Max—Stable Processes: Representations, Ergodic
Properties and Statistical Applications

Stilian A. Stoev

Abstract Max—stable processes arise as limits in distribution of component-wise
maxima of independent processes, under suitable centering and normalization.
Therefore, the class of max—stable processes plays a central role in the study and
modeling of extreme value phenomena. This chapter starts with a review of clas-
sical and some recent results on the representations of max—stable processes. Re-
cent results on necessary and sufficient conditions for the ergodicity and mixing of
stationary max—stable processes are then presented. These results readily yield the
consistency of many statistics for max—stable processes. As an example, a new es-
timator of the extremal index for a stationary max—stable process is introduced and
shown to be consistent.

1 Introduction

In the past 30 years, the structure of max—stable random vectors and processes
has been vigorously explored. A number of seminal papers such as Balkema and
Resnick [1], de Haan [4, 5], de Haan and Pickands [9], Gine, Hahn and Vatan [13],
Resnick and Roy [20], just to name a few, have lead to an essentially complete pic-
ture of the dependence structure of max—stable processes. Complete accounts of the
state-of-the-art can be found in the books of Resnick [18], de Haan and Ferreira [6],
and Resnick [19], and the references therein.

The stochastic process X is said to be max—stable if all its finite—dimensional
distributions are max—stable. Recall that a random vector Y = (Y () 1<j<q in R? is
said to be max—stable if, for all n € N, there exista,, > 0 and a,, b, € RY, such that
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\/ Y ZLa,Y+b,.

1<i<n

Here Y; = (Y;(j))1<j<a, i = 1,...,n are independent copies of Y and the above in-
equalities, vector multiplications, additions and maxima are taken coordinate—wise.

The importance of max—stable processes in applications stems from the fact that
they appear as limits of component-wise maxima. Suppose that &; = {&;() };er are
independent and identically distributed stochastic processes, where 7' is an arbitrary
index set. Consider the coordinate—wise maximum process

My(t):=\/ &)= max &(1), t€T.

1<i<
1<i<n S

Suppose that for suitable non-random sequences a,(t) > 0 and by(), t € T, we

have
fdd.

{anl M,,(t)—bn(t)} X () Yeer, (1

(t) teT

as n — oo, for some non—degenerate limit process X = {X(¢)},er, where 144 e
notes convergence of the finite—dimensional distributions. The processes that appear
in the limit of (1) are max—stable (see e.g. Proposition 5.9 in [18]). The classical re-
sults of Fisher & Tippett and Gnedenko indicate that the marginal distributions of X
are one of three types of extreme value distributions: Fréchet, Gumbel, or reversed
Weibul. The dependence structure of the limit X, however, can be quite intricate.
Our main focus here is on the study of various aspects of the dependence structure
of max—stable processes.

Max-—stable processes have a peculiar property, namely their dependence struc-
ture is in a sense invariant to the type of their marginals. More precisely, consider
a process X = {X()},er and its transformed version ho X = {h,;(X;) }ser, where
h = {h(-) }ser is a collection of deterministic functions, strictly increasing on their
domains. It turns out that if X is a max—stable process and if the marginals of 7o X
are extreme value distributions, then the transformed process o X is also max—
stable (see e.g. Proposition 5.10 in [18]). That is, one does not encounter max—stable
processes with more rich dependence structures if one allows for the marginal distri-
butions of X to be of different types. Thus, for convenience and without loss of gen-
erality, we shall focus here on max—stable processes X = {X (¢) } ;e with c—Fréchet
marginals. A random variable & is said to have the ov—Fréchet distribution if:

248 <x} =exp{—0“x"%}, (x>0),

for some o > 0 and o > 0. The parameter o > 0 plays the role of a scale coefficient,
and thus, by analogy with the convention for sum—stable processes, we shall use the
notation

1G]l := o

Note that here || - || ¢ is not the usual L* —norm but we have ||c& || o = ¢||& || for all
¢ > 0. The ov—Fréchet laws have heavy Pareto-like tails with tail exponent o > 0,
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that is,
PLE>xp ~|I8][gx %, asx — oo,

Therefore, the p—moment (p > 0), EE P < o is finite if and only if p < o.

It is convenient to introduce the notion of an ot—Fréchet process. Namely, the
process X = {X(t) }ser is said to be an a—Fréchet process if all (positive) max—
linear combinations of X (¢)’s:

\/ a,-X(ti), a; > 0, tieT,

1<i<k

are o.—Fréchet random variables.

It turns out that the max—stable processes with a—Fréchet marginals are pre-
cisely the oc—Fréchet processes (see, de Haan [4]). Therefore, in the sequel we shall
use the terms Fréchet processes and max—stable processes with Fréchet marginals
interchangeably.

