Preface

I dvra ywpel kal ovdév ptver
Heracleitus, 502 BC

The monograph in your hands deals with difference equations, or in a terminol-
ogy equivalent for us, with recursions, iterations and discrete dynamical systems.
Such iterative procedures are omnipresent in mathematics, as well as in its related
sciences — for approximation as well as for modelling purposes. Their history can
be traced back to Pythagoras (triangular numbers, ~500 BC), Euclid (continued
fractions, ~250 BC) and Archimedes (computation of 7w, ~200 BC), that is, the
beginning of mathematics as we know it today. Early systematic approaches to
difference equations as independent mathematical discipline appeared in the 1920-
1950s in form of classical monographs, like for instance [42, 166, 179, 303]. These
early contributions are basically concerned with a linear theory and connections
to the field of functional equations. After that, corresponding research stagnated
somehow and difference equations found themselves in the shadow of their con-
tinuous counterpart, namely evolutionary differential equations of various kind.
However, differing from classical results obtained in the 1950s and before, in re-
cent decades nonlinear problems and phenomena reentered the center of interest
and finally led to an extensive theory of discrete dynamical systems. One reason
for their popularity is definitely that already very simple equations show a surpris-
ingly complex dynamical behavior, like, e.g., the tent-map, the logistic equation
or Smale’s horseshoe map. Fields like “chaos theory” draw a strong motivation
from such examples which additionally serve as prototypes to understand more
complex phenomena. Indeed, over the past 20 years the mathematical community
observed a renaissance of difference equations. Several new journals have been
successfully introduced,' conference series are established and various new mono-
graphs appeared (e.g., [3,4,84,103,133,175,248,276,281,289,294,297,334,425]).
In the course of this revival also somewhat philosophical arguments to support
discrete dynamics have occurred. Actually, many laws of nature are intrinsically
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discrete (cf. [132,225,302,466]), providing the insight that a “correct” description
of our world might be a discrete one. As a conclusion one can state that difference
equations form a theory of its own right and are worth to investigate.

Continuous to discrete: There is admittedly a strong analogy between the theories
of discrete and of continuous dynamical systems, which even led to a unifying cal-
culus (cf. [204]). Yet, particularly in low dimensions discrete models tend to have a
more complex behavior due to the fact of nonexistent backward solutions, or miss-
ing topological constraints like connected solution curves. For that reason alone,
it is unjustified that the continuous theory is usually preferred when it comes to a
rigorous presentation in the literature, while its discrete counterpart is labeled as
“analogous” or proofs are attributed to work “along the lines”.

As a matter of course, a key application for difference equations and discrete
dynamical systems comes from various discretizations of (evolutionary) differ-
ential equations. Here, “discretization” can have different meanings and discrete
approaches are quite beneficial for the dynamical systems theory as a whole:

o For various problems it is convenient to study the (discrete) time-h-map ¢(h),
instead of a (continuous) semiflow (p(t))¢>0 itself — for example in topological
linearizations (cf. [200]) and to construct invariant manifolds (cf. [83, 285, 343],
or [169] dealing with invariant manifolds for PDEs on unbounded domains).
Another source for such applications are abstract functional differential equa-
tions; here, in certain cases no variation of constants formula for the continuous
problem is known and one has to work with the corresponding time-h-map of
the generated semiflow to obtain invariant manifolds for the continuous flow
(cf. [285, Sect. 4]).

o Poincaré (or return) maps are a popular tool to study the behavior of periodic
continuous motions, in particular since they offer a possibility to reduce the di-
mension of a problem by 1 (cf., for instance, [9, p.320ff], [227, pp. 17-25] or
[319, pp. 56-62]).

e The asymptotic behavior of abstract nonautonomous (linear) evolutionary equa-
tions is often studied using difference equations, where the continuous evolution
operator is restricted to the integers. Using the resulting discrete equation, it
is more convenient to deduce results on the long term behavior, and then to
show that they extend to the continuous problem (see [421] for stability results,
[88,201,299,300,369,372] for exponential dichotomies or [301] for a Fredholm
theory).

o Last but not least, numerical schemes applied to differential equations canoni-
cally lead to difference equations and it is important to have a sufficiently rich
discrete theory at our disposal (cf. [447]).

