is a unique map f": X" — Y extending f. Since this is
a universal problem, a Hausdorff compactification is unique, if it exists.

Proposition 2.6.1. Every infinite discrete space X has a Hausdorff compactification.

Proof. Let XV be the Stone-Cech compactification of X consisting of all maximal
filters on X. We identify the principal filters with their generators, so that X be-
comes a subset of XV. For a subset U C X, let T7(U) C XV consist of all maximal
filters containing U. For any U C X, we have

XV —1(U)=1t(X-U), 2.4)
by the ultrafilter condition. We define a topology on X by taking the 7(U), for

U C X, as a basis of open subsets. This works, since the intersection of two basic
opens T(U;) and 7(U,) is the basic open T(U; NU,). Note that U C t(U) with
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equality if and only if U is finite. In fact, by the definition of the embedding
X C XY, we have 1(U)NX = U, and hence the topology induced on X is just the
discrete topology. In particular, every non-empty open has a non-empty intersec-
tion with X, showing that X is a dense (open) subset of X".

To see that XV is Hausdorff, take two distinct points in XV, that is to say,
distinct maximal filters on X. In particular, there exists a subset U C X belong-
ing to one but not the other. Hence 7(U) and (X — U) are disjoint opens, each
containing exactly one of these two points. To prove compactness, we need to
verify that the finite intersection property holds, that is to say, that any collection
of non-empty closed subsets which is closed under finite intersections, has non-
empty intersection. By (2.4), any basic open subset is also closed, that is to say, is a
clopen, and hence any closed subset is an intersection of basic opens. Without loss
of generality, we may therefore assume that {7(U;)}; is a collection of non-empty
closed subsets which is closed under finite intersections, and we have to show that
their intersection is also non-empty. Since X N 7(U;) = Uj, it follows that the {U;};
are closed under finite intersections. Let ) be the collection of all subsets U C X
such that some U; is contained in U. One checks that 9) is a filter, whence is con-
tained in some maximal filter 20. By construction, U; € 20, for all i, showing that
27 lies in the intersection of all T(U;).

Finally, we verify the universal property. Let f: X — Y be an (automatically
continuous) map with ¥ a compact Hausdorff space and fix a point in X", that
is to say, a maximal filter 20 on X. Let Fyy be the intersection of all closures
clos(f(U)), where U runs over all subsets in 2. Since any finite intersection

clos(f(Uy))N---Nelos(f(Us)),

for U; € 20 contains the (non-empty) image of U;N---NU; € 20 under f, and since
Y is compact, Fyy is non-empty. Suppose y and y’ are two distinct elements in Fyy.
Since Y is Hausdorff, we can find disjoint opens V and V’ containing respectively
y and y'. In particular, their pre-images f~'V and f~'V’ are disjoint, and so one
of them, say f~'V cannot belong to 20. It follows that X — f~'V belongs to 20
and hence Fyy is contained in the closure of f(X — f~!'V) = f(X)—V. Since V is
an open containing y € Fyy, it must therefore have non-empty intersection with
f(X)—V, contradiction. Hence Fyy is a singleton, and we now define fV(20) to
be the unique element belonging to Fyy. Immediate from the definitions we get
that fV(20) = f(20) in case 2T € X, that is to say, is principal. So remains to show
that £V is continuous.

To this end, let V C Y be open and 20 € X a point in (V)" (V). We need
to find an open containing 20 and contained in (f¥)~!(V). By construction,
the intersection of all clos(f(U)) with U € 27 is contained in V. By compact-
ness, already finitely many of the clos(f(U)) have an intersection contained in
V (since their complements together with V form an open cover of Y). Letting
U € 20 be the intersection of these finitely many members of 20, then, as above,
clos(f(U)) C V. To see that ©(U) C (fY)"1(V), take 9 € 7(U). So U € 9 and
hence, per construction, fV(2)) € clos(f(U)) C V. O
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If U is infinite, then intersecting each set in 20 € 7(U) with U yields a maximal
filter on U, so that we get an induced map 7(U) — U". It is not hard to show that
this is in fact an homeomorphism. Since U is dense in U", we showed that the
closure of U in X" is just T(U) = U". Let A,, be rings, indexed by w € X. Define
a sheaf of rings &/ on X by taking for stalk .24, := A,, in each point w € X (note
that since X is discrete, this completely determines the sheaf ). Let i: X — XV
be the above embedding and let &7V := i,/ be the direct image sheaf of &/ under
i. By general sheaf theory, this is a sheaf on X". For instance, on a basic open
7(U) the ring of sections of &7 is & (T(U)NX) = o/ (U), and the latter is just the
Cartesian product of all A,, forw € U.