Let now X be an or—Fréchet process. The structure of the finite—dimensional
distributions of X is already known, In fact, we have the following explicit formula
of the finite—dimensional distributions of X:

3”{Xh<x,,1<z<k}*exp / \/ fl’

1<i<k © N

)adu}, (>0, 1<i<k), (2)

where f;, (1) > 0 are suitable Borel functions, such that fol S (u)du < oo, for 1 <i <
k. The f;,(u)’s are known as spectral functions of the max—stable vector (X;,)1<i<k
and even though they are not unique, they will play an important role in our repre-
sentations of max—stable processes. Observe for example, that (2) yields

1 o
@{ \/ aiXy, gx} :exp{—/ ( \/ a,-f,,(u)) duxfa},
1<i<k O Mi<i<k
and therefore V| <;<xa;X;, is an o¢—Fréchet variable with scale coefficient

:/Ol( \/ a,-f,l.(u))adu

1<i <k 1<i<k

Thus, the knowledge of the spectral functions { f;(u) };er C L% ([0, 1],du) allows us
to handle all finite—dimensional distributions of the process X.

One can alternatively express the finite—dimensional distributions in (2) by using
the spectral measure of the vector (X;,)1<;<x. Namely, consider an arbitrary norm
| -]l in R and let Sy := {w = (w;)1<i<k : wi >0, |/w|| = 1} be the non-negative
unit sphere in R¥. We then have

P <x 1 <i<kh=ep{= [V "ive(aw)}, 3)

S+ 1<i<k Xi
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where v, (dw) is a finite measure on S ;.

The two types of representations in (2) and (3) have both advantages and dis-
advantages depending on the particular setting. The finite measure v, associated
with the max—stable vector (X;,);<;<x is said to be its spectral measure and it is
uniquely determined. Thus, when handling max—stable random vectors of fixed di-
mension, the spectral measure is a natural object to use and estimate statistically. On
the other hand, when handling stochastic processes, one encounters spectral mea-
sures defined on spaces of different dimensions, which may be hard to reconcile.
In such a setting, it may be more natural to use representations based on a set of
spectral functions { f; };c7, which are ultimately defined on the same measure space.

More details and the derivations of (2) and (3) can be found in [18]. Novel per-
spectives to spectral measures on ’infinite dimensional’ spaces are adopted in Gine,
Hahn and Vatan [13] , de Haan and Lin [7, 8] and de Haan and Ferreira [6]. Hult
and Lindskog [14] develop powerful new tools based on the related notion of regular
variation in infinite—dimensional function spaces.

Let now X = {X(¢) }ser with T =R or Z be a stationary oc—Fréchet process.
From statistical perspective, it is important to know whether the process X is er-
godic, mixing, or non—ergodic. Despite the abundance of literature on max—stable
processes, the problem of ergodicity had not been explored until recently. To the
best of our knowledge only Weintraub in [27] addressed it indirectly by introducing
mixing conditions through certain measures of dependence. Recently, in [25], by
following the seminal work of [3], we obtained necessary and sufficient conditions
for the process X to be ergodic or mixing. In the case of mixing, these conditions
take a simple form and are easy to check for many particular cases of max—stable
processes.

The goal of this chapter is to primarily review results estabilished in [24, 25].
This is done in Sections 2 and 3 below. These results are then illustrated and applied
to some statistical problems in Seciton 4. Section 4.2 contains new results on the
consistency of extremal index estimators for stationary max—stable processes.

2 Representations of Max—Stable Processes

Let X = {X(¢) }ser be an o.—Fréchet process (o > 0) indexed by R. As indicated
above all finite—dimensional distributions of X can be expressed in terms of a family
of spectral functions in

L9(0,1),du) = {f:[0,1] > R, : /[O_l]f%u)du <o)

The seminal paper of de Haan [5] shows that provided X = {X(¢) }  is continuous in
probability, there exists a family of spectral functions { f;(u)};er C LY (du) indexed
by R, which yield (2). This was done from the appealing perspective of Poisson
point processes. Namely, let X = {X(7)},cr be continuous in probability. Then,
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there exist a collection of non—negative functions { f; (u) };er C LY ([0, 1],du), such

that
oper £ {00} )

s 1T
where {(U;, &) }ien 18 a Poisson point process on [0, 1] x [0, ] with intensity du x
d - . . . N
ds, and where = means equality in the sense of finite—dimensional distributions.
‘We now present an alternative but ultimately equivalent approach to representing

a—Fréchet max—stable processes developed in Stoev and Taqqu [24]. It is based on
the notion of extremal integrals with respect to ox—Fréchet sup—measures.

Definition 0.1. Let o¢ > 0 and let (E,&, 1) be a measure space. A random set—
function M, defined on &, is said to be an o¢—Fréchet random sup—measure with
control measure  if the following conditions hold:

(i) For all disjoint A; € &, 1 < j < n, the random variables My (4;), 1 < j<n
are independent.

(ii) For all A € &, the random variable M (A) is oc—Fréchet, with scale coeffi-
cient ||My(A)||¢ = (A)'/%, ie

P{My(A) <x} =exp{—u(A)x %}, x>0. (5)
(iii) For all disjoint A; € &, j € N,

Mo (UjenAj) = \/ Ma(A;), almost surely. (6)
JjeN

By convention, we set My (A) = oo if (1(A) =

Condition (i) in the above definition means that the random measure is inde-
pendently scattered i.e. it assigns independent random variables to disjoint sets and
Condition (ii) shows that the scale of M (A) is governed by the deterministic con-
trol measure |1 of M. Relation (6), on the other hand, indicates that the random
measure M, is sup—additive, rather than additive. This is the fundamental differ-
ence between the usual additive random measures and the sup—measures. For more
general studies of sup—measures see [26]. The important work of Norberg [17] un-
veils the connections between random sup—measures, the theory of random sets, and
random capacities. Here, the focus is on the concrete and simple case of oo—Fréchet
sup—measures, most relevant to the study of max—stable processes.