In conclusion, even within the field of dynamical systems it seems legitimate to
claim that the continuous theory benefits more from the discrete one than the other
way around. As a consequence, discrete dynamical systems and difference equation
require an adequate presentation.
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Even beyond that, from a modeling and simulation perspective, it is frequently
more reasonable and sometimes plainly honest to work with discrete models right
from the beginning, instead of enforcing a continuous model and then to discretize
it in order to make it solvable on a computer.

Autonomous to nonautonomous: Beyond our above considerations, the recent
years have seen a growing interest in nonautonomous problems, i.e., equations
whose right-hand sides explicitly depend on time or chance (see, e.g., the upcom-
ing monographs [79,266]). Indeed, nonautonomous equations allow more realistic
models, since they enable us to include seasonal influences, as well as regulation,
controlling, modulating or random effects. In concrete situations this is realized in a
way that constant parameters are replaced by time-dependent sequences (paramet-
ric perturbations) or driven by external (decoupled) equations (driven equations).
Moreover, in contrast to an already stochastic approach, the advantage of determin-
istic nonautonomous models is that their results are easier to interpret (cf. [454]) and
to tackle, because they require only point estimation of constants instead to specify
complete distributions for random variables as in the case of stochastic models. Fur-
ther reasons illustrating the importance of a nonautonomous deterministic theory
are as follows:

o It canonically appears in a seemingly autonomous setting, like, e.g., to study the
behavior near nonconstant reference solutions or in the construction of invariant
foliations (see, for example, [33,83,89,157]). So why not considering nonauton-
omous equations right from the beginning?

o Time-adaptive discretization schemes lead to nonautonomous problems (cf., e.g.,
[55, 173,267, 268]). In fact, so far analytical discretization theory essentially
never leaves the framework of autonomous dynamical systems. Thus, often
schemes with constant stepsizes are considered, which from an applied point
of view and referring to adaptive schemes is a rather artificial point of view.

¢ Results from the deterministic theory of difference equations are applicable to
random difference equations on a path-wise basis (cf. [12, pp. 50, Sect.2.1] or
[459]), i.e., by considering concrete realizations of random variables.

Our approach to nonautonomous dynamical systems is based on 2-parameter
semigroups (or discrete processes) rather than on skew product dynamics — a no-
tion coined in a series of papers by Sacker and Sell (see, e.g., [415-417,419] or
the memoirs [418]) during the 1970s. In a skew product framework, one enlarges
the state space by encoding the time-dependence using a flow on the so-called base
space (cf. [429]). Hence, one is in the convenient position to apply methods from
classical autonomous dynamical systems. Skew product dynamics is motivated by
re-capturing the geometric flavor that is inherent to autonomous dynamics and also
various hierarchical or triangular systems fall into the abstract skew product cate-
gory. Nevertheless, in contrast to the admittedly elegant skew product setting, we
avoid the resulting topologically subtle questions and assumptions on the particu-
lar time dependencies, which guarantee that the corresponding base space becomes
compact.
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Geometric theory to discretizations: A central motivation for this work is to
bring together ideas and results from three related, yet different areas of applied
mathematics mentioned above: Difference Equations, (Nonautonomous) Dynami-
cal Systems and (Theoretical) Numerical Analysis. They are obviously related in
the sense that iterations are of central importance. But on the other hand, unfor-
tunately they rarely rely on each other, the corresponding scientific communities
hardly overlap and chances for synergetic effects are missed. We intend to introduce
some modern concepts from the recent theory of nonautonomous dynamical sys-
tems into the seemingly classical field of difference equations. Within this broad
field, we restrict on certain aspects of what is commonly known as “qualitative” or
more precisely as “geometric theory”.

This area was essentially initiated by Poincaré and Lyapunov over a century ago.
It aims to identify certain invariant subsets of the state space, which “prescribe” the
long-term behavior of a system. First, it deals with questions of the existence of spe-
cial solutions (equilibria, periodic, almost-periodic or complete bounded solutions,
etc.) or collections of solutions (invariant manifolds) with a particular growth behav-
ior, as well as their stability and domain of attraction. Second, it intends to identify
prototype system which are particularly simple but share the essential dynamics
(topological conjugation and structural stability). Third, also addressed are related
global questions, like starting from an “arbitrary” initial value, what can be said
about the long-term dynamics (or the (global) attractor). For a broader overview,
we refer to, for instance, [12, 192,198,201,211,245,253,348,432,434,462].

To a minor extent, we are interested in discretization theory or what is nowadays
known as numerical dynamics. The essential goals in this field are (1) to investi-
gate and determine features of continuous dynamical systems which persist under
discretization, and (2) to obtain convergence results for small stepsizes or spatial
discretization meshes. For a survey, see [54,172,193,222,313,445-447].

