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Abstract Max–stable processes arise as limits in distribution of component–wise
maxima of independent processes, under suitable centering and normalization.
Therefore, the class of max–stable processes plays a central role in the study and
modeling of extreme value phenomena. This chapter starts with a review of clas-
sical and some recent results on the representations of max–stable processes. Re-
cent results on necessary and sufficient conditions for the ergodicity and mixing of
stationary max–stable processes are then presented. These results readily yield the
consistency of many statistics for max–stable processes. As an example, a new es-
timator of the extremal index for a stationary max–stable process is introduced and
shown to be consistent.

1 Introduction

In the past 30 years, the structure of max–stable random vectors and processes
has been vigorously explored. A number of seminal papers such as Balkema and
Resnick [1], de Haan [4, 5], de Haan and Pickands [9], Gine, Hahn and Vatan [13],
Resnick and Roy [20], just to name a few, have lead to an essentially complete pic-
ture of the dependence structure of max–stable processes. Complete accounts of the
state-of-the-art can be found in the books of Resnick [18], de Haan and Ferreira [6],
and Resnick [19], and the references therein.

The stochastic process X is said to be max–stable if all its finite–dimensional
distributions are max–stable. Recall that a random vector Y = (Y ( j))1≤ j≤d in R

d is
said to be max–stable if, for all n ∈ N, there exist an > 0 and an, bn ∈R

d , such that
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∨
1≤i≤n

Yi
d= anY+ bn.

Here Yi = (Yi( j))1≤ j≤d , i = 1, . . . ,n are independent copies of Y and the above in-
equalities, vector multiplications, additions and maxima are taken coordinate–wise.

The importance of max–stable processes in applications stems from the fact that
they appear as limits of component–wise maxima. Suppose that ξ i = {ξi(t)}t∈T are
independent and identically distributed stochastic processes, where T is an arbitrary
index set. Consider the coordinate–wise maximum process

Mn(t) :=
∨

1≤i≤n

ξi(t)≡ max
1≤i≤n

ξi(t), t ∈ T.

Suppose that for suitable non–random sequences a n(t) > 0 and bn(t), t ∈ T , we
have { 1

an(t)
Mn(t)−bn(t)

}
t∈T

f .d.d.−→ {X(t)}t∈T , (1)

as n → ∞, for some non–degenerate limit process X = {X(t)} t∈T , where
f .d.d.−→ de-

notes convergence of the finite–dimensional distributions. The processes that appear
in the limit of (1) are max–stable (see e.g. Proposition 5.9 in [18]). The classical re-
sults of Fisher & Tippett and Gnedenko indicate that the marginal distributions of X
are one of three types of extreme value distributions: Fréchet, Gumbel, or reversed
Weibul. The dependence structure of the limit X , however, can be quite intricate.
Our main focus here is on the study of various aspects of the dependence structure
of max–stable processes.

Max–stable processes have a peculiar property, namely their dependence struc-
ture is in a sense invariant to the type of their marginals. More precisely, consider
a process X = {X(t)}t∈T and its transformed version h ◦X = {ht(Xt)}t∈T , where
h = {ht(·)}t∈T is a collection of deterministic functions, strictly increasing on their
domains. It turns out that if X is a max–stable process and if the marginals of h◦X
are extreme value distributions, then the transformed process h ◦ X is also max–
stable (see e.g. Proposition 5.10 in [18]). That is, one does not encounter max–stable
processes with more rich dependence structures if one allows for the marginal distri-
butions of X to be of different types. Thus, for convenience and without loss of gen-
erality, we shall focus here on max–stable processes X = {X(t)} t∈T with α−Fréchet
marginals. A random variable ξ is said to have the α−Fréchet distribution if:

P{ξ ≤ x} = exp{−σαx−α}, (x > 0),

for some σ > 0 and α > 0. The parameter σ > 0 plays the role of a scale coefficient,
and thus, by analogy with the convention for sum–stable processes, we shall use the
notation

‖ξ‖α := σ .

Note that here ‖ ·‖α is not the usual Lα−norm but we have ‖cξ‖α = c‖ξ‖α , for all
c > 0. The α−Fréchet laws have heavy Pareto–like tails with tail exponent α > 0,



Max–Stable Processes: Ergodicity and Mixing 23

that is,
P{ξ > x} ∼ ‖ξ‖ααx−α , as x → ∞.

Therefore, the p−moment (p > 0), Eξ p < ∞ is finite if and only if p < α .
It is convenient to introduce the notion of an α−Fréchet process. Namely, the

process X = {X(t)}t∈T is said to be an α−Fréchet process if all (positive) max–
linear combinations of X(t)’s:

∨
1≤i≤k

aiX(ti), ai ≥ 0, ti ∈ T,

are α−Fréchet random variables.
It turns out that the max–stable processes with α−Fréchet marginals are pre-

cisely the α−Fréchet processes (see, de Haan [4]). Therefore, in the sequel we shall
use the terms Fréchet processes and max–stable processes with Fréchet marginals
interchangeably.

Let now X be an α−Fréchet process. The structure of the finite–dimensional
distributions of X is already known, In fact, we have the following explicit formula
of the finite–dimensional distributions of X :

P{Xti ≤ xi, 1≤ i≤ k}= exp
{
−
∫ 1

0

∨
1≤i≤k

( fti(u)
xi

)α
du
}
, (xi > 0, 1≤ i≤ k), (2)

where fti(u)≥ 0 are suitable Borel functions, such that
∫ 1

0 f αti (u)du < ∞, for 1≤ i≤
k. The fti(u)’s are known as spectral functions of the max–stable vector (Xti)1≤i≤k

and even though they are not unique, they will play an important role in our repre-
sentations of max–stable processes. Observe for example, that (2) yields

P
{ ∨

1≤i≤k

aiXti ≤ x
}

= exp
{
−
∫ 1

0

( ∨
1≤i≤k

ai fti(u)
)α

dux−α
}
,

and therefore ∨1≤i≤kaiXti is an α−Fréchet variable with scale coefficient

∥∥∥ ∨
1≤i≤k

aiXti

∥∥∥α
α

=
∫ 1

0

( ∨
1≤i≤k

ai fti(u)
)α

du.