As shown in Proposition 2.1 of [24] (by using the Kolmogorov’s extension theo-
rem) for any measure space (E, &, i) one can construct an o.—Fréchet random sup—
measure M, with control measure U, on a sufficiently rich probability space. Given
such a random measure M, on (E, &, 1), one can then define the extremal integral
of a non—negative deterministic function with respect to M, as follows. Consider
first a non—negative simple function f(u) = ¥/ a;la,(u), a; > 0 with disjoint A;’s
and define the extremal integral of f as
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e, n
1) = | fata =/ ada(4)
i=1

i.e. the sum in the typical definition of an integral is replaced by a maximum. Since
the My (A;)’s are independent and a—Fréchet, Relation (5) implies

W{I(f)§x}:exp{—/Ef°‘d/.ix_a}, x>0.

The following properties are immediate (see e.g. Proposition 2.2 in [24]):
Properties:

e For all non-negative simple functions f, the extremal integral . fdM, is an
a—Fréchet random variable with scale coefficient

Lol - (o)

e (max—linearity) For all a,b > 0 and all non—negative simple functions f and g,
we have

(4 € e,
/ (af Vbg)dMy = a / fdMy NV b / gdM,,, almost surely. )
E E E

e (independence) For all simple functions f and g, . fdM, and ] gdM, are
independent if and only if fg = 0, u—almost everywhere.

Relation (8) shows that the extremal integrals are max—linear. Note that for any
collection of non—negative simple functions f; and @; > 0, 1 <i < n, we have that

\/ ai7Ef,»dMa:7E( \/ aiﬁ)dMa

1<i<n 1<i<n

is oo—Fréchet. This shows that the set of extremal integrals of non—negative simple
functions is jointly a.—Fréchet, i.e. the distribution of (I(f;))1<i<, is multivariate
max—stable. It turns out that one can metrize the convergence in probability in the
spaces of jointly oo—Fréchet random variables by using the following metric:

pa(§,n) :=2/5 Vnllg — Il —lInlla- ©)

If now & = . fdMy and 1 = ], gdM, for some simple functions />0 and g > 0,
we obtain

pa(&m =2 [ (r*vedu— [ (/v au [ (1*vedu = [ 15~ g%dn.

(10)
By using this relationship one can extend the definition of the extremal integral
g fdM, to integrands in the space LY (1) = LY(E,&, 1) of all non-negative de-
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terministic f’s with [ f*du < e=. Moreover, the above properties of the extremal
integrals remain valid for all such integrands.
To complete the picture, consider the space

My =N —span’ {My(A) : A€ &)

of jointly oc—Fréchet variables containing all max—linear combinations of M (A)’s
and their limits in probability. One can show that (.#y,pe) is a complete metric
space and py, in (9), as indicated above, metrizes the convergence in probability. Let
also L% (u) be equipped with the metric

=/ f* —g%du. (11)
E
Then, relation (10) implies that the extremal integral
1:LE(u) — My
is a max—linear isometry between the metric spaces (L% (i), pq) and (Ao, pa),

which is one-to-one and onto. Thus, in particular if &, := . f,dMy and & =
Tz fdMa, fu, f € L% (1), we have that

E Lo asn— oo, ifandonly if pa(fyf) /|fn —Fdp —— 0, as n— oo,

For more details see Stoev and Taqqu [24].

The so developed extremal integrals provide us with tools to construct and han-
dle max—stable processes. Indeed, for any collection of deterministic integrands
{fi}ier C LY (1), one can define

:/Ef,dMa, teT. (12)

The resulting process X = {X () },er is oo—Fréchet and in view of (7) and (8), we

obtain
H \/ a;X(t;) / \/ a; f,fxd‘u) ,

1<i<k 1<i<k

where a; > 0. Therefore, with a; := 1/x;, 1 <i <k, we obtain

PIX () <xi, 1 <P <k} =exp /\/ fi "y}

1<i<k Yi

This shows that the f;’s play the role of the spectral functions of the max—stable
process X as in (2) but now these functions can be defined over an arbitrary measure
space (E,&,u). Thus, by choosing suitable families of integrands (kernels) f’s,
one can explicitly model and manipulate a variety of max—stable processes. For
example, if £ = R is the real line equipped with the Lebesgue measure, one can
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define the moving maxima processes:

X(t):= ZQf(t—u)Ma(du), teR, (13)

where f >0, [p f*(u)du < oo, and where M, is an o.—Fréchet random sup-measure
with the Lebesgue control measure. More generally, we define a mixed moving max-
ima process or field as follows:

Xt)=X(t1, - ,1g) = /]Rdxvf(t—u,v)Moc(du,dv)7 t= (t,-)?zl eRrRY, (14

where f >0, [pa,y f*(u,v)duv(dv) < oo and where now the random sup—measure
My, is defined on the product space R? x V and has control measure du x v(dv), for
some measure v(dv) on the set V.

