
Chapter 2

Definitions

In this chapter we present a number of definitions of security for secure com-
putation. Specifically, in Sections 2.2 to 2.4 we present definitions of security
for semi-honest, malicious and covert adversaries; all these definitions are
based on the ideal/real-model paradigm for formulating security. We begin
with the classic definitions of security in the presence of semi-honest and
malicious adversaries, and then proceed to the more recent notion of secu-
rity in the presence of covert adversaries. In Section 2.5, we show that it
often suffices to consider restricted types of functionalities, which enables us
to simplify the presentation of the general protocols in Chapters 3 to 5. In
Section 2.6 we consider two relaxations of these definitions, for the case of
malicious adversaries. Finally, in Section 2.7 we conclude with the issue of
sequential composition of secure protocols. We stress that since the focus of
this book is secure two-party computation, all of the definitions are presented
for the case of two parties only.

2.1 Preliminaries

We begin by introducing notation and briefly reviewing some basic notions;
see [30] for more details. A function µ(·) is negligible in n, or just negligi-
ble, if for every positive polynomial p(·) and all sufficiently large ns it holds
that µ(n) < 1/p(n). A probability ensemble X = {X(a, n)}a∈{0,1}∗;n∈N is
an infinite sequence of random variables indexed by a and n ∈ N. (The
value a will represent the parties’ inputs and n will represent the secu-
rity parameter.) Two distribution ensembles X = {X(a, n)}a∈{0,1}∗;n∈N and
Y = {Y (a, n)}a∈{0,1}∗;n∈N are said to be computationally indistinguishable,

denoted by X
c≡ Y , if for every non-uniform polynomial-time algorithm D

there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗ and
every n ∈ N,

|Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]| ≤ µ(n).

19C. Hazay, Y. Lindell, Efficient Secure Two-Party Protocols,  
Information Security and Cryptography, DOI 10.1007/978-3-642-14303-8_2,  
© Springer-Verlag Berlin Heidelberg 2010 



20 2 Definitions

All parties are assumed to run in time that is polynomial in the security
parameter. (Formally, each party has a security parameter tape upon which
that value 1n is written. Then the party is polynomial in the input on this
tape. We note that this means that a party may not even be able to read
its entire input, as would occur in the case where its input is longer than its
overall running time.) We sometimes use ppt as shorthand for probabilistic
polynomial time.

For a set X, we denote by x←R X the process of choosing an element x
of X under the uniform distribution.

2.2 Security in the Presence of Semi-honest Adversaries

The model that we consider here is that of two-party computation in the
presence of static semi-honest adversaries. Such an adversary controls one of
the parties (statically, and so at the onset of the computation) and follows the
protocol specification exactly. However, it may try to learn more information
than allowed by looking at the transcript of messages that it received and
its internal state. Since we only consider static semi-honest adversaries here,
we will sometimes omit the qualification that security is with respect to such
adversaries only. The definitions presented here are according to Goldreich
in [32].

Two-party computation. A two-party protocol problem is cast by spec-
ifying a random process that maps pairs of inputs to pairs of outputs (one
for each party). We refer to such a process as a functionality and denote
it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is,
for every pair of inputs x, y ∈ {0, 1}n, the output-pair is a random variable
(f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with input x)
wishes to obtain f1(x, y) and the second party (with input y) wishes to obtain
f2(x, y). We often denote such a functionality by (x, y) 7→ (f1(x, y), f2(x, y)).
Thus, for example, the oblivious transfer functionality [72] is specified by
((z0, z1), σ) 7→ (λ, zσ), where λ denotes the empty string. When the function-
ality f is probabilistic, we sometimes use the notation f(x, y, r), where r is
a uniformly chosen random tape used for computing f .

Privacy by simulation. Intuitively, a protocol is secure if whatever can be
computed by a party participating in the protocol can be computed based
on its input and output only. This is formalized according to the simulation
paradigm. Loosely speaking, we require that a party’s view in a protocol
execution be simulatable given only its input and output. This then implies
that the parties learn nothing from the protocol execution itself, as desired.

Definition of security. We begin with the following notation:

• Let f = (f1, f2) be a probabilistic polynomial-time functionality and let π
be a two-party protocol for computing f .



2.2 Security in the Presence of Semi-honest Adversaries 21

• The view of the ith party (i ∈ {1, 2}) during an execution of π on
(x, y) and security parameter n is denoted by viewπ

i (x, y, n) and equals
(w, ri,mi

1, ...,m
i
t), where w ∈ {x, y} (its value depending on the value

of i), ri equals the contents of the ith party’s internal random tape, and
mi

j represents the jth message that it received.
• The output of the ith party during an execution of π on (x, y) and security

parameter n is denoted by outputπi (x, y, n) and can be computed from its
own view of the execution. We denote the joint output of both parties by
outputπ(x, y, n) = (outputπ1 (x, y, n), output

π
2 (x, y, n)).

Definition 2.2.1 (security w.r.t. semi-honest behavior): Let f = (f1, f2) be
a functionality. We say that π securely computes f in the presence of static
semi-honest adversaries if there exist probabilistic polynomial-time algorithms
S1 and S2 such that

{(S1(1
n, x, f1(x, y)), f(x, y))}x,y,n

c≡ {(viewπ
1 (x, y, n), output

π(x, y, n))}x,y,n ,

{(S2(1
n, y, f2(x, y)), f(x, y))}x,y,n

c≡ {(viewπ
2 (x, y, n), output

π(x, y, n))}x,y,n ,

x, y ∈ {0, 1}∗ such that |x| = |y|, and n ∈ N.

The above states that the view of a party can be simulated by a probabilistic
polynomial-time algorithm given access to the party’s input and output only.
We emphasize that the adversary here is semi-honest and therefore its view
in the execution of π is exactly as in the case where both parties follow
the protocol specification. We note that it is not enough for the simulator
Si to generate a string indistinguishable from viewπ

i (x, y). Rather, the joint
distribution of the simulator’s output and the functionality output f(x, y)
must be indistinguishable from (viewπ

i (x, y), output
π(x, y)). This is necessary

for probabilistic functionalities; see [11, 32] for a full discussion.

A simpler formulation for deterministic functionalities. In the case
where the functionality f is deterministic, a simpler definition can be used.
Specifically, we do not need to consider the joint distribution of the simula-
tor’s output with the protocol output. Rather we separately require correct-
ness, meaning that

{outputπ(x, y, n))}x,y∈{0,1}∗;n∈N
c≡ {f(x, y)}x,y∈{0,1}∗

and, in addition, that there exist ppt S1 and S2 such that

{S1(1
n, x, f1(x, y))}x,y∈{0,1}∗;n∈N

c≡ {viewπ
1 (x, y, n)}x,y∈{0,1}∗;n∈N , (2.1)

{S2(1
n, y, f2(x, y))}x,y∈{0,1}∗;n∈N

c≡ {viewπ
2 (x, y, n)}x,y∈{0,1}∗;n∈N (2.2)

The reason this suffices is that when f is deterministic, outputπ(x, y, n) must
equal f(x, y). Furthermore, the distinguisher for the ensembles can compute



22 2 Definitions

f(x, y) by itself (because it is given x and y, the indices of the ensemble).
See [32, Section 7.2.2] for more discussion.

For simplicity of notation, we will often let n be the length of x and y. In
this case, the simulators S1 and S2 do not need to receive 1n for input, and
we omit n from the view and output notations.

An equivalent definition. A different definition of security for two-party
computation in the presence of semi-honest adversaries compares the output
of a real protocol execution to the output of an ideal computation involv-
ing an incorruptible trusted third party (as described in the Introduction).
The trusted party receives the parties’ inputs, computes the functionality
on these inputs and returns to each its respective output. Loosely speak-
ing, a protocol is secure if any real-model adversary can be converted into an
ideal-model adversary such that the output distributions are computationally
indistinguishable. We remark that in the case of semi-honest adversaries, this
definition is equivalent to the (simpler) simulation-based definition presented
here; see [32]. This formulation of security will be used for defining security
in the presence of malicious adversaries below.

Augmented semi-honest adversaries. Observe that by the definition
above, a semi-honest party always inputs its prescribed input value, even if
it is corrupted. We argue that it often makes sense to allow a corrupted semi-
honest party to modify its input, as long as it does so before the execution
begins. This is due to the following reasons. First, on a subjective intuitive
level it seems to us that this is in the spirit of semi-honest behavior because
choosing a different input is not “improper behavior”. Second, when protocols
achieving security in the presence of semi-honest adversaries are used as a
stepping stone for obtaining security in the presence of malicious adversaries,
it is necessary to allow the semi-honest adversary to modify its input. Indeed,
Goldreich introduces the notion of an augmented semi-honest adversary that
may modify its input before the execution begins when showing how to obtain
security against malicious adversaries from protocols that are secure only
in the presence of semi-honest adversaries [32, Sec. 7.4.4.1]. Finally, as we
discuss in Section 2.3.3, it is natural that any protocol that is secure in
the presence of malicious adversaries also be secure in the presence of semi-
honest adversaries. Although very counterintuitive, it turns out that this
only holds when the semi-honest adversary is allowed to change its input;
see Section 2.3.3 for a full discussion. We present the definition of semi-
honest adversaries above, where a corrupted party cannot change its input, for
historical reasons only. However, we strongly prefer the notion of augmented
semi-honest adversaries. We remark that a formal definition of this notion is
easily obtained via the ideal/real-model paradigm; see Section 2.3 below.



