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34 2 Differential Dynamic Logic dL

Synopsis Hybrid systems are models for complex physical systems and are defined
as dynamical systems with interacting discrete transitions and continuous evolutions
along differential equations. With the goal of developing a theoretical and practical
foundation for deductive verification of hybrid systems, we introduce a dynamic lo-
gic for hybrid programs, which is a program notation for hybrid systems. As a veri-
fication technique that is suitable for automation, we introduce a free-variable proof
calculus with a novel combination of real-valued free variables and Skolemisation
for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus
is compositional, i.e., it reduces properties of hybrid programs to properties of their
parts. Our main result proves that this calculus axiomatises the transition behaviour
of hybrid systems completely relative to differential equations. In a study with co-
operating traffic agents of the European Train Control System, we further show that
our calculus is well suited for verifying realistic hybrid systems with parametric
system dynamics.

2.1 Introduction

In this chapter, we introduce the differential dynamic logic dL , its syntax, se-
mantics, and proof calculus. It forms the core of this book and is the basis for the
extensions, algorithmic refinements, and applications in subsequent chapters of this
book.

Contributions

Our main conceptual contribution in this chapter is the differential dynamic logic
dL for hybrid programs, which captures the logical quintessence of the dynamics of
hybrid systems succinctly. Our main practical contribution is a concise free-variable
calculus for dL that axiomatises the transition behaviour of hybrid systems relative
to differential equation solving. It is suitable for automated theorem proving and
for verifying hybrid interacting discrete and continuous dynamics compositionally.
Our main theoretical contribution is that we prove the dL calculus to be sound and
complete relative to the handling of differential equations. To the best of our know-
ledge, this is the first relative completeness proof for a logic of hybrid systems, and
even the first formal notion of hybrid completeness. Our results fully align hybrid
and continuous reasoning proof-theoretically and show that hybrid systems with
interacting repetitive discrete and continuous evolutions can be verified whenever
differential equations can. As an applied contribution, we further demonstrate that
our logic and calculus can be used successfully for verifying collision avoidance in
realistic train control applications.
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2.1.1 Structure of This Chapter

After introducing syntax and semantics of the differential dynamic logic dL in
Sects. 2.2 and 2.3, we introduce a free-variable sequent calculus for dL in Sect. 2.5
and prove soundness and relative completeness in Sects. 2.6 and 2.7, respectively.
We present relatively semidecidable fragments of dL in Sect. 2.8. In Sect. 2.9, we
use our calculus to prove an inductive safety property of the train control system that
we present in Sect. 2.4. We draw conclusions and discuss future work in Sect. 2.10.

2.2 Syntax of Differential Dynamic Logic

In this section, we introduce the differential dynamic logic dL in which operational
models of hybrid systems are internalised as first-class citizens, so that correctness
statements about the transition behaviour of hybrid systems can be expressed as for-
mulas. As a basis, dL includes (nonlinear) real arithmetic for describing concepts
like safe regions of the state space. Further, dL supports real-valued quantifiers for
quantifying over the possible values of system parameters or durations of continu-
ous evolutions. For talking about the transition behaviour of hybrid systems, dL
provides modal operators such as [α] or 〈α〉 that refer to the states reachable by
following the transitions of hybrid system α .

The logic dL is a first-order dynamic logic over the reals for hybrid programs,
which is a compositional program notation for hybrid systems. Hybrid programs
provide the following constructs.

Discrete jump sets. Discrete transitions are represented as instantaneous assign-
ments of values to state variables, which are, essentially, difference equations.
They can express resets like a :=−b or adjustments of control variables like
a :=a+5, as occurring in the discrete transformations attached to edges in hy-
brid automata; see Fig. 2.1. Likewise, implicit discrete state changes such as the
changing of evolution modes from one node of an automaton to the other can
be expressed uniformly as, e.g., q :=brake, where variable q remembers the cur-
rent node. To handle simultaneous changes of multiple variables, discrete jumps
can be combined to sets of jumps with simultaneous effect following corres-
ponding techniques in the discrete case [37]. For instance, the discrete jump
set a :=a+5,A :=2a2 expresses that a is increased by 5 and, simultaneously,
variable A is set to 2a2, which is evaluated before a receives its new value a+5.

Differential equation systems. Continuous variation in system dynamics is rep-
resented using differential equation systems as evolution constraints. For ex-
ample the (second-order) differential equation z′′ =−b describes deceleration
with braking force b and z′ = v,v′ =−b&v≥ 0 expresses that the evolution only
applies as long as the speed is v≥ 0, which represents mode brake of Fig. 2.1.
This is an evolution along the differential equation system z′ = v,v′ =−b that is
restricted (written &) to remain within the evolution domain region v≥ 0, i.e., to
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stop braking before v < 0. Such an evolution can stop at any time within v≥ 0, it
could even continue with transient grazing along the border v = 0, but it is never
allowed to enter v < 0. The second-order differential equation z′′ =−b itself is
equivalent to the first-order differential equation system z′ = v,v′ =−b , in which
the velocity v is explicit. In this chapter, we separate the respective differential
equations in a differential equation system by a comma (,) and separate the evolu-
tion domain region (if any) from the differential equations by an ampersand (&).
We choose this notation for this chapter to make it easier to identify the evolution
domain region. In Chap. 3, we will see that both (,) and (&) can be understood
more uniformly as conjunctions.

Control structure. Discrete and continuous transitions—represented as differ-
ence or differential equations, respectively—can be combined to form a hy-
brid program with interacting hybrid dynamics using regular expression op-
erators (∪,∗, ;) of regular programs [149] as control structure. For example,
the hybrid program q :=accel∪ z′′ =−b describes a train controller that can
choose to either switch to acceleration mode (q :=accel) or brake by the dif-
ferential equation z′′ =−b, by a nondeterministic choice (∪). The nondetermin-
istic choice q :=accel∪ z′′ =−b expresses that either q :=accel or z′′ =−b hap-
pens. The sequential composition q :=accel ; z′′ =−b, instead, expresses that
first q :=accel, and then z′′ =−b happens. In conjunction with other regular
combinations, control constraints can be expressed using tests like ?z≥ s as
guards for the system state. This test will succeed if, indeed, the current state of
the system satisfies z≥ s; otherwise the test will fail and execution cannot pro-
ceed. In that respect, a test is like an assert statement in conventional programs
and cuts the system run if the test is not successful.

Example 2.1 (Embedding hybrid automata). With these operations, hybrid systems
can be represented naturally as hybrid programs. For example, the right of Fig. 2.1
depicts a hybrid program rendition of the hybrid automaton on the left, which re-
peats the automaton from Fig. 1.4 on p. 5. Line 1 represents that, in the beginning,

q := accel; /* initial mode is node accel */(
(?q = accel; z′ = v,v′ = a)

∪ (?q = accel∧ z≥ s; a :=−b; q := brake; ?v≥ 0)
∪ (?q = brake; z′ = v,v′ = a&v≥ 0)
∪ (?q = brake∧ v≤ 1; a := a+5; q := accel)

)∗
Fig. 2.1 Hybrid program rendition of hybrid automaton for (overly) simplified train control

the current node q of the system is the initial node accel. We represent each discrete
and continuous transition of the automaton as a sequence of statements with a non-
deterministic choice (∪) between these transitions. Line 4 represents a continuous
transition of the automaton. It tests if the current node q is brake, and then (i.e., if the
test was successful) follows the differential equation system z′ = v,v′ = a restricted

accel
z′ = v
v′ = a

brake
z′ = v
v′ = a
v≥ 0

z≥ s

a :=−b

v≤ 1

a :=a+5
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to the evolution domain v≥ 0. Line 3 characterises a discrete transition of the auto-
maton. It tests the guard z≥ s when in node accel, and, if successful, resets a :=−b
and then switches q to node brake. By the semantics of hybrid automata [8, 156],
an automaton in node accel is only allowed to make a transition to node brake if
the evolution domain restriction of brake is true when entering the node, which is
expressed by the additional test ?v≥ 0 at the end of line 3. Observe that this test
of the evolution domain region generally needs to be checked as the last operation
after the guard and reset, because a reset like v :=v−1 could affect the outcome
of the evolution domain region test. In order to obtain a fully compositional model,
hybrid programs make all these implicit side conditions explicit. Line 2 represents
the continuous transition when staying in node accel and following the differential
equation system z′ = v,v′ = a. Line 5 represents the discrete transition from node
brake of the automaton to node accel.

Lines 2–5 cannot be executed unless their tests succeed. In particular, at any
state, the nondeterministic choice (∪) among lines 2–5 reduces de facto to a non-
deterministic choice between either lines 2–3 or between lines 4–5. At any state, q
can have value either accel or brake (assuming these are different constants), not
both. Consequently, when q = brake, a nondeterministic choice of lines 2–3 would
immediately fail the tests in the beginning and not execute any further. The only
remaining choices that have a chance to succeed are lines 4–5 then. In fact, only the
single successful choice of line 4 would remain if the second conjunct v≤ 1 of the
test in line 5 does not hold for the current state. Note that, still, all four choices in
lines 2–5 are available, but at least two of these nondeterministic choices will always
be unsuccessful. Finally, the repetition operator (∗) at the end of Fig. 2.1 expresses
that the transitions of a hybrid automaton, as represented by lines 2–5, can repeat
indefinitely, possibly taking different nondeterministic choices between lines 2–5 at
every repetition. �

2.2.1 Terms

The construction of the logic dL starts with a set V of logical variables and a sig-
nature Σ , which is the set of names (called symbols) of all entities nameable in a
certain context. The signature Σ and set V form the vocabulary or alphabet of signs
from which well-formed formulas can be built. For dL we assume all variables
in V are interpreted over the reals and that Σ is a (finite) set of real-valued function
and predicate symbols, with the usual function and predicate symbols for real arith-
metic, such as 0,1,+,−, ·,/,=,≤,<,≥,>, where + is addition, · is multiplication,
/ is division and so on. For each function and predicate symbol, we are given the
number of arguments that it expects, which is called arity, and is a natural number.
The arity can be zero, in which case the function or predicate symbol does not have
any arguments. The function symbols for the numbers 0,1 have arity zero, because
they do not need arguments. The binary arithmetic operators +,−, ·,/ have arity
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2, because they expect two arguments. The binary predicate symbols =,≤,<,≥,>
also have arity 2, because they need two arguments to compare.

The difference between function and predicate symbols is that function symbols
stand for functions that take the values of arguments and give back a function value.
Predicate symbols, on the other hand, are interpreted either as true for a vector of
arguments or as false. That is, they take the values of arguments and give either the
truth-value “true” or the truth-value “false”. No other result is permitted for pre-
dicate symbols. For instance, the predicate symbol ≥ will be understood such that
≥(x,y) is true if and only if the value of x is greater than or equal to the value of y.
For real arithmetic, we use standard notation and standard semantics. In particular,
we write x≥ y instead of ≥(x,y). We fix the semantics of · to be multiplication, i.e.,
the value of ·(x,y) is always meant to be the product of the value of x and the value
of y. Again, we use the standard notation x · y, or just xy if no confusion arises, in-
stead of ·(x,y). The denotation of a function symbol could also be, e.g., the function
that takes an argument and gives back its cube. A predicate, in contrast, cannot give
back any value other than “true” or “false”, but could hold, say, for all real numbers
larger than 5. Or it could be the relation that holds for all pairs where the second
element of the pair is larger than the square of the first element of the pair. Function
symbols are often written as f ,g,h,a,b,c and predicate symbols are often written as
p,q,r.

State variables of hybrid systems, such as positions, velocities, and accelerations,
are represented as real-valued function symbols of Σ of arity 0. Unlike fixed symbols
like the number 1, state variables are flexible, i.e., their interpretation can change
from state to state during the execution of a hybrid program. Flexibility of symbols
will be used to represent the progression of system values along states over time
during a hybrid evolution. Symbols like 1, on the other hand, are rigid, i.e., they
have the same value at all states. The symbols of real arithmetic like 1 and +, ·
are rigid, because we do not want them to change their meaning at any time. State
variables like velocity v, in contrast, are flexible, because they can change their value
depending on the state. While the velocity v may have been 0 in the beginning,
the train could increase its velocity to 10 and then decrease it again later when
approaching another train.

Note that there is no need to distinguish between discrete and continuous vari-
ables in dL . The distinction between logical variables in V , which can be quantified
universally or existentially, and state variables in Σ , which can change their value
by discrete jumps and differential equations of hybrid programs in modalities, is not
strictly required either. For instance, universal and existential quantification of state
variables is definable using auxiliary logical variables. The distinction makes the se-
mantics and soundness proof less subtle, though. Our calculus assumes that V con-
tains sufficiently many variables and Σ contains additional Skolem function sym-
bols, which are reserved for use by the calculus.
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Terms

Well-formed arguments to function symbols and predicate symbols are called terms.
Logical variables are well-formed terms, and functions applied to the appropriate
number of terms as arguments are well-formed terms. The set Trm(Σ ,V ) of terms
is defined as in classical first-order logic, yielding polynomial (or rational) expres-
sions over V and over additional Skolem terms s(t1, . . . , tn) with terms ti. Our cal-
culus actually only uses Skolem terms s(X1, . . . ,Xn) with logical variables Xi ∈V as
arguments.

Definition 2.1 (Terms). Trm(Σ ,V ) is the set of all terms, which is the smallest set
such that:

• If x ∈V , then x ∈ Trm(Σ ,V ).
• If f ∈ Σ is a function symbol of arity n≥ 0 and, for 1≤ i≤ n, θi ∈ Trm(Σ ,V ),

then f (θ1, . . . ,θn) ∈ Trm(Σ ,V ). The case n = 0 is permitted (e.g., for state vari-
ables).

More succinctly, we also say that the terms of dL are defined by the following
grammar (where θ1, . . . ,θn are terms, f a function symbol of arity n, and x ∈V is a
logical variable):

θ ::= x | f (θ1, . . . ,θn).