Further, interesting classes of processes are obtained when the measure space
(E,&,u) is viewed as another probability space and the collection of determinis-
tic integrands { f; },er is then interpreted as a stochastic process on this probability
space. This leads to certain doubly stochastic max—stable processes, whose depen-
dence structure is closely related to the stochastic properties of the integrands f;’s.
For more details, see Section 4.1 below.

Let X = {X(¢) };er be an a—Fréchet process. As shown in [24], the representa-
tion in (4) (or equivalently in (12) with (E, &, 1) = ((0,1), % o,1),dx)) is possible if
and only if the process X is separable in probability. The max—stable process X is
said to be separable in probability if, there exists a countable set .# C T, such that
for all ¢ € T, the random variable X, is a limit in probability of max—linear combi-
nations of the type max<j<,a;Xy;, with s; € # and a; > 0, 1 <i < n. Clearly, if
T =R and X is continuous in probability, then it is also separable in probability and
therefore it has the representation (4) with suitable f;’s (see Theorem 3 in [5]). On
the other hand, even if X is not separable in probability, it may still be possible to
express as in (12) provided that the measure space (E, &, ) is sufficiently rich.

Remarks:

1. The representation (4) is similar in spirit to the Le Page, Woodroofe & Zinn’s
series representation for sum-stable processes. Namely, let X = {X(¢)},cr be an
a—stable process, which is separable in probability. For simplicity, suppose that
X is totally skewed to the right and such that 0 < o < 1. Then, by Theorems
3.10.1 and 13.2.1 in Samorodnitsky and Taqqu [22], we have

()}ier = {Z le/a }@R, (15)

where {f;(u)}rer C L*([0,1],du), and {(U;, &) }ien is a standard Poisson point
process on [0, 1] x [0,e]. Relation (15) is analogous to (4) where the sum is re-
placed by a maximum and only non-negative spectral functions f,(-)’s are con-
sidered.
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2. The representation (4) is particularly convenient when studying the path prop-
erties of max—stable processes. It was used in [20] to establish necessary and
sufficient conditions for the continuity of the paths of max—stable processes.

3. The moving maxima (M2) (in discrete time) were first considered by De-
heuvels [11]. Zhang and Smith [29] studied further the discrete—time multivariate
mixed moving maxima (M4 processes) generated by sequences of independent
a—Fréchet variables.

3 Ergodic Properties of Stationary Max—stable Processes

Let X = {X(¢) };er be a (strictly) stationary oc—Fréchet process as in (12). To be able
to discuss ergodicity in continuous time, we shall suppose that X is measurable.
This is not a tall requirement since any continuous in probability process has a
measurable modification. All results are valid and in fact have simpler versions in
discrete time. We first recall the definitions of ergodicity and mixing in our context.

One can introduce a group of shift operators S ¢, T € R, which acts on all random
variables, measurable with respect to {X (¢) },cr. Namely, for all § = g(X;,,--- ,X;, ),
we define

ST(&) = g(X‘H—tl PR aXT—Hk)a

where g : R¥ — R is a Borel function. The definition of the S;’s can be ex-
tended to the class of all {X;},cg —measurable random variables. Note also that
S; 08y = Si4s, 1,5 € R. Clearly, the shift operators map indicator functions to indi-
cator functions and therefore one can define S;(A) := {S¢(14) = 1}, for all events
A € o{X;, t € R}. These mappings are well-defined and unique up to equality al-
most surely (for more details, see e.g. Ch. IV in [21]).

The stationarity of the process X implies that the shifts S;’s are measure preserv-
ing,i.e.

P(Sc(A)) = Z(A), forallAco{X,,tecR}.

Let now .%;,, denote the o —algebra of shift—invariant sets, namely, the collection
ofall A € 6{X;, t € R} such that Z(AAS(A)) =0forall T € R.

Recall that the process X is said to be ergodic if the shift-invariant c—algebra
Finy 18 trivial, i.e. for all A € Fj,,, we have that either Z2(A) =0 or #(A) = 1. On
the other hand, X is said to be mixing if

P(ANSH(B) — P(A)P(B), asT— o,

forall A, Be o{X;, t € R}.

It is easy to show that mixing implies ergodicity. Furthermore, ergodicity has
important statistical implications. Indeed, fix#; € R, 1 <i<kandleth: R¥ — R be
a Borel measurable function such that E|a(X (¢1), -+, X (tx))| < e=. The Birgkhoff’s
ergodic theorem implies that, as 7" — oo,
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1 T
P | ) X )de — &,
0

almost surely and in the L' —sense, where EE = Eh(X(t1),---,X(t;). The limit &
is shift-invariant, that is S¢(&) = &, almost surely, for all T > 0, and therefore & is
measurable with respect to .%;,,. Hence, if the process X is ergodic, then the limit &
is constant, and we have the following strong law of large numbers:

1
S ERX (1), X (1)), asT — oo,

(16)
In fact, one can show that X is ergodic if and only if Relation (16) holds, for all such
Borel functions 4 and all k£ € N. For more details on ergodicity and mixing, see e.g.
[21].

Relation (16) indicates the importance of knowing whether a process X is ergodic
or not. Ergodicity implies the strong consistency of a wide range of statistics based
on the empirical time—averages in (16).