2.3 Security in the Presence of Malicious Adversaries 23

2.3 Security in the Presence of Malicious Adversaries

In this section, we present the definition of security for the case of malicious
adversaries who may use any efficient attack strategy and thus may arbitrarily
deviate from the protocol specification. In this case, it does not suffice to
construct simulators that can generate the view of the corrupted party. First
and foremost, the generation of such a view depends on the actual input
used by the adversary; indeed this input affects the actual output received.
However, in contrast to the case of semi-honest adversaries, the adversary
may not use the input that it is provided. Thus, a simulator for the case
where P1 is corrupted cannot just take x and f(x, y) and generate a view
(in order to prove that nothing more than the output is learned), because
the adversary may not use x at all. Furthermore, beyond the possibility that
a corrupted party may learn more than it should, we require correctness
(meaning that a corrupted party cannot cause the output to be incorrectly
distributed) and independence of inputs (meaning that a corrupted party
cannot make its input depend on the other party’s input). As discussed in
the overview in Section 1.1, in order to capture these threats, and others,
the security of a protocol is analyzed by comparing what an adversary can
do in the protocol to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving
an incorruptible trusted third party to whom the parties send their inputs.
The trusted party computes the functionality on the inputs and returns to
each party its respective output. Loosely speaking, a protocol is secure if
any adversary interacting in the real protocol (where no trusted third party
exists) can do no more harm than if it were involved in the above-described
ideal computation. See [11, 32] for more discussion on the advantages of this
specific formulation.

We remark that since we consider the two-party case, there is no honest
majority. It is therefore impossible to achieve fairness in general. Therefore,
in the ideal setting we allow the adversary to obtain the corrupted party’s
output, without the honest party necessarily obtaining its output. We also
remark that in defining security for two parties it is possible to consider only
the setting where one of the parties is corrupted, or to also consider the
setting where none of the parties are corrupted, in which case the adversary
seeing the transcript between the parties should learn nothing. Since this
latter case can easily be achieved by using encryption between the parties we
present the simpler formulation security that assumes that exactly one party
is always corrupted.



24 2 Definitions

2.3.1 The Definition

Execution in the ideal model. As we have mentioned, in the case of
no honest majority, it is in general impossible to achieve guaranteed output
delivery and fairness. This “weakness” is therefore incorporated into the ideal
model by allowing the adversary in an ideal execution to abort the execution
or obtain output without the honest party obtaining its output. Denote the
participating parties by P1 and P2 and let i ∈ {1, 2} denote the index of
the corrupted party, controlled by an adversary A. An ideal execution for a
function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of
party P2. The adversary A also has an auxiliary input denoted by z.

Send inputs to trusted party: The honest party Pj sends its received
input to the trusted party. The corrupted party Pi controlled by A may
either abort (by replacing the input with a special aborti message), send its
received input, or send some other input of the same length to the trusted
party. This decision is made by A and may depend on the input value of
Pi and the auxiliary input z. Denote the pair of inputs sent to the trusted
party by (x′, y′) (note that if i = 2 then x′ = x but y′ does not necessarily
equal y, and vice versa if i = 1).

Early abort option: If the trusted party receives an input of the form
aborti for some i ∈ {1, 2}, it sends aborti to all parties and the ideal
execution terminates. Otherwise, the execution proceeds to the next step.

Trusted party sends output to adversary: At this point the trusted
party computes f1(x

′, y′) and f2(x
′, y′) and sends fi(x

′, y′) to party Pi

(i.e., it sends the corrupted party its output).
Adversary instructs trusted party to continue or halt: A sends ei-

ther continue or aborti to the trusted party. If it sends continue, the trusted
party sends fj(x

′, y′) to party Pj (where Pj is the honest party). Other-
wise, if A sends aborti, the trusted party sends aborti to party Pj .

Outputs: The honest party always outputs the output value it obtained
from the trusted party. The corrupted party outputs nothing. The adver-
sary A outputs any arbitrary (probabilistic polynomial-time computable)
function of the initial input of the corrupted party, the auxiliary input z,
and the value fi(x

′, y′) obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-party functionality,
where f = (f1, f2), let A be a non-uniform probabilistic polynomial-time
machine, and let i ∈ {1, 2} be the index of the corrupted party. Then, the
ideal execution of f on inputs (x, y), auxiliary input z to A and security
parameter n, denoted by idealf,A(z),i(x, y, n), is defined as the output pair
of the honest party and the adversary A from the above ideal execution.

Execution in the real model. We next consider the real model in which a
real two-party protocol π is executed (and there exists no trusted third party).



2.3 Security in the Presence of Malicious Adversaries 25

In this case, the adversary A sends all messages in place of the corrupted
party, and may follow an arbitrary polynomial-time strategy. In contrast, the
honest party follows the instructions of π.

Let f be as above and let π be a two-party protocol for computing f .
Furthermore, let A be a non-uniform probabilistic polynomial-time machine
and let i ∈ {1, 2} be the index of the corrupted party. Then, the real execution
of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted
by realπ,A(z),i(x, y, n), is defined as the output pair of the honest party and
the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having
defined the ideal and real models, we can now define security of protocols.
Loosely speaking, the definition asserts that a secure party protocol (in the
real model) emulates the ideal model (in which a trusted party exists). This is
formulated by saying that adversaries in the ideal model are able to simulate
executions of the real-model protocol.

Definition 2.3.1 (secure two-party computation): Let f and π be as above.
Protocol π is said to securely compute f with abort in the presence of malicious
adversaries if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model, such that for every i ∈ {1, 2},{

idealf,S(z),i(x, y, n)
}
x,y,z,n

c≡
{
realπ,A(z),i(x, y, n)

}
x,y,z,n

where x, y ∈ {0, 1}∗ under the constraint that |x| = |y|, z ∈ {0, 1}∗ and n ∈ N.

The above definition assumes that the parties (and adversary) know the
input lengths (this can be seen from the requirement that |x| = |y| is balanced
and so all the inputs in the vector of inputs are of the same length). We remark
that some restriction on the input lengths is unavoidable because, as in the
case of encryption, to some extent such information is always leaked.

2.3.2 Extension to Reactive Functionalities

Until now we have considered the secure computation of simple functionalities
that compute a single pair of outputs from a single pair of inputs. However,
not all computations are of this type. Rather, many computations have mul-
tiple rounds of inputs and outputs. Furthermore, the input of a party in a
given round may depend on its output from previous rounds, and the outputs
of that round may depend on the inputs provided by the parties in some or
all of the previous rounds. A classic example of this is electronic poker. In
this game, in the first phase cards are dealt to the players. Based on these
cards, bets are made and cards possibly thrown and dealt. The important



26 2 Definitions

thing to notice is that in each round human decisions must be made based
on the current status. Thus, new inputs are provided in each round (e.g.,
how much to bet and what cards to throw), and these inputs are based on
the current output (in this case, the output is the player’s current hand and
the cards previously played). A more cryptographic example of a multi-phase
functionality is that of a commitment scheme. Such a scheme has a distinct
commitment and decommitment phase. Thus, it cannot be cast as a standard
functionality mapping inputs to outputs.

In the context of secure computation, multi-phase computations are typ-
ically called reactive functionalities. Such functionalities can be modeled as
a series of functions (f1, f2, . . .) where each function receives some state in-
formation and two new inputs. That is, the input to function f j consists of
the inputs (xj , yj) of the parties in this phase, along with a state input σj−1
output by f j−1. Then, the output of f j is defined to be a pair of outputs
f j
1 (xj , yj , σj−1) for P1 and f j

2 (xj , yj , σj−1) for P2, and a state string σj to
be input into f j+1. We stress that the parties receive only their private out-
puts, and in particular do not receive any of the state information; in the
ideal model this is stored by the trusted party. Although the above definition
is intuitively clear, a simpler formulation is to define a reactive functionality
via a multi-phase probabilistic polynomial-time Turing machine that receives
inputs and generates outputs (this is simpler because it is not necessary to
explicitly define the state at every stage). The trusted party then runs this
machine upon each new pair of inputs it receives and sends the generated
outputs. In this formulation, the state information is kept internally by the
Turing machine, and not explicitly by the trusted party. We remark that the
formal ideal model remains the same, except that the trusted party runs a
reactive functionality (i.e., reactive Turing machine) instead of a single func-
tion. In addition, once the corrupted party sends aborti, the ideal execution
stops, and no additional phases are run.

2.3.3 Malicious Versus Semi-honest Adversaries

At first sight, it seems that any protocol that is secure in the presence of
malicious adversaries is also secure in the presence of semi-honest adversaries.
This is because a semi-honest adversary is just a “special case” of a malicious
adversary who faithfully follows the protocol specification. Although this is
what we would expect, it turns out to be false [45]. This anomaly is due to
the fact that although a real semi-honest adversary is indeed a special case
of a real malicious adversary, this is not true of the respective adversaries in
the ideal model. Specifically, the adversary in the ideal model for malicious
adversaries is allowed to change its input, whereas the adversary in the ideal
model for semi-honest adversary is not. Thus, the adversary/simulator for the
case of malicious adversaries has more power than the adversary/simulator



2.3 Security in the Presence of Malicious Adversaries 27

for the case of semi-honest adversaries. As such, it may be possible to simulate
a protocol in the malicious model, but not in the semi-honest model. We now
present two examples of protocols where this occurs.