Example 2.2. (Well-formed) terms of dL include:

• Logical variables X ∈V
• State variables x ∈ Σ that may change their value during system evolution
• Expressions of nonlinear polynomial real arithmetic like x+5y · (x−3y+ za),

which we consider as a short notation for x+5 · y · (x−3 · y+ z ·a). Here we
assume that x,y,z,a ∈ Σ are state variables. In principle, we also have to men-
tion that the number symbols 5,3 ∈ Σ are (rigid) function symbols without ar-
guments. Yet these number symbols are what we assume as given throughout
this book. Note that we could just as well have assumed that x,y ∈ Σ are state
variables, a ∈ Σ is a rigid function symbol of arity 0, and z ∈V is a logical vari-
able. Then x+5y · (x−3y+ za) is still a term for this different signature and
variables set. For terms, all ways of declaring symbols as state variables, rigid
function symbols of arity 0, or logical variables are essentially equivalent. There
are many ways to say the same thing. The differences only play a role later for
quantification and state change.

• Expressions with Skolem function terms like x+5s(X1,X2) · (x−3y+ z · t(X2)).
Here we assume that x,y ∈ Σ are state variables, that s, t ∈ Σ are rigid function
symbols of arity 2 and 1, respectively, and that X1,X2 ∈V are logical variables.

• Real arithmetic expressions with integer powers like 8x2 +2x3(y−a2bc) that can
easily be rewritten as 8 · x · x+2 · x · x · x · (y−a ·a ·b · c). Again, we assume that
x,y,a,b,c are symbols in Σ or V .

The following, however, are no terms with respect to Σ and V :



40 2 Differential Dynamic Logic dL

• 1+ xy, because the exponential function xy cannot be rewritten as a finite product,
quite unlike x3 = x · x · x or x4 = x · x · x · x. In fact, the logical properties of the
exponential function are a very exciting and a challenging object of study in
recent model theory [107, 206, 44, 108, 45, 2].

• y2−π , unless the transcendental number π = 3.1415926 . . . is explicitly added to
Σ , because unlike rational numbers, the transcendental number cannot be charac-
terised exactly with a finite combination of sums, products, and 0, 1. Arbitrarily
precise approximations of π , instead, can be defined; see Example 2.3. �

First-Order Formulas

Meaningful propositions that are either true or false in a context are called (well-
formed) formulas. The well-formed formulas of a logic form a formal language over
the alphabet Σ ∪V of symbols. The formulas consist of all words that can be built
by recursively combining symbols of the signature with logical operator symbols
appropriately. We first define only the fragment of first-order logic, then the syntax
of hybrid programs, and define the actual formulas of differential dynamic logic
afterwards.

The set of formulas of first-order logic is defined as usual (cf. App. A), giving
first-order real arithmetic [288] augmented with Skolem terms. We will show the
precise relationship to standard first-order real arithmetic without Skolem terms in
Lemma 2.5 of Sect. 2.5.3.2.

Definition 2.2 (First-order formulas). The set FmlFOL(Σ ,V ) of formulas of first-
order logic is the smallest set with:

• If p ∈ Σ is a predicate symbol of arity n≥ 0 and θi ∈ Trm(Σ ,V ) for 1≤ i≤ n,
then p(θ1, . . . ,θn) ∈ FmlFOL(Σ ,V ).

• If φ ,ψ ∈ FmlFOL(Σ ,V ), then ¬φ ,(φ ∧ψ),(φ ∨ψ),(φ → ψ) ∈ FmlFOL(Σ ,V ).
• If φ ∈ FmlFOL(Σ ,V ) and x ∈V , then (∀xφ),(∃xφ) ∈ FmlFOL(Σ ,V ).

More succinctly, we also say that first-order formulas are defined by the following
grammar (where φ ,ψ are first-order formulas, θi are terms, p is a predicate symbol
of arity n, and x ∈V is a logical variable):

φ ,ψ ::= p(θ1, . . . ,θn) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ | ∀xφ | ∃xφ .

Example 2.3. (Well-formed) first-order formulas in our context include:

• v · v≤ 2b · (m− z). Again we assume that v,b,m,z are symbols in the vocabu-
lary Σ or V . For instance, we could assume that z,v ∈ Σ are (flexible) state vari-
ables and b,m ∈ Σ are rigid function symbols of arity 0. The rationale for this
classification would be that z and v are meant to represent the position and ve-
locity of a train, which of course can change over time (flexible). The symbols
b and m are meant to represent the braking force and movement authority of a
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train, which we assume not to change in this formula (rigid). We could just as
well assume that z,v,b,m ∈ Σ are (flexible) state variables.

• v > 0→ v · v≤ 2b · (m− z)∨b = 0
• ∀x∀y(x > y↔ x− y > 0). Here we assume x,y ∈V are logical variables; other-

wise the syntax would not allow us to quantify over x,y.
• x > 0∧∀y∃z(x > z2 + y · z−5). Here we assume y,z ∈V are logical variables

and we could either assume x ∈ Σ to be a state variable, or a rigid function symbol
of arity zero, or a logical variable x ∈V . All those choices are reasonable for this
formula, and, in fact, it does not make a real difference here, because they will
essentially have the same meaning. These distinctions become somewhat more
important for dL formulas later.

• Formulas with divisions like b < x/y, which can easily be defined in terms of
multiplication (b · y < x∧ y > 0)∨ (b · y > x∧ y < 0).

• Formulas with rational constants like a > 2
3 x2 +3.1415x · y4, which can easily be

defined in terms of successive addition and inverses, say,

a > (1+1)/(1+1+1) · x2 +31415/10000 · x · y4.

• Arithmetic expressions with roots like x4− y
√

2z > 0, which can easily be defined
in terms of their characteristic polynomials as ∃r (r2 = 2z∧ r ≥ 0∧ x4− y · r > 0).

�

2.2.2 Hybrid Programs

As uniform compositional models for hybrid systems, hybrid programs can combine
discrete and continuous transitions to structured control programs using the regular-
expression-style operators of Kleene algebras [182].

Definition 2.3 (Hybrid programs). The set HP(Σ ,V ) of hybrid programs, with
typical elements α,β , is defined inductively as the smallest set such that

1. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ ,V ) for 1≤ i≤ n, then the discrete
jump set (x1 :=θ1, . . . ,xn :=θn) ∈ HP(Σ ,V ) is a hybrid program. We assume
that the x1, . . . ,xn are pairwise different state variables.

2. If xi ∈ Σ is a state variable and θi ∈ Trm(Σ ,V ) for 1≤ i≤ n, then x′i = θi is a
differential equation in which x′i represents the time derivative of variable xi.
If χ is a first-order formula, then (x′1 = θ1, . . . ,x′n = θn & χ) ∈ HP(Σ ,V ). We
assume that the x1, . . . ,xn are pairwise different state variables.

3. If χ is a first-order formula, then (?χ) ∈ HP(Σ ,V ).
4. If α,β ∈ HP(Σ ,V ), then (α ∪β ) ∈ HP(Σ ,V ).
5. If α,β ∈ HP(Σ ,V ), then (α;β ) ∈ HP(Σ ,V ).
6. If α ∈ HP(Σ ,V ), then (α∗) ∈ HP(Σ ,V ).

Table 2.1 summarises the statements and (informal) effects of hybrid programs.
More succinctly, hybrid programs are defined by the following grammar (α,β are



42 2 Differential Dynamic Logic dL

Table 2.1 Statements and (informal) effects of hybrid programs (HPs)

HP Notation Operation Effect
x1 :=θ1, . . . ,xn :=θn discrete jump set simultaneously assigns terms θi to variables xi
x′1 = θ1, . . . ,x′n = θn & χ continuous evolution differential equations for xi with terms θi with-

in first-order constraint χ (evolution domain)
?χ state test / check test first-order formula χ at current state
α; β seq. composition HP β starts after HP α finishes
α ∪β nondet. choice choice between alternatives HP α or HP β

α∗ nondet. repetition repeats HP α n-times for any n ∈ N

hybrid programs, θi are terms, xi ∈ Σ are state variables, and χ is a formula of
first-order logic):

α,β ::= x1 :=θ1, . . . ,xn :=θn | x′1 = θ1, . . . ,x′n = θn & χ | ?χ | α ∪β | α;β | α∗.

The effect of the discrete jump set x1 :=θ1, . . . ,xn :=θn is to simultaneously
change the interpretations of the xi to the respective θi by performing a discrete jump
in the state space. In particular, the new values θi are evaluated before changing the
value of any variable x j. The effect of x′1 = θ1, . . . ,x′n = θn & χ is an ongoing con-
tinuous evolution respecting the differential equation system x′1 = θ1, . . . ,x′n = θn
that is restricted to remain within the evolution domain region χ . The evolution is
allowed to stop at any point in χ . It is, however, required to stop before it leaves χ .
For unconstrained evolutions, we write x′ = θ in place of x′ = θ & true. For struc-
tural reasons, we expect both difference equations (discrete jump sets) and differ-
ential equations to be given in explicit form, i.e., with the affected variable on the
left (we allow more general implicit forms in Chap. 3). The dL semantics allows
arbitrary differential equations. To retain feasible arithmetic, some of our calculus
rules in this chapter assume that, as in [8, 125, 217, 156], the differential equa-
tions have first-order definable flows or approximations. We assume that stand-
ard techniques are used to determine corresponding solutions or approximations,
e.g., [15, 189, 238, 227, 297]. We consider verification techniques for more ad-
vanced differential equations in Chap. 3.

The test action or state check ?χ is used to define conditions. Its semantics is that
of a no-op if the formula χ is true in the current state; otherwise, like abort, it allows
no transitions. That is, if the test succeeds because formula χ holds in the current
state, then the state does not change, and the system execution continues normally.
If the test fails because formula χ does not hold in the current state, then the system
execution cannot even continue. Thus, the effect of a test action is similar to an as-
sert statement in Java. Note that, according to Definition 2.3, we have only allowed
first-order formulas as tests. Instead, we could actually allow rich tests, i.e., arbitrary
dL formulas χ with nested modalities as tests ?χ inside hybrid programs (and even
in evolution domains χ of differential equations). The calculus and our meta-results,
including soundness and relative completeness, directly carry over to this rich test
version of dL . To simplify the presentation, however, we refrain from allowing
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arbitrary dL formulas as tests, because that requires simultaneous inductive hand-
ling of hybrid programs and dL formulas in syntax, semantics, and completeness
proofs, because dL formulas would then be allowed to occur in hybrid programs,
and vice versa.

The nondeterministic choice α ∪β , sequential composition α;β , and nondeter-
ministic repetition α∗ of programs are as in regular expressions but generalised to
a semantics in hybrid systems. Choices α ∪β are used to express behavioural al-
ternatives between the transitions of α and β . That is, the hybrid program α ∪β

can choose nondeterministically to follow the transitions of the hybrid program α ,
or, instead, to follow the transitions of the hybrid program β . The sequential com-
position α;β says that the hybrid program β starts executing after α has finished
(β never starts if α does not terminate). In α;β , the transitions of α take effect
first, until α terminates (if it does), and then β continues. Observe that, like repe-
titions, continuous evolutions within α can take more or less time, which causes
uncountable nondeterminism. This nondeterminism is inherent in hybrid systems,
because they can operate in so many different ways, and as such reflected in hy-
brid programs. Repetition α∗ is used to express that the hybrid process α repeats
any number of times, including zero times. When following α∗, the transitions of
hybrid program α can be repeated over and over again, any nondeterministic num-
ber of times (≥0). Hybrid programs form a regular-expression-style Kleene algebra
with tests [182].

Example 2.4 (Simplistic train). The differential equation z′ = v,v′ = a expresses
continuous movement of position z with velocity v and acceleration a. A very simple
(in fact much too simplistic) train controller could be the following hybrid program:

((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a.

By a nondeterministic choice (∪ ), the system either chooses to set the acceleration
a to the braking force −b by executing a :=−b, or the system tries to pass the test
?v < 8 instead. If the system tries the second choice and the latter test succeeds, i.e.,
the current velocity is indeed less than 8, then the system sets the acceleration a to
A. Otherwise, if it tries the second choice but the test fails, then nothing happens
as this execution is blocked and cannot continue. Afterwards (after executing the
first part of the sequential composition, which is the nondeterministic choice), the
system follows the second part of the sequential composition, which is the differen-
tial equation z′ = v,v′ = a with the previously chosen acceleration. The system then
follows this differential equation for a certain (unspecified) period of time.