Our goal in this section is to review necessary and sufficient conditions for the
ergodicity or mixing of the process X. These conditions will be formulated in terms
of the deterministic integrands { f; };cr C LY (1) and the important notion of max—
linear isometry.

T/ X(t+t),-, X(t+1n))dt

Definition 0.2. A mapping U : LY (u) — L% (1) is said to be a max—linear isometry,
if
(i)Forall f,g € LY(u)and a,b >0,

UlafVvbg)=aU(f)VbU(g), u—ae.
(ii) For all f € L% (u),
1U(P)lLewy = 1fllze )

Consider a collection of max-linear isometries U; : LY (u) — L% (u), which
forms a group with respect to composition, indexed by ¢t € R, i.e. U, o U; =
Uiis, t,s € Rand Uy = idg.

Now, fix fo € LY (u), let f; :==U;(fo), t € R, and consider the c—Fréchet process

~ | Utoyame, 1. (17

Definition 0.2 and the group structure of the U,’s readily implies that X = {X (#) };er
is stationary. Indeed,

@{X(r+t,)<x,,1<z<k}_exp /\/ o(/i)” u}

1<i<k X7

:exp{—/EUT( \/ {;’;)adu}:@{X(Ii)gxi, 1<i<k).

1<i<k
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For example, in the particular the case of moving maxima defined in (13), we have
that (17) holds, where U;(g)(u) = g(t +u) is the simple translation in time and
fo(u) = f(—u), forallu € R.

The representation in (17) is valid for a large class of stationary max—stable pro-
cesses. In fact, as shown in Stoev [25], the above defined max—linear isometries are
precisely the pistons of de Haan and Pickands [9]. Thus, by Theorem 6.1 in de Haan
and Pickands [9], Relation (17) holds for all continuous in probability oc—Fréchet
processes.

The following two results, established in Stoev [25], provide necessary and suf-
ficient conditions for the ergodicity and mixing of the process X, respectively.

Theorem 3.1 (Theorem 3.2 in [25]). Let X be a measurable o.—Fréchet process,
defined by (17). The process X is ergodic, if and only if, for some (any) p > 0,

1 /T
P
r | W Al ar— o, (8)
as T — oo, for all g € Fy(fy), where a Nb = min{a,b}. Here

FU(fO) = \/—span{U,(fo), re R}7

is the set of all max—linear combinations of the U, (fy)’s, closed with respect to the
metric P in (11).

The corresponding necessary and sufficient condition for mixing is as follows

Theorem 3.2 (Theorem 3.3 in [25]). Let X be a measurable o.—Fréchet process,
defined by (17). The process X is mixing, if and only if,

|UchAgllray — 0, astT— oo, (19)

forall g € F; (fo) := V-span{U;(fy), t <0} and h € F;j (fo) := V-span{U;(fy), t >
0}.

Although these results provide complete characterization of the ergodic and/or
mixing oo—Fréchet processes, they are hard to use in practice. This is because the
conditions (18) and/or (19) should be verified for arbitrary elements g and/or % in the
max-linear spaces Fy (fy) and/or Fji (fpy). Fortunately, in the case of mixing, these

conditions can be formulated simpler in terms of a natural measure of dependence.
Namely, for any & = J; fdMy and ) = z gdMy, f,g € LY (1) define

d&.n):=lla+Inle—1&vnlG-

Observe that since ||§||§ = [z f*du and |n||§ = [z g%d 1, we have

aEm = [ (r+g—rovet)du= [ fongtdu. @)
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Note that d(&,n) = 0 if and only if the random variables & and 1 are independent.
This observation and the intuition about extremal integrals, suggest that the quan-
tity d(&,mn) can be interpreted as a measure of dependence between & and 1. The
following result established in Stoev [25] shows that d(&,n) indeed plays such a
role.

Theorem 3.3 (Theorem 3.4 in [25]). Let X be a stationary and continuous in prob-
ability oo—Fréchet process. The process X is mixing if and only if d , (X (1), X (0)) —
0,as T — oo,

Remarks:

1. Observe that by Theorem 3.2 and Relation (20), the condition d(X¢,Xp) —
0, T — oo is necessary for X to be mixing. Surprisingly, Theorem 3.3 implies that
this condition is also sufficient. In many situations it is easy to check whether
the dependence coefficient d(X ¢, Xo) vanishes as the lag T tends to infinity. The
explicit knowledge of the max—linear isometries U, in (17) is not necessary.

2. The recent monograph of Dedecker et al. [10] provides many classes of remark-
ably flexible measures of dependence. To the best of my knowledge, these mea-
sures of dependence have not yet been studied in the context of max—stable pro-
cesses. The knowledge of sharp inequalities involving these measures of depen-
dence could lead to many interesting statistical results.

In the following section we will illustrate further the above results with concrete
examples and applications.

