
Chapter 2
Locally decodable codes via the point removal
method

This chapter contains a detailed exposition of the point removal method for con-
structing locally decodable codes. The method can be broken into two parts. The
first part is a reduction that shows how the existence of subsets of finite fields that
simultaneously exhibit “nice” properties of two different kinds yields families of
locally decodable codes with good parameters. The second part is a construction of
“nice” subsets of finite fields.

Sections 2.1 and 2.2 of this chapter are preliminary. In Section 2.3, we give a de-
tailed treatment of the first part of our method for the narrow case of binary codes.
We treat binary codes separately to have a simpler setup where we can (in an in-
tuitive yet formal manner) demonstrate the combinatorial and geometric ideas that
lie behind our method. While we believe that Section 2.3 may be the most impor-
tant part of the book (since it explains the intuition behind our approach), it can
be skipped by the reader who is interested only in a succinct formal treatment of
the constructions. After a detailed treatment of binary codes in Section 2.3, we give
a succinct treatment of general codes in Section 2.4. As our main conclusion, we
identify the two “nice” properties of subsets of finite fields that (simultaneously)
yield good codes. We call those properties combinatorial and algebraic niceness.

The next two sections cover the second part of our method. In Section 2.5, we
construct combinatorially nice subsets of prime fields, and in Section 2.6 we con-
struct algebraically nice subsets of prime fields. Finally, in Section 2.7, we put the
results of the previous sections together and summarize our improvements in upper
bounds for locally decodable codes.

2.1 Notation

We use the following standard mathematical notation:

• [s] = {1, . . . ,s}.
• Zn denotes integers modulo n.
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20 2 Locally decodable codes via the point removal method

• Fq is a finite field of q elements.
• F∗q is the multiplicative group of Fq.

• dH(x,y) denotes the Hamming distance between vectors x and y.

• (u,v) stands for the dot product of vectors u and v.

• For a linear space L⊆ Fm
r , L⊥ denotes the dual space. That is,

L⊥ = {u ∈ Fm
r | ∀v ∈ L,(u,v) = 0}.

2.2 Locally decodable codes

In this section we formally define locally decodable codes.

Definition 1. An r-ary code C : [r]n→ [r]N is said to be (k,δ ,ε)-locally decodable
if there exists a randomized decoding algorithm A such that:

1. For all x ∈ [r]n, i ∈ [n] and y ∈ [r]N such that dH(C(x),y)≤ δN,

Pr [A y(i) = xi]≥ 1− ε,

where the probability is taken over the random coin tosses of the algorithm A .

2. A makes at most k queries to y.

In the special case when r is a prime power and the elements of the alphabet [r]
are in one-to-one correspondence with the elements of the finite field Fr, it makes
sense to talk about linear codes. A locally decodable code C is called linear if C
is a linear transformation over Fr. In this book we consider only codes over prime
alphabets, and all our codes are linear.

2.3 Binary LDCs via point removal

In this section, we give a detailed treatment of the first part of our method for the
narrow case of binary codes. Our goal here is to explain the intuition behind the
point removal approach; therefore, we gradually build up our main construction,
trying to provide motivation for every choice that we make. Our final result is a
claim that subsets of prime fields that exhibit certain properties (combinatorial and
algebraic niceness) yield families of LDCs with very good parameters.

In Section 2.3.1, we introduce certain combinatorial objects that we call regular
intersecting families of sets. These objects later serve as our tool to construct binary
LDCs. In Section 2.3.2, we present a linear algebraic construction of a regular inter-
secting family that yields locally decodable codes with good (although not the best
known) parameters. The notions of combinatorial and algebraic niceness of sets are
used implicitly in this section. Our main construction in Section 2.3.3 builds upon
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the construction of Section 2.3.2 via the point removal procedure. We formally in-
troduce combinatorial and algebraic niceness and show how the interplay between
these two notions yields locally decodable codes.

2.3.1 Regular intersecting families of sets

The locally decodable codes that we construct are linear. Our decoding algorithms
proceed by tossing random coins, reading a certain k-tuple of coordinates of the
(corrupted) codeword, and outputting the XOR of the values at these coordinates.

Observe that every linear LDC encoding n-bit messages to N-bit codewords ad-
mits a combinatorial description. Let N,R, and n be arbitrary positive integers. For
i ∈ [n], let ei denote a binary n-dimensional (unit) vector, whose unique nonzero co-
ordinate is i. In order to define a k-query linear locally decodable code, it is sufficient
to specify the following for every i ∈ [n] :

• A set Ti ⊆ [N] of coordinates of C(ei) that are set to 1. Such sets completely
specify the encoding, since for any message x, C(x) = ∑i:xi=1 C(ei).

• A family {Qir},r∈ [R], of subsets of [N] of size k that specify collections of code-
word coordinates that can be read by a decoding algorithm in order to reconstruct
the i-th message bit.

Clearly, not every collection of sets {Ti} and {Qir} yields a locally decodable code.
Certain combinatorial constraints must be satisfied. We formally define these con-
straints below.

Definition 2. We say that the subsets {Ti} and {Qir} form a (k,n,N,R,s)-regular
intersecting family if the following conditions are satisfied:

1. k is odd.
2. For all i ∈ [n], |Ti|= s.
3. For all i ∈ [n] and r ∈ [R], |Qir|= k.
4. For all i ∈ [n] and r ∈ [R], Qir ⊆ Ti.

5. For all i ∈ [n] and w ∈ Ti, |{r ∈ [R] | w ∈ Qir}| = (Rk)/s, (i.e., Ti is uniformly
covered by the sets Qir).

6. For all i, j ∈ [n] and r ∈ [R] such that i 6= j,
∣∣Qir ∩Tj

∣∣≡ 0 mod (2).

We now formally show how regular intersecting families yield binary locally
decodable codes.

Proposition 1. A (k,n,N,R,s)-regular intersecting family yields a binary linear
code encoding n bits to N bits that is (k,δ ,δNk/s)-locally decodable for all δ .

Proof. For a set S⊆ [N], let I(S)∈ {0,1}N denote its incidence vector. Formally, for
w∈ [N], we set I(S)w = 1 if w∈ S, and I(S)w = 0 otherwise. We define a linear code
C via its generator matrix G ∈ {0,1}n×N . For i ∈ [n], we set the i-th row of G to be
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the incidence vector of the set Ti. Below is the description of the decoding algorithm
A . Given oracle access to y and input i ∈ [n], the algorithm A does the following.

1. It picks r ∈ [R] uniformly at random.
2. It outputs the dot product (y, I (Qir)) over F2.

Note that since |Qir|= k, A needs only k queries to y to compute the dot product.
It is easy to verify that the decoding is correct if A picks r ∈ [R] such that all bits of
xG in locations h ∈ Qir are not corrupted:

(xG, I (Qir)) =
n

∑
j=1

x j (I(Tj), I (Qir)) = xi (I(Ti), I (Qir)) = xi. (2.1)

The second equality in (2.1) follows from part 6 of Definition 2 and the last equality
follows from parts 1, 3 and 4 of Definition 2.

Now assume that up to δN bits of the encoding xG have been corrupted. Part 5
of Definition 2 implies that there are at most (δNRk)/s sets Qir that contain at least
one corrupted location. Thus, with probability at least 1− (δNk)/s, the algorithm
A outputs the correct value. ut

To the best of our knowledge, regular intersecting families of sets have not been
studied previously. The closest combinatorial objects that have some literature are
Ruzsa–Szemeredi (hyper)graphs [40, 79, 80].