Thus, the knowledge of the spectral functions { f t(u)}t∈T ⊂ Lα
+([0,1],du) allows us

to handle all finite–dimensional distributions of the process X .
One can alternatively express the finite–dimensional distributions in (2) by using

the spectral measure of the vector (Xti)1≤i≤k. Namely, consider an arbitrary norm
‖ · ‖ in R

k and let S+ := {w = (wi)1≤i≤k : wi ≥ 0,‖w‖ = 1} be the non–negative
unit sphere in R

k. We then have

P{Xti ≤ xi, 1 ≤ i ≤ k} = exp
{
−
∫

S+

∨
1≤i≤k

wi

xαi
νS+(dw)

}
, (3)
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where νS+(dw) is a finite measure on S+.
The two types of representations in (2) and (3) have both advantages and dis-

advantages depending on the particular setting. The finite measure ν S+ associated
with the max–stable vector (Xti)1≤i≤k is said to be its spectral measure and it is
uniquely determined. Thus, when handling max–stable random vectors of fixed di-
mension, the spectral measure is a natural object to use and estimate statistically. On
the other hand, when handling stochastic processes, one encounters spectral mea-
sures defined on spaces of different dimensions, which may be hard to reconcile.
In such a setting, it may be more natural to use representations based on a set of
spectral functions { ft}t∈T , which are ultimately defined on the same measure space.

More details and the derivations of (2) and (3) can be found in [18]. Novel per-
spectives to spectral measures on ’infinite dimensional’ spaces are adopted in Gine,
Hahn and Vatan [13] , de Haan and Lin [7, 8] and de Haan and Ferreira [6]. Hult
and Lindskog [14] develop powerful new tools based on the related notion of regular
variation in infinite–dimensional function spaces.

Let now X = {X(t)}t∈T with T = R or Z be a stationary α−Fréchet process.
From statistical perspective, it is important to know whether the process X is er-
godic, mixing, or non–ergodic. Despite the abundance of literature on max–stable
processes, the problem of ergodicity had not been explored until recently. To the
best of our knowledge only Weintraub in [27] addressed it indirectly by introducing
mixing conditions through certain measures of dependence. Recently, in [25], by
following the seminal work of [3], we obtained necessary and sufficient conditions
for the process X to be ergodic or mixing. In the case of mixing, these conditions
take a simple form and are easy to check for many particular cases of max–stable
processes.

The goal of this chapter is to primarily review results estabilished in [24, 25].
This is done in Sections 2 and 3 below. These results are then illustrated and applied
to some statistical problems in Seciton 4. Section 4.2 contains new results on the
consistency of extremal index estimators for stationary max–stable processes.

2 Representations of Max–Stable Processes

Let X = {X(t)}t∈R be an α−Fréchet process (α > 0) indexed by R. As indicated
above all finite–dimensional distributions of X can be expressed in terms of a family
of spectral functions in

Lα
+([0,1],du) = { f : [0,1]→ R+ :

∫
[0,1]

f α (u)du < ∞}.

The seminal paper of de Haan [5] shows that provided X = {X(t)}R is continuous in
probability, there exists a family of spectral functions { f t(u)}t∈R ⊂ Lα

+(du) indexed
by R, which yield (2). This was done from the appealing perspective of Poisson
point processes. Namely, let X = {X(t)}t∈R be continuous in probability. Then,
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there exist a collection of non–negative functions { f t(u)}t∈R ⊂ Lα
+([0,1],du), such

that

{X(t)}t∈T
d=
{∨

i∈N

ft (Ui)

ε1/α
i

}
t∈T

, (4)

where {(Ui,εi)}i∈N is a Poisson point process on [0,1]× [0,∞] with intensity du×
ds, and where

d= means equality in the sense of finite–dimensional distributions.
We now present an alternative but ultimately equivalent approach to representing

α−Fréchet max–stable processes developed in Stoev and Taqqu [24]. It is based on
the notion of extremal integrals with respect to α−Fréchet sup–measures.

Definition 0.1. Let α > 0 and let (E,E ,μ) be a measure space. A random set–
function Mα , defined on E , is said to be an α−Fréchet random sup–measure with
control measure μ if the following conditions hold:

(i) For all disjoint A j ∈ E , 1 ≤ j ≤ n, the random variables Mα(A j), 1 ≤ j ≤ n
are independent.

(ii) For all A ∈ E , the random variable Mα (A) is α−Fréchet, with scale coeffi-
cient ‖Mα(A)‖α = μ(A)1/α , i.e.

P{Mα(A) ≤ x} = exp{−μ(A)x−α}, x > 0. (5)

(iii) For all disjoint A j ∈ E , j ∈ N,

Mα(∪ j∈NA j) =
∨
j∈N

Mα(A j), almost surely. (6)

By convention, we set Mα(A) = ∞ if μ(A) = ∞.

Condition (i) in the above definition means that the random measure is inde-
pendently scattered i.e. it assigns independent random variables to disjoint sets and
Condition (ii) shows that the scale of Mα(A) is governed by the deterministic con-
trol measure μ of Mα . Relation (6), on the other hand, indicates that the random
measure Mα is sup–additive, rather than additive. This is the fundamental differ-
ence between the usual additive random measures and the sup–measures. For more
general studies of sup–measures see [26]. The important work of Norberg [17] un-
veils the connections between random sup–measures, the theory of random sets, and
random capacities. Here, the focus is on the concrete and simple case of α−Fréchet
sup–measures, most relevant to the study of max–stable processes.