This controller leaves open too many aspects to be useful, but already illustrates a
very simple hybrid program. One of the problems is that the controller can only take
a control action for choosing the acceleration a once, at the beginning of the system
evolution, and then follows the differential equation for an arbitrarily long time. But
the above controller can never react to situation changes and change its mind with
a different choice of a when necessary. To improve this issue, the following hybrid
program allows repetitive choices by the repetition operator ∗:



44 2 Differential Dynamic Logic dL(
((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a

)∗
. (2.1)

Unlike the previous hybrid program, the hybrid program in (2.1) contains a repe-
tition, which can change the acceleration repeatedly over and over again after fol-
lowing the continuous evolution for a certain period of time. While already an im-
provement over the last controller, this hybrid program has shortcomings. For one
thing, the differential equation does not say when it stops. It has no evolution do-
main restriction and would thus be allowed to evolve as long or as short as it pleases.
This may be unsafe if the differential equation would continue indefinitely without
giving the controller for the acceleration a chance to react to situation changes.
Furthermore, a velocity of 8 may not be a safe choice for the switching condition
between acceleration and braking. We will see in Sect. 2.4 how a reasonable train
controller can be designed as a hybrid program from first principles and elaborate
on train control further in Chap. 7 in full detail. �

Definable Operations

The control flow operations of choice, sequential composition, and repetition in hy-
brid programs can be combined with ?χ to form all other control structures [149].
All classical discrete control structures can be defined in terms of the basic hybrid
program operators (it is easy to see that hybrid programs are Turing-complete). See
Table 2.2 for a selection of control structures and statements that are definable as
a hybrid program. For instance, (?χ;α)∗; ?¬χ corresponds to a while loop that re-

Table 2.2 Statements and control structures definable with hybrid programs

HP Notation Operation Effect
x :=∗ nondet. assignment assigns any real value to x

equivalently definable, see Chap. 3
if χ then α else β if-then-else executes HP α if χ holds, otherwise HP β

equivalent to (?χ;α)∪ (?¬χ;β )
if χ then α if-then executes HP α if χ holds, otherwise no effect

equivalent to (?χ;α)∪ (?¬χ)
while χ do α while loop repeats α if χ holds, only stops if ¬χ holds at end

equivalent to (?χ;α)∗; ?¬χ

repeat α until χ repeat until repeats HP α until χ holds at end (at least once)
equivalent to α;(?¬χ;α)∗; ?χ

skip do nothing has no effect and does not change the state space
equivalent to ?true

abort aborts execution blocks current execution and allows no transition
equivalent to ?false

peats α while χ holds and only stops when χ ceases to hold after α . Because the
∗-operator can repeat arbitrarily often, the subprogram (?χ;α)∗ can repeat α any
number of times, but a repetition can only be successful if the test ?χ succeeds.
Hence the repetitions have to stop, at the latest, when the test ?χ fails. Now the
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subprogram (?χ;α)∗ can repeat any number of times and is allowed to stop even if
the test ?χ is successful and the loop could be repeated again. But the subsequent
sequential composition with the test ?¬χ makes sure that (?χ;α)∗ can only stop re-
peating when χ actually ceases to hold. Overall, the hybrid program (?χ;α)∗; ?¬χ

executes α if χ holds and repeats α again exactly as often as χ still holds after
executing α .

If-then-else can be defined with nondeterministic choices and tests. The corres-
ponding hybrid program (?χ;α)∪ (?¬χ;β ) in Table 2.2 makes a nondeterministic
choice between ?χ;α and ?¬χ;β . While this choice is nondeterministic, at any state
only one of the subsequent tests in the two cases can succeed, because they are com-
plementary. Consequently, hybrid program α will be executed if and only if the test
?χ succeeds because χ is true at the current state. Likewise, hybrid program β will
be executed if and only if the dual test ?¬χ succeeds because ¬χ is true, i.e., χ

is false at the current state. The nondeterministic assignment x :=∗ that assigns an
arbitrary real number to state variable x is definable also. While it is possible define
nondeterministic assignments in hybrid programs already, we will come back to this
in Chap. 3, where the definition is easier to see.

Example 2.5 (Parametric bouncing ball). As a classical example from the hybrid
systems literature [110], consider the bouncing ball. We will describe the boun-
cing ball as a hybrid program, using the definable hybrid program operations from
Table 2.2. Figure 2.2 depicts a hybrid automaton, an illustration of the bouncing ball
dynamics, and a representation of the system as a hybrid program.

ball ≡
(

h′ = v,v′ =−g, t ′ = 1&h≥ 0;
if (h = 0 ∧ t > 0) then

c := ∗; ?(0≤ c < 1); // extra
v :=−cv; t := 0

fi
)∗

Fig. 2.2 Parametric bouncing ball

The bouncing ball is let loose and falls from height h, but bounces back from
the ground (which corresponds to height h = 0) after an elastic deformation. The
current speed of the ball is denoted by v, and t is a clock measuring the falling
time. The bouncing ball follows the continuous dynamics of physical movement
by gravity. The ball is affected by gravity of force g, so its height follows the dif-
ferential equation h′′ =−g. This second-order differential equation is equivalent to
the first-order differential equation system h′ = v,v′ =−g, with an explicit velo-
city v. Simultaneously, clock t evolves according to the differential equation t ′ = 1.
Finally, the ball always stays above the ground and cannot fall through, thus its evol-
ution domain is restricted to h≥ 0. Altogether, this gives the continuous evolution
h′ = v,v′ =−g, t ′ = 1&h≥ 0 in the beginning of the hybrid program in Fig. 2.2.

At the ground (which is at height h = 0), the ball bounces back after losing energy
in an elastic deformation according to a damping factor 0≤ c < 1. That is, if the ball

h′= v
v′=−g
t ′= 1
h≥ 0v:=−cv

t := 0

h = 0∧ t > 0
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is on the ground (h = 0) and it actually fell (so time has passed, t > 0), then the ball
changes its direction and bounces back into the air by reflecting its current velocity v
by a discrete jump v :=−cv and resetting the falling time by t :=0.

Now for illustration purposes we have added an extra twist to the hybrid program
in Fig. 2.2 that is not in the hybrid automaton. The automaton still enforces infinite
bouncing so that the ball can never stop (unless c = 0, where it stops immediately).
In reality, the ball bounces a couple of times and can then come to a standstill when
its remaining kinetic energy is insufficient. To model this phenomenon without the
need to have a precise physical model for all physical forces and frictions, we allow
for the damping factor c to change at each bounce. Line 4 of the hybrid program
in Fig. 2.2 represents a corresponding uncountably infinite nondeterministic choice
for c as a nondeterministic assignment. The subsequent test ?(0≤ c < 1) restricts
the arbitrary choices for c to choices in the half-open interval [0,1) and discards all
other choices.

For comparison, Fig. 2.3 shows an equivalent hybrid program for the same boun-
cing, now with all abbreviations for extended statements resolved according to
Table 2.2. Note that it is fairly easy to see that height h and clock t always stay
nonnegative if they start nonnegative. For that reason, the last test ?(h 6= 0∨ t ≤ 0)
in Fig. 2.3 could even be replaced equivalently by ?(h > 0∨ t = 0). �

Fig. 2.3 Parametric bouncing
ball (with abbreviations re-
solved)

ball ≡
(

h′ = v,v′ =−g, t ′ = 1&h≥ 0;(
?(h = 0 ∧ t > 0);

(c′ = 1∪ c′ =−1);
?(0≤ c < 1);
v :=−cv; t := 0)

∪ ?(h 6= 0 ∨ t ≤ 0))∗

Classification of Hybrid Programs

Hybrid programs are designed as a minimal extension of conventional discrete pro-
grams. They characterise hybrid systems succinctly by adding continuous evolution
along differential equations as the only additional primitive operation to a regular
basis of conventional discrete programs. To yield hybrid systems, their operations
are interpreted over the domain of real numbers. This gives rise to an elegant syn-
tactic hierarchy of discrete, continuous, and hybrid systems. Hybrid automata [156]
can be represented as hybrid programs using a straightforward generalisation of
standard program encodings of automata; see App. C for formal details. The frag-
ment of hybrid programs without differential equations corresponds to conventional
discrete programs generalised over the reals or to discrete-time dynamical sys-
tems [56]. The fragment without discrete jumps corresponds to switched continuous
systems [56, 58], whereas the fragment of differential equations gives purely con-
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Table 2.3 Operators and (informal) meaning in differential dynamic logic (dL )

dL Notation Operator Meaning
p(θ1, . . . ,θn) atomic formula true iff predicate p holds for (θ1, . . . ,θn)
¬φ negation / not true if φ is false
φ ∧ψ conjunction / and true if both φ and ψ are true
φ ∨ψ disjunction / or true if φ is true or if ψ is true
φ → ψ implication / implies true if φ is false or ψ is true
φ ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier / for all true if φ is true for all values of variable x
∃xφ existential quantifier / exists true if φ is true for some values of variable x
[α]φ [·] modality / box true if φ is true after all runs of HP α

〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of HP α

tinuous dynamical systems [279]. Only the composition of mixed discrete jumps
and continuous evolutions gives rise to truly hybrid behaviour.

2.2.3 Formulas of Differential Dynamic Logic

The formulas of the differential dynamic logic dL are defined as in first-order dy-
namic logic [253, 148, 149] but with real arithmetic as a semantic domain and with
hybrid programs as system models. That is, they are built using propositional con-
nectives ¬,∧,∨,→,↔ and quantifiers ∀,∃ over the reals (first-order part). In addi-
tion, if φ is a dL formula and α a hybrid program, then [α]φ ,〈α〉φ are formulas
(dynamic part).

Definition 2.4 (dL formulas). The set Fml(Σ ,V ) of formulas of dL , with typical
elements φ ,ψ , is the smallest set such that

1. If p is a predicate symbol of arity n≥ 0 and θi ∈ Trm(Σ ,V ) for 1≤ i≤ n, then
p(θ1, . . . ,θn) ∈ Fml(Σ ,V ).

2. If φ ,ψ ∈ Fml(Σ ,V ), then ¬φ ,(φ ∧ψ),(φ ∨ψ),(φ → ψ) ∈ Fml(Σ ,V ).
3. If φ ∈ Fml(Σ ,V ) and x ∈V , then ∀xφ ,∃xφ ∈ Fml(Σ ,V ).
4. If φ ∈ Fml(Σ ,V ) and α ∈ HP(Σ ,V ), then [α]φ ,〈α〉φ ∈ Fml(Σ ,V ).

For reference, the logical operators of differential dynamic logic are summarised
in Table 2.3. More succinctly, we also say that the formulas of dL are defined by
the following grammar (where φ ,ψ are dL formulas, θi are terms, p a predicate
symbol of arity n, x ∈V is a logical variable, and α is a hybrid program):

φ ,ψ ::= p(θ1, . . . ,θn) | ¬φ | φ ∧ψ | φ ∨ψ | φ → ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ .

We consider the bi-implication or equivalence φ ↔ ψ as an abbreviation for
(φ → ψ)∧ (ψ → φ) to simplify the calculus. We often leave out superfluous brack-
ets and use binding priorities instead in order to improve readability. Quantifiers
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and modalities bind strongly, i.e., their scope only extends to the formula immedi-
ately after. Unary operators (negation ¬), quantifiers (∀,∃), and modalities ([α],〈α〉)
bind stronger than binary operators. Further, conjunction ∧ and disjunction ∨ bind
stronger than implication→ and bi-implication↔. Thus

φ0∧〈α〉φ1∧∀xφ2∧φ3→¬φ4∨ [α]φ5∨φ6

is taken to mean(
φ0∧ (〈α〉φ1)∧ (∀xφ2)∧φ3

)
→
(
(¬φ4)∨ ([α]φ5)∨φ6

)
and does not mean

φ0∧
(
〈α〉
(
φ1∧∀x(φ2∧φ3)

)
→¬

(
φ4∨ [α](φ5∨φ6)

))
.

Example 2.6 (Train control). When train denotes the hybrid program in Fig. 2.1 or
the hybrid program in Example 2.4, or, in fact, any other hybrid program model for a
train system, then the following dL formula expresses that this train is able (〈train〉)
to enter region z≥ m, thereby leaving region z < m when it starts in region z < m
with nonnegative initial velocity v≥ 0:

v≥ 0∧ z < m→ 〈train〉z≥ m. (2.2)

Dually, the following dL formula expresses that the train will always ([train]) stay
inside the region z < m when it starts inside it with an initial nonnegative velocity
less than 5:

v≥ 0∧ v < 5∧ z < m→ [train]z < m.

For most train models train, the latter safety property will only be true for additional
constraints on the initial state and on the internal parameter choices, including, e.g.,
braking forces, reaction times, and start braking points. �

Example 2.7 (Parametric bouncing ball). Let ball denote the hybrid program for
the bouncing ball from Example 2.5. The ball loses energy at every bounce, thus
the ball never bounces higher than the initial height. This can be expressed by the
property 0≤ h≤ H, where H denotes the initial energy level (which corresponds to
the initial height if v = 0 initially). Then, for instance, the following dL formula
expresses that (under a list of assumptions on the free variables h,v, t and H,g,c) the
ball always stays in the region 0≤ h≤ H:

(v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0)→ [ball](0≤ h≤ H). (2.3)

This dL formula follows the pattern of Hoare triples [161]. It expresses that the
bouncing ball, when started in an initial state satisfying the precondition on the left
of the implication (→), always respects the postcondition 0≤ h≤ H of the dynamic
modality [ball], i.e., all runs of the bouncing ball stay in the region 0≤ h≤ H. �
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A dL formulas of the form ψ → [α]φ corresponds to Hoare triples [161], gen-
eralised for hybrid systems. They occur quite frequently, because they specify that
system α , when starting in a state satisfying the precondition ψ , always respects the
postcondition φ . That is, when started in a state satisfying ψ , all states reachable
by α satisfy φ . There are several other relevant shapes of dL formulas in practical
systems verification; see Part III.

Note that, according to Definition 2.4, hybrid programs are not additional ex-
ternal objects but fully internalised [48] as first-class citizens within the logic dL
itself, and the logic is closed. That is, modalities can be combined propositionally,
by quantifiers, or nested. For instance, [α]〈β 〉x≤ c says that, whatever hybrid pro-
gram α is doing, hybrid program β can react in some way to reach a controlled
state where x is less than some critical value c. That is, for all α actions, there is a
β (re)action such that x≤ c holds. Dually, 〈β 〉[α]x≤ c expresses that hybrid pro-
gram β can stabilise x≤ c, i.e., behave in such a way that x≤ c remains true no
matter how hybrid program α reacts. That is, there is a β action such that all α

actions maintain x≤ c. Accordingly, ∃p [α]x≤ c says that there is a choice of para-
meter p such that α remains in x≤ c. Nesting modalities and quantifiers in this way
can be quite useful for describing interactions of a hybrid program α with an en-
vironment β , or for describing the impact of parameter choices on properties of the
system behaviour.