2.3.2 Basic construction

In this section we present our basic construction of regular intersecting families,
which yields binary k-query locally decodable codes of length exp

(
n1/(k−1)

)
for

prime values of k≥ 3. Note that for k > 3, the parameters that we get are inferior to
the parameters of LDCs of the second generation (see Section 1.3.2).

There is a strong geometric intuition underlying our construction. We choose our
universe [N] to be a high-dimensional linear space over a prime field Fp. We choose
the sets {Ti} to be unions of cosets of certain hyperplanes, and the sets {Qir} to be
affine lines. We argue the intersection properties based on elementary linear algebra.
Let p be an odd prime, and let m≥ p−1 be an integer.

Lemma 1. Let n =
( m

p−1

)
. There exist two families of vectors {u1, . . . ,un} and

{v1, . . . ,vn} in Fm
p such that

• For all i ∈ [n], (ui,vi) = 0.

• For all i, j ∈ [n] such that i 6= j, (u j,vi) 6= 0.

Proof. Let e ∈ Fm
p be the vector that contains 1’s in all the coordinates. We set

the vectors {ui} to be the incidence vectors of all possible
( m

p−1

)
subsets of [m] of

cardinality (p−1). For every i∈ [n], we set vi = e−ui. It is straightforward to verify
that this family satisfies the condition of the lemma. ut
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Now we are ready to present our regular intersecting family. We set N = pm and
n =

( m
p−1

)
. We assume some bijection between the set [N] and the space Fm

p . For
i ∈ [n], we set

Ti =
{

w ∈ Fm
p | (ui,w) ∈ F∗p

}
.

We set
R = s = (p−1) · pm−1.

For each i∈ [n], we assume some bijection between points of Ti and elements of [R].
For i ∈ [n] and r ∈ [R], let wir be the r-th point of Ti. We set

Qir =
{

wir +λvi | λ ∈ Fp
}

.1

Lemma 2. For i ∈ [n] and r ∈ [R], the sets {Ti} and {Qir} defined above form a
(p,n,N,R,s)-regular intersecting family.

Proof. We simply need to verify that all six conditions listed in Definition 2 are
satisfied.

1. Condition 1 is trivial.
2. Condition 2 is trivial.
3. Condition 3 is trivial.
4. Fix i ∈ [n] and r ∈ [R]. Given that (ui,wir) ∈ F∗p let us show that Qir ⊆ Ti. By

Lemma 1, (ui,vi) = 0. Thus, for every λ ∈ Fp,

(ui,wir +λvi) = (ui,wir) .

Condition 4 follows.
5. Fix i ∈ [n] and w ∈ Ti. Note that

|{r ∈ [R] | w ∈ Qir}|=
∣∣{wir ∈ Ti | ∃λ ∈ Fp,w = wir +λvi

}∣∣
=
∣∣{wir ∈ Ti | ∃λ ∈ Fp,wir = w−λvi

}∣∣= p.

It remains to note that Rp/s = p. Condition 5 follows.
6. Fix i, j ∈ [n], and r ∈ [R] such that i 6= j. Note that∣∣Qir ∩Tj

∣∣= ∣∣{λ ∈ Fp | (u j,wir +λvi) ∈ F∗p
}∣∣

=
∣∣{λ ∈ Fp | ((u j,wir)+λ (u j,vi)) ∈ F∗p

}∣∣= p−1.

The last equality follows from the fact that (u j,vi) 6= 0, and therefore the uni-
variate linear function (u j,wir)+λ (u j,vi) takes every value in Fp exactly once.
It remains to note that p−1 is even. Condition 6 follows.

This completes the proof. ut

Combining Lemma 2 and Proposition 1 we get the following corollary.

1 Note that the sets Qir are not all distinct.
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Corollary 1. Let p be an odd prime and let m≥ p−1 be an integer. There exists a
binary linear code encoding

( m
p−1

)
bits to pm bits that is

(
p,δ ,δ p2/(p−1)

)
-locally

decodable for all δ .

It is now easy to convert the above result into a dense family (i.e., one that has
a code for every message length n, as opposed to infinitely many n’s) of p-query
LDCs of length exp

(
n1/(p−1)

)
.

Theorem 1. Let p be a fixed odd prime. For every positive integer n there exists
a code of length exp

(
n1/(p−1)

)
that is

(
p,δ ,δ p2/(p−1)

)
-locally decodable for

all δ .

Proof. Given n, choose m to be the smallest integer such that n ≤
( m

p−1

)
. Set n′ =( m

p−1

)
. It is easy to verify that if n is sufficiently large, we have n′ ≤ 2n. Given

a message x of length n, we pad it with zeros to a length n′ and use the code in
Corollary 1 that encodes x with a codeword of length pm = exp

(
n1/(p−1)

)
. ut

2.3.3 The main construction: point removal

In the previous section, we presented our basic linear algebraic construction of reg-
ular intersecting families of sets. We chose the sets {Ti} to be unions of cosets of
certain hyperplanes. We chose the sets {Qir} to be affine lines.

The high-level idea behind our main construction is to reduce the number of
codeword locations queried by removing some points from lines; i.e., by choosing
the sets {Qir} to be proper subsets of lines rather than whole lines while preserving
the right intersection properties.

Before we proceed to our main construction, we introduce two central technical
concepts of our method, namely combinatorial and algebraic niceness of sets. We
now give some narrow definitions that are needed to construct binary codes via the
point removal method in linear spaces over prime fields. Later, in Section 2.4 we
shall give more general definitions. Let p be an odd prime.

Definition 3. A set S ⊆ F∗p is called (m,n)-combinatorially nice if there exist two
families of vectors {u1, . . . ,un} and {v1, . . . ,vn} in Fm

p such that:

• For all i ∈ [n], (ui,vi) = 0.

• For all i, j ∈ [n] such that i 6= j, (u j,vi) ∈ S.

Remark 1. Note that in Lemma 1 we established that the set S = F∗p is
(

m,
( m

p−1

))
-

combinatorially nice for every integer m≥ p−1.

Definition 4. A set S ⊆ F∗p is called k-algebraically nice if k is odd and there exist
two sets S0,S1 ⊆ Fp such that:

• S0 is not empty.
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• |S1|= k.
• For all α ∈ Fp and β ∈ S, |S0∩ (α +βS1)| ≡ 0 mod (2).

Remark 2. It is easy to verify that the set S = F∗p is p-algebraically nice. We simply
pick S1 = Fp and S0 = F∗p.

The next lemma shows how an interplay between combinatorial and algebraic
niceness yields regular intersecting families. It is the core of our construction.

Lemma 3. Assume that S ⊆ F∗p is simultaneously (m,n)-combinatorially nice and
k-algebraically nice. Let S0 be the set in the definition of the algebraic niceness of
S. The set S yields a

(
k,n, pm, |S0|pm−1, |S0|pm−1

)
-regular intersecting family.

Proof. For i∈ [n], let ui,vi be the vectors in the definition of combinatorial niceness.
Set N = pm and

R = s = |S0|pm−1.

Assume a bijection between [N] and Fm
p . For all i ∈ [n], set

Ti =
{

w ∈ Fm
p | (ui,w) ∈ S0

}
.

For each i ∈ [n], assume some bijection between [R] and Ti. Let wir denote the r-th
point of Ti. Set

Qir = {wir +λvi | λ ∈ S1} .

It remains to verify that all six conditions listed in Definition 2 are satisfied.

1. Condition 1 is trivial.
2. Condition 2 is trivial.
3. Condition 3 is trivial.
4. Fix i ∈ [n] and r ∈ [R]. Given that (ui,wir) ∈ S0, let us show that Qir ⊆ Ti. Defi-

nition 3 implies that (ui,vi) = 0. Thus, for every λ ∈ S1,

(ui,wir +λvi) = (ui,wir) .