As shown in Proposition 2.1 of [24] (by using the Kolmogorov’s extension theo-
rem) for any measure space (E,E ,μ) one can construct an α−Fréchet random sup–
measure Mα with control measure μ , on a sufficiently rich probability space. Given
such a random measure Mα on (E,E ,μ), one can then define the extremal integral
of a non–negative deterministic function with respect to Mα as follows. Consider
first a non–negative simple function f (u) = ∑n

i=1 ai1Ai(u), ai ≥ 0 with disjoint Ai’s
and define the extremal integral of f as
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I( f ) ≡
∫e

E
f dMα :=

n∨
i=1

aiMα(Ai),

i.e. the sum in the typical definition of an integral is replaced by a maximum. Since
the Mα(Ai)’s are independent and α−Fréchet, Relation (5) implies

P{I( f ) ≤ x} = exp
{
−
∫

E
f αdμ x−α

}
, x > 0.

The following properties are immediate (see e.g. Proposition 2.2 in [24]):

Properties:

• For all non–negative simple functions f , the extremal integral
∫e

E f dMα is an
α−Fréchet random variable with scale coefficient

∥∥∥
∫e

E
f dMα

∥∥∥
α

=
(∫

E
f αdμ

)1/α
. (7)

• (max–linearity) For all a,b ≥ 0 and all non–negative simple functions f and g,
we have

∫e
E
(a f ∨bg)dMα = a

∫e
E

f dMα ∨b
∫e

E
gdMα , almost surely. (8)

• (independence) For all simple functions f and g,
∫e

E f dMα and
∫e

E gdMα are
independent if and only if f g = 0, μ−almost everywhere.

Relation (8) shows that the extremal integrals are max–linear. Note that for any
collection of non–negative simple functions f i and ai ≥ 0, 1 ≤ i ≤ n, we have that

∨
1≤i≤n

ai

∫e
E

fidMα =
∫e

E

( ∨
1≤i≤n

ai fi

)
dMα

is α−Fréchet. This shows that the set of extremal integrals of non–negative simple
functions is jointly α−Fréchet, i.e. the distribution of (I( f i))1≤i≤n is multivariate
max–stable. It turns out that one can metrize the convergence in probability in the
spaces of jointly α−Fréchet random variables by using the following metric:

ρα(ξ ,η) := 2‖ξ ∨η‖αα −‖ξ‖αα −‖η‖αα . (9)

If now ξ =
∫e

E f dMα and η =
∫e

E gdMα , for some simple functions f ≥ 0 and g≥ 0,
we obtain

ρα(ξ ,η) = 2
∫

E
( f α ∨gα)dμ−

∫
E
( f α ∨gα)dμ

∫
E
( f α ∨gα)dμ ≡

∫
E
| f α −gα |dμ .

(10)
By using this relationship one can extend the definition of the extremal integral∫e

E f dMα to integrands in the space Lα
+(μ) ≡ Lα

+(E,E ,μ) of all non–negative de-
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terministic f ’s with
∫

E f αdμ < ∞. Moreover, the above properties of the extremal
integrals remain valid for all such integrands.

To complete the picture, consider the space

Mα = ∨− spanP{Mα(A) : A ∈ E }

of jointly α−Fréchet variables containing all max–linear combinations of Mα(A)’s
and their limits in probability. One can show that (Mα ,ρα) is a complete metric
space and ρα in (9), as indicated above, metrizes the convergence in probability. Let
also Lα

+(μ) be equipped with the metric

ρα( f ,g) :=
∫

E
| f α −gα |dμ . (11)

Then, relation (10) implies that the extremal integral

I : Lα
+(μ) → Mα

is a max–linear isometry between the metric spaces (Lα
+(μ),ρα) and (Mα ,ρα),

which is one-to-one and onto. Thus, in particular if ξ n :=
∫e

E fndMα and ξ =∫e
E f dMα , fn, f ∈ Lα

+(μ), we have that

ξn
P−→ ξ , as n→∞, if and only if ρα( fn, f ) =

∫
E
| f αn − f α |dμ −→ 0, as n→∞.

For more details see Stoev and Taqqu [24].
The so developed extremal integrals provide us with tools to construct and han-

dle max–stable processes. Indeed, for any collection of deterministic integrands
{ ft}t∈T ⊂ Lα

+(μ), one can define

X(t) :=
∫e

E
ftdMα , t ∈ T. (12)

The resulting process X = {X(t)}t∈T is α−Fréchet and in view of (7) and (8), we
obtain ∥∥∥ ∨

1≤i≤k

aiX(ti)
∥∥∥
α

=
(∫

E

∨
1≤i≤k

aαi f αti dμ
)1/α

,

where ai ≥ 0. Therefore, with ai := 1/xi, 1 ≤ i ≤ k, we obtain

P{X(ti) ≤ xi, 1 ≤ i ≤ k} = exp
{
−
∫

E

∨
1≤i≤k

f αti
xαi

dμ
}
.

This shows that the ft ’s play the role of the spectral functions of the max–stable
process X as in (2) but now these functions can be defined over an arbitrary measure
space (E,E ,μ). Thus, by choosing suitable families of integrands (kernels) f t ’s,
one can explicitly model and manipulate a variety of max–stable processes. For
example, if E ≡ R is the real line equipped with the Lebesgue measure, one can
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define the moving maxima processes:

X(t) :=
∫e

R

f (t −u)Mα(du), t ∈R, (13)

where f ≥ 0,
∫
R

f α (u)du <∞, and where Mα is an α−Fréchet random sup–measure
with the Lebesgue control measure. More generally, we define a mixed moving max-
ima process or field as follows:

X(t)≡ X(t1, · · · ,td) :=
∫e

Rd×V
f (t −u,v)Mα(du,dv), t = (ti)d

i=1 ∈ R
d , (14)

where f ≥ 0,
∫
Rd×V f α(u,v)duν(dv) < ∞ and where now the random sup–measure

Mα is defined on the product space R
d ×V and has control measure du×ν(dv), for

some measure ν(dv) on the set V .
Further, interesting classes of processes are obtained when the measure space

(E,E ,μ) is viewed as another probability space and the collection of determinis-
tic integrands { ft}t∈T is then interpreted as a stochastic process on this probability
space. This leads to certain doubly stochastic max–stable processes, whose depen-
dence structure is closely related to the stochastic properties of the integrands f t ’s.
For more details, see Section 4.1 below.