During our analysis, we assume differential equations and discrete transitions
to be well-defined. In particular, we assume that all divisions p/q are guarded by
conditions that ensure q 6= 0 as, otherwise, the system behaviour is not well-defined
due to an undefined value at a singularity. It is simple but tedious to augment the
semantics and the calculus with corresponding side conditions to show that this is
respected. For instance, we assume that x := p/q is guarded by ?q 6= 0 and that con-
tinuous evolutions are restricted such that the differential equations are well-defined
as x′ = p/q&q 6= 0. Also see our joint work with Beckert [37] for techniques of
how such exceptional behaviour can be handled by program transformation while
avoiding partial valuations of undefinedness in the semantics. In logical formulas,
partiality can be avoided altogether by writing p = c ·q∧q 6= 0 rather than p/q = c,
and writing (p > c ·q∧q > 0)∨ (p < c ·q∧q < 0) rather than p/q > c.

2.3 Semantics of Differential Dynamic Logic

We define the semantics of dL as a possible world Kripke semantics [185] with
worlds representing the possible system states and with reachability along the hy-
brid transitions of the system representing accessibility relations between worlds.
The interpretations of dL consist of states (worlds) that are essentially first-order
structures over the reals. In particular, real values are assigned to state variables,
possibly different values in each state. A potential behaviour of a hybrid system
corresponds to a succession of states that contain the observable values of system
variables during its hybrid evolution.
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2.3.1 Valuation of Terms

Symbols in the logic dL come from three different syntactic categories that we
decided to distinguish in Sect. 2.2.1:

1. rigid symbols in Σ that cannot change their value, e.g., 0,1,+, ·;
2. flexible symbols in Σ , which are the state variables, whose value can change

depending on the current state of the system;
3. logical variables in V that cannot change their value over time by running hybrid

programs, but which can be quantified over universally or existentially.

All of those symbols need to be interpreted to give meaning to terms in which they
occur. We associate values with rigid symbols by what we call an interpretation I,
associate values with flexible symbols by a state ν , and associate values with lo-
gical variables by an assignment η . Recall that there is some leeway in declaring
symbols as either rigid or flexible symbols or as logical variables. The semantics is
unambiguous for each choice, though.

An interpretation I assigns functions and relations over the reals to the respect-
ive rigid symbols in Σ . The function and predicate symbols of real arithmetic are
interpreted as usual by I. Especially, the interpretation I(+) is addition and I(·) is
multiplication of real numbers. A state is a map ν :Σfl→ R; the set of all states is
denoted by Sta(Σ). Here, Σfl denotes the set of (flexible) state variables in Σ (they
have arity 0, thus take no arguments). Finally, an assignment for logical variables is
a map η :V → R. It contains the values for logical variables, which are not subject
to change by modalities but only by quantification. Observe that flexible symbols
(which represent state variables) are allowed to assume different interpretations in
different states. Logical variable symbols, however, are rigid in the sense that their
value is determined by η alone and does not depend on the state ν .

The valuation valI,η(ν , ·) of terms is defined as usual [123, 149] with an extra
distinction of rigid and flexible functions [37]. It is defined inductively by recursion
on the structure of the term, based on the interpretation that assignment η assigns
to logical variables, that interpretation I assigns to rigid function symbols, and that
state ν assigns to flexible state variables. The semantics of terms is compositional
and denotational [277], that is, the semantics of a complex term is defined as a
combination of the semantics of its subterms.

Definition 2.5 (Valuation of terms). The valuation of terms with respect to inter-
pretation I, assignment η , and state ν is defined by

1. valI,η(ν ,x) = η(x) if x ∈V is a logical variable.
2. valI,η(ν ,a) = ν(a) if a ∈ Σ is a state variable (flexible function symbol of ar-

ity 0).
3. valI,η(ν , f (θ1, . . . ,θn)) = I( f )

(
valI,η(ν ,θ1), . . . ,valI,η(ν ,θn)

)
when f ∈ Σ is a

rigid function symbol of arity n≥ 0.

Example 2.8. Let interpretation I interpret the constant function symbol b ∈ Σ as
I(b) = 2.14, and interpret the unary function symbol c ∈ Σ as the cubic function
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d 7→ d3, i.e.,
(
I(c)

)
(d) = d3. Let the assignment η interpret the logical variable

X ∈V as η(X) = 4.2. Finally let the state ν interpret the state variables x,y,z ∈ Σ

as ν(x) = 3, ν(y) =−5.01, ν(z) = 0. Throughout this book we assume that the in-
terpretation of 0,1,+,−, · always is as usual in real arithmetic, that is:

I(0) = 0
I(1) = 1(

I(+)
)
(d,e) = d + e (addition)(

I(−)
)
(d,e) = d− e (subtraction)(

I(·)
)
(d,e) = d · e (multiplication)

With this we can valuate terms recursively with respect to I,η ,ν as follows:

valI,η(ν ,x+ y) = valI,η(ν ,x)+ valI,η(ν ,y) = ν(x)+ν(y)

= 3+(−5.01) =−2.01,
valI,η(ν ,y+2 ·X) = valI,η(ν ,y)+ valI,η(ν ,2) · valI,η(ν ,X)

= ν(y)+ I(2) ·η(X) =−5.01+2∗4.2 = 3.39,
valI,η(ν ,X +b · (x+ y ·X)) = η(X)+ I(b) · (ν(x)+ν(z) ·η(X))

= 4.2+2.14 · (3+0 ·4.2) = 10.62,
valI,η(ν ,c(x+X)− x) = valI,η(ν ,c(x+X))− valI,η(ν ,x)

= I(c)
(
valI,η(ν ,x+X)

)
−ν(x)

= I(c)
(
ν(x)+η(X)

)
− ν(x)

= (3+4.2)3−3 = 370.248.

Note here, that the decision about which symbols we consider as rigid function
symbols, which ones we consider as flexible function symbols (state variables), and
which ones we consider as logical variables is somewhat arbitrary in this example.
This decision only becomes relevant when we add quantifiers (for only logical vari-
ables can be quantified over) or hybrid programs (for only state variables can be
assigned to in hybrid programs). Overall, the syntactic category of symbols is not
crucial, as there are often many equivalent ways to assign symbols to syntactic cat-
egories. But if we fix a choice of symbols, the semantics becomes less subtle, so we
assume a choice has been made for every formula. �

2.3.2 Valuation of Formulas

The valuation valI,η(ν , ·) of formulas is defined as usual for first-order modal logic
[123, 149] with a distinction of rigid and flexible functions [37]. Modalities para-
metrised by a hybrid program α follow the accessibility relation spanned by the
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respective hybrid state transition relation ρI,η(α), which is simultaneously induct-
ively defined in Definition 2.7.

The valuation of formulas is defined inductively by recursion on the structure
of formulas, based on the interpretation of the terms occurring in it. The semantics
of formulas is compositional and denotational, that is, the semantics of a complex
formula is defined as a simple function of the semantics of its subformulas. We
will use η [x 7→ d] to denote the modification of an assignment η that agrees with η

except for the interpretation of the logical variable x ∈V , which is assigned d ∈ R
in η [x 7→ d].

Definition 2.6 (Valuation of dL formulas). The valuation valI,η(ν , ·) of formulas
with respect to interpretation I, assignment η , and state ν is defined as

1. valI,η(ν , p(θ1, . . . ,θn)) = I(p)
(
valI,η(ν ,θ1), . . . ,valI,η(ν ,θn)

)
.

2. valI,η(ν ,φ ∧ψ) = true iff valI,η(ν ,φ) = true and valI,η(ν ,ψ) = true.
3. valI,η(ν ,φ ∨ψ) = true iff valI,η(ν ,φ) = true or valI,η(ν ,ψ) = true.
4. valI,η(ν ,¬φ) = true iff valI,η(ν ,φ) 6= true.
5. valI,η(ν ,φ → ψ) = true iff valI,η(ν ,φ) 6= true or valI,η(ν ,ψ) = true.
6. valI,η(ν ,∀xφ) = true iff valI,η [x 7→d](ν ,φ) = true for all d ∈ R.
7. valI,η(ν ,∃xφ) = true iff valI,η [x 7→d](ν ,φ) = true for some d ∈ R.
8. valI,η(ν , [α]φ) = true iff valI,η(ω,φ) = true for all states ω for which the trans-

ition relation satisfies (ν ,ω) ∈ ρI,η(α).
9. valI,η(ν ,〈α〉φ) = true iff valI,η(ω,φ) = true for some state ω for which the

transition relation satisfies (ν ,ω) ∈ ρI,η(α).

Following the usual notation, we also write I,η ,ν |= φ iff valI,η(ν ,φ) = true. We
then say that φ is satisfied in I,η ,ν or holds in I,η ,ν . We also say that I,η ,ν is a
model of φ . Dually, we write I,η ,ν 6|= φ iff valI,η(ν ,φ) 6= true. If φ is satisfied for
at least one I,η ,ν , then φ is called satisfiable. Occasionally, we write just � φ iff
I,η ,ν |= φ holds for all I,η ,ν . Formula φ is then called valid, i.e., true in all I,η ,ν .

The semantics of modal formulas [α]φ and 〈α〉φ in dL is illustrated in Fig. 2.4,
showing how the truth of φ at (all or some) states ωi reachable by α relates to the
truth of [α]φ or 〈α〉φ at state ν .

Fig. 2.4 Transition semantics of modalities in dL formulas
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Example 2.9. Consider the following formula that we want to evaluate:

v > 0→ v · v≤ 2b · (m− z)∨b = 0. (2.4)

First we have to declare which syntactic category the symbols are meant to come
from. Suppose z,v ∈ Σ are state variables (flexible function symbols of arity 0),
because they represent position and velocity of the train, which are intended to be
able to change over time from state to state. Further suppose that m,b ∈ Σ are rigid
function symbols, because, for the moment, movement authority and braking force
are not allowed to change over time. Note that we could just as well have chosen all
symbols z,v,m,b to be flexible state variables. The only notable difference is that if b
is a flexible symbol, we would have to prove that a particular hybrid program never
changes the value of b to know that it denotes the same value in every part of the
program. Otherwise, if b is a rigid symbol, we already know that it cannot possibly
change its value by running a hybrid program, because b then is a constant, and
only flexible symbols are syntactically allowed to be assigned to or have differential
equations in Definition 2.3. While it is certainly not crucial to make this distinction,
it can make some things easier to see syntactically.

Now let interpretation I interpret rigid symbol m ∈ Σ as I(m) = 20 and inter-
pret b ∈ Σ as I(b) = 2.2. Let state ω interpret state variables v,z ∈ Σ as ω(v) = 10,
ω(z) = 0. In formula (2.4), suppose we do not have any free logical variables, so
that the assignment η of logical variables does not matter. Then we can evaluate
formula (2.4) with respect to I,η ,ω:

valI,η(ω,v > 0→ v · v≤ 2b · (m− z)∨b = 0) = true iff
valI,η(ω,v > 0) 6= true, or
valI,η(ω,v · v≤ 2b · (m− z)) = true, or
valI,η(ω,b = 0) = true.

Let us evaluate the terms to determine if the subformulas are true or not:

valI,η(ω,v > 0) = (valI,η(ω,v)
?
> valI,η(ω,0)) = (ω(v)

?
> I(0))

= (10
?
> 0) = true,

valI,η(ω,v · v≤ 2b · (m− z))(valI,η(ω,v · v)
?
≤ valI,η(ω,2b · (m− z)))

=
(
ω(v) ·ω(v)

?
≤ 2I(b) · (I(m)−ω(z))

)
=
(
10 ·10

?
≤ 2 ·2.2 · (20−0)

)
= (100

?
≤ 88) = false,

valI,η(ω,b = 0) = (I(b) ?
= 0) = (2.2 ?

= 0) = false.

Consequently the formula (2.4) evaluates to false. For a different state ν with slower
speed ν(v) = 8 and the same position ν(z) = 0, we instead evaluate (2.4) to true:
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valI,η(ν ,v > 0→ v · v≤ 2b · (m− z)∨b = 0) = true.

Also for a different interpretation J with J(m) = 20 and another braking force
J(b) = 4, but the same original state ω , we evaluate (2.4) to true:

valJ,η(ω,v > 0→ v · v≤ 2b · (m− z)∨b = 0) = true.

So we see that the truth-value of formula (2.4) depends on I,η ,ω . For some choices
of I,η ,ω , it evaluates to true, for others it evaluates to false. Thus, formula (2.4) is
not valid, because

I,η ,ω |= v > 0→ v · v≤ 2b · (m− z)∨b = 0

does not hold for all I,η ,ω . Still, the formula (2.4) is at least satisfiable, because it
holds for some I,η ,ω . �

Example 2.10. Consider the assignment η with η(Z) =−2 and the state ν with
ν(x) =−4. Then we can evaluate

valI,η(ν ,x >−5∧∀y(y2 +Z > x)) = true

because ν(x)>−5 and all squares are greater than or equal zero, so that for all
d ∈ R:

valI,η [y7→d](ν ,y
2 +Z > x) =

(
(η [y 7→ d](y))2 +η [y 7→ d](Z)

?
> ν(x)

=
(
d2 +(−2)

?
>−4

)
= true.

�

Note, that we have not yet explained how to evaluate formulas with modalities like
x > 0→ [ctrl ;drive∗]z≤ m in any I,η ,ν , because we first have to define the trans-
ition semantics ρI,η(α) of hybrid programs, which we will do next.

2.3.3 Transition Semantics of Hybrid Programs

Now we define the transition semantics, ρI,η(α), of hybrid program α . The se-
mantics of a hybrid program is captured by its hybrid state transition relation. For
discrete jumps this transition relation holds for pairs of states that respect the dis-
crete jump set. For continuous evolutions, the transition relation holds for pairs of
states that can be interconnected by a continuous flow respecting the differential
equations and evolution domain restriction throughout the evolution.

The transition semantics of hybrid programs is defined by induction based on
the structure of the programs. The semantics of hybrid programs is compositional,
that is, the semantics of a complex program is defined as a simple function of the
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transition semantics of its parts. We will use ν [x 7→ d] to denote the modification of
a state ν that agrees with ν except for the interpretation of the symbol x ∈ Σfl, which
is changed to d ∈ R in ν [x 7→ d].