Condition 4 follows.
5. Fix i ∈ [n] and w ∈ Ti. Note that

|{r ∈ [R] | w ∈ Qir}|= |{wir ∈ Ti | ∃λ ∈ S1,w = wir +λvi}|
= |{wir ∈ Ti | ∃λ ∈ S1,wir = w−λvi}|= |S1|= k.

It remains to note that Rk/s = k. Condition 5 follows.
6. Fix i, j ∈ [n] and r ∈ [R] such that i 6= j. Note that∣∣Qir ∩Tj

∣∣= ∣∣{λ ∈ S1 | (u j,wir +λvi) ∈ S0
}∣∣

=
∣∣{λ ∈ S1 | ((u j,wir)+λ (u j,vi)) ∈ S0

}∣∣
=
∣∣S0∩ ((u j,wir)+(u j,vi)S1)

∣∣≡ 0 mod (2).
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The last equality follows from the fact that (u j,vi) ∈ S, and Definition 4. Condi-
tion 6 follows.

This completes the proof. ut

Observe that one can derive a regular intersecting family with the parameters of
Lemma 2 using Lemma 3 in combination with Remarks 1 and 2.

The next proposition, which follows immediately by combining Proposition 1
with Lemma 3 is the heart of the first part of our construction of LDCs (for the case
of binary codes).

Proposition 2. Let p be an odd prime. Assume that S⊆ F∗p is simultaneously (m,n)-
combinatorially nice and k-algebraically nice. Let S0 be the set in the definition of
the algebraic niceness of S. The set S yields a binary linear code encoding n bits to
pm bits that is (k,δ ,δ pk/|S0|)-locally decodable for all δ .

Later, we will see that for every Mersenne prime p = 2t − 1, the multiplicative
subgroup generated by the element 2 in F∗p is three-algebraically nice (Lemma 14)
and sufficiently combinatorially nice (Lemma 6) to yield three-query LDCs of
length exp

(
n1/t
)

via the proposition above.

2.4 General LDCs via point removal

In this section, we present a general treatment of the first part of our construction of
locally decodable codes. We extend the results of the previous section in two ways:
(1) we consider codes over alphabets Fr, for arbitrary primes r, rather than only
binary codes; (2) we consider nice subsets of arbitrary finite fields Fq, rather than
only prime fields. We start by defining the combinatorial and algebraic niceness of
subsets in the general setup, and then proceed to a succinct formal proof of the main
propositions.

Definition 5. Let q be a prime power. A set S ⊆ F∗q is called (m,n)-combinatorially
nice if there exist two families of vectors {u1, . . . ,un} and {v1, . . . ,vn} in Fm

q such
that:

• For all i ∈ [n], (ui,vi) = 0.

• For all i, j ∈ [n] such that i 6= j, (u j,vi) ∈ S.

In many cases, it will be more convenient for us to use the following definition
of combinatorial niceness that involves a single parameter t.

Definition 6. Let q be a prime power. A set S ⊆ F∗q is called t-combinatorially nice
if for some c > 0 and every positive integer m, S is (m,bcmtc)-combinatorially nice.

Given a map f from a finite set to a field let supp( f ) denote its support i.e., the
number of elements of the set that are not mapped to zero. Now we proceed to the
general definition of algebraic niceness.
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Definition 7. Let q be a prime power and r be a prime. A set S ⊆ F∗q is called k-
algebraically nice over Fr if there exist two maps, S0 : Fq → Fr and S1 : Fq → Fr
such that:

• supp(S0) 6= 0.

• supp(S1)≤ k.
• ∑

λ∈Fq

S1(λ ) 6= 0.

• For all α ∈ Fq and β ∈ S, ∑
λ∈Fq

S0(α +βλ )S1(λ ) = 0.

We now proceed to our core lemma, which shows how sets exhibiting both com-
binatorial and algebraic niceness yield locally decodable codes.

Lemma 4. Let q be a prime power and let r be a prime. Assume that S ⊆ F∗q is
simultaneously (m,n)-combinatorially nice, and k-algebraically nice over Fr. Let
S0 be the map in the definition of the algebraic niceness of S. The set S yields an
Fr-linear code encoding messages of length n to codewords of length qm that is
(k,δ ,δqk/supp(S0))-locally decodable for all δ .

Proof. Our proof has three steps. We specify encoding and local decoding proce-
dures for our codes and then argue a lower bound for the probability of correct
decoding. We use notation from Definitions 5 and 7.

Encoding. Our code will be linear. Therefore it suffices to specify the encoding
of unit vectors e1, . . . ,en, where e j has length n and a unique nonzero coordinate
j. We define the encoding of e j to be a vector of length qm, whose coordinates are
labeled by elements of Fm

q . For all w ∈ Fm
q , we set

Enc(e j)w = S0 ((u j,w)) . (2.2)

Local decoding. Suppose that the decoding algorithm A needs to recover the i-th
coordinate of the message, i ∈ [n]. To simplify the notation, we put

c =
1(

S0 ((ui,w)) ∑
λ∈Fq

S1(λ )

) .

Given a (possibly corrupted) codeword y, A picks w∈ Fm
q such that S0((ui,w)) 6= 0

uniformly at random, reads supp(S1)≤ k coordinates of y, and outputs the sum

c ∑
λ∈Fq:S1(λ )6=0

S1(λ )yw+λvi . (2.3)

Probability of correct decoding. First we argue that the decoding is always
correct if A picks w ∈ Fm

q such that all coordinates of y with labels in the set
{w + λvi}λ :S1(λ )6=0 are not corrupted. We need to show that for all i ∈ [n], x ∈ Fn

r ,
and w ∈ Fm

q , such that S0((ui,w)) 6= 0,
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c ∑
λ∈Fq:S1(λ )6=0

S1(λ )

(
n

∑
j=1

x j Enc(e j)

)
w+λvi

= xi. (2.4)

Note that

c ∑
λ∈Fq

S1(λ )

(
n

∑
j=1

x j Enc(e j)

)
w+λvi

= c
n

∑
j=1

x j

 ∑
λ∈Fq

S1(λ )Enc(e j)w+λvi

 (2.5)

= c
n

∑
j=1

x j

 ∑
λ∈Fq

S1(λ )S0((u j,w+λvi))

 .

Now note that

∑
λ∈Fq

S1(λ )S0((u j,w+λvi)) = ∑
λ∈Fq

S1(λ )S0((u j,w)+λ (u j,vi))

=
{

1/c, if i = j,
0, otherwise.

For i = j, the last identity above follows from (ui,vi) = 0 and the definition of the
constant c. For i 6= j, the identity follows from (u j,vi)∈ S and the algebraic niceness
of S. Combining (2.5) with the identity above, we get (2.4).

Now assume that up to a fraction δ of the coordinates of y are corrupted. Let Ti
denote the set of coordinates whose labels belong to{

w ∈ Fm
q | S0((ui,w)) 6= 0

}
.

It is not hard to see that |Ti| = qm−1supp(S0). Thus at most a fraction δq/supp(S0)
of the coordinates in Ti are corrupted. Let

Qi =
{
{w+λvi}λ∈Fq:S1(λ )6=0 | w : S0((ui,w)) 6= 0

}
be the family of supp(S1)-tuples of coordinates that may be queried by A . (ui,vi) =
0 implies that the elements of Qi uniformly cover the set Ti. Combining the last two
observations, we conclude that with probability at least 1−δqk/supp(S0), A picks
an uncorrupted supp(S1)≤ k-tuple and outputs the correct value of xi. ut

The parameters of the locally decodable code that one gets by applying Lemma 4
to a (nice) set S depend on the support of S0, where S0 is the map in the definition of
the algebraic niceness of S. The next lemma shows that one can always ensure that
the support of S0 is large, and thus obtain a good dependence of the decoding error
on the fraction of corrupted locations.
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Lemma 5. Let q be a prime power and let r be a prime. Let S ⊆ F∗q be a k-
algebraically nice set over Fr. Let S0,S1 be the maps in the definition of the al-
gebraic niceness of S. One can always redefine the map S0 to satisfy supp(S0) ≥
dq(1−1/r)e.