Example 1 – secure AND. Consider the case of two parties computing the
binary AND function f(x, y) = x ∧ y, where only party P2 receives output.
Note first that if party P2 uses input 1, then by the output received it can
fully determine party P1’s input (if the output is 0 then P1 had input 0, and
otherwise it had input 1). In contrast, if party P2 uses input 0 then it learns
nothing about P1’s input, because the output equals 0 irrespective of the
value of P1’s input. The result of this observation is that in the ideal model,
an adversary corrupting P2 can always learn P1’s exact input by sending
the trusted party the input value 1. Thus, P1’s input is always revealed.
In contrast, in the ideal model with a semi-honest adversary, P1’s input is
only revealed if the corrupted party has input 1; otherwise, the adversary
learns nothing whatsoever about P1’s input. We use the above observations
to construct a protocol that securely computes the binary AND function in
the presence of malicious adversaries, but is not secure in the presence of
semi-honest adversaries; see Protocol 2.3.2.

PROTOCOL 2.3.2 (A Protocol for Binary AND)

• Input: P1 has an input bit x and P2 has an input bit y.

• Output: The binary value x ∧ y for P2 only.
• The protocol:

1. P1 sends P2 its input bit x.
2. P2 outputs the bit x ∧ y.

We have the following claims:

Claim 2.3.3 Protocol 2.3.2 securely computes the binary AND function in
the presence of malicious adversaries.

Proof. We separately consider the case where P1 is corrupted and the case
where P2 is corrupted. If P1 is corrupted, then the simulator S receives from
A the bit that it sends to P2 in the protocol. This bit fully determines the
input of P1 to the function and so S just sends it to the trusted party, thereby
completing the simulation. In the case where P2 is corrupted, S sends input 1
to the trusted party and receives back an output bit b. By the observation
above, b is the input of the honest P1 in the ideal model. Thus, the simulator
S just hands A the bit x = b as the value that A expects to receive from
the honest P1 in a real execution. It is immediate that the simulation here is
perfect.

We stress that the above works because P2 is the only party to receive
output. If P1 also were to receive output, then S’s simulation in the case of a



28 2 Definitions

corrupted P2 would not work. In order to see this, consider an adversary who
corrupts P2, uses input y = 0 and outputs its view in the protocol, including
the bit x that it receives from P1. In this case, S cannot send y = 1 to the
trusted party because P1’s output would not be correctly distributed. Thus,
it must send y = 0, in which case the view that it generates for A cannot
always be correct because it does not know the input bit x of P1.

Claim 2.3.4 Protocol 2.3.2 does not securely compute the binary AND func-
tion in the presence of semi-honest adversaries.

Proof. Consider the simulator S2 that is guaranteed to exist for the case
where P2 is corrupted; see (2.2) in Section 2.2. Then, S2 is given y and x∧ y
and must generate the view of P2 in the computation. However, this view
contains the value x that P1 sends to P2 in the protocol. Now, if y = 0 and
x is random, then there is no way that S2 can guess the value of x with
probability greater than 1/2. We conclude that the protocol is not secure in
the presence of semi-honest adversaries.

Example 2 – set union. Another example where this arises is the prob-
lem of set union over a large domain where only one party receives output.
Specifically, consider the function f(X,Y ) = (λ,X∪Y ) where X,Y ⊆ {0, 1}n
are sets of the same size, and λ denotes the “empty” output. We claim that
the protocol where P1 sends its set X to P2 is secure in the presence of ma-
licious adversaries. This follows for the exact same reasons as above because
a corrupted P2 in the malicious model can replace its input set Y with a set
Y ′ of the same size, but containing random values. Since the sets contain
values of length n, it follows that the probability that X ∩ Y ̸= ϕ is negligi-
ble. Thus, the output that P2 receives completely reveals the input of P1. In
contrast, if a corrupted party cannot change its input, then when X ∩Y ̸= ϕ
the elements that are common to both sets are hidden. Specifically, if five
elements are common to both sets, then P2 knows that there are five com-
mon elements, but does not have any idea as to which are common. Thus,
for the same reasons as above, the protocol is not secure in the presence of
semi-honest adversaries. Once again, we stress that this works when only one
party receives output; in the case where both parties receive output, securely
computing this functionality is highly non-trivial.

Discussion. It is our opinion that the above phenomenon should not be
viewed as an “annoying technicality”. Rather it points to a problem in the
definitions that needs to be considered. Our position is that it would be better
to define semi-honest adversaries as adversaries that are allowed to change
their input before the computation starts (e.g., by rewriting the value on their
input tape), and once the computation begins must behave in a semi-honest
fashion as before. Conceptually, this makes sense because parties are allowed
to choose their own input and this is not adversarial behavior. In addition,
this model better facilitates the “compilation” of protocols that are secure in
the semi-honest model into protocols that are secure in the malicious model.



2.3 Security in the Presence of Malicious Adversaries 29

Indeed, in order to prove the security of the protocol of [35], and specifically
the compilation of a protocol for the semi-honest model into one that is secure
in the presence of malicious adversaries, Goldreich introduces the notion of
augmented semi-honest behavior, which is exactly as described above; see Def-
inition 7.4.24 in Section 7.4.4.1 of [30]. We stress that all protocols presented
in this book that are secure in the presence of semi-honest adversaries are
also secure in the presence of augmented semi-honest adversaries. Further-
more, as stated in the following proposition, security in the malicious model
implies security in the augmented semi-honest model, as one would expect.

Proposition 2.3.5 Let π be a protocol that securely computes a functionality
f in the presence of malicious adversaries. Then π securely computes f in
the presence of augmented semi-honest adversaries.

Proof. Let π be a protocol that securely computes f in the presence of
malicious adversaries. Let A be an augmented semi-honest real adversary
and let S be the simulator for A that is guaranteed to exist by the security
of π (for every malicious A there exists such an S, and in particular for an
augmented semi-honest A). We construct a simulator S ′ for the augmented
semi-honest setting, by simply having S ′ run S. However, in order for this to
work, we have to show that S ′ can do everything that S can do. In the ma-
licious ideal model, S can choose whatever input it wishes for the corrupted
party; since S ′ is augmented semi-honest, it too can modify the input. In
addition, S can cause the honest party to output abort. However, S ′ cannot
do this. Nevertheless, this is not a problem because when S is the simulator
for an augmented semi-honest A it can cause the honest party to output
abort with at most negligible probability. In order to see this, note that when
two honest parties run the protocol, neither outputs abort with non-negligible
probability. Thus, when an honest party runs together with an augmented
semi-honest adversary, it too outputs abort with at most negligible probabil-
ity. This is due to the fact that the distribution over the messages it receives
in both cases is identical (because a semi-honest real adversary follows the
protocol instructions just like an honest party). This implies that the simu-
lator for the malicious case, when applied to an augmented semi-honest real
adversary, causes an abort with at most negligible probability. Thus, the aug-
mented semi-honest simulator can run the simulator for the malicious case,
as required.

Given the above, it is our position that the definition of augmented semi-
honest adversaries is the “right way” of modeling semi-honest behavior. As
such, it would have been more appropriate to use this definition from scratch.
However, we chose to remain with the standard definition of semi-honest
adversaries for historical reasons.



30 2 Definitions

2.4 Security in the Presence of Covert Adversaries

2.4.1 Motivation

In this chapter, we present a relatively new adversary model that lies between
the semi-honest and malicious models. The motivation behind the definition
is that in many real-world settings, parties are willing to actively cheat (and
as such are not semi-honest), but only if they are not caught (and as such
they are not arbitrarily malicious). This, we believe, is the case in many
business, financial, political and diplomatic settings, where honest behavior
cannot be assumed, but where the companies, institutions and individuals
involved cannot afford the embarrassment, loss of reputation, and negative
press associated with being caught cheating. It is also the case, unfortunately,
in many social settings, e.g., elections for a president of the country club.
Finally, in remote game playing, players may also be willing to actively cheat,
but would try to avoid being caught, or else they may be thrown out of
the game. In all, we believe that this type of covert adversarial behavior
accurately models many real-world situations. Clearly, with such adversaries,
it may be the case that the risk of being caught is weighed against the benefits
of cheating, and it cannot be assumed that players would avoid being caught
at any price and under all circumstances. Accordingly, the definition explicitly
models the probability of catching adversarial behavior, a probability that
can be tuned to the specific circumstances of the problem. In particular, we
do not assume that adversaries are only willing to risk being caught with
negligible probability, but rather allow for much higher probabilities.

The definition. The definition of security here is based on the ideal/real
simulation paradigm (as in the definition in Section 2.3), and provides the
guarantee that if the adversary cheats, then it will be caught by the honest
parties (with some probability). In order to understand what we mean by
this, we have to explain what we mean by “cheating”. Loosely speaking,
we say that an adversary successfully cheats if it manages to do something
that is impossible in the ideal model. Stated differently, successful cheating
is behavior that cannot be simulated in the ideal model. Thus, for example,
an adversary who learns more about the honest parties’ inputs than what
is revealed by the output has cheated. In contrast, an adversary who uses
pseudorandom coins instead of random coins (where random coins are what
are specified in the protocol) has not cheated.

We are now ready to informally describe the guarantee provided by this
notion. Let 0 < ϵ ≤ 1 be a value (called the deterrence factor). Then, any
attempt to cheat by a real adversary A is detected by the honest parties
with probability at least ϵ. Thus, provided that ϵ is sufficiently large, an
adversary that wishes not to be caught cheating will refrain from attempting
to cheat, lest it be caught doing so. Clearly, the higher the value of ϵ, the
greater the probability adversarial behavior is caught and thus the greater



2.4 Security in the Presence of Covert Adversaries 31

the deterrent to cheat. This notion is therefore called security in the presence
of covert adversaries with ϵ-deterrent. Note that the security guarantee does
not preclude successful cheating. Indeed, if the adversary decides to cheat it
may gain access to the other parties’ private information or bias the result
of the computation. The only guarantee is that if it attempts to cheat, then
there is a fair chance that it will be caught doing so. This is in contrast to
standard definitions, where absolute privacy and security are guaranteed for
the given type of adversary. We remark that by setting ϵ = 1, the definition
can be used to capture a requirement that cheating parties are always caught.