Definition 2.7 (Transition semantics of hybrid programs). The valuation of a hy-
brid program α , denoted by ρI,η(α), is a transition relation on states. It specifies
which state ω is reachable from a state ν by operations of the hybrid program α and
is defined as follows

1. (ν ,ω) ∈ ρI,η(x1 :=θ1, . . . ,xn :=θn) iff the state ω equals the state obtained by
semantic modification of state ν as ν [x1 7→ valI,η(ν ,θ1)] . . . [xn 7→ valI,η(ν ,θn)].
Particularly, the values of other variables z 6∈ {x1, . . . ,xn} remain constant, i.e.,
valI,η(ω,z) = valI,η(ν ,z), and the xi receive their new values simultaneously,
i.e., valI,η(ω,xi) = valI,η(ν ,θi).

2. (ν ,ω) ∈ ρI,η(x′1 = θ1, . . . ,x′n = θn & χ) iff there is a flow f of some duration
r ≥ 0 from state ν to state ω along x′1 = θ1, . . . ,x′n = θn & χ , i.e., a function
f : [0,r]→ Sta(Σ) such that:

• f (0) = ν , f (r) = ω;
• f respects the differential equations: For each variable xi, the valuation

valI,η( f (ζ ),xi) = f (ζ )(xi) of xi at state f (ζ ) is continuous in ζ on [0,r]
and has a derivative of value valI,η( f (ζ ),θi) at each time ζ ∈ (0,r);

• the value of other variables z 6∈ {x1, . . . ,xn} remains constant, that is, we have
valI,η( f (ζ ),z) = valI,η(ν ,z) for all ζ ∈ [0,r];

• and f respects the invariant: valI,η( f (ζ ),χ) = true for each ζ ∈ [0,r].

3. ρI,η(?χ) = {(ν ,ν) : valI,η(ν ,χ) = true}
4. ρI,η(α ∪β ) = ρI,η(α)∪ρI,η(β )
5. ρI,η(α;β ) = {(ν ,ω) : (ν ,µ) ∈ ρI,η(α),(µ,ω) ∈ ρI,η(β ) for a state µ}
6. (ν ,ω) ∈ ρI,η(α

∗) iff there is an n ∈ N and states ν = ν0, . . . ,νn = ω such that
(νi,νi+1) ∈ ρI,η(α) for all 0≤ i < n.

For graphical illustrations of the transition semantics of hybrid programs and ex-
ample dynamics, see Fig. 2.5. On the left of Fig. 2.5, we illustrate the generic shape
of the transition structure ρI,η(α) for transitions along various cases of hybrid pro-
grams α from state ν to state ω . On the right of Fig. 2.5, we show examples of how
the value of a variable x may evolve over time t when following the dynamics of
the respective hybrid program α . The shape of the transition structure of a discrete
jump x :=θ (row 1) and of a differential equation x′ = θ & χ (row 2) is an element-
ary one-step transition from ν to ω . For discrete jumps, however, the transition is
an instant jump in the state space (row 1 on the right), while the transition for a
differential equation is a continuous evolution in the state space (row 2 on the right).
Note that the modifications of a discrete jump set x1 :=θ1, . . ,xn :=θn are executed
simultaneously in Definition 2.7 in the sense that all terms θi are evaluated in the
initial state ν . For simplicity, we assume the xi to be different, and refer to previous
work [37] for a compatible semantics and calculus handling concurrent modifica-
tions of the same xi.



56 2 Differential Dynamic Logic dL

Fig. 2.5 Transition semantics (left) and example dynamics (right) of hybrid programs

For test ?χ (row 3), the only possible transitions in the transition structure are
self-loops that do not change the state ν , but even those transitions are only pos-
sible if the test succeeds, i.e., I,η ,ν |= χ; see Fig. 2.5. The transition structure for
choice α ∪β (row 4) is a choice between any transition of α and any transition of β .
Thus, in the example on the right of row 4, the system can choose between either
an evolution like the hybrid evolution (consisting, in this example, of 3 continuous
flows and 2 intermediate jumps) leading to ω1 or the squiggly evolution from ν

to ω2. The transition structure for sequential composition α;β (row 5) is that of any
α transition to an intermediate state µ , followed by any β transition to ω . In the
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example evolution on the right of row 5, the system first follows a continuous evol-
ution (which would come from α in this example) and then a discrete jump (which
would come from β ). The transition structure of a repetition α∗ (row 6) repeats any
number of α transitions to go from ν to ω via some number of intermediate states
νi. In the example on the right, the system follows a sequence of various continuous
evolutions and discrete jumps, giving truly hybrid behaviour.

For differential equations like x′ = θ , Definition 2.7 characterises transitions
along a continuous evolution respecting the differential equation; see Fig. 2.6a. A
continuous transition along x′ = θ is possible from state ν to state ω whenever there
is a continuous flow f of some duration r ≥ 0 connecting state ν with ω such that f
gives a solution of the differential equation x′ = θ . That is, its value is continu-
ous on the closed interval [0,r] and differentiable with the value of θ as derivative
on the open interval (0,r). Further, only variables subject to a differential equation
change during such a continuous transition. Similarly, the continuous transitions
of x′ = θ & χ with evolution domain χ are those where f always resides within χ

during the whole evolution; see Fig. 2.6b. The evolutions of x′ = θ & χ may still
stop at any point in time, but they are no longer allowed to leave χ and have to stop
at an arbitrary point in time before that happens; see Fig. 2.6c.
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Fig. 2.6 Continuous flow along differential equation x′ = θ over time t

For the semantics of differential equations, derivatives are well defined on the
open interval (0,r), because the set Sta(Σ) of states is isomorphic to some finite-
dimensional metric real vector space spanned by the variables of the differential
equations (derivatives are not defined on the closed interval [0,r] if r = 0). For the
purpose of a differential equation system, states are fully determined by an assign-
ment of a real value to each occurring variable, which are finitely many. Further-
more, the terms of dL are continuously differentiable on the open domain where
divisors are nonzero, because the zero set of divisors is closed. Hence, solutions in
dL are unique:

Lemma 2.1 (Uniqueness). Differential equations of dL have unique solutions,
i.e., for each differential equation system, each state ν , and each duration r ≥ 0,
there is at most one flow f : [0,r]→ Sta(Σ) satisfying the conditions of Case 2 of
Definition 2.7.

Proof. Let x′1 = θ1, . . . ,x′n = θn & χ be a differential equation system with evolution
domain χ . Using simple computations in the field of rational fractions, we can as-
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sume the right-hand sides θi of the differential equations to be of the form pi/qi
for polynomials pi,qi. The set of points in real space where qi = 0 holds is closed.
As a finite union of closed sets, the set where q1 = 0∨·· ·∨qn = 0 holds is closed.
Hence, the valuations of the θi are continuously differentiable on the complement
of the latter set, which is open. Thus, as a consequence of Picard-Lindelöf’s the-
orem, a.k.a. the Cauchy-Lipschitz theorem (Theorem B.2), the solutions are unique
on each connected component of this open domain. Consequently, solutions are
unique when restricted to χ , which, by assumption, entails q1 6= 0∧·· ·∧qn 6= 0.

ut

Example 2.11 (Evaluation of formula and transition semantics). Recall the follow-
ing hybrid program from Example 2.4 that models an (overly) simplistic train con-
troller:

train ≡
(
((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a

)∗ (2.1∗)

Recall the dL formula (2.2) from p. 48 that claims that this simplistic train model
can leave the movement authority region m:

v≥ 0∧ z < m→ 〈train〉z≥ m (2.2∗)

Let us evaluate this dL formula. Consider the interpretation I that interprets ri-
gid symbol m ∈ Σ as I(m) = 20 and interprets b ∈ Σ as I(b) = 2 and I(A) = 1. Let
state ν interpret state variables v,z ∈ Σ as ν(v) = 9, ν(z) = 0. Then the assump-
tions v≥ 0∧ z < m from the left-hand side of the implication of (2.2) are satis-
fied, so for formula (2.2) to be evaluated to true, the right-hand side of the im-
plication needs to evaluate to valI,η(ν ,〈train〉z≥ m) = true. To find out if this is
the case, the semantics of 〈train〉 in Definition 2.6 requires us to find a transition
(ν ,ω) ∈ ρI,η(train) of the hybrid program train from ν to some state ω , according
to Definition 2.7, after which valI,η(ω,z≥ m) holds true. Let us try to find such a
state ω by following the transition structure ρI,η(train) depicted in Fig. 2.7a. Es-
sentially, we obtain the transition structure in Fig. 2.7a by gluing the elementary
transition patterns from Fig. 2.5 together according to the structure of hybrid pro-
gram (2.1). We will find a path in the transition structure Fig. 2.7a from ν to ω along
the transitions illustrated in Fig. 2.7b, as we explain in the following.

The top-level statement in train is a repetition (corresponding to the outer loop in
Fig. 2.7a). We are allowed to execute the repetition twice as illustrated in the double
unrolling in Fig. 2.7b (we could also repeat it any other number of times, but two
times is sufficient). Thus, we hope to find an intermediate state σ2 such that both

(ν ,σ2) ∈ ρI,η(((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a) (2.5)

and
(σ2,ω) ∈ ρI,η(((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a) (2.6)

In the first transition (2.5), the top-level statement is a sequential composition (;)
with a nondeterministic choice (∪) as its first action. This nondeterministic choice
can choose either side, indicated as upper and lower choices on the left of Fig. 2.7b.
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Fig. 2.7 Transition structure and transition example in (overly) simple train control

If it chooses to try to run the second (lower) choice (?v < 8;a :=A), however, the hy-
brid program cannot run successfully, because the test ?v < 8 will fail and abort the
transition as a dead end, since this test evaluates to valI,η(ν ,v < 8) = false at state ν .
Hence, the hybrid program can only choose the first (upper) option (a :=−b) to a
state σ1 whose only difference with ν is that σ1(a) =−2 = valI,η(ν ,−b). For this
state, we have (ν ,σ1) ∈ ρI,η(a :=−b). Next, the differential equation will run from
σ1 as the second part of the sequential composition. Because σ1(a)< 0, it will brake
and the velocity v will decrease over time. If we just follow this differential equa-
tion long enough, say for one second, then the velocity at the end of it will be less
than 8. Indeed, after staying in the differential equation for one second, we reach a
state σ2 with (σ1,σ2) ∈ ρI,η(z′ = v,v′ = a) and σ2(v) = 7 and σ2(z) = 8, because
z(t) := −2

2 t2 +9t +0 and v(t) :=−2t +9 is the solution of the differential equation
when starting in state σ1 with the interpretation I and staying for t time units. Thus,
by the semantics of sequential composition and nondeterministic choice, Defini-
tion 2.7, we have that relation (2.5) holds for this state σ2, and all we need to do is
make sure that relation (2.6) holds as well.

For the transition (2.6), we can choose the second (lower) part of the non-
deterministic choice, because, unlike before, the test ?v < 8 succeeds in the new
state now: valI,η(σ2,v < 8) = true. Hence, we follow ?v < 8;a :=A to the state σ3
that is like σ2 except that we now have σ3(a) = I(A) = 1. From state σ3, we can
stay with and follow the subsequent differential equation as long as we want to,
because there is no evolution domain restriction on it. From this particular ini-
tial state σ3, the solution of the differential equation is z(t) := 1

2 t2 +7t +8 and
v(t) := 1t +7 when staying for t time units. If now we just follow the continu-
ous evolution along this differential equation for long enough, we will eventually
reach a state ω with (σ3,ω) ∈ ρI,η(z′ = v,v′ = a) such that valI,η(ω,z≥ m) = true.
In fact, the minimum time for this to happen is 1.544 time units, after which z has
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a value greater or equal I(m) = 20. But any longer period of time will do too. For
instance, after 2 time units, we would have ω(z) = 24≥ 20 and ω(v) = 9. Thus we
have shown I,η ,ω |= z≥ m and

(ν ,ω) ∈ ρI,η(
(
((a :=−b)∪ (?v < 8;a :=A)); z′ = v,v′ = a

)∗
) ,

which implies that formula (2.2) holds for I,η ,ν .
So far, we have shown by semantic reasoning that formula (2.2) is true for I,η ,ν .

Yet formula (2.2) does not evaluate to true under all interpretations and states. For
a different interpretation J with J(m) = 1,000, braking force J(b) = 4, and (now
negative) acceleration J(A) =−2, but the same original state ν , we evaluate (2.4) to
false. The reason is that, no matter which choice the hybrid program uses, the train
always brakes, either with braking acceleration −J(b) =−4 or with negative accel-
eration J(A) =−2. Either way, the initial velocity ν(v) = 9 is not high enough to
reach I(m) = 1,000 from the initial position ν(z) = 0. Eventually, the train velocity
will be 0 and it cannot move forward anymore.

Another trivial example to show that formula (2.2) can evaluate to false for some
J,η ,ω is the interpretation J with J(m) = 20, J(b) = 2, and I(A) = 0 along with
the state ω that interprets ω(v) = 0, ω(z) = 0. Then, the train stands still in the
beginning and cannot move forward to I(m) = 20 at all. In particular, formula (2.2)
is not valid, because it does not evaluate to true for all I,η ,ν . �

What we notice in this example is that it is quite difficult and cumbersome to
reason about dL formulas and the dynamics of hybrid systems on the level of se-
mantics. Especially, we have only analysed particular behaviours starting at specific
initial values for all the variables. For validity, we are interested in analysing all
possible initial values, all numbers of repetitions, and arbitrary durations of staying
in the continuous evolution modes. To do this in an elegant and coherent way, we
introduce a proof calculus for dL in Sect. 2.5. After all, the semantics gives mean-
ing to formulas and captures the intended meaning and behaviour in real systems.
The semantics is intended to be intuitive to relate to the real world, not necessar-
ily for being easy to use in meta-reasoning. Supporting simple analysis and proofs
is the task of the proof calculus for dL that we develop in Sect. 2.5. Still, a good
semantics like the one we chose is compositional, which makes the proof calculus
simpler.