Proof. The algebraic niceness of S implies that for all α ∈ Fq and β ∈ S,

∑
λ∈Fq

S0(α +βλ )S1(λ ) = 0.

Equivalently, for all α ∈ Fq and β ∈ S,

∑
λ∈Fq

S0(λ )S1((λ −α)β−1) = 0. (2.6)

Our goal is to redefine the map S0 to satisfy both (2.6) and supp(S0)≥ dq(1−1/r)e.
Consider a linear space M = Fq

r where the coordinates of vectors are labeled
by elements of Fq. Note that there is a natural one-to-one correspondence between
vectors in M and maps from Fq to Fr. Specifically, a map f : Fq→ Fr corresponds
to a vector v ∈M such that vλ = f (λ ) for all λ ∈ Fq.

Let L⊆M be a linear subspace spanned by the vectors corresponding to all maps
f (λ ) = S1((λ −α)β−1), where α ∈ Fq and β ∈ S. Observe that L is invariant under
the actions of a 1-transitive permutation group (that is permuting the coordinates in
accordance with addition in Fq). This implies that the dual space L⊥ is also invariant
under the actions of the same group. Note that L⊥ has positive dimension since it
contains the vector corresponding to the map S0. The last two observations imply
that L⊥ has full support, i.e., for every i ∈ [q] there exists a vector v ∈ L⊥ such that
vi 6= 0. It is easy to verify that any linear subspace of Fq

r that has full support contains
a vector of Hamming weight at least dq(1−1/r)e. Let v ∈ L⊥ be such a vector. By
redefining the map S0 to be the map from Fq to Fr corresponding to the vector v, we
conclude the proof. ut

The following propositions are the heart of the first part of our construction of
LDCs. Combining Lemmas 4 and 5, we get the following proposition.

Proposition 3. Let q be a prime power and let r be a prime. Assume that S ⊆ F∗q is
simultaneously (m,n)-combinatorially nice, and k-algebraically nice over Fr. The
set S yields an Fr-linear code encoding messages of length n to codewords of length
qm that is (k,δ ,δkr/(r−1))-locally decodable for all δ .

Using proposition 3 in combination with the single-parameter definition of com-
binatorial niceness, we get the following proposition.

Proposition 4. Let q be a prime power and let r be a prime. Assume that S ⊆ F∗q
is simultaneously t-combinatorially nice, and k-algebraically nice over Fr; then,
for every n > 0 there exists an Fr-linear code encoding messages of length n to
codewords of length exp

(
n1/t
)

that is (k,δ ,δkr/(r−1))-locally decodable for all δ .
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Proof. Let c > 0 be the constant in the (single-parameter) definition of the combi-
natorial niceness of S. Given a message of length n, we pad it with zeros to get a
message of length n′, where n′ ≥ n is the smallest integer of the form bcmtc, and
then use the code in proposition 3. It is not hard to verify that the padding results
in at most a constant (multiplicative) blowup in the message length, and thus the
length of our code is exp

(
n1/t
)
. ut

Propositions 3 and 4 identify two properties of subsets of finite fields that to-
gether yield good locally decodable codes. These properties are combinatorial and
algebraic niceness. Our next goal is to construct nice subsets. In the next sections, we
show that if the primes p and r are such that p is a large factor of rt−1, then the mul-
tiplicative subgroup generated by the number r in F∗p is sufficiently (algebraically
and combinatorially) nice to yield constant-query LDCs of length exp

(
n1/t
)

over
Fr for all message lengths n.

2.5 Combinatorially nice subsets of F∗p

In this section we study combinatorial niceness and show that multiplicative sub-
groups of prime fields are combinatorially nice.

For w ∈ Fm
p and a positive integer l, let w⊗l ∈ Fml

p denote the l-th tensor power
of w. The coordinates of w⊗l are labeled by all possible sequences in [m]l , and

w⊗l
i1,...,il

=
l

∏
j=1

wi j .

Our next goal is to establish the following lemma.

Lemma 6. Let p be a prime and let m ≥ p− 1 be an integer. Suppose that S is a
subgroup of F∗p; then S is

((m−1+(p−1)/|S|
(p−1)/|S|

)
,
( m

p−1

))
-combinatorially nice.

Proof. Let n =
( m

p−1

)
. For i ∈ [n], let the vectors u′′i and v′′i in Fm

p be the same as
the vectors ui,vi in the proof of Lemma 1, i.e., the vectors u′′i are incidence vectors
of all possible subsets of [m] of cardinality (p− 1), and the vectors v′′i are their
complements. Recall that:

• For all i ∈ [n], (u′′i ,v′′i ) = 0.

• For all i, j ∈ [n] such that i 6= j, (u′′j ,v′′i ) 6= 0.

Let l be a positive integer and let u,v be vectors in Fm
p . Observe that
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(
u⊗l ,v⊗l

)
= ∑

(i1,...,il)∈[m]l

(
l

∏
j=1

ui j

l
∏
j=1

vi j

)

= ∑
(i1,...,il)∈[m]l

(
l

∏
j=1

ui j vi j

)
=

(
∑

i1∈[m]
ui1vi1

)
. . .

(
∑

il∈[m]
uil vil

)
= (u,v)l .

(2.7)

Let l = (p−1)/|S|. For i ∈ [n] set u′i = u′′⊗l
i and v′i = v′′⊗l

i . Equation (2.7) and the
fact that F∗p is a cyclic group yield the following:

• For all i ∈ [n], (u′i,v′i) = 0.

• For all i, j ∈ [n] such that i 6= j, (u′j,v′i) ∈ S.

Note that the vectors u′i and v′i have m(p−1)/|S| coordinates. Therefore, at this point,

we have already shown that the set S is
(

m(p−1)/|S|,
( m

p−1

))
-combinatorially nice.

Let w be an arbitrary vector in Fm
p . Note that the value of w⊗l

i1,...,il
depends on

the multiset {i1, . . . , il} rather than the sequence i1, . . . , il . Thus many coordinates
of w⊗l contain identical (and therefore redundant) values. We are going to reduce
the number of coordinates in the vectors {u′i} and {v′i} using this observation. Let
F(m, l) denote the family of all multi-subsets of [m] of cardinality l. Note that

|F(m, l)|=
(

m−1+ l
l

)
.

For a multiset σ ∈ F(m, l), let c(σ) denote the number of sequences in [m]l that
represent σ . Now we are ready to define the vectors {ui} and {vi} in F|F(m,l)|

p . The
coordinates of the vectors {ui} and {vi} are labeled by multisets σ ∈ F(m, l). For
all i ∈ [n] and σ ∈ F(m, l), we set

(ui)σ = c(σ)(u′i)σ and (vi)σ = (v′i)σ .

It is easy to verify that for all i, j ∈ [n], (u j,vi) =
(

u′j,v′i
)

. Combining this obser-

vation with the properties of the vectors u′i and v′i that were established earlier, we

conclude that the set S is
((m−1+(p−1)/|S|

(p−1)/|S|
)
,
( m

p−1

))
-combinatorially nice. ut

We now give a simple corollary to Lemma 6 that uses a single-parameter defini-
tion of combinatorial niceness.