Formalizing the notion. The standard definition of security (see Defini-
tion 2.3.1) is such that all possible (polynomial-time) adversarial behavior is
simulatable. Here, in contrast, we wish to model the situation that parties
may successfully cheat. However, if they do so, they are likely to be caught.
There are a number of ways of defining this notion. In order to motivate this
one, we begin with a somewhat naive implementation of the notion, and show
its shortcomings:

1. First attempt: Define an adversary to be covert if the distribution over
the messages that it sends during an execution is computationally indis-
tinguishable from the distribution over the messages that an honest party
would send. Then, quantify over all covert adversaries A for the real world
(rather than all adversaries). A number of problems arise with this defini-
tion.

• The fact that the distribution generated by the adversary can be dis-
tinguished from the distribution generated by honest parties does not
mean that the honest parties can detect this in any specific execution.
Consider for example a coin-tossing protocol where the honest distri-
bution gives even probabilities to 0 and 1, while the adversary manages
to double the probability of the 1 outcome. Clearly, the distributions
differ. However, in any given execution, even an outcome of 1 does not
provide the honest players with sufficient evidence of any wrongdoing.
Thus, it is not sufficient that the distributions differ. Rather, one needs
to be able to detect cheating in any given execution.

• The fact that the distributions differ does not necessarily imply that
the honest parties have an efficient distinguisher. Furthermore, in order
to guarantee that the honest parties detect the cheating, they would
have to analyze all traffic during an execution. However, this analysis
cannot be part of the protocol because then the distinguishers used by
the honest parties would be known (and potentially bypassed).

• Another problem is that adversaries may be willing to risk being caught
with more than negligible probability, say 10−6. With such an adver-
sary, the proposed definition would provide no security guarantee. In
particular, the adversary may be able to always learn all parties’ inputs,
and risk being caught in one run in a million.



32 2 Definitions

2. Second attempt. To solve the aforementioned problems, we first require
that the protocol itself be responsible for detecting cheating. Specifically, in
the case where a party Pi attempts to cheat, the protocol may instruct the
honest parties to output a message saying that “party Pi has cheated” (we
require that this only happen if Pi indeed cheated). This solves the first two
problems. To solve the third problem, we explicitly quantify the probability
that an adversary is caught cheating. Roughly, given a parameter ϵ, a
protocol is said to be secure against covert adversaries with ϵ-deterrent if
any adversary that is not “covert” (as defined in the first attempt) will
necessarily be caught with probability at least ϵ.

This definition captures the spirit of what we want, but is still problematic.
To illustrate the problem, consider an adversary that plays honestly with
probability 0.99, and cheats otherwise. Such an adversary can only ever
be caught with probability 0.01 (because otherwise it is honest). However,
when ϵ = 1/2 for example, such an adversary must be caught with prob-
ability 0.5, which is impossible. We therefore conclude that an absolute
parameter cannot be used, and the probability of catching the adversary
must be related to the probability that it cheats.

3. Final attempt. We thus arrive at the following approach. First, as men-
tioned, we require that the protocol itself be responsible for detecting
cheating. That is, if a party Pi successfully cheats, then with good proba-
bility (ϵ), the honest parties in the protocol will all receive a message that
“Pi cheated”. Second, we do not quantify only over adversaries that are
covert (i.e., those that are not detected cheating by the protocol). Rather,
we allow all possible adversaries, even completely malicious ones. Then, we
require either that this malicious behavior can be successfully simulated
(as in Definition 2.3.1), or that the honest parties receive a message that
cheating has been detected, and this happens with probability at least ϵ
times the probability that successful cheating takes place. We stress that
when the adversary chooses to cheat, it may actually learn secret infor-
mation or cause some other damage. However, since it is guaranteed that
such a strategy will likely be caught, there is strong motivation to refrain
from doing so. As such, we use the terminology covert adversaries to refer
to malicious adversaries that do not wish to be caught cheating.

The above intuitive notion can be interpreted in a number of ways. We
present the main formulation here. The definition works by modifying the
ideal model so that the ideal-model adversary (i.e., simulator) is explicitly
given the ability to cheat. Specifically, the ideal model is modified so that a
special cheat instruction can be sent by the adversary to the trusted party.
Upon receiving such an instruction, the trusted party tosses coins and with
probability ϵ announces to the honest parties that cheating has taken place
(by sending the message corruptedi where party Pi is the corrupted party that
sent the cheat instruction). In contrast, with probability 1 − ϵ, the trusted
party sends the honest party’s input to the adversary, and in addition lets



2.4 Security in the Presence of Covert Adversaries 33

the adversary fix the output of the honest party. We stress that in this case
the trusted party does not announce that cheating has taken place, and so
the adversary gets off scot-free. Observe that if the trusted party announces
that cheating has taken place, then the adversary learns absolutely nothing.
This is a strong guarantee because when the adversary attempts to cheat, it
must take the risk of being caught and gaining nothing.

2.4.2 The Actual Definition

We begin by presenting the modified ideal model. In this model, we add new
instructions that the adversary can send to the trusted party. Recall that in
the standard ideal model, the adversary can send a special aborti message to
the trusted party, in which case the honest party receives aborti as output. In
the ideal model for covert adversaries, the adversary can send the following
additional special instructions:

• Special input corruptedi: If the ideal-model adversary sends corruptedi in-
stead of an input, the trusted party sends corruptedi to the honest party
and halts. This enables the simulation of behavior by a real adversary that
always results in detected cheating. (It is not essential to have this special
input, but it sometimes makes proving security easier.)

• Special input cheati: If the ideal-model adversary sends cheati instead of an
input, the trusted party tosses coins and with probability ϵ determines that
this “cheat strategy” by Pi was detected, and with probability 1− ϵ deter-
mines that it was not detected. If it was detected, the trusted party sends
corruptedi to the honest party. If it was not detected, the trusted party
hands the adversary the honest party’s input and gives the ideal-model
adversary the ability to set the output of the honest party to whatever
value it wishes. Thus, a cheati input is used to model a protocol execution
in which the real-model adversary decides to cheat. However, as required,
this cheating is guaranteed to be detected with probability at least ϵ. Note
that if the cheat attempt is not detected then the adversary is given “full
cheat capability”, including the ability to determine the honest party’s
output.

The idea behind the new ideal model is that given the above instructions,
the adversary in the ideal model can choose to cheat, with the caveat that its
cheating is guaranteed to be detected with probability at least ϵ. We stress
that since the capability to cheat is given through an “input” that is provided
to the trusted party, the adversary’s decision to cheat must be made before
the adversary learns anything (and thus independently of the honest party’s
input and the output).



34 2 Definitions

We are now ready to present the modified ideal model. Let ϵ : N → [0, 1]
be a function. Then, the ideal execution for a function f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ with parameter ϵ proceeds as follows:

Inputs: Let x denote the input of party P1, and let y denote the input of
party P2. The adversary A also has an auxiliary input z.

Send inputs to trusted party: The honest party Pj sends its received
input to the trusted party. The corrupted party Pi, controlled by A, may
abort (by replacing the input with a special aborti or corruptedi message),
send its received input, or send some other input of the same length to the
trusted party. This decision is made by A and may depend on the input
value of Pi and the auxiliary input z. Denote the pair of inputs sent to the
trusted party by (x′, y′).

Abort options: If a corrupted party sends aborti to the trusted party as
its input, then the trusted party sends aborti to the honest party and halts.
If a corrupted party sends corruptedi to the trusted party as its input, then
the trusted party sends corruptedi to the honest party and halts.

Attempted cheat option: If a corrupted party sends cheati to the trusted
party as its input, then the trusted party works as follows:

1. With probability ϵ, the trusted party sends corruptedi to the adversary
and the honest party.

2. With probability 1− ϵ, the trusted party sends undetected to the adver-
sary along with the honest party’s input. Following this, the adversary
sends the trusted party an output value τ of its choice for the honest
party. The trusted party then sends τ to Pj as its output (where Pj is
the honest party).

If the adversary sent cheati, then the ideal execution ends at this point.
Otherwise, the ideal execution continues below.

Trusted party sends output to adversary: At this point the trusted
party computes f1(x

′, y′) and f2(x
′, y′) and sends fi(x

′, y′) to Pi (i.e., it
sends the corrupted party its output).

Adversary instructs trusted party to continue or halt: After receiv-
ing its output, the adversary sends either continue or aborti to the trusted
party. If the trusted party receives continue then it sends fj(x

′, y′) to the
honest party Pj . Otherwise, if it receives aborti, it sends aborti to the
honest party Pj .

Outputs: The honest party always outputs the output value it obtained
from the trusted party. The corrupted party outputs nothing. The adver-
sary A outputs any arbitrary (probabilistic polynomial-time computable)
function of the initial inputs of the corrupted party, the auxiliary input z,
and the value fi(x

′, y′) obtained from the trusted party.

The output of the honest party and the adversary in an execution of the
above ideal model is denoted by idealscϵ

f,S(z),i(x, y, n).