Further note that, for control-feedback loops α with a discrete controller reg-
ulating a continuous plant, transition structures involve all safety-critical states;
hence, ψ → [α]φ is a natural rendition of the safety property that φ holds at all
states reachable by α from initial states that satisfy ψ . Otherwise, dL can be aug-
mented with temporal operators to refer to intermediate states or nonterminating
traces. The corresponding calculus is compatible and reduces temporal properties to
nontemporal properties at intermediate states of the hybrid program, as we illustrate
in Chap. 4.
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2.4 Collision Avoidance in Train Control

As a case study to illustrate how dL can be used for specifying and verifying hybrid
systems, we examine a scenario of cooperating traffic agents in the European Train
Control System (ETCS) [91]. The purpose of ETCS is to ensure that trains cannot
crash into other trains or pass open gates. Its secondary objective is to maximise
throughput and velocity without endangering safety. To achieve these objectives,
ETCS discards the static partitioning of the track into fixed segments of mutually
exclusive and physically separated access by trains, which has been used tradition-
ally. Instead, permission to move is granted dynamically by decentralised Radio
Block Controllers (RBCs) depending on the current track situation and movement
of other traffic agents within the region of responsibility of the RBC; see Fig. 2.8.

Fig. 2.8 ETCS train coordination protocol using dynamic movement authorities

Movement Authorities

This moving block principle is achieved by dynamically giving a movement author-
ity (MA) to each traffic agent, within which it is obliged to remain. Before a train
moves into a part of the track for which it does not have MA, it asks the RBC for an
MA extension (during the negotiation phase indicated neg in Fig. 2.8). Depending
on the MA that the RBC has currently given to other traffic agents or gates, the RBC
will grant this extension and the train can move on. If the requested MA extension
is still in the possession of another train that could possibly occupy the same part
of the track, or if the MA is still consumed by an open gate, the RBC will deny the
MA extension such that the requesting train needs to reduce speed or start braking in
order to safely remain within its old MA. This is the correction phase cor in Fig. 2.8,
which has to happen at the point SB (for start braking) at the latest. As the nego-
tiation process with the RBC can take time because of possibly unreliable wireless
communication and negotiation of the RBC with other agents, the train initiates ne-
gotiation well before reaching the end of its MA. This negotiation phase neg starts
at the start talking point ST at the latest. Only if the train has a very large distance
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to the end of its MA (phase far in Fig. 2.8) is it safe to drive freely and not yet ne-
cessary to request MA extensions. When the rear end of a train has safely left a part
of a track, the train can give that part of its MA back to RBC control such that it can
be used by other traffic agents, including trains or gates.

In addition to increased flexibility and throughput of this moving block principle,
the underlying technical concept of movement authorities can be exploited for veri-
fying ETCS. It can be shown that a system of arbitrarily many trains, gates, and
RBCs, which communicate in the aforementioned manner, safely avoids collisions
if each traffic agent always resides within its MA under all circumstances, provided
that the RBCs grant MAs mutually exclusively so that the MAs dynamically par-
tition the track (Chap. 7). This way, verification of a system of unboundedly many
traffic agents can be reduced to an analysis of individual agents with respect to their
specific MA.

Train Control Model

In trains, speed supervision and automatic train protection are responsible for loc-
ally controlling the movement of a train such that it always respects its MA [90].
Depending on the current driving situation, the train controller determines a point
SB (for start braking) up to which driving is safe, and adjusts its acceleration a
in accordance with SB. Before SB, speed can be regulated freely (to keep the de-
sired speed and throughput of a track profile). Beyond SB (correcting phase cor in
Fig. 2.8), the train starts braking in order to make sure it remains within its MA if
the RBC does not grant an extension in time.

We assume that an MA has been granted up to some track position, which we
call m, and the train is located at position z, heading with current speed v towards m.
We represent the point SB as the safety distance s relative to the end m of the MA
(i.e., m− s = SB). In this situation, dL can analyse the following crucial safety
property of ETCS, which we state as a dL formula:

ψ → [(ctrl ;drive)∗]z≤ m (2.7)
where ctrl ≡ (?m− z≤ s;a :=−b)∪ (?m− z≥ s;a :=A),

drive ≡ τ :=0;(z′ = v,v′ = a,τ ′ = 1&v≥ 0∧ τ ≤ ε).

It expresses that a train always ([(ctrl ;drive)∗]) remains within its MA (z≤ m), as-
suming some constraint ψ for its parameters. The operational system model is a
control-feedback loop of the digital controller ctrl and the plant drive. In ctrl, the
train controller corrects its acceleration or brakes on the basis of the remaining dis-
tance (m− z). As a fail-safe recovery manoeuvre [90], it applies brakes with force b
if the remaining MA is less than or equal to s. Otherwise, speed is regulated freely.
The controller ctrl has a nondeterministic choice (∪) where the left option starts
with test ?m− z≤ s and the right option starts with test ?m− z≥ s. The controller
can try both options, but the left test will only succeed if m− z≤ s holds for the
current state, and the right test will only succeed if m− z≥ s holds. In particular, if
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m− z < s holds the controller can only choose the left option, leading to braking by
the assignment a :=−b. If m− z > s holds the controller can only choose the right
option, leading to acceleration by the assignment a :=A. If both tests could succeed,
i.e., m− z = s, then either choice can be taken, nondeterministically. For simplicity,
we assume the train uses a fixed acceleration A before passing s and does not choose
any other accelerations than full braking b and full acceleration A (bang-bang con-
trol). The verification is quite similar when the controller can dynamically choose
any acceleration a≤ A instead, as we illustrate in Chap. 7.

After acceleration a has been set in ctrl, the second half of the sequential com-
position ctrl ;drive executes, and the train continues moving in drive. There, the pos-
ition z of the train evolves according to the differential equation system z′ = v,v′ = a
(i.e., z′′ = a). The evolution in drive stops when the speed v drops below zero (or
earlier), because the train would not drive backwards just by braking. Thus, v≥ 0 is
in the maximum evolution domain of drive. Simultaneously, clock τ measures the
duration of the current drive phase before the controllers react to situation changes
again. Clock τ is reset to zero by τ :=0 when entering drive, constantly evolves
along τ ′ = 1 together with the differential equations z′ = v,v′ = a, and is restricted
by the evolution domain τ ≤ ε . Hence, the system can only follow drive for up to ε

time units and at most as long as v≥ 0. The effect is that a drive phase is interrupted
for reassessing the driving situation after at most ε seconds, and the ctrl ;drive feed-
back loop repeats by the repetition operator (∗). In particular, the continuous evolu-
tion cannot just be followed indefinitely without giving the controller ctrl a chance to
react to situation changes. The corresponding transition structure ρI,η((ctrl ;drive)∗)
is depicted in Fig. 2.9a. Essentially, we obtain the transition structure in Fig. 2.9a by
gluing the elementary transition patterns from Fig. 2.5 together according to the
structure of the hybrid program in (2.7).

Fig. 2.9 ETCS transition structure and various choices of speed regulation for train speed control

Figure 2.9b shows possible runs of the train where speed regulation successively
decreases velocity v because its MA has not been extended in time. Figure 2.9b
shows three different runs (three upper position curves and three lower, partially
overlapping velocity curves) which correspond to different choices of parameter s,
where only the lowest velocity choice is safe. Finally, observe that the evolution
domain v≥ 0∧ τ ≤ ε needs to be true at all times during continuous evolutions of
drive; otherwise there is no corresponding transition in ρI,η(drive). This not only
restricts the maximum duration of drive, but also imposes a constraint on permitted
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initial states: The arithmetic constraint v≥ 0 expresses that the differential equation
only applies for nonnegative speed. Hence, as in a test ?v≥ 0, program drive allows
no transitions at all when v is initially less than 0. In that case, ρI,η((ctrl ;drive)∗)
collapses to the trivial identity transition where only zero repetitions are possible.

Discussion

Here, we explicitly take into account possibly delayed controller reactions to bridge
the gap of continuous-time models and discrete-time control design. To get mean-
ingful results, we need to assume a maximum reaction delay ε , because safety can-
not otherwise be guaranteed (the system would not be safe if the controllers can
never execute). Polling cycles of sensors and digital controllers as well as latencies
of actuators such as brakes contribute to ε . Instead of using specific estimates for ε

for a particular train, we accept ε as a fully symbolic parameter. Further, instead
of manually choosing specific values for the free parameters of (2.7) as in model
checking approaches [91], we will use our calculus to synthesise constraints on the
relationship of parameters that are required for safe operation of train control. We do
not model weather conditions, slope of track, wheel friction, or train mass, because
these are less relevant for the cooperation layer of train control [90].

Because of its nonlinear behaviour and nontrivial reset relations, system (2.7)
is beyond the modelling capabilities of linear hybrid automata [8, 156, 126] and
beyond o-minimal automata [189]. Previous approaches need linear flows [8, 156],
do not support the coupled dynamics caused by nontrivial resets [189], require
polyhedral initial sets and discrete dynamics [70], only handle robust systems with
bounded regions [125] although parametric systems are not robust uniformly for all
parameter choices, or handle only bounded-time safety for systems with bounded
switching [217]. Finally, in addition to general numerical limits [238], numerical
approaches [70, 21] quickly become intractable due to the exponential impact of the
number of variables (curse of dimensionality).

2.5 Free-Variable Proof Calculus for Differential Dynamic Logic

In this section, we introduce a sequent calculus for formally verifying hybrid sys-
tems by proving validity of corresponding dL formulas. The basic idea is to sym-
bolically compute the effects of hybrid programs and successively transform them
into logical formulas describing these effects by structural symbolic decomposition.
The calculus consists of standard propositional rules, rules for dynamic modalities
that are generalised to hybrid programs, and novel quantifier rules that integrate real
quantifier elimination (or, in fact, any other quantifier elimination procedure) into
the modal calculus using free variables and Skolemisation.
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2.5.1 Substitution

The dL calculus uses substitutions that take effect within formulas and programs.
The result of applying to a dL formula φ the substitution that simultaneously re-
places variable yi by term θi (for 1≤ i≤ m) is defined as usual. Figure 2.10 shows

σ(yi) = θi for 1≤ i≤ n
σ(z) = y if z 6∈ {y1, . . . ,ym} is a variable

σ( f (θ1, . . . ,θn)) = f (σ(θ1), . . . ,σ(θn)) if f is a function symbol

σ(p(θ1, . . . ,θn)) = p(σ(θ1), . . . ,σ(θn)) if p is a predicate symbol
σ(¬φ) = ¬σ(φ)

σ(φ ∧ψ) = σ(φ)∧σ(ψ)
σ(φ ∨ψ) = σ(φ)∨σ(ψ)

σ(φ → ψ) = σ(φ)→ σ(ψ)
σ(∀xφ) = ∀xσ(φ) if admissible
σ(∃xφ) = ∃xσ(φ) if admissible
σ([α]φ) = [σ(α)]σ(φ) if admissible
σ(〈α〉φ) = 〈σ(α)〉σ(φ) if admissible

σ(x1 :=θ1, . . ,xn :=θn) = x1 :=σ(θ1), . . ,xn :=σ(θn) if admissible
σ(x′1 = θ1, . . ,x′n = θn & χ) = x′1 = σ(θ1), . . ,x′n = σ(θn)&σ(χ) if admissible

σ(?χ) = ?σ(χ)
σ(α;β ) = σ(α);σ(β )

σ(α ∪β ) = σ(α)∪σ(β )
σ(α∗) = (σ(α))∗

Fig. 2.10 Application of substitution σ that simultaneously replaces variable yi by term θi
(for 1≤ i≤ m)

how the substitution σ that replaces variable yi by term θi (for each 1≤ i≤ m) can
be applied to a term, dL formula, or hybrid program, respectively. The first line in
Fig. 2.10 represents that the substitution σ matches on the replaced (logical or state)
variables yi and replaces them by θi, respectively. The second line represents that no
logical or state variable z other than y1, . . . ,yn are affected by σ . The third line maps
the substitution σ homomorphically over function applications by applying σ re-
cursively to all argument terms. Similarly, the next block of cases in Fig. 2.10 maps
substitutions homomorphically over all subformulas. Yet for quantifiers (∀,∃) and
modalities ([α],〈α〉), the substitution is only applicable if admissible (as defined
below) so that the bound variable x of the quantifier does not interfere with the
substitution. We assume bound variable renaming (also known as α conversion)
for renaming as needed: bound variables can be renamed to resolve conflicts, e.g.,
∀xφ(x)≡ ∀zφ(z). Likewise, for applying the substitution homomorphically to hy-
brid programs (last block in Fig. 2.10) admissibility of the substitution is crucial in
all cases. Admissibility implies, for instance, that the variables yi replaced by the
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substitution are different from the changed variables x j on the left-hand sides of the
assignments or differential equations of the hybrid program.

Definition 2.8 (Admissible substitution). An application of a substitution σ is
admissible if no variable x that σ replaces by σ(x) occurs in the scope of a quantifier
or modality binding x or a (logical or state) variable of the replacement σ(x). A
modality binds a state variable x iff it contains a discrete jump set assigning to x
(such as x :=θ ) or a differential equation containing x′ (such as x′ = θ ).

In this book, only admissible substitutions are applicable, which is crucial for sound-
ness. Admissible substitutions are denotation-preserving: They ensure that symbols
still denote the same values after a substitution when they did so before.