Lemma 7. Let p be a prime. Suppose that S is a multiplicative subgroup of F∗p; then
S is |S|-combinatorially nice.

Proof. Let t = |S|. We need to specify a constant c > 0 such that for every posi-
tive integer m, there exist two collections of size n = bcmtc-sized of m-dimensional
vectors over Fp satisfying:

• For all i ∈ [n], (ui,vi) = 0.
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• For all i, j ∈ [n] such that i 6= j, (u j,vi) ∈ S.

First, assume that m has the form m =
(m′−1+(p−1)/t

(p−1)/t

)
, for some integer m′ ≥ p−

1. In this case Lemma 6 gives us a collection of n =
( m′

p−1

)
vectors with the right

properties. Observe that n≥ cmt for a constant c that depends only on p and t. Now
assume that m does not have the right form, and let m1 be the largest integer smaller
than m that does have the right form. In order to get vectors of dimension m, we use
vectors of dimension m1, obtained from Lemma 6 padded with zeros. It is not hard
to verify that such a construction still gives us families of vectors of size n≥ cmt for
a suitably chosen constant c. ut

2.6 Algebraically nice subsets of F∗p

In the previous section, we studied the concept of combinatorial niceness and es-
tablished that multiplicative subgroups of prime fields are combinatorially nice. In
this section we study the concept of algebraic niceness, and show that (under cer-
tain constraints on p and r) the multiplicative subgroup generated by r in F∗p is
algebraically nice over Fr.

We start by introducing some notation. Let p and r be distinct primes.

• The order of r modulo p, which is commonly denoted by ordp(r), is the smallest
integer t such that p | rt −1.

• 〈r〉 ⊆ F∗p denotes the multiplicative subgroup of F∗p generated by the element r.
Clearly, |〈r〉|= ordp(r).

• F denotes the algebraic closure of the field F.

• Cp
r ⊆ F∗r denotes the multiplicative subgroup of p-th roots of unity in Fr.

Definition 8. Let p and r be distinct primes. We say that there is a nontrivial k-
dependence between the elements of Cp

r if there exist ζ1, . . . ,ζk ∈Cp
r and σ1, . . . ,σk ∈

Fr such that
σ1ζ1 + . . .+σkζk = 0 and σ1 + . . .+σk 6= 0. (2.8)

Lemma 8. Let p and r be distinct primes. Suppose there exists a nontrivial k-
dependence between the elements of Cp

r ; then 〈r〉 ⊆ F∗p is k-algebraically nice over
the field Fr.

Proof. In what follows, we define a map S1 : Fp → Fr and prove the existence of
a map S0 : Fp→ Fr such that, together, S0 and S1 yield k-algebraic niceness of 〈r〉
over Fr. The identity (2.8) implies that for some k′ ≤ k there exist k′ distinct p-th
roots of unity ζ1, . . . ,ζk′ ∈Cp

r such that for some σ1, . . . ,σk′ ∈ Fr,

σ1ζ1 + . . .+σk′ζk′ = 0 and σ1 + . . .+σk′ 6= 0. (2.9)

Let t = ordp(r). Observe that Cp
r ⊆ Frt . Let g be a multiplicative generator of Cp

r .
The identity (2.9) yields
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σ1gγ1 + . . .+σk′g
γk′ = 0,

for some distinct values {γi}i∈[k′] in Zp. We define

S1(λ ) =
{

σi, if λ = γi, for some i ∈ [k′],
0, otherwise.

The identity (2.9) yields supp(S1)≤ k and

∑
λ∈Fp

S1(λ ) 6= 0.

Now our goal is to prove the existence of a (nonzero) map S0 : Fp→ Fr such that
for all α ∈ Fp and β ∈ S,

∑
λ∈Fp

S0(α +βλ )S1(λ ) = 0.

Equivalently, we need (a nonzero) map S0 such that for all α ∈ Fp and β ∈ S,

∑
λ∈Fp

S0(λ )S1((λ −α)β−1) = 0. (2.10)

Consider a natural one-to-one correspondence between maps S′ : Fp→ Fr and poly-
nomials φS′(x) in the ring Fr[x]/(xp−1),

φS′(x) = ∑
λ∈Zp

S′(λ )xλ .

Clearly, for every map S′ : Fp→ Fr and every fixed α,β ∈ Fp such that β 6= 0,

φS′((λ−α)β−1)(x) = ∑
λ∈Fp

S′((λ −α)β−1)xλ

= ∑
λ∈Fp

S′(λ )xα+βλ = xα
φS′(x

β ).

Let α be a variable ranging over Fp, and let β be a variable ranging over 〈r〉. We are
going to argue the existence of a map S0 : Fp→ Fr that satisfies (2.10) by showing
that all polynomials φS1((λ−α)β−1) belong to a certain linear space L∈Fr[x]/(xp−1)
of dimension less than p. In this case any (nonzero) map T : Fp → Fr such that
φT ∈ L⊥ can be used as the map S0.

Let
τ(x) = gcd(xp−1,φS1(x)).

Note that τ(x) 6= 1, since g is a common root of xp− 1 and φS1(x). Let L be the
space of polynomials in Fr[x]/(xp−1) that are multiples of τ(x). Clearly, dimL =
p−degτ. Fix some α ∈ Fp and β ∈ 〈r〉. Let us prove that φS1((λ−α)β−1)(x) is in L :
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φS1((λ−α)β−1)(x) = xα
φS1(x

β ) = xα(φS1(x))
β .

The last identity above follows from the fact that for any f ∈ Fr[x] and any positive
integer i,

f
(

xri
)

= ( f (x))ri
.

This completes the proof. ut
Lemma 8 reduces the task of proving the k-algebraic niceness of 〈r〉⊆F∗p to certi-

fying the existence of a nontrivial k-dependence in Cp
r . In the following subsections,

we present several sufficient conditions for the existence of such a dependence.
Our first sufficient condition (Lemma 9) is the following: p is a Mersenne prime

and r = 2. The proof that this condition suffices is simple and self-contained. This
result alone yields most of our improvements for binary locally decodable codes
(see Lemma 14 and Section 2.7.1). Two weaker sufficient conditions are given in
Lemmas 10 and 13. Those lemmas have fairly technical proofs and are used later
to obtain the most general form of our results for locally decodable codes (see Sec-
tion 2.7.2).

2.6.1 3-dependences between p-th roots: sufficient conditions

Lemma 9. Suppose that p = 2t − 1 is a Mersenne prime; then there exists a non-
trivial three-dependence in Cp

2 .

Proof. Observe that the polynomial

xp−1 = x2t−1−1 ∈ F2[x]

splits into distinct linear factors in the finite field F2t . Therefore Cp
2 = F∗2t . Pick

ζ1 6= ζ2 in Cp
2 arbitrarily. Set ζ3 = ζ1 +ζ2. Note that ζ3 ∈Cp

2 and

ζ1 +ζ2 +ζ3 = 0.

This completes the proof. ut
Now we generalize Lemma 9 and show that a substantially weaker condition on

p and r is still sufficient. Our argument relies on the classical Weil bound [62, p.
330] for the number of rational points on curves over finite fields.

Lemma 10. Let p and r be distinct primes. Suppose that ordp(r) < (4/3) logr p;
then there exists a nontrivial three-dependence in Cp

r .

Proof. We start with a brief review of some basic concepts of projective algebraic
geometry [29]. Let F be a field, and let f ∈ F[x,y,z] be a homogeneous polynomial.
A triple (x0,y0,z0) ∈ F3 is called a zero of f if f (x0,y0,z0) = 0. A zero is called
“nontrivial” if it is different from the origin. An equation f = 0 defines a projective
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plane curve χ f . Nontrivial zeros of f , considered up to multiplication by a scalar,
are called F-rational points of χ f . If F is a finite field, it makes sense to talk about
the number of F-rational points on a curve.