Let X = {X(t)}t∈T be an α−Fréchet process. As shown in [24], the representa-
tion in (4) (or equivalently in (12) with (E,E ,μ)≡ ((0,1),B (0,1),dx)) is possible if
and only if the process X is separable in probability. The max–stable process X is
said to be separable in probability if, there exists a countable set I ⊂ T , such that
for all t ∈ T , the random variable Xt is a limit in probability of max–linear combi-
nations of the type max1≤i≤n aiXsi , with si ∈ I and ai ≥ 0, 1 ≤ i ≤ n. Clearly, if
T ≡R and X is continuous in probability, then it is also separable in probability and
therefore it has the representation (4) with suitable f t ’s (see Theorem 3 in [5]). On
the other hand, even if X is not separable in probability, it may still be possible to
express as in (12) provided that the measure space (E,E ,μ) is sufficiently rich.

Remarks:

1. The representation (4) is similar in spirit to the Le Page, Woodroofe & Zinn’s
series representation for sum–stable processes. Namely, let X = {X(t)} t∈R be an
α−stable process, which is separable in probability. For simplicity, suppose that
X is totally skewed to the right and such that 0 < α < 1. Then, by Theorems
3.10.1 and 13.2.1 in Samorodnitsky and Taqqu [22], we have

{X(t)}t∈R

d=
{
∑
i∈N

ft (Ui)

ε1/α
i

}
t∈R

, (15)

where { ft(u)}t∈R ⊂ Lα([0,1],du), and {(Ui,εi)}i∈N is a standard Poisson point
process on [0,1]× [0,∞]. Relation (15) is analogous to (4) where the sum is re-
placed by a maximum and only non–negative spectral functions f t (·)’s are con-
sidered.
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2. The representation (4) is particularly convenient when studying the path prop-
erties of max–stable processes. It was used in [20] to establish necessary and
sufficient conditions for the continuity of the paths of max–stable processes.

3. The moving maxima (M2) (in discrete time) were first considered by De-
heuvels [11]. Zhang and Smith [29] studied further the discrete–time multivariate
mixed moving maxima (M4 processes) generated by sequences of independent
α−Fréchet variables.

3 Ergodic Properties of Stationary Max–stable Processes

Let X = {X(t)}t∈R be a (strictly) stationaryα−Fréchet process as in (12). To be able
to discuss ergodicity in continuous time, we shall suppose that X is measurable.
This is not a tall requirement since any continuous in probability process has a
measurable modification. All results are valid and in fact have simpler versions in
discrete time. We first recall the definitions of ergodicity and mixing in our context.

One can introduce a group of shift operators S τ , τ ∈R, which acts on all random
variables, measurable with respect to {X(t)}t∈R. Namely, for all ξ = g(Xt1 , · · · ,Xtk ),
we define

Sτ(ξ ) := g(Xτ+t1 , · · · ,Xτ+tk ),

where g : R
k → R is a Borel function. The definition of the Sτ ’s can be ex-

tended to the class of all {Xt}t∈R−measurable random variables. Note also that
St ◦ Ss = St+s, t,s ∈ R. Clearly, the shift operators map indicator functions to indi-
cator functions and therefore one can define S τ(A) := {Sτ(1A) = 1}, for all events
A ∈ σ{Xt , t ∈ R}. These mappings are well–defined and unique up to equality al-
most surely (for more details, see e.g. Ch. IV in [21]).

The stationarity of the process X implies that the shifts Sτ’s are measure preserv-
ing, i.e.

P(Sτ(A)) = P(A), for all A ∈ σ{Xt , t ∈ R}.
Let now Finv denote the σ−algebra of shift–invariant sets, namely, the collection

of all A ∈ σ{Xt , t ∈ R} such that P(AΔSτ(A)) = 0 for all τ ∈R.
Recall that the process X is said to be ergodic if the shift–invariant σ−algebra

Finv is trivial, i.e. for all A ∈ Finv, we have that either P(A) = 0 or P(A) = 1. On
the other hand, X is said to be mixing if

P(A∩Sτ(B)) −→P(A)P(B), as τ → ∞,

for all A, B ∈ σ{Xt , t ∈ R}.
It is easy to show that mixing implies ergodicity. Furthermore, ergodicity has

important statistical implications. Indeed, fix ti ∈R, 1≤ i ≤ k and let h : R
k →R be

a Borel measurable function such that E|h(X(t1), · · · ,X(tk))| < ∞. The Birgkhoff’s
ergodic theorem implies that, as T → ∞,
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1
T

∫ T

0
h(X(τ + t1), · · · ,X(τ + tk))dτ −→ ξ ,

almost surely and in the L1−sense, where Eξ = Eh(X(t1), · · · ,X(tk). The limit ξ
is shift–invariant, that is Sτ(ξ ) = ξ , almost surely, for all τ > 0, and therefore ξ is
measurable with respect to Finv. Hence, if the process X is ergodic, then the limit ξ
is constant, and we have the following strong law of large numbers:

1
T

∫ T

0
h(X(τ + t1), · · · ,X(τ + tk))dτ

a.s. & L1−→ Eh(X(t1), · · · ,X(tk)), as T → ∞.

(16)
In fact, one can show that X is ergodic if and only if Relation (16) holds, for all such
Borel functions h and all k ∈ N. For more details on ergodicity and mixing, see e.g.
[21].

Relation (16) indicates the importance of knowing whether a process X is ergodic
or not. Ergodicity implies the strong consistency of a wide range of statistics based
on the empirical time–averages in (16).

Our goal in this section is to review necessary and sufficient conditions for the
ergodicity or mixing of the process X . These conditions will be formulated in terms
of the deterministic integrands { ft}t∈R ⊂ Lα

+(μ) and the important notion of max–
linear isometry.