4 Examples and Statistical Applications

4.1 Ergodic Properties of Some Max—Stable Processes

o (Mixed Moving Maxima) It is easy to show that all moving maxima and mixed
moving maxima processes defined in (13) and (14) are mixing. Indeed, let

X(t):= ft —u,v)My(du,dv), t €R,
RxV

for some f € LY (du,v(dv)), o0 > 0 and observe that

d(X(1),X(0)) = vaf(t—&-u,v)“/\f(u,v)aduv(dv)

<2 (/Vf(u,v)av(dv))du. (21)

[u|>1/2

The last inequality follows from the fact that for all u € R, and ¢ > 0, either |u| > /2
or |t +u| > t/2 and therefore,
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JU+uv) A f(u,v)® < Ft+u,v) Uiy + £ (69) 1)

The inequality (21) and the integrability of f% imply that d(X(r),X(0)) — 0, as
t — oo, This, in view of Theorem 3.3, implies that the mixed moving maxima process
X is mixing.

o (Doubly Stochastic Processes) As in the theory of sum—stable processes (see
e.g. the monograph of Samorodnitsky and Taqqu [22]), we can associate a max—
stable a—Fréchet processes with any positive stochastic process & = {& (¢) } ;er with
E&(1)* < « . Namely, suppose that M, is a random sup—measure on a measure
space (E,&, ), where the control measure U is now a probability measure (i.e.
U(E) = 1). Any collection of spectral functions {f(t,u)};er C LY (E, u(du)) may
be viewed as a stochastic process, defined on the probability space (E, ). Con-
versely, a non-negative stochastic process & = {&(¢) };er, defined on (E, &, 1), and
such that E & (1)* = [ E(t,u)* u(du) < o= may be used to define an or—Fréchet
process as follows:

X(t) = Zg(t,u)Ma(du), teT. 22)

The a—Fréchet process X = {X(¢) };er will be called doubly stochastic. Note that
from the perspective of the random sup—measure M , the integrands & (¢)’s are non—
random since they ’live’ on a different probability space. The main benefit from this
new way of defining a max—stable process X is that one can use the properties of
the stochastic process & = {&(7)}er to establish the properties of the or—Fréchet
process X.

For example, let & = {&(¢)};cr be a strictly stationary, non—-negative process on
(E,&, 1) such that E,&(1)* < eo. We then have that X in (22) is also stationary.
Indeed, forallr; e R, x; >0, 1 <i <n,and h € R, we have

PX@+h) <xi 1<i<ny=exp{ By 5(r,~+h)/x,-)“}

1<i<n

—exp{ ~Eu( \/ z;(t,-)/x,-)“} — PX(t) <xi, 1 <i<n),

1<i<n

where in the second equality above we used the stationarity of £. Borrowing ter-
minology from theory of sum-stable processes (see e.g. [3]), if the process & is
stationary, we call the a—Fréchet process X doubly stationary. The following result
shows the perhaps surprising fact that if the process & is mixing, then the doubly
stationary process X is non—ergodic.

Proposition 0.1. Let X = {X(¢) };er be a doubly stationary process defined as in
(22) with non—zero & (t)’s. If the stationary process & = {& (1)} ;er is mixing, then X
is non—ergodic.

Proof. Consider the quantity

a(x(0).X(0) = [ (0.0 7E0.0) n(dn) =By (E(0)* 1E(0)7).
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We will show that liminf;_... d(X(¢),X(0)) = ¢ > 0. This would then imply that the
time—averages in Theorem 3.1 do not vanish, and hence X is not ergodic.
Observe that since £ is mixing, for all Borel sets A, B C R, we have

PLE(R) €A, £E(0) e B} — P{E(t) e A} P{E(0) € B}, ast — oo

Consider the intervals A = B = (¢'/% o), for some € > 0, and note that the last
relation is equivalent to

PLEMNE0)* > e} — P{EM)* > e} 2{E(0)* > €}, ast—oeo. (23)

Since the & (¢)’s are not identically zero, there exists an € > 0, such that Z{&(z)* >
e} = 2{E(0)* > €} > 0. Now, note that

E(E()" AE(0)*) > eP{E(N)* NEO)® > e).
This, in view of the convergence in (23) implies that
liminf E(£(1)" A &(0)%) >0,
which as argued above, implies that the process X is non—ergodic. [J

The above result suggests that most doubly stochastic oo—Fréchet processes
are non—ergodic. This fact can be intuitively explained by the conceptual differ-
ence between the independence in the £(7)’s and the independence of their ex-
tremal integrals X (¢)’s. Indeed, for X (¢) and X (s) to be independent, one must have
E(r)E(s) = 0, u—almost surely. The latter, unless the process & is trivial, implies
that & (¢) and & (s) are dependent. The following example shows, however, that one
can have ergodic and in fact mixing doubly stochastic processes. These processes
will be stationary but not doubly stationary.

e (Brown—Resnick Processes) Let now w = {w(t) };cr be a standard Brownian
motion, defined on the probability space (E,&, 1), i.e. {w(—1)} ;>0 and {w(t)}>0
are two independent standard Brownian motions. Introduce the non—negative pro-
cess & (1) 1= e" )/ 120 ¢ ¢ R and observe that E, & (1)* = 1. forall € R.

The following doubly stochastic process X = {X(¢)},cr is said to be a Brown—
Resnick process:

X(t):= Zé(l,u)Ma(du) = ZEeWW/“*"VMMa(du), reR. (24)

The max—stable process {logX (¢)};>0 with oc = 1 and Gumbel marginals was first
introduced by Brown and Resnick [2] as a limit involving extremes of Brownian
motions. Surprisingly, the resulting max—stable process X = {X(7)} ;R is stationary.
The one-sided stationarity of X is easy to show, by using the fact that {w(z)} ;>0 has
stationary and independent increments (see e.g. [25]).