Let t = ordp(r). Note that Cp
r ⊆ Frt . Pick {σi}i∈[3] in F∗r such that

σ1 +σ2 +σ3 6= 0.

Consider a projective plane curve χ defined by

σ1x(rt−1)/p +σ2y(rt−1)/p +σ3z(rt−1)/p = 0. (2.11)

Let us call a point a on χ “trivial” if one of the coordinates of a is zero. Clearly,
there are at most 3(rt − 1)/p trivial points on χ. Note that every nontrivial Frt -
rational point of χ yields a nontrivial 3-dependence in Cp

r (since F∗rt is cyclic). The
classical Weil bound [62, p. 330] provides an estimate∣∣Nq− (q+1)

∣∣≤ (d−1)(d−2)
√

q (2.12)

for the number Nq of Fq-rational points on an arbitrary smooth projective plane
curve of degree d. Equation (2.12) implies that if

rt +1 >

(
rt −1

p
−1
)(

rt −1
p
−2
)

rt/2 +3
rt −1

p
(2.13)

there exists a nontrivial point on the curve (2.11). Note that (2.13) follows from

rt +1 >

(
rt

p

)(
rt

p

)
rt/2− 2r3t/2

p
+

3rt

p
, (2.14)

and (2.14) follows from

rt >
r2t+t/2

p2 and 2rt/2 > 3.

Now note that the first inequality above follows from t < (4/3) logr p. To prove the
second inequality, observe that r≥ 3 implies 2r1/2 > 3, and r = 2 implies t ≥ 2. ut

2.6.2 k-dependences between p-th roots: a sufficient condition

In this section, we show that one can relax the conditions of Lemma 10 further and
still ensure the existence of nontrivial k-dependences in Cp

r (for k ≥ 3). Our proof
is quite technical and comes in three steps. First, we briefly review the notion of
(additive) Fourier coefficients of subsets of Frt . Next, we invoke a folklore argument
to show that subsets of Frt with appropriately small nontrivial Fourier coefficients
contain nontrivial k-dependences. Finally, we use a recent result of Bourgain and
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Chang [23] (which generalizes the classical estimate for Gauss sums) to argue that
(under certain constraints on p and r) all nontrivial Fourier coefficients of Cp

r are
small.

For a prime r, let Cr denote the multiplicative group of complex r-th roots of
unity. Let e ∈ Cr be an r-th root other than the identity. For x ∈ Frt , let

Tr(x) = x+ xr + . . .+ xrt−1

denote the trace of x. It is not hard to verify that for all x, Tr(x) ∈ Fr. The characters
of Frt are homomorphisms from the additive group of Frt into Cr. There exist rt

characters. We denote the characters by χa, where a ranges over Frt , and set

χa(x) = eTr(ax).

Let C(x) denote the incidence function of a set C ⊆ Frt . For arbitrary a ∈ Frt , the
Fourier coefficient Ĉ(χa) is defined by

Ĉ(χa) = ∑χa(x)C(x),

where the sum is over all x ∈ Frt . The Fourier coefficient Ĉ(χ0) = |C| is said to be
trivial, and the other Fourier coefficients are said to be nontrivial. In what follows,
∑a stands for summation over all rt elements of Frt . We need the following two
standard properties of characters and Fourier coefficients:

∑
a

χa(x) =
{

rt , if x = 0,
0, otherwise, (2.15)

∑
a

∣∣Ĉ(χa)
∣∣2 = rt |C|. (2.16)

The following lemma is part of mathematical folklore.

Lemma 11. Let C ⊆ Frt and let k≥ 3 be an integer such that there exist {σi}i∈[k] in
F∗r , where ∑i∈[k] σi 6= 0. Let F be the largest absolute value of a nontrivial Fourier
coefficient of C. Suppose that

F
|C|

<

(
|C|
rt

)1/(k−2)

; (2.17)

then there exists a nontrivial k-dependence between the elements of C.

Proof. Let
M(C) = #{ζ1, . . . ,ζk ∈C | σ1ζ1 + . . .+σkζk = 0} .

The identity (2.15) yields

M(C) =
1
rt ∑

x1,...,xk∈Frt

C(x1) . . .C(xk)∑
a

χa(σ1x1 + . . .+σkxk). (2.18)
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Note that
χa(σ1x1 + . . .+σkxk) = χσ1a(x1) . . .χσka(xk).

Changing the order of summation in (2.18), we get

M(C) =
1
rt ∑

a
∑

x1,...,xk∈Frt

C(x1) . . .C(xk)χσ1a(x1) . . .χσka(xk). (2.19)

Separating the term corresponding to a = 0 in the right-hand side of (2.19), we get

M(C) =
|C|k

rt +
1
rt ∑

a6=0

k

∏
i=1

Ĉ(χσia)≥
|C|k

rt −
1
rt ∑

a6=0

k

∏
i=1

∣∣Ĉ(χσia)
∣∣ . (2.20)

Using the generalized Holder’s inequality [13, p. 20], we obtain

∑
a6=0

k

∏
i=1

∣∣Ĉ(χσia)
∣∣≤ k

∏
i=1

(
∑
a6=0

∣∣Ĉ(χσia)
∣∣k)1/k

. (2.21)

Note that for every i ∈ [k] we have

∑
a6=0

∣∣Ĉ(χσia)
∣∣k ≤ Fk−2

∑
a

∣∣Ĉ(χσia)
∣∣2 = Fk−2rt |C|, (2.22)

where the last identity follows from (2.16). Combining (2.20), (2.21), and (2.22) we
get

M(C)≥ |C|
k

rt −Fk−2|C|, (2.23)

and conclude that (2.17) implies M(C) > 0. ut

The following lemma is due to Bourgain and Chang [23, Theorem 1].

Lemma 12. Assume that n | rt −1 and satisfies the condition

gcd
(

n,
rt −1
rt ′ −1

)
< rt(1−ε)−t ′ for all 1≤ t ′ < t, t ′ | t,

where ε > 0 is arbitrary and fixed. Then, for all a ∈ F∗rt ,∣∣∣∣∣ ∑
x∈Frt

eTr(axn)

∣∣∣∣∣< c1rt(1−δ ), (2.24)

where δ = δ (ε) > 0 and c1 = c1(ε) are constants.

The main result of this subsection is presented below. Recall that Cp
r denotes the

set of p-th roots of unity in Fr.
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Lemma 13. For every c > 0 and prime r, there exists an integer k = k(c,r) such that
the following implication holds. If p 6= r is a prime and ordp(r) < c logr p, then there
is a nontrivial k-dependence between the elements of Cp

r .

Proof. Note that the sum of all p-th roots of unity in Fr is zero. Therefore, given r
and c, it suffices to prove the existence of a k = k(c,r) that works for all sufficiently
large p.

Let t = ordp(r). Observe that p > rt/c. Assume that p is sufficiently large that
t > 2c. We now show that the precondition of Lemma 12 holds for n = (rt − 1)/p
and ε = 1/(2c). Let t ′ | t and 1≤ t ′ < t. Clearly, gcd(rt ′ −1, p) = 1. Therefore

gcd
(

rt −1
p

,
rt −1
rt ′ −1

)
=

rt −1
p(rt ′ −1)

<
rt(1−1/c)
rt ′ −1

, (2.25)

where the inequality follows from p > rt/c. Clearly, t > 2c yields rt/(2c)/2 > 1.