Definition 0.2. A mapping U : Lα
+(μ)→ Lα

+(μ) is said to be a max–linear isometry,
if

(i) For all f ,g ∈ Lα
+(μ) and a,b ≥ 0,

U(a f ∨bg) = aU( f )∨bU(g), μ−a.e.

(ii) For all f ∈ Lα
+(μ),

‖U( f )‖Lα+(ν) = ‖ f‖Lα+(μ).

Consider a collection of max–linear isometries Ut : Lα
+(μ) → Lα

+(μ), which
forms a group with respect to composition, indexed by t ∈ R, i.e. Ut ◦Us =
Ut+s, t,s ∈ R and U0 ≡ idE .

Now, fix f0 ∈ Lα
+(μ), let ft :=Ut( f0), t ∈R, and consider the α−Fréchet process

X(t) :=
∫e

E
Ut( f0)dMα , t ∈ R. (17)

Definition 0.2 and the group structure of the Ut’s readily implies that X = {X(t)}t∈R

is stationary. Indeed,

P{X(τ + ti) ≤ xi, 1 ≤ i ≤ k} = exp
{
−
∫

E

∨
1≤i≤k

Uτ( fti )
α

xαi
dμ

}

= exp
{
−
∫

E
Uτ

( ∨
1≤i≤k

fti a
xαi

)α
dμ

}
= P{X(ti) ≤ xi, 1 ≤ i ≤ k}.
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For example, in the particular the case of moving maxima defined in (13), we have
that (17) holds, where Ut(g)(u) = g(t + u) is the simple translation in time and
f0(u) = f (−u), for all u ∈ R.

The representation in (17) is valid for a large class of stationary max–stable pro-
cesses. In fact, as shown in Stoev [25], the above defined max–linear isometries are
precisely the pistons of de Haan and Pickands [9]. Thus, by Theorem 6.1 in de Haan
and Pickands [9], Relation (17) holds for all continuous in probability α−Fréchet
processes.

The following two results, established in Stoev [25], provide necessary and suf-
ficient conditions for the ergodicity and mixing of the process X , respectively.

Theorem 3.1 (Theorem 3.2 in [25]). Let X be a measurable α−Fréchet process,
defined by (17). The process X is ergodic, if and only if, for some (any) p > 0,

1
T

∫ T

0
‖Uτg∧g‖p

Lα(μ)dτ −→ 0, (18)

as T → ∞, for all g ∈ FU( f0), where a∧b = min{a,b}. Here

FU( f0) := ∨-span{Ut( f0), t ∈ R},

is the set of all max–linear combinations of the Ut( f0)’s, closed with respect to the
metric ρα in (11).

The corresponding necessary and sufficient condition for mixing is as follows

Theorem 3.2 (Theorem 3.3 in [25]). Let X be a measurable α−Fréchet process,
defined by (17). The process X is mixing, if and only if,

‖Uτh∧g‖Lα(μ) −→ 0, as τ → ∞, (19)

for all g∈ F−
U ( f0) :=∨-span{Ut( f0), t ≤ 0} and h∈ F+

U ( f0) :=∨-span{Ut( f0), t ≥
0}.

Although these results provide complete characterization of the ergodic and/or
mixing α−Fréchet processes, they are hard to use in practice. This is because the
conditions (18) and/or (19) should be verified for arbitrary elements g and/or h in the
max–linear spaces FU( f0) and/or F±

U ( f0). Fortunately, in the case of mixing, these
conditions can be formulated simpler in terms of a natural measure of dependence.
Namely, for any ξ =

∫e
E f dMα and η =

∫e
E gdMα , f ,g ∈ Lα

+(μ) define

d(ξ ,η) := ‖ξ‖αα +‖η‖αα −‖ξ ∨η‖αα .

Observe that since ‖ξ‖αα =
∫

E f αdμ and ‖η‖αα =
∫

E gαdμ , we have

d(ξ ,η) =
∫

E

(
f α + gα − f α ∨gα

)
dμ ≡

∫
E

f α ∧gαdμ . (20)
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Note that d(ξ ,η) = 0 if and only if the random variables ξ and η are independent.
This observation and the intuition about extremal integrals, suggest that the quan-
tity d(ξ ,η) can be interpreted as a measure of dependence between ξ and η . The
following result established in Stoev [25] shows that d(ξ ,η) indeed plays such a
role.

Theorem 3.3 (Theorem 3.4 in [25]). Let X be a stationary and continuous in prob-
ability α−Fréchet process. The process X is mixing if and only if dα(X(τ),X(0))→
0, as τ → ∞.

Remarks:

1. Observe that by Theorem 3.2 and Relation (20), the condition d(X τ ,X0) →
0, τ →∞ is necessary for X to be mixing. Surprisingly, Theorem 3.3 implies that
this condition is also sufficient. In many situations it is easy to check whether
the dependence coefficient d(Xτ ,X0) vanishes as the lag τ tends to infinity. The
explicit knowledge of the max–linear isometries Ut in (17) is not necessary.

2. The recent monograph of Dedecker et al. [10] provides many classes of remark-
ably flexible measures of dependence. To the best of my knowledge, these mea-
sures of dependence have not yet been studied in the context of max–stable pro-
cesses. The knowledge of sharp inequalities involving these measures of depen-
dence could lead to many interesting statistical results.

In the following section we will illustrate further the above results with concrete
examples and applications.

4 Examples and Statistical Applications

4.1 Ergodic Properties of Some Max–Stable Processes

• (Mixed Moving Maxima) It is easy to show that all moving maxima and mixed
moving maxima processes defined in (13) and (14) are mixing. Indeed, let

X(t) :=
∫e

R×V
f (t −u,v)Mα(du,dv), t ∈R,

for some f ∈ Lα
+(du,ν(dv)), α > 0 and observe that

d(X(t),X(0)) =
∫

R×V
f (t + u,v)α ∧ f (u,v)αduν(dv)

≤ 2
∫
|u|≥t/2

(∫
V

f (u,v)αν(dv)
)

du. (21)

The last inequality follows from the fact that for all u∈R, and t > 0, either |u| ≥ t/2
or |t + u| ≥ t/2 and therefore,
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f (t + u,v)α ∧ f (u,v)α ≤ f (t + u,v)α1{|t+u|≥t/2} + f (u,v)α1{|u|≥t/2}.