2.4 Security in the Presence of Covert Adversaries 35

Notice that there are two types of “cheating” here. The first is the clas-
sic abort and is used to model “early aborting” due to the impossibility of
achieving fairness in general when there is no honest majority. The other
type of cheating in this ideal model is more serious for two reasons: first, the
ramifications of the cheating are greater (the adversary may learn the hon-
est party’s input and may be able to determine its output), and second, the
cheating is only guaranteed to be detected with probability ϵ. Nevertheless,
if ϵ is high enough, this may serve as a deterrent. We stress that in the ideal
model the adversary must decide whether to cheat obliviously of the honest
party’s input and before it receives any output (and so it cannot use the
output to help it decide whether or not it is “worthwhile” cheating). We have
the following definition.

Definition 2.4.1 (security – strong explicit cheat formulation [3]): Let f
and π be as in Definition 2.2.1, and let ϵ : N→ [0, 1] be a function. Protocol
π is said to securely compute f in the presence of covert adversaries with ϵ-
deterrent if for every non-uniform probabilistic polynomial-time adversary A
for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model such that for every i ∈ {1, 2}:{

idealscϵ
f,S(z),i(x, y, n)

}
x,y,z,n

c≡
{
realπ,A(z),i(x, y, n)

}
x,y,z,n

where x, y, z ∈ {0, 1}∗ under the constraint that |x| = |y|, and n ∈ N.

2.4.3 Cheating and Aborting

It is important to note that in the above definition, a party that halts mid-
way through the computation may be considered a “cheat” (this is used in
an inherent way when constructing protocols later). Arguably, this may be
undesirable due to the fact that an honest party’s computer may crash (such
unfortunate events may not even be that rare). Nevertheless, we argue that
as a basic definition it suffices. This is due to the fact that it is possible for
all parties to work by storing their input and random tape on disk before
they begin the execution. Then, before sending any message, the incoming
messages that preceded it are also written to disk. The result of this is that
if a party’s machine crashes, it can easily reboot and return to its previous
state. (In the worst case the party will need to request a retransmit of the last
message if the crash occurred before it was written.) We therefore believe that
parties cannot truly hide behind the excuse that their machine crashed (it
would be highly suspicious that someone’s machine crashed in an irreversible
way that also destroyed their disk at the critical point of a secure protocol
execution).



36 2 Definitions

Despite the above, it is possible to modify the definition so that honest
halting is never considered cheating. In order to do this, we introduce the
notion of “non-halting detection accuracy” so that if a party halts early,
but otherwise does not deviate from the protocol specification, then it is not
considered cheating. We formalize this by considering fail-stop adversaries who
act semi-honestly except that they may halt early. Formally:

Definition 2.4.2 Let π be a two-party protocol, let A be an adversary, and
let i be the index of the corrupted party. The honest party Pj is said to de-
tect cheating in π if its output in π is corruptedi; this event is denoted by
outputj(realπ,A(z),i(x, y, n)) = corruptedi. The protocol π is called non-
halting detection accurate if for every fail-stop adversary A, the probability
that Pj detects cheating in π is negligible.

Definition 2.4.1 can then be modified by requiring that π be non-halting
detection accurate. We remark that although this strengthening is clearly
desirable, it may also be prohibitive. Nevertheless, as we will see in Chapter 5,
it is possible to efficiently obtain this stronger guarantee for the case of general
protocols.

2.4.4 Relations Between Security Models

In order to better understand the definition of security in the presence of
covert adversaries, we present two propositions that show the relation be-
tween security in the presence of covert adversaries and security in the pres-
ence of malicious and semi-honest adversaries.

Proposition 2.4.3 Let π be a protocol that securely computes some func-
tionality f with abort in the presence of malicious adversaries, as in Defini-
tion 2.3.1. Then, π securely computes f in the presence of covert adversaries
with ϵ-deterrent, for every 0 ≤ ϵ ≤ 1.

This proposition follows from the simple observation that according to
Definition 2.3.1, there exists a simulator that always succeeds in its simula-
tion. Thus, the same simulator works here (there is simply no need to ever
send a cheat input).

Next, we consider the relation between covert and semi-honest adversaries.
As we have discussed in Section 2.3.3, security for malicious adversaries only
implies security for semi-honest adversaries if the semi-honest adversary is
allowed to modify its input before the execution begins. This same argument
holds for covert adversaries and we therefore consider augmented semi-honest
adversaries. We have the following:



2.4 Security in the Presence of Covert Adversaries 37

Proposition 2.4.4 Let π be a protocol that securely computes some func-
tionality f in the presence of covert adversaries with ϵ-deterrent, for ϵ(n) ≥
1/poly(n). Then, π securely computes f in the presence of augmented semi-
honest adversaries.

Proof. Let π securely compute f in the presence of covert adversaries with
ϵ-deterrent, where ϵ(n) ≥ 1/poly(n). The first observation is that since honest
parties cannot send abort, corrupted or cheat instructions in the ideal model,
it holds that when both parties are honest in a real execution of π, the values
abort and corrupted appear in the output with only negligible probability.

Consider now the case of an augmented semi-honest adversary A that
controls one of the parties, and let S be the simulator for A. We claim that
S sends abort, corrupted or cheat in the ideal model with at most negligible
probability. This is due to the fact that the output of the honest party in an
execution with A is indistinguishable from its output when both parties are
honest (because the distribution over the messages received by the honest
party in both executions is identical). In particular, the honest party in an
execution with A outputs abort or corrupted with at most negligible proba-
bility. Now, in the ideal setting, an honest party outputs abort or corrupted
whenever S sends abort or corrupted (and so it can send these with only
negligible probability). Furthermore, an honest party outputs corrupted with
probability ϵ whenever S sends cheat. Since ϵ ≥ 1/poly(n), it follows that S
can send cheat also with only negligible probability. We therefore have that
the ideal model with such an S is the standard ideal model (with no cheating
possibility), and the augmented semi-honest simulator can just run S. We
stress that this only holds for the augmented semi-honest case, because S
may change the corrupted party’s inputs (we have no control over S) and so
the semi-honest simulator can only run S if it too can change the corrupted
party’s inputs.

We stress that if ϵ = 0 (or is negligible) then the definition of covert
adversaries requires nothing, and so the proposition does not hold for this
case.

We conclude that, as one may expect, security in the presence of covert
adversaries with ϵ-deterrent lies in between security in the presence of mali-
cious adversaries and security in the presence of semi-honest adversaries. If
1/poly(n) ≤ ϵ(n) ≤ 1− 1/poly(n) then it can be shown that Definition 2.4.1
is strictly different to both the semi-honest and malicious models (this is not
difficult to see and so details are omitted). However, as we show below, when
ϵ(n) = 1 − µ(n), Definition 2.4.1 is equivalent to security in the presence of
malicious adversaries (Definition 2.3.1).

Stated differently, the following proposition shows that the definition of
security for covert adversaries “converges” to the malicious model as ϵ ap-
proaches 1. In order to make this claim technically, we need to deal with the
fact that in the malicious model an honest party never outputs corruptedi,
whereas this can occur in the setting of covert adversaries even with ϵ = 1.



38 2 Definitions

We therefore define a transformation of any protocol π to π′ where the only
difference is that if an honest party should output corruptedi in π, then it
outputs aborti instead in π′. We have the following:

Proposition 2.4.5 Let π be a protocol and µ a negligible function. Then π
securely computes some functionality f in the presence of covert adversaries
with ϵ(n) = 1−µ(n) under Definition 2.4.1 if and only if π′ securely computes
f with abort in the presence of malicious adversaries.

Proof. The fact that security in the presence of malicious adversaries implies
security in the presence of covert adversaries has already been proven in
Proposition 2.4.3 (observe that Proposition 2.4.3 holds for all ϵ, including ϵ
that is negligibly close to 1). We now prove that security in the presence of
covert adversaries under Definition 2.4.1 with ϵ that is negligibly close to 1
implies security in the presence of malicious adversaries. This holds because
if the ideal adversary does not send cheati then the ideal execution is the
same as in the regular ideal model. Furthermore, if it does send cheati, it
is caught cheating with probability that is negligibly close to 1 and so the
protocol is aborted. Recall that by Definition 2.4.1, when the adversary is
caught cheating it learns nothing and so the effect is the same as an abort in
the regular ideal model (technically, the honest party has to change its output
from corruptedi to aborti as discussed above, but this makes no difference).
We conclude that when ϵ is negligibly close to 1, sending cheati is the same as
sending aborti and so the security is the same as in the presence of malicious
adversaries.

2.5 Restricted Versus General Functionalities

In this section, we show that it often suffices to construct a secure protocol
for a restricted type of functionality, and the result to general functionalities
can be automatically derived. This is most relevant for general constructions
that are based on a circuit that computes the functionality in question. As
we will see, in these cases the cost of considering the restricted types of
functionalities considered here is inconsequential. For the sake of clarity, our
general constructions will therefore all be for restricted functionalities of the
types defined below.

The claims in this section are all quite straightforward. We therefore
present the material somewhat informally, and leave formal claims and proofs
as an exercise to the reader.



2.5 Restricted Versus General Functionalities 39

2.5.1 Deterministic Functionalities

The general definition considers probabilistic functionalities where the output
f(x, y) is a random variable. A classic example of a probabilistic function-
ality is that of coin-tossing. For example, one could define f(1n, 1n) to be a
uniformly distributed string of length n.