This monograph aims to extend the above complex of questions and to pro-
vide a consistent reference. In doing so, we throughout deal with nonautonomous
discrete equations. In order to possess stability properties required in discretiza-
tion theory, they are allowed to be implicit. Furthermore, their state spaces can be
infinite-dimensional and time-dependent. This set-up allows immediate applications
to various temporal and full discretizations of evolutionary differential equations,
i.e., to address the aspect (1) above. However, we clearly point out to focus on the
persistence aspect of numerical dynamics and totally neglect the crucial conver-
gence questions addressed in aspect (2). Yet, we hope to lay down the basics for
future applications towards convergence issues.

At hand is particularly a rather complete approach to invariant manifold theory
for implicit nonautonomous difference equations in Banach spaces. Here, differing
from various approaches in the literature, fully implicit numerical schemes fit into
our set-up. In detail, our contents can be summarized as follows:

o The first chapter introduces 2-parameter semigroups acting on the extended state
space — our notion to describe nonautonomous dynamics. We consistently use
the concept of pullback convergence. Accordingly, the corresponding limit sets
and attractors are sequences of sets rather than single sets as in the classical
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autonomous situation. Under various compactness assumptions, we provide cri-
teria for their existence and derive basic properties. Moreover, we illustrate how
these objects simplify to known-ones for the periodic or autonomous case.

o A quite flexible notion for difference equations is discussed in Chap. 2, which
includes implicit discretization methods. We investigate conditions for them
to generate 2-parameter semigroups, to be dissipative or to possess (global)
attractors; in doing so, we particularly address one-step methods. Surely, the
nonautonomous stability theory is in part classical, but understandably more
complex than in the autonomous (or periodic) situation. Yet, we present and re-
late it to attraction and stability notions based on pullback convergence. Finally,
simplifications in the periodic and autonomous case are illuminated.

o The theory of linear difference equations in Chap.3 serves as foundation for
our following perturbation arguments. Here, stability is a property of the whole
system and not only of single solutions. After that we briefly touch periodic equa-
tions and Floquet theory. Exponential dichotomies and more general splittings
turn out to be an appropriate hyperbolicity notion in our nonautonomous setting.
In addition, we provide several results discussing the behavior of splittings under
perturbation.

¢ Our time-dependent counterpart to classical invariant manifolds are so-called in-
variant fiber bundles. We provide an abstract approach, which as application,
yields bundles associated to given reference solutions (local theory), as well as a
discrete version of inertial manifolds (global theory). In doing so, we prove re-
sults on invariant foliations and asymptotic phases. Smoothness issues are tackled
as well, using an elementary approach which is essentially based on the contrac-
tion mapping principle. This allows us to obtain Taylor approximations of local
invariant fiber bundles. We also describe a numerical scheme to compute global
approximations.

o Finally, our achievements from the previous chapter, allow to deduce results on
topological decoupling and linearization. They include a generalized Hartman—
Grobman theorem for invertible nonautonomous problems with nonhyperbolic
spectrum. We can get rid of the invertibility assumption when shifting to the
concept of solution conjugacy. The latter is still sufficient to deduce smoothness
properties of invariant fiber bundles.

Every chapter is supplemented by an illustrating section dealing with applications.
It extends our so far theoretical approach and illustrates that the previous results
and methods are applicable to discretizations of various evolutionary differential
equations, like for example of functional differential-, reaction-diffusion- or abstract
type. Moreover, a final concluding section points out the relevant literature, provides
historical context and indicates directions for further research.

The appendix collects a number of helpful results needed in the text. It addresses
discrete inequalities, various fixed point and global inversion theorems, as well as
explanations on smooth functions. In particular, we provide a survey on smooth
norms, which are important to construct global extensions of differentiable map-
pings and locally invariant fiber bundles.
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The monograph is linearly written with the exception of some references to the
appendix and that certain applications in Sect. 2.6 require a lookahead to indepen-
dent results from Sect.3.7. As a general philosophy behind these notes, it is our
intention to provide explicit estimates and constants to a large extent. This might
lead to a technical appearance, but enables us to obtain quantitative results on, e.g.,
growth rates of solutions, the radius of absorbing sets or the dimension of (attractive)
invariant manifolds. Understandably, the references have bias on discrete dynamics.
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