Multiplying the right-hand side of (2.25) by rt/(2c)/2 and using 2(rt ′ −1)≥ rt ′ , we
get

gcd
(

rt −1
p

,
rt −1
rt ′ −1

)
< rt(1−1/(2c))−t ′ . (2.26)

Combining (2.26) with Lemma 12, we conclude that there exist δ > 0 and c1 such
that for all a ∈ F∗rt , ∣∣∣∣∣ ∑

x∈Frt

eTr
(

ax(rt−1)/p
)∣∣∣∣∣< c1rt(1−δ ). (2.27)

Observe that x(rt−1)/p takes every value in Cp
r exactly (rt−1)/p times when x ranges

over F∗rt . Thus (2.27) implies

(rt −1)
(

F
p

)
< c1rt(1−δ ) +1, (2.28)

where F denotes the largest absolute value of a nontrivial Fourier coefficient of Cp
r .

Assuming that t is sufficiently large, we get

(rt −1)
(

F
p

)
< c2rt(1−δ ), (2.29)

for a suitably chosen constant c2. Equation (2.29) yields F/p < (2c2)r−δ t . Pick
k≥ 3 to be an odd integer large enough so that (1−1/c)/(k−2) < δ . We now have

F
p

< r−
(1−1/c)t
(k−2) (2.30)

for all sufficiently large values of p. Combining p > rt/c with (2.30), we get
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F∣∣Cp
r
∣∣ <

(∣∣Cp
r
∣∣

rt

)1/(k−2)

,

and an application of Lemma 11 together with the observation that for odd k there
always exist {σi}i∈[k] in F∗r , where ∑i∈[k] σi 6= 0, conclude the proof. ut

2.6.3 Summary

We now summarize our sufficient conditions on p and r that yield algebraic niceness
of 〈r〉 ⊆ F∗p over Fr. Combining Lemmas 8 and 9 we get the following.

Lemma 14. Suppose that p = 2t − 1 is a Mersenne prime; then 〈2〉 ⊆ F∗p is three-
algebraically nice over F2.

Using Lemma 10 instead of Lemma 9 (in combination with Lemma 8) we get a
weaker sufficient condition.

Lemma 15. Suppose that p and r are distinct primes such that ordp(r)≤ (4/3) logr p;
then 〈r〉 ⊆ F∗p is three-algebraically nice over Fr.

Finally, combining Lemmas 8 and 13 we get the following.

Lemma 16. For every c > 0 and prime r there exists an integer k = k(c,r) such
that the following implication holds. If p 6= r is a prime and ordp(r) < c logr p, then
〈r〉 ⊆ F∗p is k-algebraically nice over Fr.

2.7 Results

In what follows, we put the results of the previous sections together and summarize
our improvements in upper bounds for the codeword length of locally decodable
codes.

In Section 2.7.1, we present our results for the narrow case of three-query binary
codes. First we show that given a single Mersenne prime p = 2t−1, one can design
three-query binary LDCs of length exp

(
n1/t
)

for every message length n. Next we
review the achievements of the centuries-old study of Mersenne primes, and obtain
new families of locally decodable codes that yield large improvements upon earlier
work.

In Section 2.7.2, we present the general form of our results. We show that if r
is a prime and rt − 1 has a polynomially large prime factor p ≥ rγt , then for every
message length n there exists a k(γ)-query r-ary LDC of length exp

(
n1/t
)
. The

query complexity of the codes that we obtain depends on the size of the largest
prime factor of rt −1, and the codeword length depends on the size of rt −1 itself.
The larger the largest prime factor is, the smaller is the query complexity. The larger
rt −1 is the shorter are the codes.
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2.7.1 Results for three-query binary codes

By combining proposition 4 with Lemmas 7 and 14, we conclude that every
Mersenne prime p = 2t − 1 yields a family of 3-query locally decodable codes of
length exp

(
n1/t
)
.

Theorem 2. Suppose that p = 2t − 1 is a Mersenne prime; then for every message
length n, there exists a binary linear code of length exp

(
n1/t
)

that is (3,δ ,6δ )-
locally decodable for all δ .

Mersenne primes have been a popular object of study in number theory for the
last few centuries. The largest known Mersenne prime (as of June 2007) is p =
232 582 657− 1. It was discovered by Cooper and Boone [1] on September 4, 2006.
Plugging p into Theorem 2, we get the following theorem.

Theorem 3. For every message length n there exists a binary linear code of length
exp
(
n1/32 582 657

)
that is (3,δ ,6δ )-locally decodable for all δ .

It has often been conjectured that the number of Mersenne primes is infinite. If
this conjecture holds, we get three-query locally decodable codes of subexponen-
tial length for infinitely many message lengths n. To prove this, we first combine
Proposition 3 with Lemmas 6 and 14 to obtain the following lemma.

Lemma 17. Let p = 2t − 1 be a Mersenne prime and let m ≥ p− 1 be an integer.
Let m′ =

(m−1+(p−1)/t
(p−1)/t

)
. There exists a binary linear code encoding n =

( m
p−1

)
-bit

messages to pm′ -bit codewords that is (3,δ ,6δ )-locally decodable code for all δ .

Now we proceed to constructing a family of three-query binary LDCs of subex-
ponential length.

Theorem 4. Suppose that the number of Mersenne primes is infinite; then for in-
finitely many values of the message length n, there exists a binary linear code of
length exp

(
nO(1/log logn)

)
that is (3,δ ,6δ )-locally decodable for all δ .

Proof. Given a Mersenne prime p, set m = 2p. By substituting m and p into
Lemma 17 and doing some basic manipulations, we conclude that there exists a
(3,δ ,6δ )-locally decodable code encoding n = mΘ(logm) bits to

N = exp
(

mO(logm/log logm)
)

bits. An observation that log logn = Θ(log logm) completes the proof. ut

Lenstra, Pomerance, and Wagstaff [2, 74, 90] have made the following conjecture
regarding the density of Mersenne primes.

Conjecture 1. Let M(t) be the number of Mersenne primes that are less than or equal
to 2t −1; then

lim
t→∞

M(t)
log2 t

= eγ ,

where γ ≈ 0.577 is the Euler–Mascheroni constant.
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If this conjecture holds, we get three-query locally decodable codes of subexpo-
nential length for all message lengths n.

Theorem 5. Let ε be a positive constant. Suppose that conjecture 1 holds; then
for every message length n, there exists a binary linear code of length exp(
nO(1/log1−ε logn)

)
that is (3,δ ,6δ ) locally decodable for all δ .

Proof. Conjecture 1 implies that for all sufficiently large integers z, there is a
Mersenne prime between 2log1−ε z and z. Assume that n is sufficiently large. Pick
a Mersenne prime p from the interval[

2log1−ε
√

logn,
√

logn
]
.

Let m be the smallest integer such that n≤
( m

p−1

)
. Note that m = pnΘ(1/p). Given an

n-bit message x, we pad it with zeros to a length
( m

p−1

)
and use the code in Lemma 17

to encode x into a codeword of length pm′ for

m′ =
(

n1/p log p
)O(p/ log p)

.

It remains to note that

logm′ = O
(

logn
log p

+
p log log p

log p

)
= O

(
logn

log1−ε logn

)
.

This completes the proof. ut

2.7.2 Results for general codes

For an integer m, let P(m) denote the largest prime factor of m. Our first theorem
gets three-query r-ary LDCs from numbers m = rt −1 such that P(m) > m3/4.

Theorem 6. Let r be a prime. Suppose that P(rt − 1) > r0.75t ; then for every mes-
sage length n, there exists a three-query r-ary code of length exp

(
n1/t
)

that is
(3,δ ,3δ r/(r−1))-locally decodable for all δ .