Example 2.12 (Non-admissible substitution). It is important that only admissible
substitutions are applicable. For the following formula, φ ,

x = z → 〈z := z+1〉(z≥ x+1),

the substitution σ that replaces all occurrences of x by z is not admissible. This is
due to the fact that for when we try to apply σ to φ forming

z = z → 〈z := z+1〉(z≥ z+1),

the substitution replaces x in postcondition z≥ x+1 by z, which is bound by modal-
ity 〈z := z+1〉. Hence, within the scope of the modality, symbol z denotes a different
value than outside the modality, thereby destroying the property of the occurrences
of x—or, after the substitution, those of z—to share the same value throughout the
formula. Instead, a substitution σ2 of x by y+1 in φ to form σ2(φ) is admissible for
other symbols y, giving the formula σ2(φ):

y+1 = z → 〈z := z+1〉(z≥ y+1+1).

�

More succinctly, we abbreviate the result of applying to φ the substitution σ that
replaces variable yi with term θi (for 1≤ i≤ m) by φ

θ1
y1 . . .

θm
ym . Thus φ

θ1
y1 . . .

θm
ym is an

abbreviation for σ(φ) defined according to Fig. 2.10. When no confusion arises,
we also use implicit notation for substitutions to improve readability. Let φ(z) be a
formula with a free variable z. Then for any term θ , we use φ(θ) as an abbreviation
for the formula φ(z)θ

z that results from φ(z) by substituting θ for z.

Example 2.13 (Admissible versus non-admissible substitutions). Consider the (valid)
dL formula φ defined as

φ ≡ x > 0∧ y > 1∧ z≥ x → [z := z+ xy]z > x.

Now the substitution that replaces x by 5a+ x2− y is admissible for φ , giving the
result φ

5a+x2−y
x :
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5a+x2−y > 0∧y > 1∧ z≥ 5a+x2−y → [z := z+(5a+ x2− y)y]z > 5a+x2−y.

This formula φ
5a+x2−y
x , which results by an admissible substitution from φ , is valid,

just like φ .
However, the substitution that replaces x with the term az is not admissible for φ ,

because variable z occurs in the replacement az but is bound in φ , and could thus
have a different value at its various occurrences. So we cannot apply this substitution
to φ . Yet if we choose a fresh variable u and use bound variable renaming to rename
all occurrences of bound variable z to u, we obtain the formula

φ̃ ≡ x > 0∧ y > 1∧ z≥ x → [u := z+ xy]u > x.

This variant φ̃ is equivalent to φ , because only bound variables have been renamed.
After this bound variable renaming, the substitution replacing x by az becomes ad-
missible and we obtain

φ̃
az
x ≡ az > 0∧ y > 1∧ z≥ az → [u := z+(az)y]u > az.

This formula is valid (just like φ and φ̃ ). But it is quite different from the formula
we would obtain if we had just naı̈vely replaced every occurrence of x (admissible
or not) by az, instead of using more careful admissible substitutions:

az > 0∧ y > 1∧ z≥ az → [z := z+(az)y]z > az.

The latter formula is clearly false for all I,η ,ν with valI,η(ν ,a) = 1, because z
cannot possibly be greater than az then. Contrast this with the validity of the original
formula φ and its (admissible) substitution instance φ̃ az

x .
Similarly, the substitution that replaces z with ax is not admissible for φ , because

the replaced variable z is bound in φ , and could thus have a different value at its
various occurrences. So we cannot apply this substitution. Yet if we again choose
a fresh variable u and use bound variable renaming to rename all occurrences of
bound variable z to u, we obtain the formula φ̃ above. After this bound variable
renaming, the substitution replacing z with ax becomes admissible and we obtain

φ̃
ax
z ≡ x > 0∧ y > 1∧ax≥ x → [u :=ax+ xy]u > x.

Again, this formula is valid and quite different from the formula we would obtain if
we had just naı̈vely replaced every occurrence of z (admissible or not) by ax:

x > 0∧ y > 1∧ax≥ x → [z :=ax+ xy]ax > x.

The latter formula is again false for all I,η ,ν with valI,η(ν ,a) = 1, because x can-
not possibly be greater than ax then. Contrast this with the validity of the original
formula φ and the admissible substitution instance φ̃ ax

x .
Thus, there is a close connection between the formula φ and its various substitu-

tion instances (if admissible!), which we will identify in the next lemma. As part of
that, we will show that, since φ is valid, all of its (admissible) substitution instances
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are valid. This close connection (and every other similarity) breaks when we naı̈vely
replace terms in φ instead of obeying the requirements of admissible substitutions.

�

Example 2.14 (Non-admissibility in repetitions). The last example is prototypical
for several dL formulas and works similarly for all dL formulas without repetitions
or differential equations. Yet repetitions and differential equations themselves are
more involved. Consider a (valid) dL formula with a repetition:

ψ ≡ x > 0∧ y > 1∧ z > x → [(z := z+ xy)∗]z > x. (2.8)

As with the formula φ from the last example, the substitution that replaces x by the
term 5a+ x2− y is admissible for ψ , giving the result ψ

5a+x2−y
x :

5a+x2−y> 0∧y> 1∧z> 5a+x2−y → [(z := z+(5a+ x2− y)y)
∗
]z> 5a+x2−y

This formula ψ
5a+x2−y
x , which results by an admissible substitution from ψ is valid,

just like ψ .
Again, the substitution that replaces x by the term az is not admissible for ψ ,

because variable z occurs in the replacement az but is bound in ψ , and could have
different values at its occurrences. Hence, we cannot apply this substitution. How-
ever, for repetitions, it is not so easy to do bound variable renaming to get around
this! We cannot simply replace all bound occurrences of z by one fresh variable u,
which would give

x > 0∧ y > 1∧ z > x → [(u := ǔ+ xy)∗]u > x.

But here the connection of u with the input z has been lost and the formula is no
longer valid. The reason is that the occurrence of z on the right-hand side z+ xy of
the jump (which corresponds to the occurrence of u we marked ˇ in the last formula)
is neither just free nor just bound. During the first iteration of the repetition, it would
be free (because it receives its value from outside); during subsequent iterations,
however, it would be bound (because it receives its value from the last assignment).
The formula we would obtain if we had just naı̈vely replaced every occurrence of x
(admissible or not) by az is also quite different and not valid:

x > 0∧ y > 1∧ z > x → [(z := z+(až)y)∗]z > az.

The reason is that the occurrence marked with ˇ is neither just free nor just bound,
because it depends on the number of iterations of the loop.

Likewise, the substitution that replaces z by ax is not admissible for ψ and cannot
be applied, because the replaced variable z is bound in ψ . We thus cannot apply this
substitution. Once more, it is not so easy to do bound variable renaming to get
around this and we cannot just rename z to a fresh variable u to resolve this issue.
The formula we would obtain if we had just naı̈vely replaced every occurrence of x
(admissible or not) by az is also quite different and not valid:
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x > 0∧ y > 1∧ax > x → [(z := ǎx+ xy)∗]ax > x.

The reason is again that the occurrence of z (prior to replacing) at the position
marked ˇ is neither just free nor just bound. While it would be perfectly alright to
replace the first dynamic occurrence of z (in the sequential execution order) by ax,
subsequent occurrences (including those in repetitions) have a different operational
value and cannot be replaced.

In these two cases, the substitutions are just not admissible for ψ and cannot be
applied, because the modalities of ψ bind relevant replaced variables or variables in
the replacements. Our proof calculus in Sect. 2.5.2 will use other ways that do not
need substitution to prove formulas with repetitions like these. �

Example 2.15 (Non-admissibility in differential equations). The situation with dif-
ferential equations is quite similar. In the dL formula

ψ ≡ x > 0∧ y > 1∧ z > x → [z′ = z+ xy]z > x (2.9)

the occurrences of z in the differential equation are neither just free nor just bound:
The value z affects the initial value z of the differential equation, but the value of z
also evolves over time when following the differential equation to a new value.
Thus, z is both a free initial value and bounded or updated during the evolution.
The substitution that replaces x with 5a2 + x2− y is still admissible for ψ , giving
ψ

5a2+x2−y
x :

5a2+x2−y> 0∧y> 1∧z> 5a2+x2−y→ [z′ = z+(5a2 + x2− y)y]z> 5a2+x2−y

But we cannot substitute x with az, because the substitution is not admissible for ψ

as bound variable z occurs in the replacement az. Nor can we substitute z with ax,
because this substitution is not admissible for ψ either, as the replaced variable z
is bound in ψ . The formula we would obtain if we had just naı̈vely replaced every
occurrence of x (admissible or not) with az, is different and not valid:

az > 0∧ y > 1∧ z > x → [z′ = z+(ǎz)y]z > az.

The formula we would obtain, instead, if we had just naı̈vely replaced every occur-
rence of z (admissible or not) by ax, is also different and not valid:

x > 0∧ y > 1∧ax > x → [z′ = ǎx+ xy]ax > x.

In both cases, we marked the positions where the occurrences have been neither free
nor bound with ˇ once again.

In these two cases, the substitutions are not admissible for ψ and cannot be ap-
plied, because the modalities of ψ bind relevant replaced variables or variables in
the replacements. Our proof calculus in Sect. 2.5.2 will prove such properties of dif-
ferential equations differently. �

Example 2.16 (Bound variable renaming for repetitions and differential equations).
On a side note, it would not be impossible to define bound variable renaming for
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repetitions and differential equations. We decide not to use these extensions in our
approach, because they are technically more involved and not necessary for our
proof calculus. The purpose of this example is to show how bound variable renam-
ing could be extended appropriately, nevertheless. When we add an extra discrete
jump, we could define the following extended bound variable renaming variant of
formula (2.8):

x > 0∧ y > 1∧ z > x → [u := z; (u :=u+ xy)∗]u > x.

This formula separates the initial value assignment from the loop. Similarly when
we add an extra discrete jump, we could define the following extended bound vari-
able renaming variant of formula (2.9):

x > 0∧ y > 1∧ z > x → [u := z; u′ = u+ xy]u > x.

Again, this formula separates the initial value assignment from the differential equa-
tion. For both variants, the substitution replacing x with az is admissible, and so is
the substitution replacing z with ax. Essentially, the above two variants retain the ini-
tial value z explicitly before the repetition or differential equation. We have chosen
not to use these extended bound variable renamings in this book and, instead, follow
our choice that non-admissible substitutions are not applicable at all. �

There is a direct connection between a formula φ and its substitution instance
σ(φ), provided that the substitution σ is admissible for φ . In fact, the valuation of φ

and σ(φ) coincide if only we change the interpretation of the replaced symbols ap-
propriately when evaluating φ . That is, semantically evaluating φ (after modifying
the interpretation of the symbols replaced by σ in I,η ,ν) is the same as semantic-
ally evaluating φ in the original I,η ,ν after applying the substitution (resulting in
σ(φ)). Stated differently, we can show that, for admissible substitutions, syntactic
substitution in the formula and semantic modification of I,η ,ν have the same effect:

Lemma 2.2 (Substitution Lemma). Let σ be an admissible substitution for the
(term or) formula φ and let σ replace only logical variables; then

for each I,η ,ν : valI,η(ν ,σ(φ)) = valI,σ∗(η)(ν ,φ),

where the semantic modification σ∗(η) of assignment η is adjoint to σ , i.e.,
σ∗(η) is identical to η , except that σ∗(η)(x) = valI,η(ν ,σ(x)) for all logical vari-
ables x ∈V .

Proof. In essence, the proof of this lemma is a simple corollary to the fact that
both substitution and valuation are homomorphisms defined inductively on formu-
las from their effect on atomic symbols. The application of an admissible substi-
tution σ is a homomorphic continuation of its effect on atomic symbols to all dL
formulas by way of Fig. 2.10. That is, the effect of an admissible(!) substitution on
a compound formula is just defined by applying the substitution recursively to all
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subformulas. Likewise, the valuation is a homomorphic continuation of the inter-
pretation I, state ν , and assignment η on atomic symbols to all dL formulas by
way of Definition 2.6. That is, the valuation of a compound formula is just defined
by using the valuation on all subformulas.

First we prove the substitution lemma applied to terms θ :

for each I,η ,ν : valI,η(ν ,σ(θ)) = valI,σ∗(η)(ν ,θ).

The proof is by induction on the structure of the term θ .

1. If θ is a logical variable x ∈V , then, by definition of σ∗(η):

valI,η(ν ,σ(x)) = σ
∗(η)(x) = valI,σ∗(η)(ν ,x).

2. If θ is a state variable x ∈ Σ , then it is different from replaced logical vari-
ables u ∈V and σ(x) = x. Hence

valI,η(ν ,σ(x)) = valI,η(ν ,x) = ν(x) = valI,σ∗(η)(ν ,x).

3. If θ is of the form f (θ1, . . . ,θn) for a function symbol f of arity n≥ 1, then

valI,η(ν ,σ( f (θ1, . . . ,θn)))

= valI,η(ν , f (σ(θ1), . . . ,σ(θn)))

= I( f )
(
valI,η(ν ,σ(θ1)), . . . ,valI,η(ν ,σ(θn))

)
= I( f )

(
valI,σ∗(η)(ν ,θ1), . . . ,valI,σ∗(η)(ν ,θn)

)
= valI,σ∗(η)(ν , f (θ1, . . . ,θn))

because the θi are simpler than f (θ1, . . . ,θn) so that, by induction hypothesis,
we have for each i:

valI,η(ν ,σ(θi)) = valI,σ∗(η)(ν ,θi).

Next we prove the substitution lemma applied to dL formulas φ :

for each I,η ,ν : valI,η(ν ,σ(φ)) = valI,σ∗(η)(ν ,φ).

The proof is by induction on the structure of the formula φ .

1. If φ is of the form p(θ1, . . . ,θn) for a predicate symbol p of arity n≥ 1, then the
proof is almost identical to that for function symbols above.