The inequality (21) and the integrability of f α imply that d(X(t),X(0)) → 0, as
t →∞. This, in view of Theorem 3.3, implies that the mixed moving maxima process
X is mixing.

• (Doubly Stochastic Processes) As in the theory of sum–stable processes (see
e.g. the monograph of Samorodnitsky and Taqqu [22]), we can associate a max–
stable α−Fréchet processes with any positive stochastic process ξ = {ξ (t)}t∈T with
Eξ (t)α < ∞ . Namely, suppose that Mα is a random sup–measure on a measure
space (E,E ,μ), where the control measure μ is now a probability measure (i.e.
μ(E) = 1). Any collection of spectral functions { f (t,u)} t∈T ⊂ Lα

+(E,μ(du)) may
be viewed as a stochastic process, defined on the probability space (E,μ). Con-
versely, a non–negative stochastic process ξ = {ξ (t)} t∈T , defined on (E,E ,μ), and
such that Eμξ (t)α =

∫
E ξ (t,u)αμ(du) < ∞ may be used to define an α−Fréchet

process as follows:

X(t) :=
∫e

E
ξ (t,u)Mα(du), t ∈ T. (22)

The α−Fréchet process X = {X(t)}t∈T will be called doubly stochastic. Note that
from the perspective of the random sup–measure Mα , the integrands ξ (t)’s are non–
random since they ’live’ on a different probability space. The main benefit from this
new way of defining a max–stable process X is that one can use the properties of
the stochastic process ξ = {ξ (t)}t∈T to establish the properties of the α−Fréchet
process X .

For example, let ξ = {ξ (t)}t∈R be a strictly stationary, non–negative process on
(E,E ,μ) such that Eμξ (t)α < ∞. We then have that X in (22) is also stationary.
Indeed, for all ti ∈ R, xi > 0, 1 ≤ i ≤ n, and h ∈ R, we have

P{X(ti + h)≤ xi, 1 ≤ i ≤ n}= exp
{
−Eμ

( ∨
1≤i≤n

ξ (ti + h)/xi

)α}

= exp
{
−Eμ

( ∨
1≤i≤n

ξ (ti)/xi

)α}
= P{X(ti) ≤ xi, 1 ≤ i ≤ n},

where in the second equality above we used the stationarity of ξ . Borrowing ter-
minology from theory of sum–stable processes (see e.g. [3]), if the process ξ is
stationary, we call the α−Fréchet process X doubly stationary. The following result
shows the perhaps surprising fact that if the process ξ is mixing, then the doubly
stationary process X is non–ergodic.

Proposition 0.1. Let X = {X(t)}t∈R be a doubly stationary process defined as in
(22) with non–zero ξ (t)’s. If the stationary process ξ = {ξ (t)}t∈R is mixing, then X
is non–ergodic.

Proof. Consider the quantity

d(X(t),X(0)) =
∫

E

(
ξ (t,u)∧ξ (0,u)

)α
μ(du)≡ Eμ(ξ (t)α ∧ξ (0)α).
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We will show that liminft→∞ d(X(t),X(0)) = c > 0. This would then imply that the
time–averages in Theorem 3.1 do not vanish, and hence X is not ergodic.

Observe that since ξ is mixing, for all Borel sets A, B ⊂ R, we have

P{ξ (t) ∈ A, ξ (0) ∈ B} −→P{ξ (t) ∈ A}P{ξ (0)∈ B}, as t → ∞.

Consider the intervals A = B = (ε 1/α ,∞), for some ε > 0, and note that the last
relation is equivalent to

P{ξ (t)α ∧ξ (0)α > ε} −→P{ξ (t)α > ε}P{ξ (0)α > ε}, as t → ∞. (23)

Since the ξ (t)’s are not identically zero, there exists an ε > 0, such that P{ξ (t)α >
ε} ≡P{ξ (0)α > ε} > 0. Now, note that

E(ξ (t)α ∧ξ (0)α)≥ εP{ξ (t)α ∧ξ (0)α > ε}.

This, in view of the convergence in (23) implies that

liminf
t→∞

E(ξ (t)α ∧ξ (0)α) > 0,

which as argued above, implies that the process X is non–ergodic. �

The above result suggests that most doubly stochastic α−Fréchet processes
are non–ergodic. This fact can be intuitively explained by the conceptual differ-
ence between the independence in the ξ (t)’s and the independence of their ex-
tremal integrals X(t)’s. Indeed, for X(t) and X(s) to be independent, one must have
ξ (t)ξ (s) = 0, μ−almost surely. The latter, unless the process ξ is trivial, implies
that ξ (t) and ξ (s) are dependent. The following example shows, however, that one
can have ergodic and in fact mixing doubly stochastic processes. These processes
will be stationary but not doubly stationary.

• (Brown–Resnick Processes) Let now w = {w(t)}t∈R be a standard Brownian
motion, defined on the probability space (E,E ,μ), i.e. {w(−t)} t≥0 and {w(t)}t≥0

are two independent standard Brownian motions. Introduce the non–negative pro-
cess ξ (t) := ew(t)/α−|t|/2α , t ∈ R and observe that Eμξ (t)α = 1. for all t ∈ R.

The following doubly stochastic process X = {X(t)} t∈R is said to be a Brown–
Resnick process:

X(t) :=
∫e

E
ξ (t,u)Mα(du)≡

∫e
E

ew(t,u)/α−|t|/2αMα(du), t ∈ R. (24)

The max–stable process {logX(t)}t≥0 with α = 1 and Gumbel marginals was first
introduced by Brown and Resnick [2] as a limit involving extremes of Brownian
motions. Surprisingly, the resulting max–stable process X = {X(t)} t∈R is stationary.
The one–sided stationarity of X is easy to show, by using the fact that {w(t)} t≥0 has
stationary and independent increments (see e.g. [25]).