Recently, Kabluchko, Schlather and de Haan [15] studied general doubly stochas-
tic processes of Brown—Resnick type. They established necessary and sufficient con-
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ditions for the stationarity of such max stable processes. The two—sided stationarity
of the classical Brown—Resnick process X above follows from their general results.

We now focus on the Brown—Resnick process in (24) and show that it is mixing.
Indeed, the continuity in probability of X follows from the L *—continuity of & () =
e"(0)/o=ltl/2ec Therefore, by Theorem 3.3, to prove that X is mixing, it is enough to
show that d(X(¢),X(0)) — 0, as t — . We have that, for all # > 0,

d(X(1),X(0)) = E, (ew(,),,/z AeW<°>) —E, (eWZ*Z/Q A 1),

where Z is a standard Normal random variable under u. The last expectation is
bounded above by:

V)2
32{2 > \/[/2} + \/12 / g\/fzfl/2g722/2d1 =
T J—co

V)2
D(—/1/2) + ! / e V2,
V2r e

which equals 2@ (—+/1/2), where ®(t) = (2)~'/2 [* ¢**/2dx. Therefore,

)
e 250, ast— oo,

d(X(0),X(0)) <20(—1/2) <

V2
This implies that the Brown—Resnick process X is mixing.

In [25], the ergodicity of more general Brown—Resnick type processes was es-
tablished where the process w in (24) is replaced by certain infinitely divisible
Lévy processes. It would be interesting to define and study other classes of dou-
bly stochastic processes by using different types of integrands.

4.2 Estimation of the Extremal Index

The extremal index is an important statistical quantity that can be used to measure
the asymptotic dependence of stationary sequences. Here, we will briefly review the
definition of the extremal index and discuss some estimators for the special case of
max-—stable time series.

Let Y = {Y} }xez be strictly stationary time series, which is not necessarily max—
stable. Associate with Y a sequence of independent and identically distributed vari-
ables Y* = {Y,’ }xcr, with the same marginal distribution as the Y}’s. Consider the
running maxima M, := maxi<j<,¥;j and M,; := max <<, ¥; and suppose that

I
@{ M,’;—bngx} . G(x), asn— o, (25)
an
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where G is one of the three extreme value distribution functions. If the last conver-
gence holds, for suitable normalization and centering constants a , and b, then we
say that the distribution of the Y;’s belongs to the maximum domain of attraction of
G (for more details, see e.g. [18]).

Definition 0.3. Suppose that (25) holds for the maxima of independent ¥ ’s. We say
that the time series Y has an extremal index 0, if

1
9’{ M,,—b,lgx}LG"(x), as 11— oo, (26)

dn

where the a,,’s and b,,’s are as in (25).

It turns out that if the time series ¥ = {Y} }xez has an extremal index 6, then it
necessarily follows that
0<6<I.

Observe that if the Y;’s are independent and belong to the maximum domain of
attraction of an extreme value distribution, then trivially, ¥ has extremal index 6 = 1.
The converse however, is not true, that is, 8 = 1 does not imply the independence of
the Y’s, in general. It is important that the centering and normalization sequences
in (25) and (26) be the same. For more details, see the monograph of Leadbetter,
Lindgren and Rootzén [16].

A number of statistics have been proposed for the estimation of the extremal in-
dex (see e.g. [23], [28], [12]). Here, our goal is to merely illustrate the use of some
new estimation techniques for the extremal index in the special case of max—stable
a—Fréchet processes. We propose a method to construct asymptotically consistent
upper bounds for the extremal index, if it exists. The detailed analysis of these meth-
ods for the case of general time series is beyond the scope of this work.

Suppose now that ¥ = {¥; },cz is a stationary, max—stable time series with the
following extremal integral representation

Y = /E Fulu)Mo(du), ke, @7

The extremal index of ¥ = {¥} } ez, if it exists, can be expressed simply as follows.
By the max—linearity of the extremal integrals, we have with M, as in (26), that:

A otz =on{ LV )}

1<k<n

On the other hand, by the independence of the Y,’s, we have

1 N _
P{ | M <} =exp{- 15},

where [[¥)[[% = [, f'du.
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Thus, the extremal index of Y exists and equals 0, if and only if, the following

limit exists: ] | e
. : {04
0: , lim /E( \V )dy. (28)

G n=en Jen e,

This fact suggests simple and intuitive ways of expressing the extremal index
of Y. To do so, let r € N and consider the time series Y (r) := {Yy(r) }1ez of non—
overlapping block—-maxima of size r:

Yi(r) = lngl?grYiJr(kfl)ra keZ.
Observe that Y =Y (1) is the original time series. We shall denote the extremal index

of Y(r) as 0(r), when it exists. The following result yields a simple relationship
between the 0(r)’s.