We show that it suffices to consider deterministic functionalities when
constructing general protocols for secure computation. Specifically, we show
that given a protocol for securely computing any deterministic functional-
ity, it is possible to construct a secure protocol for computing any proba-
bilistic functionality. Let f = (f1, f2) be a two-party probabilistic function-
ality. We denote by f(x, y;w) the output of f upon inputs x and y, and
random tape w (the fact that f is probabilistic means that it has a uni-
formly distributed random tape). Next, define a deterministic functionality
g((x, r), (y, s)) = f(x, y; r ⊕ s), where (x, r) is P1’s input and (y, s) is P2’s
input, and assume that we have a secure protocol π′ for computing f ′. We
now present a secure protocol π for computing f that uses π′ for computing
f ′. Upon respective inputs x, y ∈ {0, 1}n, parties P1 and P2 choose uniformly
distributed strings r ←R {0, 1}q(n) and s ←R {0, 1}q(n), respectively, where
q(n) is an upper bound on the number of random bits used to compute f .
They then invoke the protocol π′ for securely computing f ′ in order to both
obtain f ′((x, r), (y, s)) = f(x, y; r⊕ s). The fact that this yields a secure pro-
tocol for computing f follows from the fact that as long as either r or s is
uniformly distributed, the resulting w = r ⊕ s is also uniformly distributed.
This reduction holds for the case of semi-honest, malicious and covert adver-
saries.

Observe that in the case of general protocols that can be used for securely
computing any functionality, the complexity of the protocol for computing
f ′ is typically the same as for computing f . This is due to the fact that the
complexity of these protocols is related to the size of the circuit computing
the functionality, and the size of the circuit computing f ′ is of the same order
as the size of the circuit computing f . The only difference is that the circuit
for f ′ has q(n) additional exclusive-or gates, where q(n) is the length of f ’s
random tape.

2.5.2 Single-Output Functionalities

In the general definition of secure two-party computation, both parties receive
output and these outputs may be different. However, it is often far simpler
to assume that only party P2 receives output; we call such a functionality
single-output. We will show now that this suffices for the general case. That
is, we claim that any protocol that can be used to securely compute any
efficient functionality f(x, y) where only P2 receives output can be used to



40 2 Definitions

securely compute any efficient functionality f = (f1, f2) where party P1

receives f1(x, y) and party P2 receives f2(x, y). For simplicity, we will assume
that the length of the output of f1(x, y) is at most n, where n is the security
parameter. This can be achieved by simply taking n to be larger in case it is
necessary. We show this reduction separately for semi-honest and malicious
adversaries, as the semi-honest reduction is more efficient than the malicious
one.

Semi-honest adversaries. Let f = (f1, f2) be an arbitrary probabilistic
polynomial-time computable functionality and define the single-output func-
tionality f ′ as follows: f ′((x, r), (y, s)) = (f1(x, y) ⊕ r ∥ f2(x, y) ⊕ s) where
a∥b denotes the concatenation of a with b. Now, given a secure protocol π′

for computing the single-output functionality f ′ where P2 only receives the
output, it is possible to securely compute the functionality f = (f1, f2) as
follows. Upon respective inputs x, y ∈ {0, 1}n, parties P1 and P2 choose uni-
formly distributed strings r ←R {0, 1}q(n) and s ←R {0, 1}q(n), respectively,
where q(n) is an upper bound on the output length of f on inputs of length
n. They then invoke the protocol π′ for securely computing f ′ in order for
P2 to obtain f ′((x, r), (y, s)); denote the first half of this output by v and
the second half by w. Upon receiving (v, w), party P2 sends v to P1, which
then computes v ⊕ r and obtains f1(x, y). In addition, party P2 computes
w ⊕ s and obtains f2(x, y). It is easy to see that the resulting protocol se-
curely computes f . This is due to the fact that r completely obscures f1(x, y)
from P2. Thus, neither party learns more than its own input. (In fact, the
strings f1(x, y)⊕r and f2(x, y)⊕s are uniformly distributed and so are easily
simulated.)

As in the case of probabilistic versus deterministic functionalities, the size
of the circuit computing f ′ is of the same order as the size of the circuit
computing f . The only difference is that f ′ has one additional exclusive-or
gate for every circuit-output wire.

Malicious adversaries. Let f = (f1, f2) be as above; we construct a proto-
col in which P1 receives f1(x, y) and P2 receives f2(x, y) that is secure in the
presence of malicious adversaries. As a building block we use a protocol for
computing any efficient functionality, with security for malicious adversaries,
with the limitation that only P2 receives output. As in the semi-honest case,
P2 will also receive P1’s output in encrypted format, and will then hand it
to P1 after the protocol concludes. However, a problem arises in that P2 can
modify the output that P1 receives (recall that the adversary may be mali-
cious here). In order to prevent this, we add message authentication to the
encrypted output.

Let r, a, b ←R {0, 1}n be randomly chosen strings. Then, in addition to
x, party P1’s input includes the elements r, a and b. Furthermore, define a
functionality g (that has only a single output) as follows:

g((r, a, b, x), y) = (α, β, f2(x, y))



2.5 Restricted Versus General Functionalities 41

where α = r + f1(x, y), β = a · α + b, and the arithmetic operations are
defined over GF [2n]. Note that α is a one-time pad encryption of P1’s output
f1(x, y), and β is an information-theoretic message authentication tag of α
(specifically, aα + b is a pairwise-independent hash of α). Now, the parties
compute the functionality g, using a secure protocol in which only P2 receives
output. Following this, P2 sends the pair (α, β) to P1. Party P1 checks whether
β = a · α+ b; if yes, it outputs α− r, and otherwise it outputs abort2.

It is easy to see that P2 learns nothing about P1’s output f1(x, y), and that
it cannot alter the output that P1 will receive (beyond causing it to abort),
except with probability 2−n. We remark that it is also straightforward to
construct a simulator for the above protocol. Formally, proving the security of
this transformation requires a modular composition theorem; this is discussed
in Section 2.7 below.

As is the case for the previous reductions above, the circuit for computing g
is only mildly larger than that for computing f . Thus, the modification above
has only a mild effect on the complexity of the secure protocol (assuming
that the complexity of the original protocol, where only P2 receives output,
is proportional to the size of the circuit computing f as is the case for the
protocol below).

2.5.3 Non-reactive Functionalities

As described in Section 2.3.2, a reactive functionality is one where the com-
putation is carried out over multiple phases, and the parties may choose their
inputs in later phases based on the outputs that they have already received.
Recall that such a reactive functionality can be viewed as a series of func-
tionalities (f1, f2, . . .) such that the input to f j is the tuple (xj , yj , σj−1)
and the output includes the parties’ outputs and state information σj ; see

Section 2.3.2 for more details. We denote by f j
1 and f j

2 the corresponding
outputs of parties P1 and P2 from f j , and by σj the state output from f j .

In this section, we show that it is possible to securely compute any reactive
functionality given a general protocol for computing non-reactive function-
alities. The basic idea behind the reduction is the same as for same-output
functionalities (for the semi-honest case) and single-output functionalities
(for the malicious case). Specifically, the parties receive the same output as
usual, but also receive random shares of the state at each stage; i.e., one party
receives a random pad and the other receives the state encrypted by this pad.
This ensures that neither party learns the internal state of the reactive func-
tionality. Observe that although this suffices for the semi-honest case, it does
not suffice for the case of malicious adversaries, which may modify the values
that they are supposed to input. Thus, for the malicious case, we also add
a message authentication tag to prevent any party from modifying the share
of the state received in the previous stage.



42 2 Definitions

Semi-honest adversaries. Let (f1, f2, . . .) be the series of functionalities
defining the reactive functionality. First, we define a series of functionalities
(g1, g2, . . .) such that

gj
(
(xj , σ

1
j−1), (yj , σ

2
j−1)

)
=

((
f j
1 (xj , yj , σ

1
j−1 ⊕ σ2

j−1), σ
1
j

)
,
(
f j
2 (xj , yj , σ

1
j−1 ⊕ σ2

j−1), σ
2
j

))
where σ1

j and σ2
j are uniformly distributed strings under the constraint that

σ1
j ⊕ σ2

j = σj (the state after the jth stage). That is, gj receives input

(xj , σ
1
j−1) from P1 and input (yj , σ

2
j−1) from P2 and then computes f j on

inputs (xj , yj , σj−1) where σj−1 = σ1
j−1 ⊕ σ2

j−1. In words, gj receives the
parties’ inputs to the phase, together with a sharing of the state from the
previous round. Functionality gj then outputs the phase outputs to each
party, and a sharing of the state from this round of computation.

Malicious adversaries. As we have mentioned, the solution for semi-honest
adversaries does not suffice when considering malicious adversaries because
nothing prevents the adversary from modifying its share of the state. This
is solved by also having party P1 receive a MAC (message authentication
code) key k1 and a MAC tag t1j = MACk2(σ

1
j ), where the keys k1, k2 are

chosen randomly in the phase computation and σ1
j is the share of the current

state that P1 holds. Likewise, P2 receives k2 and t2j = MACk1(σ
2
j ). Then,

the functionality in the (j + 1)th phase receives the parties’ phase-inputs,
shares σ1

j and σ2
j of σj , keys k1, k2. and MAC-tags t1j , t

2
j . The functionality

checks the keys and MACs and if the verification succeeds, it carries out the
phase computation with the inputs and given state. By the security of the
MAC, a malicious adversary is unable to change the current state, except
with negligible probability.