Recently, Kabluchko, Schlather and de Haan [15] studied general doubly stochas-
tic processes of Brown–Resnick type. They established necessary and sufficient con-
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ditions for the stationarity of such max stable processes. The two–sided stationarity
of the classical Brown–Resnick process X above follows from their general results.

We now focus on the Brown–Resnick process in (24) and show that it is mixing.
Indeed, the continuity in probability of X follows from the L α−continuity of ξ (t) =
ew(t)/α−|t|/2α . Therefore, by Theorem 3.3, to prove that X is mixing, it is enough to
show that d(X(t),X(0))→ 0, as t → ∞. We have that, for all t > 0,

d(X(t),X(0)) = Eμ

(
ew(t)−t/2∧ ew(0)

)
= Eμ

(
e
√

tZ−t/2∧1
)
,

where Z is a standard Normal random variable under μ . The last expectation is
bounded above by:

P{Z >
√

t/2}+
1√
2π

∫ √
t/2

−∞
e
√

tz−t/2e−z2/2dz =

Φ(−√t/2)+
1√
2π

∫ √
t/2

−∞
e−(z−√t)2/2dz,

which equals 2Φ(−√t/2), where Φ(t) = (2π)−1/2 ∫ t
−∞ e−x2/2dx. Therefore,

d(X(t),X(0))≤ 2Φ(−√t/2)≤ 2√
2π

e−t2/2 −→ 0, as t → ∞.

This implies that the Brown–Resnick process X is mixing.
In [25], the ergodicity of more general Brown–Resnick type processes was es-

tablished where the process w in (24) is replaced by certain infinitely divisible
Lévy processes. It would be interesting to define and study other classes of dou-
bly stochastic processes by using different types of integrands.

4.2 Estimation of the Extremal Index

The extremal index is an important statistical quantity that can be used to measure
the asymptotic dependence of stationary sequences. Here, we will briefly review the
definition of the extremal index and discuss some estimators for the special case of
max–stable time series.

Let Y = {Yk}k∈Z be strictly stationary time series, which is not necessarily max–
stable. Associate with Y a sequence of independent and identically distributed vari-
ables Y ∗ = {Y ∗

k }k∈R, with the same marginal distribution as the Yk’s. Consider the
running maxima Mn := max1≤ j≤nYj and M∗

n := max1≤ j≤nY ∗
j and suppose that

P
{ 1

an
M∗

n −bn ≤ x
}

w−→ G(x), as n → ∞, (25)
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where G is one of the three extreme value distribution functions. If the last conver-
gence holds, for suitable normalization and centering constants a n and bn, then we
say that the distribution of the Yk’s belongs to the maximum domain of attraction of
G (for more details, see e.g. [18]).

Definition 0.3. Suppose that (25) holds for the maxima of independentY ∗
k ’s. We say

that the time series Y has an extremal index θ , if

P
{ 1

an
Mn−bn ≤ x

}
w−→ Gθ (x), as n → ∞, (26)

where the an’s and bn’s are as in (25).

It turns out that if the time series Y = {Yk}k∈Z has an extremal index θ , then it
necessarily follows that

0 ≤ θ ≤ 1.

Observe that if the Yk’s are independent and belong to the maximum domain of
attraction of an extreme value distribution, then trivially, Y has extremal index θ = 1.
The converse however, is not true, that is, θ = 1 does not imply the independence of
the Yk’s, in general. It is important that the centering and normalization sequences
in (25) and (26) be the same. For more details, see the monograph of Leadbetter,
Lindgren and Rootzén [16].

A number of statistics have been proposed for the estimation of the extremal in-
dex (see e.g. [23], [28], [12]). Here, our goal is to merely illustrate the use of some
new estimation techniques for the extremal index in the special case of max–stable
α−Fréchet processes. We propose a method to construct asymptotically consistent
upper bounds for the extremal index, if it exists. The detailed analysis of these meth-
ods for the case of general time series is beyond the scope of this work.

Suppose now that Y = {Yk}k∈Z is a stationary, max–stable time series with the
following extremal integral representation

Yk =
∫e

E
fk(u)Mα(du), k ∈ Z, (27)

The extremal index of Y = {Yk}k∈Z, if it exists, can be expressed simply as follows.
By the max–linearity of the extremal integrals, we have with Mn as in (26), that:

P
{ 1

n1/α Mn ≤ x
}

= exp
{
− 1

n

∫e
E

( ∨
1≤k≤n

f αk

)
dμx−α

}
.

On the other hand, by the independence of the Y ∗
k ’s, we have

P
{ 1

n1/α M∗
n ≤ x

}
= exp{−‖Y1‖ααx−α},

where ‖Y1‖αα =
∫

E f α1 dμ .
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Thus, the extremal index of Y exists and equals θ , if and only if, the following
limit exists:

θ :=
1

‖Y1‖αα
lim
n→∞

1
n

∫e
E

( ∨
1≤k≤n

f αk
)

dμ . (28)

This fact suggests simple and intuitive ways of expressing the extremal index
of Y . To do so, let r ∈ N and consider the time series Y (r) := {Yk(r)}k∈Z of non–
overlapping block–maxima of size r:

Yk(r) := max
1≤i≤r

Yi+(k−1)r, k ∈ Z.

Observe that Y =Y (1) is the original time series. We shall denote the extremal index
of Y (r) as θ (r), when it exists. The following result yields a simple relationship
between the θ (r)’s.