Proof. Let P(rt −1) = p. Observe that p | rt −1 and p > r0.75t yield

ordp(r) < (4/3) logr p.

By combining Lemmas 15 and 7 with Proposition 4, we obtain the statement of the
theorem. ut

As an example application of theorem 6, one can observe that

P(223−1) = 178 481 > 2(3/4)∗23 ≈ 155 872
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yields a family of three-query locally decodable codes of length exp(n1/23). Theo-
rem 6 immediately yields the following theorem.

Theorem 7. Let r be a prime. Suppose, for infinitely many t, we have P(rt − 1) >
r0.75t ; then for every ε > 0 and for every message length n, there exists a three-query
r-ary code of length exp(nε) that is (3,δ ,3δ r/(r−1))-locally decodable for all δ .

The next theorem gets constant-query LDCs from numbers m = rt−1 with prime
factors larger than mγ for every value of γ.

Theorem 8. Let r be a prime. For every γ > 0, there exists an integer k = k(γ,r)
such that the following implication holds. Suppose that P(rt − 1) > rγt ; then for
every message length n, there exists a k-query r-ary code of length exp

(
n1/t
)

that is
(k,δ ,δkr/(r−1))-locally decodable for all δ .

Proof. Let P(rt −1) = p. Observe that p | rt −1 and p > rγt yield

ordp(r) < (1/γ) logr p.

By combining Lemmas 16 and 7 with Proposition 4, we obtain the statement of the
theorem. ut

As an immediate corollary, we get the following.

Theorem 9. Let r be a prime. Suppose, for some γ > 0 and infinitely many t, we
have P(rt − 1) > rγt ; then there is a fixed k such that for every ε > 0 and ev-
ery message length n, there exists a k-query r-ary code of length exp(nε) that is
(k,δ ,δkr/(r−1))-locally decodable for all δ .

2.8 Addendum

The locally decodable codes of the third generation that were introduced in this book
have been developed further in [20, 36, 38, 55, 75]. Specifically,

• Raghavendra [75] suggested an alternative conceptually simpler framework for
viewing the construction. The key observation underlying Raghavendra’s view is
that the maps S0 and S1 in the definition of algebraic niceness (Definition 7) can
be fixed in a certain canonical form.

• Using Raghavendra’s view, Efremenko [38] generalized the construction to work
over composites; i.e., Efremenko replaced the field Fq by a ring Zb for a com-
posite b in Definitions 6, 5, and 7. Efremenko used a powerful result of Grol-
musz [49] showing that certain subsets of Zb are combinatorially far “nicer” than
any subsets of Fq, and obtained substantial improvements in upper bounds for
the codeword length.

• Finally, Dvir et al. [36] suggested yet another view of the construction. They also
studied code parameters in the regime of super-constant query complexity.
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In order to demonstrate the key ideas behind the follow-up work, below we re-
view the construction of LDCs of the third generation following the (most recent)
view of Dvir et al. [36].

This view fleshes out an intrinsic similarity between locally decodable codes of
the third generation and classical Reed–Muller codes. An r-ary locally decodable
code consists of a linear subspace of polynomials in Fr[z1, . . . ,zm], evaluated at all
points of

Cm
b = Cb× . . .×Cb (m times),

where Cb is a certain multiplicative subgroup of F∗r .
The decoding algorithm is similar to the traditional local decoders for Reed–

Muller codes. The decoder shoots a line in a certain direction and decodes along it
(see the locally decodable code described in Section 1.1). The difference is that the
monomials which are used are not of low degree; instead, they are chosen according
to a matching family of vectors (see the following definition). Further, the lines for
decoding are multiplicative, a notion that we will define shortly.

Definition 9. Let b be an arbitrary positive integer. We say that the families U =
{u1, . . . ,un} and V = {v1, . . . ,vn} of vectors in Zm

b form a matching family if the
following two conditions are satisfied:

• For all i ∈ [n], (ui,vi) = 0.
• For all i, j ∈ [n] such that i 6= j, (u j,vi) 6= 0.

Observe that the concept of a matching family is intimately related to the concept
of combinatorial niceness of a set (Definition 3). We now show how one can obtain
a locally decodable code out of a matching family of vectors. We start with some
notation.

• A D-evaluation of a function f defined over a domain D is a vector of values of
f at all points of D.

• Let w∈Zm
b be a vector and let l ∈ [m] be an integer. In this section, we write w(l)

to denote the l-th coordinate of w.

• We assume that r is a prime power and that b divides r− 1; we denote a multi-
plicative subgroup of F∗r of order b by Cb.

• We fix some generator g of Cb.

• For w ∈ Zm
b , we define gw ∈Cm

b by
(

gw(1), . . . ,gw(m)
)

.

• For w,v ∈ Zm
b we define the multiplicative line Mw,v through w in the direction v

to be the multiset
Mw,v =

{
gw+λv | λ ∈ Zb

}
. (2.31)

• For u ∈ Zm
b , we define the monomial monu ∈ Fr[z1, . . . ,zm] by

monu(z1, . . . ,zm) = ∏
l∈[m]

zu(l)
l . (2.32)
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Note that for any w,u,v ∈ Zm
b and λ ∈ Zb we have

monu

(
gw+λv

)
= g(u,w)

(
gλ

)(u,v)
. (2.33)

The formula above implies that the Mw,v-evaluation of a monomial monu is a
Cb-evaluation of a (univariate) monomial

g(u,w)y(u,v) ∈ Fr[y]. (2.34)

This observation is the foundation of the decoding algorithm. We are now ready to
formally specify the locally decodable code.

2.8.1 The code

Proposition 5. Let U ,V be a family of matching vectors in Zm
b , |U | = |V | = n.

Suppose that b | r− 1, where r is a prime power; then there exists an r-ary linear
code encoding messages of length n to codewords of length bm that is (b,δ ,bδ )-
locally decodable for all δ .

Proof. We specify the encoding and decoding procedures for our code as follows.
Encoding. We encode a message (x(1), . . . ,x(n)) ∈ Fn

r by the Cm
b -evaluation of

the polynomial

F(z1, . . . ,zm) =
n

∑
j=1

x( j)×monuj(z1, . . . ,zm). (2.35)

Decoding. The input to the decoder is a (corrupted) Cm
b -evaluation of F and an

index i ∈ [n]. To recover the value x(i), the decoder picks w ∈ Zm
b at random, and

queries the (possibly corrupted) Mw,vi -evaluation of F at all b points.
We now claim that the noiseless Mw,vi -evaluation of F uniquely determines x(i).

To see this, note that by (2.33), (2.34), and (2.35), the Mw,vi -evaluation of F is a
Cb-evaluation of a polynomial

f (y) =
n

∑
j=1

x( j)×g(u j ,w)y(u j ,vi) ∈ Fr[y]. (2.36)

We observe further that the properties of the matching family U ,V and (2.36) yield

f (y) = x(i)×g(ui,w) + ∑
s∈Zb\{0}

 ∑
j : (u j ,vi)=s

x( j)×g(u j ,w)

ys. (2.37)

It is evident from the above formula that
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x(i) = f (0)/g(ui,w). (2.38)

Therefore all the decoder needs to do is recover the unique univariate polynomial
f (y) ∈ Fr[y], of degree up to r−1, whose Cb-evaluation agrees with the (observed)
Mw,vi -evaluation of F, and return f (0)/g(ui,w).

To estimate the probability of a decoding error, we note that each individual query
of the decoder goes to a uniformly random location, and apply the union bound. ut

By applying Proposition 5 to the currently largest known family of matching
vectors [49], one gets the locally decodable codes of [38].



http://www.springer.com/978-3-642-14357-1