2.6.2 The stalk of @V in a boundary point 90 € XV — X is isomorphic to the
ultraproduct ulimA,, with respect to the ultrafilter 20.

Indeed, by definition of stalk, <7y, is the direct limit of all &7V (V) where V
runs over all open subsets of XV containing 20. It suffices to take the direct limit
over all basic opens 7(U) containing 27, that is to say, for U € 20. Now, as we
already observed above,

7V(2(U)) = (U) = [] Aw 2 A/ (1~ 10)Aw

welU

Hence this direct limit is equal to the residue ring of A. modulo the ideal gen-
erated by all 1 — 1y for U € 20, that is to say, by 2.5.2, modulo the null-ideal
corresponding to 20. g

2.6.3 Under the identification of P (X) with the Cartesian power (F2). (see
Example B.2.3), the assignment p — 20, defined in §2.5 yields a home-
omorphism between the affine scheme Spec(P (X)) and X". Infinitely
generated prime ideals then correspond to ultrafilters.

The only thing to observe is that the inverse image of the basic open T(U)
for U C X is the basic open D(1_y) in Spec(Z(X)). Note that if we view X
as the set of maximal filters, and hence as a subset of Z7(X), then p is sent to its
complement under this homeomorphism. O

Let us call a scheme X Boolean if it admits an open covering by affine schemes
of the form SpecB with B a Boolean ring (see Proposition B.1.5 for some basic
properties of Boolean rings). Equivalently, any section ring is Boolean, and this
is also equivalent by (B.1.5.vii) to all stalks having two elements. In particular,
Spec(Z(W)) is Boolean, for any set W. We call x € X a finite point if the prime
ideal associated to x is finitely generated, whence principal by (B.1.5.iii); in the
remaining case, we call x an infinite point. By (B.1.5.x), the infinite points form
a closed subset with ideal of definition the ideal generated by all atoms. We call
X atomless if every point is infinite, and by (B.1.5.x) this is equivalent with any
section ring of an open subset being atomless. The dichotomy between finite and
infinite points is robust by Corollary B.1.8, in the sense given in 2.6.5 below.
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Theorem 2.6.4. Let o/ be a sheaf of rings on a Boolean scheme X. If x € X is infinite,
then the stalk <7, is an ultra-ring. If X is the affine scheme of a power set ring (W),
then < is the ultraproduct of the stalks <7, at finite points y € X with respect to the
ultrafilter given as the image of x under the homeomorphism X =WV from 2.6.3.

Proof. Let us first show this in the case X is Spec(Z?(W)). Infinite points cor-
respond to ultrafilters by 2.6.3, and the result follows by 2.6.2. In the general
case, since stalks are local objects, we may assume that X is an affine scheme
with Boolean coordinate ring B. By the Stone Representation Theorem (see
Theorem B.2.7 below for a proof), there exists a faithfully flat embedding B C
C:= P(W) for some W (we will actually show that one can take W equal to an
ultrapower of N). Since x is infinite, B must be infinite by (B.1.5.viii), whence so
must W be. Let Y := Spec(C). We need:

2,65 If f: Y — X is a dominant morphism of Boolean schemes and x € X is
infinite, then there exists an infinite y € Y with f(y) = x.

Indeed, we may reduce to the affine case, in which case we have an injective
homomorphism B — C between Boolean rings and a non-principal maximal ideal
p C B corresponding to x. The fiber f~!(x) has coordinate ring C/pC. If C/pC
is infinite, then it contains a non-principal maximal ideal by (B.1.5.viii), and its
pre-image in C must then also be non-principal, so that we are done in this case.
So assume C/pC is finite and any maximal ideal containing pC is principal. Since
C/pC is finite, pC is the intersection of the finitely many maximal ideals con-
taining p by (B.1.5.vi). Hence pC is an intersection of principal ideals whence
is principal by (B.1.5.ii1). Since B — C is an embedding, p must be principal by
Corollary B.1.8, contradiction. O

So, returning to the case at hand, there exists an infinite y € ¥ such that f(y) =
x. Let f~'.o7 be the inverse image of </ under the morphism f: ¥ — X. Since
(f~'1e7), is isomorphic to <% and the former is an ultra-ring by the above, so is
therefore the latter. O

In particular, any stalk over an atomless Boolean scheme is an ultra-ring!
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