Proposition 0.2. Let Y = {Yk}k∈Z be as in (27). If Y has a positive extremal index
θ = θ (1), then the time series Y (r) = {Yk(r)}k∈Z also has an extremal index θ (r)
equal to:

θ (r) =
1

θr(1)
θ (1),

where

θr(1) =
‖Y1‖−α

α
r

∫e
E

( ∨
1≤k≤r

f αk
)

dμ , r ∈ N. (29)

Moreover, for all r ∈N, we have θr(1) ∈ (0,1] and hence

θ (1)≤ θ (r) and θ (1)≤ θr(1). (30)

We will see in the sequel that, for fixed r, the quantity θr(1) can be consistently
estimated from the data, provided that the underlying time series Y is ergodic.

Proof (Proposition 0.2). In view of (28), we have that

θ (r) = ‖Y1∨·· ·∨Yr‖−α
α lim

n→∞

1
n

∫
E

( ∨
1≤k≤n

∨
1≤i≤r

f αi+(k−1)r

)
dμ

= r‖Y1∨·· ·∨Yr‖−α
α lim

n→∞

1
rn

∫
E

( ∨
1≤ j≤nr

f αj
)

dμ , (31)

where in the last relation we multiplied and divided by the constant r.
By assumption, the limit in the right–hand side of (31) exists and equals ‖Y1‖ααθ (1),
which implies that the time series Y (r) has an extremal index θ (r). This, fact since

‖Y1∨·· ·∨Yr‖αα =
∫

E

( ∨
1≤k≤r

f αk

)
dμ

and in view of (29) also implies that θ (r) = θ (1)/θr(1).
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Finally, the inequalities in (30) follow from the fact that

1
r

∫
E

( ∨
1≤k≤r

f αk

)
dμ ≤ 1

r

r

∑
k=1

∫
E

f αk dμ = ‖Y1‖αα ,

which yields that 0 < θr(1)≤ 1. �

We now focus on the estimation of the parameter θ r(1) for a given fixed value
of r, from observations {Yk, 1 ≤ k ≤ n} of the time series Y . Suppose that the time
series Y is ergodic. Note that EY p

k = Γ (1− p/α)‖Y1‖p
α is finite, for all p < α .

Therefore, the ergodicity implies that

m̂p(1) :=
1
n

n

∑
k=1

Y p
k

a.s.−→ Γ (1− p/α)‖Y1‖p
α , (32)

as n → ∞. For the block–maxima time series, we also have that

m̂p(r) :=
1

[n/r]

[n/r]

∑
k=1

Yk(r)p a.s.−→ Γ (1− p/α)‖Y1∨·· ·∨Yr‖p
α . (33)

Note that here we have only [n/r] observations from the block–maxima time series
{Yk(r), 1 ≤ k ≤ [n/r]} available from the original data set.

Relation (29) and the convergences in (32) and (33) suggest the following esti-
mator for the parameter θr(1):

θ̂r(1; p,n) :=
1
r

(
m̂p(r)/m̂p(1)

)α/p
. (34)

Proposition 0.3. Suppose that {Yk, 1 ≤ k ≤ n} is a sample from an ergodic station-
ary α−Fréchet time series. Then, for all p < α , we have

θ̂r(1; p,n) a.s.−→ θr(1), as n → ∞.

This result shows the strong consistency of the estimator in (34). The proof of
this proposition is an immediate consequence from Relations (32) and (33).

Note that one can use also overlapping block–maxima to estimate the quantity
‖Y1(r)‖αα = ‖Y1∨·· ·∨Yr‖αα . Indeed, for an ergodic time series Y , we also have

m̂p,ovlp(1; p,n) :=

1
n− r + 1

n−r+1

∑
k=1

(Yk ∨Yk+1∨·· ·∨Yk+r−1)p a.s.−→ Γ (1− p/α)‖Y1(r)‖p
α ,

as n → ∞. This suggests another flavor of an estimator for θ r(1):

θ̂r,ovlp(1; p,n) :=
1
r

(
m̂p,ovlp(r)/m̂p(1)

)α/p
.
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Clearly, as for the estimator θ̂r, we also have strong consistency:

θ̂r,ovlp(1; p,n) a.s.−→ θr(1), as n → ∞.
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Fig. 1 Top panel: Simulated max–autoregressive α−Fréchet time series Yk , 1 ≤ k ≤ n defined as
in (35) with n = 100000, φ = 0.9 and α = 1.5. The theoretical value of θ = θ(1) equals (1−φα) =
0.1462. Bottom panel: Estimates θ̂r(1) (solid line) and θ̂r,ovlp(1) (dashed line) as a function of the
block–size r. The true value of θ(1) is indicated by the dotted line.

Figure 1 illustrates the performance of the estimators θ̂r(1) and θ̂r,ovlp(1) over a
simulated max–autoregressive time series. The time series Y is defined as:

Yk = φYk−1 ∨ (1−φ)Zk = (1−φ)
∞∨

j=0

φ jZk− j, (35)

where φ ∈ [0,1], and where the Z j’s are independent standard α−Fréchet variables.
We used parameter values α = 1.5, φ = 0.9 and p = 0.6.

One can show that ‖Y1‖αα = (1−φ)α/(1−φα), and that

Y1∨·· ·∨Yr = Y1∨ (1−φ)( max
2≤k≤r

Zk).

Thus, for θr(1) and θ (1) we obtain:
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θr(1) = (1−φα)
(r−1)

r
+

1
r

and θ (1) = lim
r→∞

θr(1) = (1−φα).

The true value of θr(1), indicated by the dot–dashed line is nearly covered by the
solid line, indicating the realizations of θ̂r(1). The ’overlapping blocks’ estimator
θ̂r,ovlp(1), on the other hand, shows a small but systematic bias, which decreases

as the block–size r grows. This limited simulation experiment indicates that θ̂r(1)
and θ̂r,ovlp(1) accurately estimate θr(1). Furthermore, in this setting, θ̂r(1) is more

accurate for small values of r and θ̂r,ovlp(1) is competitive and likely to be more
accurate for large values of r. Note also that since θr(1) converges to θ (1), as r →∞,
both θ̂r(1) and θ̂r,ovlp(1) can be used to estimate θ (1) in practice, when sufficiently
large values of r are chosen.
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