Proposition 0.2. Let Y = {Y; }rez be as in (27). If Y has a positive extremal index
0 = 0(1), then the time series Y (r) = {Y(r) bxez also has an extremal index 0(r)
equal to:

where w
_ vl

r

0,(1) /E( \/ fk“)du, reN. (29)

1<k<r

Moreover, for all r € N, we have 6,(1) € (0,1] and hence
0(1)<6(r) and 6(1)<06,(1). (30)

We will see in the sequel that, for fixed r, the quantity 6,(1) can be consistently
estimated from the data, provided that the underlying time series Y is ergodic.

Proof (Proposition 0.2). In view of (28), we have that

DV |
00) = v vE @ tim [ (N S, )du

1<k<n 1<i<r
a1
:rHYlv...\/Y,HaOf’}ggm/E( \/ f]‘.")du, 31)
1<j<nr

where in the last relation we multiplied and divided by the constant r.
By assumption, the limit in the right-hand side of (31) exists and equals ||Y]|%6(1),
which implies that the time series Y (r) has an extremal index 0 (r). This, fact since

iv-velg= [V f)au

1<k<r

and in view of (29) also implies that 6(r) = 6(1)/6,(1).
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Finally, the inequalities in (30) follow from the fact that
AGRGLIE Z/f;?‘duf e,
1<k<r
which yields that 0 < 6,(1) < 1.0

We now focus on the estimation of the parameter 6,(1) for a given fixed value
of r, from observations {Y;, 1 <k <n} of the time series Y. Suppose that the time
series Y is ergodic. Note that EY” = I'(1 — p/a)||Y1||5 is finite, for all p < a.
Therefore, the ergodicity implies that

Z Y, 5T (1= p/a)|nillh, (32)

as n — oo, For the block—-maxima time series, we also have that

R 1 b/ »
iy (r) = in/r 2 Yi(r)? Z5T(1—p/a)||Y1V--- VY| h. (33)

Note that here we have only [r/r] observations from the block—-maxima time series
{Yi(r), 1 <k <n/r]} available from the original data set.

Relation (29) and the convergences in (32) and (33) suggest the following esti-
mator for the parameter 0,(1):

6,(1:p.n) := 1(@@)/@(1))“/”. (34)

Proposition 0.3. Suppose that {Yy, 1 < k < n} is a sample from an ergodic station-
ary a—Fréchet time series. Then, for all p < o, we have

gr(l;p,n) 2% 0,(1), asn— oo,

This result shows the strong consistency of the estimator in (34). The proof of
this proposition is an immediate consequence from Relations (32) and (33).

Note that one can use also overlapping block—maxima to estimate the quantity
1Y1(N)]|% =1|Y1 V- VY,]|%. Indeed, for an ergodic time series Y, we also have

Mpovip(1;p,n) ==

r
2 Y VYe Vo VY, )P 25 T (1= p/a)|vi(r)]|,
n—r+1 ]

as n — oo, This suggests another flavor of an estimator for 6,(1):

~ 1/ N a/p
9r,ov1p<l§pa”) = - (mp,ovlp(r)/mp(l)) :
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Clearly, as for the estimator 6,, we also have strong consistency:

§,70V1p(1;p,n) N 0,(1), asn— oo,

Max-AR(1) Time Series: n = 100000

T T T
non-overlapping

- — — overlapping 1
_ true er(1)

0.22f
0.2
0.18f
0.16f .
0.14f .

0127 L L Il Il L L L

10 20 30 40 50 60 70 80 90 100
Block Size r

Fig. 1 Top panel: Simulated max—autoregressive oe—Fréchet time series ¥, 1 <k < n defined as
in (35) with n =100000, ¢ = 0.9 and o = 1.5. The theoretical value of 6 = 6(1) equals (1 — ¢*) =

0.1462. Bottom panel: Estimates é,(l) (solid line) and é\mvlp(l) (dashed line) as a function of the
block-size r. The true value of 6(1) is indicated by the dotted line.

Figure 1 illustrates the performance of the estimators 5,(1) and 6,,oy1p(1) over a
simulated max—autoregressive time series. The time series Y is defined as:

=

Yo=Y V(1-9)Z=(1-9)\/ ¢'Z_;, (35)

j=0

where ¢ € [0, 1], and where the Z;’s are independent standard a—Fréchet variables.
We used parameter values o« = 1.5, ¢ = 0.9 and p = 0.6.
One can show that ||Y||% = (1—¢)%/(1 —¢“), and that

iV---VY,, =Y V(11— ¢)(2r21]2(1§rzk).

Thus, for 6,(1) and 6(1) we obtain:
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(r; Dy 1 and 6(1) = lim 6,(1) = (1 — ¢).

F—o0

6.(1)=(1- 9%

The true value of 0,(1), indicated by the dot—dashed line is nearly covered by the
solid line, indicating the realizations of 5,(1). The *overlapping blocks’ estimator
§,70V1p(1), on the other hand, shows a small but systematic bias, which decreases
as the block—size r grows. This limited simulation experiment indicates that 5,(1)
and @yov]p(l) accurately estimate 6,(1). Furthermore, in this setting, 6,(1) is more
accurate for small values of r and /9\,70‘,1;,(1) is competitive and likely to be more
accurate for large values of r. Note also that since 6,(1) convergesto 6(1), as r — oo,
both 5,(1) and /9\,70‘,1;,(1) can be used to estimate 6(1) in practice, when sufficiently
large values of r are chosen.
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