2.6 Non-simulation-Based Definitions

2.6.1 Privacy Only

The definition of security that follows the ideal/real simulation paradigm
provides strong security guarantees. In particular, it guarantees privacy, cor-
rectness, independence of inputs and more. However, in some settings, it may
be sufficient to guarantee privacy only. We warn that this is not so simple
and in many cases it is difficult to separate privacy from correctness and in-
dependence of inputs. For example, consider a function f with the property
that for every y there exists a xy such that f(xy, y) = y. Now, if party P1

can somehow make its input x depend on P2’s input (something which is not
possible when independence of inputs is guaranteed), then it may be able to



2.6 Non-simulation-Based Definitions 43

always set x = xy and learn P2’s input in entirety. (We stress that although
this sounds far fetched, such attacks are actually sometimes possible.)

Another difficulty that arises when defining privacy is that it typically
depends very much on the function being computed. Intuitively, we would
like to require that if two different inputs result in the same output, then
no adversarial party can tell which of the two inputs the other party used.
In other words, we would like to require that for every adversarial P1 and
input x, party P1 cannot distinguish whether P2 used y or y′ when the output
is f(x, y) and it holds that f(x, y) = f(x, y′). However, such a formulation
suffers from a number of problems. First, if f is 1–1 no privacy guarantees are
provided at all, even if it is hard to invert. Second, the formulation suffers from
the exact problem described above. Namely, if it is possible for P1 to implicitly
choose x = xy based on y (say by modifying a commitment to y that it
receives from P2) so that f(xy, y) reveals more information about y than “the
average x”, then privacy is also breached. Finally, we remark that (sequential)
composition theorems, like those of Section 2.7, are not known for protocols
that achieve privacy only. Thus, it is non-trivial to use protocols that achieve
privacy only as subprotocols when solving large protocol problems.

Despite the above problems, it is still sometimes possible to provide a
workable definition of privacy that provides non-trivial security guarantees
and is of interest. Due to the difficulty in providing a general definition, we
will present a definition for one specific function in order to demonstrate how
such definitions look. For this purpose, we consider the oblivious transfer
function. Recall that in this function, there is a sender S with a pair of input
strings (x0, x1) and a receiver R with an input bit σ. The output of the
function is nothing to the sender and the string xσ for the receiver. Thus,
a secure oblivious transfer protocol has the property that the sender learns
nothing about σ while the receiver learns at most one of the strings x0, x1.
Unfortunately, defining privacy here without resorting to the ideal model is
very non-trivial. Specifically, it is easy to define privacy in the presence of a
malicious sender S∗; we just say that S∗ cannot distinguish the case where R
has input 0 from the case where it has input 1. However, it is more difficult
to define privacy in the presence of a malicious receiver R∗ because it does
learn something. A naive approach to defining this says that for some bit b it
holds that R∗ knows nothing about xb. However, this value of b may depend
on the messages sent during the oblivious transfer and so cannot be fixed
ahead of time (see the discussion above regarding independence of inputs).

Fortunately, for the case of two-message oblivious transfer (where the re-
ceiver sends one message and the sender replies with a single message) it is
possible to formally define this. The following definition of security for obliv-
ious transfer is based on [42] and states that replacing one of x0 and x1 with
some other x should go unnoticed by the receiver. The question of which of
x0, x1 to replace causes a problem which is solved in the case of a two-message
protocol by fixing the first message; see below. (In the definition below we
use the following notation: for a two-party protocol with parties S and R,



44 2 Definitions

we denote by viewS(S(1
n, a), R(1n, b)) the view of S in an execution where

it has input a, R has input b, and the security parameter is n. Likewise, we
denote the view of R by viewR(S(1

n, a), R(1n, b)).

Definition 2.6.1 A two-message two-party probabilistic polynomial-time
protocol (S,R) is said to be a private oblivious transfer if the following holds:

• Non-triviality: If S and R follow the protocol then after an execution
in which S has for input any pair of strings x0, x1 ∈ {0, 1}∗, and R has
for input any bit σ ∈ {0, 1}, the output of R is xσ.

• Privacy in the case of a malicious S∗: For every non-uniform prob-
abilistic polynomial-time S∗ and every auxiliary input z ∈ {0, 1}∗, it holds
that

{viewS∗(S∗(1n, z), R(1n, 0))}n∈N
c≡ {viewS∗(S∗(1n, z), R(1n, 1))}n∈N .

• Privacy in the case of a malicious R∗: For every non-uniform de-
terministic polynomial-time receiver R∗, every auxiliary input z ∈ {0, 1}∗,
and every triple of inputs x0, x1, x ∈ {0, 1}∗ such that |x0| = |x1| = |x| it
holds that either:

{viewR∗ (S(1n, (x0, x1));R
∗(1n, z))}n∈N

c
≡ {viewR∗ (S(1n, (x0, x));R

∗(1n, z))}n∈N

or

{viewR∗ (S(1n, (x0, x1));R
∗(1n, z))}n∈N

c
≡ {viewR∗ (S(1n, (x, x1));R

∗(1n, z))}n∈N .

The way to view the above definition of privacy in the case of a malicious
R∗ is that R∗’s first message, denoted by R∗(1n, z), fully determines whether
it should receive x0 or x1. If it determines for example that it should receive
x0, then its view (i.e., the distribution over S’s reply) when S’s input is
(x0, x1) is indistinguishable from its view when S’s input is (x0, x). Clearly
this implies that R∗ cannot learn anything about x1 when it receives x0 and
vice versa. In addition, note that since R∗ sends its message before receiving
anything from S, and since this message fully determines R∗’s input, we have
that the problem of independence of inputs discussed above does not arise.

Note that when defining the privacy in the case of a malicious R∗ we chose
to focus on a deterministic polynomial-time receiver R∗. This is necessary in
order to fully define the message R∗(z) for any given z, which in turn fully
defines the string xb that R∗(z) does not learn. By making R∗ non-uniform,
we have that this does not weaken the adversary (since R∗’s advice tape can
hold its “best coins”). We remark that generalizing this definition to protocols
that have more than two messages is non-trivial. Specifically, the problem of
independence of inputs described above becomes difficult again when more
than two messages are sent.

The above example demonstrates that it is possible to define “privacy
only” for secure computation. However, it also demonstrates that this task



2.6 Non-simulation-Based Definitions 45

can be very difficult. In particular, we do not know of a satisfactory definition
of privacy for oblivious transfer with more than two rounds. In general, one
can say that when a party does not receive output, it is easy to formalize
privacy because it learns nothing. However, when a party does receive output,
defining privacy without resorting to the ideal model is problematic (and
often it is not at all clear how it can be achieved).

We conclude with one important remark regarding “privacy-only” defini-
tions. As we have mentioned, an important property of security definitions
is a composition theorem that guarantees certain behavior when the secure
protocol is used as a subprotocol in another larger protocol. No such general
composition theorems are known for definitions that follow the privacy-only
approach. As such, this approach has a significant disadvantage.

2.6.2 One-Sided Simulatability

Another approach to providing weaker, yet meaningful, security guarantees
is that of one-sided simulation. This notion is helpful when only one party
receives output while the other learns nothing. As discussed above in Sec-
tion 2.6.1, when a party should learn nothing (i.e., when it has no output),
it is easy to define privacy via indistinguishability as for encryption. Specif-
ically, it suffices to require that the party learning nothing is not able to
distinguish between any two inputs of the other party.1 In contrast, the diffi-
culty of defining privacy appropriately for the party that does receive output
is overcome by requiring full simulation in this case. That is, consider a pro-
tocol/functionality where P2 receives output while P1 learns nothing. Then,
in the case where P1 is corrupted we require that it not be able to learn any-
thing about P2’s input and formalize this via indistinguishability. However,
in the case where P2 is corrupted, we require the existence of a simulator that
can fully simulate its view, as in the definition of Section 2.3. This is helpful
because it enables us to provide a general definition of security for problems
of this type where only one party receives output. Furthermore, it turns out
that in many cases, it is possible to achieve high efficiency when “one-sided
simulation” is sufficient and “full simulation” is not required.

It is important to note that this is a relaxed level of security and does
not achieve everything we want. For example, a corrupted P1 may be able
to make its input depend on the other party’s input, and may also be able
to cause the output to be distributed incorrectly. Thus, this notion is not
suitable for all protocol problems. Such compromises seem inevitable given
the current state of the art, where highly-efficient protocols that provide full
simulation-based security in the presence of malicious adversaries seem very

1 Note that this only makes sense when the party receives no output. Otherwise, if it does

receive output, then the other party’s input has influence over that output and so it is
unreasonable to say that it is impossible to distinguish between any two inputs.



46 2 Definitions

hard to construct. We stress that P2 cannot carry out any attacks, because
full simulation is guaranteed in the case where it is corrupted.

The definition. Let f be a function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗ with only
a single output which is designated for P2. Let realπ,A(z),i(x, y, n) denote the
outputs of the honest party and the adversary A (controlling party Pi) after
a real execution of protocol π, where P1 has input x, P2 has input y, A has
auxiliary input z, and the security parameter is n. Let idealf,S(z),i(x, y, n)
be the analogous distribution in an ideal execution with a trusted party that
computes f for the parties and hands the output to P2 only. Finally, let
viewAπ,A(z),i(x, y, n) denote the view of the adversary after a real execution
of π as above. Then, we have the following definition:

Definition 2.6.2 Let f be a functionality where only P2 receives output.
We say that a protocol π securely computes f with one-sided simulation if the
following holds:

1. For every non-uniform ppt adversary A controlling P2 in the real model,
there exists a non-uniform ppt adversary S for the ideal model, such that{

realπ,A(z),2(x, y, n)
}
x,y,z,n

c≡
{
idealf,S(z),2(x, y, n)

}
x,y,z,n

where n ∈ N, x, y, z ∈ {0, 1}∗ and |x| = |y|.
2. For every non-uniform ppt adversary A controlling P1;{

viewAπ,A(z),1(x, y, n)
}
x,y,y′,z,n

c≡
{
viewAπ,A(z),1(x, y

′, n)
}
x,y,y′,z,n

(2.3)

where n ∈ N, x, y, y′, z ∈ {0, 1}∗ and |x| = |y| = |y′|.

Note that the ensembles in (2.3) are indexed by two different inputs y and
y′ for P2. The requirement is that A cannot distinguish between the cases
where P2 used the first input y and the second input y′.

2.7 Sequential Composition – Simulation-Based
Definitions

A protocol that is secure under sequential composition maintains its secu-
rity when run multiple times, as long as the executions are run sequentially
(meaning that each execution concludes before the next execution begins).
Sequential composition theorems are theorems that state “if a protocol is
secure in the stand-alone model under definition X, then it remains secure
under sequential composition”. Thus, we are interested in proving protocols
secure under Definitions 2.2.1, 2.3.1 and 2.4.1 (for semi-honest, malicious and
covert adversaries), and immediately deriving their security under sequential



2.7 Sequential Composition – Simulation-Based Definitions 47

composition. This is important for two reasons. First, sequential composi-
tion constitutes a security goal within itself as security is guaranteed even
when parties run many executions, albeit sequentially. Second, sequential
composition theorems are useful tools that help in writing proofs of security.
Specifically, when constructing a protocol that is made up of a number of
secure subprotocols, it is possible to analyze the security of the overall pro-
tocol in a modular way, because the composition theorems tell us that the
subprotocols remain secure in this setting.

We do not present proofs of the sequential composition theorems for the
semi-honest and malicious cases as these already appear in [32]; see Sections
7.3.1 and 7.4.2 respectively. However, we do present a formal statement of
the theorems as we will use them in our proofs of security of the protocols. In
addition, we provide a proof of sequential composition for the case of covert
adversaries.

Modular sequential composition. The basic idea behind the formulation
of the modular sequential composition theorems is to show that it is possible
to design a protocol that uses an ideal functionality as a subroutine, and
then analyze the security of the protocol when a trusted party computes this
functionality. For example, assume that a protocol is constructed using obliv-
ious transfer as a subroutine. Then, first we construct a protocol for oblivious
transfer and prove its security. Next, we prove the security of the protocol
that uses oblivious transfer as a subroutine, in a model where the parties have
access to a trusted party computing the oblivious transfer functionality. The
composition theorem then states that when the “ideal calls” to the trusted
party for the oblivious transfer functionality are replaced with real executions
of a secure protocol computing this functionality, the protocol remains secure.
We begin by presenting the “hybrid model” where parties communicate by
sending regular messages to each other (as in the real model) but also have
access to a trusted party (as in the ideal model).

The hybrid model. We consider a hybrid model where parties both inter-
act with each other (as in the real model) and use trusted help (as in the
ideal model). Specifically, the parties run a protocol π that contains “ideal
calls” to a trusted party computing some functionalities f1, . . . , fp(n). These
ideal calls are just instructions to send an input to the trusted party. Upon
receiving the output back from the trusted party, the protocol π continues.
The protocol π is such that fi is called before fi+1 for every i (this just de-
termines the “naming” of the calls as f1, . . . , fp(n) in that order). In addition,
if a functionality fi is reactive (meaning that it contains multiple stages like
a commitment functionality which has a commit and reveal stage), then no
messages are sent by the parties directly to each other from the time that
the first message is sent to fi to the time that all stages of fi have concluded.
We stress that the honest party sends its input to the trusted party in the
same round and does not send other messages until it receives its output (this
is because we consider sequential composition here). Of course, the trusted



48 2 Definitions

party may be used a number of times throughout the execution if π. However,
each use is independent (i.e., the trusted party does not maintain any state
between these calls). We call the regular messages of π that are sent amongst
the parties standard messages and the messages that are sent between parties
and the trusted party ideal messages. We stress that in the hybrid model, the
trusted party behaves as in the ideal model of the definition being considered.
Thus, the trusted party computing f1, . . . , fp(n) behaves as in Section 2.3
when malicious adversaries are being considered, and as in Section 2.4 for
covert adversaries.

Sequential composition – malicious adversaries. Let f1, . . . , fp(n) be
probabilistic polynomial-time functionalities and let π be a two-party proto-
col that uses ideal calls to a trusted party computing f1, . . . , fp(n). Further-
more, let A be a non-uniform probabilistic polynomial-time machine and let
i be the index of the corrupted party. Then, the f1, . . . , fp(n)-hybrid execution
of π on inputs (x, y), auxiliary input z to A and security parameter n, de-

noted hybrid
f1,...,fp(n)

π,A(z),i (x, y, n), is defined as the output vector of the honest

parties and the adversary A from the hybrid execution of π with a trusted
party computing f1, . . . , fp(n).

Let ρ1, . . . , ρp(n) be a series of protocols (as we will see ρi takes the place
of fi in π). We assume that each ρi has a fixed number rounds that is the
same for all parties. Consider the real protocol πρ1,...,ρp(n) that is defined as
follows. All standard messages of π are unchanged. When a party is instructed
to send an ideal message α to the trusted party to compute fj , it begins a real
execution of ρj with input α instead. When this execution of ρj concludes
with output y, the party continues with π as if y were the output received
by the trusted party for fj (i.e., as if it were running in the hybrid model).

The composition theorem states that if ρ1, . . . , ρp(n) securely compute
f1, . . . , fp(n) respectively, and π securely computes some functionality g in
the f1, . . . , fp(n)-hybrid model, then πρ1,...,ρp(n) securely computes g (in the
real model). As discussed above, the hybrid model that we consider here is
where the protocols are run sequentially. Thus, the fact that sequential com-
position only is considered is implicit in the theorem, via the reference to the
hybrid model.

Theorem 2.7.1 (modular sequential composition – malicious): Let p(n) be
a polynomial, let f1, . . . , fp(n) be two-party probabilistic polynomial-time func-
tionalities and let ρ1, . . . , ρp(n) be protocols such that each ρi securely com-
putes fi in the presence of malicious adversaries. Let g be a two-party func-
tionality and let π be a protocol that securely computes g in the f1, . . . , fp(n)-
hybrid model in the presence of malicious adversaries. Then, πρ1,...,ρp(n) se-
curely computes g in the presence of malicious adversaries.

Sequential composition – covert adversaries. Let f1, . . . , fp(n), π and
ρ1, . . . , ρp(n) be as above. Furthermore, define πρ1,...,ρp(n) exactly as in the
malicious model. Note, however, that in the covert model, a party may receive



2.7 Sequential Composition – Simulation-Based Definitions 49

corruptedk as output from ρj . In this case, as with any other output, it behaves
as instructed in π (corruptedk may be received as output both when the
real ρj is run and when the trusted party is used to compute fj because
we consider the covert ideal model here). The covert ideal model idealsc
depends on the deterrent factor because this determines the probability with
which the trusted party sends corrupted or undetected. Therefore, we refer
to the (f, ϵ)-hybrid model as one where the trusted party computes f and
uses the given ϵ. When considering protocols ρ1, . . . , ρp(n) we will refer to the
(f1, ϵ1), . . . , (fp(n), ϵp(n))-hybrid model, meaning that the trusted party uses
ϵi when computing fi (and the ϵ values may all be different). We have the
following:

Theorem 2.7.2 Let p(n) be a polynomial, let f1, . . . , fp(n) be two-party prob-
abilistic polynomial-time functionalities and let ρ1, . . . , ρp(n) be protocols such
that each ρi securely computes fi in the presence of covert adversaries with
deterrent ϵi. Let g be a two-party functionality and let π be a protocol that
securely computes g in the (f1, ϵ1), . . . , (fp(n), ϵp(n))-hybrid model in the pres-
ence of covert adversaries with ϵ-deterrent. Then, πρ1,...,ρp(n) securely com-
putes g in the presence of covert adversaries with ϵ-deterrent.

Proof (sketch). Theorem 2.7.2 can be derived as an almost immediate
corollary from the composition theorem of [11, 32] in the following way.
First, define a special functionality interface that follows the instructions of
the trusted party in Definition 2.4.1. That is, define a reactive functionality
(see Section 2.3.2) that receives inputs and writes outputs (this functional-
ity is modeled by an interactive Turing machine). The appropriate reactive
functionality here acts exactly like the trusted party (e.g., if it receives a
cheati message when computing fℓ, then it tosses coins and with probability
ϵℓ outputs corruptedi to the honest party and with probability 1 − ϵℓ gives
the adversary the honest party’s input and lets it chooses its output). Next,
consider the standard ideal model of Definition 2.3.1 with functionalities of
the above form. It is easy to see that a protocol securely computes some
functionality f under Definition 2.4.1 if and only if it is securely computes
the appropriately defined reactive functionality under Definition 2.3.1. This
suffices because the composition theorem of [11, 32] can be applied to Defi-
nition 2.3.1, yielding the result.

Observe that in Theorem 2.7.2 the protocols ρ1, . . . , ρp(n) and π may all
have different deterrent values. Thus the proof of π in the hybrid model must
take into account the actual deterrent values ϵ1, . . . , ϵp(n) of the protocols
ρ1, . . . , ρp(n), respectively.



http://www.springer.com/978-3-642-14302-1