2. If φ is of the form φ1∨φ2, then we use the induction hypothesis on φ1 and φ2 to
conclude

valI,η(ν ,σ(φ1∨φ2))

= valI,η(ν ,σ(φ1)∨σ(φ2)) = true

iff valI,η(ν ,σ(φ1)) = true or valI,η(ν ,σ(φ2)) = true
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iff valI,σ∗(η)(ν ,φ1) = true or valI,σ∗(η)(ν ,φ2) = true

iff valI,σ∗(η)(ν ,φ1∨φ2) = true

If φ is of the form φ1∧φ2 or of the form φ1→ φ2 or ¬φ1, then the proof is
similar.

3. If φ is of the form ∃xψ , then we use that σ was assumed to be admissible
for φ . In particular (by bound variable renaming), x is not one of the replaced
variables u and x does not occur in any of the replacements σ(u). We use the
induction hypothesis on ψ to conclude

valI,η(ν ,σ(∃xψ)) = valI,η(ν ,∃xσ(ψ)) = true

iff there is a d such that valI,η [x 7→d](ν ,σ(ψ)) = true

iff there is a d such that valI,σ∗(η [x 7→d])(ν ,ψ) = true

iff there is a d such that valI,σ∗(η)[x 7→d](ν ,ψ) = true

iff valI,σ∗(η)(ν ,∃xψ) = true.

Note that σ∗(η [x 7→ d]) = σ∗(η)[x 7→ d], because x is not affected by the sub-
stitution σ (since admissible); hence x is not affected by adjoint assignments. If
φ is of the form ∀xψ , the proof is similar.

4. If φ is of the form [α]ψ , then we use that the substitution σ is admissible by
assumption. Hence, α does not bind any of the replaced variables nor any of
the variables that occur in any of the replacements σ(u). We use the induction
hypothesis on ψ to conclude

valI,η(ν ,σ([α]ψ)) = valI,η(ν , [σ(α)]σ(ψ)) = true

iff for all ω with (ν ,ω) ∈ ρI,η(σ(α)) : valI,η(ω,σ(ψ)) = true

iff for all ω with (ν ,ω) ∈ ρI,η(σ(α)) : valI,σ∗(η)(ω,ψ) = true

iff? for all ω with (ν ,ω) ∈ ρI,σ∗(η)(α) : valI,σ∗(η)(ω,ψ) = true

iff valI,σ∗(η)(ν , [α]ψ) = true.

For the middle step marked with ?, we still have to prove the substitution lemma
for hybrid programs:

ρI,η(σ(α)) = ρI,σ∗(η)(α). (2.10)

If α is of the form 〈α〉ψ then the proof is similar.

Finally we prove the substitution lemma for hybrid programs α as formulated
in (2.10). The proof is by induction on the structure of hybrid program α .

1. If α is of the form x1 :=θ1, . . .xn :=θn, then we use the substitution lemma on
the terms θi to show
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(ν ,ω) ∈ ρI,η(σ(x1 :=θ1, . . .xn :=θn)) = ρI,η(x1 :=σ(θ1), . . .xn :=σ(θn))

iff ν [x1 7→ valI,η(ν ,σ(θ1))] . . . [xn 7→ valI,η(ν ,σ(θn))] = ω

iff ν [x1 7→ valI,σ∗(η)(ν ,θ1)] . . . [xn 7→ valI,σ∗(η)(ν ,θn)] = ω

iff (ν ,ω) ∈ ρI,σ∗(η)(x1 :=θ1, . . .xn :=θn).

2. If α is of the form ?χ for a (first-order) dL formula χ , then we use the substi-
tution lemma on the (simpler and even first-order) dL formula χ:

(ν ,ω) ∈ ρI,η(σ(?χ)) = ρI,η(?σ(χ))

iff ν = ω and valI,η(ν ,σ(χ)) = true

iff ν = ω and valI,σ∗(η)(ν ,χ) = true

iff (ν ,ω) ∈ ρI,σ∗(η)(?χ).

3. If α is of the form x′1 = θ1, . . .x′n = θn & χ , then we use the substitution lemma
on terms and on the (first-order) dL formula χ to conclude:

(ν ,ω) ∈ ρI,η(σ(x′1 = θ1, . . .x′n = θn & χ))

= ρI,η(x′1 = σ(θ1), . . .x′n = σ(θn)&σ(χ)),

which holds if and only if there is a continuous flow function f : [0,r]→ Sta(Σ)
with f (0) = ν , f (r) = ω and valI,η( f (ζ ),z) = valI,η(ν ,z) for all ζ ∈ [0,r] and
all z 6∈ {x1, . . . ,xn} such that:

• for each xi, valI,η( f (ζ ),xi) = f (ζ )(xi) is continuous in ζ on [0,r] and has a
derivative of value valI,η( f (ζ ),σ(θi)) at each time ζ ∈ (0,r),

• and valI,η( f (ζ ),σ(χ)) = true for each ζ ∈ [0,r].

By the substitution lemma for terms and formulas, respectively, these conditions
are equivalent to

• for each xi, valI,σ∗(η)( f (ζ ),xi) = f (ζ )(xi) is continuous in ζ on [0,r] and
has a derivative of value valI,σ∗(η)( f (ζ ),θi) at each time ζ ∈ (0,r),

• and valI,σ∗(η)( f (ζ ),χ) = true for each ζ ∈ [0,r],

which hold if and only if

(ν ,ω) ∈ ρI,σ∗(η)(x
′
1 = θ1, . . .x′n = θn & χ).

4. If α is of the form β ∪ γ , then we can use the induction hypothesis on β and γ

to conclude

ρI,η(σ(β ∪ γ)) = ρI,η(σ(β )∪σ(γ)) = ρI,η(σ(β ))∪ρI,η(σ(γ))

= ρI,σ∗(η)(β )∪ρI,σ∗(η)(γ) = ρI,σ∗(η)(β ∪ γ).

5. If α is of the form β ;γ , then we use the induction hypothesis on β and on γ to
conclude
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(ν ,ω) ∈ ρI,η(σ(β ;γ)) = ρI,η(σ(β );σ(γ))

iff there is a µ with (ν ,µ) ∈ ρI,η(σ(β )) and (µ,ω) ∈ ρI,η(σ(γ))

iff there is a µ with (ν ,µ) ∈ ρI,σ∗(η)(β ) and (µ,ω) ∈ ρI,σ∗(η)(γ)

iff (ν ,ω) ∈ ρI,σ∗(η)(β ;γ).

6. The case where α is of the form β ∗ is similar, again using admissibility:

(ν ,ω) ∈ ρI,η(σ(β ∗)) = ρI,η(σ(β )∗)

iff there are n ∈ N,µ0 = ν ,µ1, . . . ,µn = ω : (µi,µi+1) ∈ ρI,η(σ(β ))

iff there are n ∈ N,µ0 = ν ,µ1, . . . ,µn = ω : (µi,µi+1) ∈ ρI,σ∗(η)(β )

iff (ν ,ω) ∈ ρI,σ∗(η)(β
∗).

ut

The substitution lemma implies a simple corollary for substituting program vari-
ables instead of (or in addition to) logical variables. The proof is an immediate
consequence of a double application of the substitution lemma, so that, in the re-
mainder of this book, we do not distinguish between Lemma 2.2 and the following
corollary.

Corollary 2.1. Let σ be an admissible substitution for the (term or) formula φ ; then

for each I,η ,ν : valI,η(ν ,σ(φ)) = valI,σ∗(η)(σ
∗(ν),φ),

where the semantic modification σ∗(ν) of state ν is adjoint to σ . The adjoint σ∗(ν)
is identical to ν , except that σ∗(ν)(x) = valI,η(ν ,σ(x)) for all state variables x ∈ Σ .
The adjoint σ∗(η) is defined as in Lemma 2.2.

Proof. The proof is a simple corollary to Lemma 2.2, using fresh logical variables zi
to relate σ(φ) with φ for gluing two uses of Lemma 2.2 together. To simplify nota-
tion, assume that σ only replaces a single state variable x by θ and let us denote
the result of applying this substitution to φ by φ θ

x . Let z be a fresh logical vari-
able. Since the substitution σ is admissible for φ , the replaced variable x and all
variables in its replacement θ are not bound in φ . Thus, φ is of the form ψx

z for
the formula ψ , which is like φ except that it has z in place of x everywhere. Now
abbreviate valI,η(ν ,θ) as e, and abbreviate valI,η(ν [x 7→ e],x) as d. Then, we use
Lemma 2.2 at the positions indicated ? to conclude:

valI,η(ν ,φ θ
x ) = valI,η(ν ,ψx

z
θ

x ) = valI,η(ν ,ψθ
z )

?
= valI,η [z7→e](ν ,ψ)

= valI,η [z 7→d](ν [x 7→ e],ψ)
?
= valI,η(ν [x 7→ e],ψx

z ) = valI,η(ν [x 7→ e],φ).

Note that the two lines are equal because the value of state variable x in the state does
not matter for ψ , where x does not occur, and because d = valI,η(ν [x 7→ e],x) = e.

ut



2.5 Proof Calculus 75

Example 2.17. Again consider the formula φ , and an instance φ 5a2+b
x under an ad-

missible substitution:

φ ≡ x = z → 〈z := z+1〉(z≥ x+1),

φ
5a2+b
x ≡ 5a2 +b = z → 〈z := z+1〉(z≥ 5a2 +b+1).

Using the substitution lemma, we can conclude that with respect to any I,η ,ν , the
formula φ and its instance φ 5a2+b

x evaluate to the same truth-value when adapting
the value of x appropriately. That is, let σ be the substitution that replaces x with
5a2 +b, i.e., σ(φ)≡ φ 5a2+b

x ; then (the corollary to) Lemma 2.2 implies:

valI,η(ν ,φ 5a2+b
x ) = valI,σ∗(η)(σ

∗(ν),φ).

Let us abbreviate the value valI,η(ν ,5a2 +b) of the replacement 5a2 +b of x by e.
Then if x ∈V is a logical variable, then σ∗(ν) = ν and σ∗(η) = η [x 7→ e]; hence

valI,η(ν ,φ 5a2+b
x ) = valI,η [x 7→e](ν ,φ).

If, instead, x ∈ Σ is a state variable, then σ∗(η) = η and σ∗(ν) = ν [x 7→ e]; hence

valI,η(ν ,φ 5a2+b
x ) = valI,η(ν [x 7→ e],φ).

In either case (either x ∈V or x ∈ Σ ), if the value of x and its replacement 5a2 +b
agree in the original I,η ,ν already, i.e., if valI,η(ν ,x) = valI,η(ν ,5a2 +b), then
their valuations agree according to the substitution lemma:

valI,η(ν ,φ 5a2+b
x ) = valI,η(ν ,φ).

�

The substitution lemma is a very powerful tool, because, among other things, we
can use it to replace equals for equals without changing the valuation (substitution
property). If we know that x and θ have the same value in I,η ,ν , then we can
substitute θ for x in a formula φ (if admissible) without changing the truth-value
of φ , that is:

Lemma 2.3 (Substitution property). If I,η ,ν |= x = θ , then I,η ,ν |= φ ↔ φ θ
x

for any formula φ for which the substitution replacing x with θ is admissible.

Proof. Consider any I,η ,ν with I,η ,ν |= x = θ . First, note that this assumption
is equivalent to valI,η(ν ,x) = valI,η(ν ,θ). We have to show I,η ,ν |= φ ↔ φ θ

x ,
or, equivalently, valI,η(ν ,φ) = valI,η(ν ,φ θ

x ). This follows from the Substitution
Lemma 2.2 when we choose σ to be the substitution that replaces x by θ since

valI,η(ν ,φ θ
x ) = valI,σ∗(η)(σ

∗(ν),φ) = valI,η(ν ,φ).
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The last step follows from the fact that I,η ,ν equals I,σ∗(η),σ∗(ν), respectively,
because the substitution σ only replaces x by θ , which already have the same value
to begin with, as we assumed valI,η(ν ,x) = valI,η(ν ,θ). ut
In addition, whenever a formula φ is valid (φ is true in all I,η ,ν), the substitution
lemma implies that all of its (admissible) substitution instances σ(φ) are valid too
for any substitution σ that is admissible for φ .

Lemma 2.4 (Substitutions preserve validity). If � φ , i.e., φ is valid, then � σ(φ)
for any substitution σ that is admissible for φ .

Proof. Let φ be valid, i.e., I,η ,ν |= φ for all I,η ,ν . Consider any I,η ,ν and any
substitution σ that is admissible for φ . Now the Substitution Lemma 2.2 implies

valI,η(ν ,σ(φ)) = valI,σ∗(η)(σ
∗(ν),φ) = true.

The last step holds because φ is valid and, in particular, holds for I,σ∗(η),σ∗(ν).
ut

Observe that, for soundness, the notion of bound variables in Definition 2.8 could
in fact be any overapproximation of the set of variables that possibly change their
value during a hybrid program. In vacuous identity changes like x :=x or x′ = 0,
variable x will not really change its value, but we still consider x as a bound variable
for simplicity. For a hybrid program α , we denote by ∀α φ the universal closure of
formula φ with respect to all state variables bound in α . Quantification over state
variable x is definable as ∀X [x :=X ]Φ using an auxiliary logical variable X .

2.5.2 Rules of the Calculus for Differential Dynamic Logic

We present a proof calculus for dL as a Gentzen-style sequent calculus [133].
Sequents are essentially a standard form for logical formulas that is convenient
for proving. A sequent is of the form Γ ` ∆ , where the antecedent Γ and suc-
cedent ∆ are finite sets of formulas. The semantics of Γ ` ∆ is that of the for-
mula

∧
φ∈Γ φ → ∨

ψ∈∆ ψ . For quantifier elimination rules, we make use of this fact
by considering sequent Γ ` ∆ as an abbreviation for the latter formula. The ante-
cedent Γ can be thought of as the formulas we assume to be true, whereas the
succedent ∆ can be understood as formulas for which we want to show that at least
one of them is true assuming all formulas of Γ are true. So for proving a sequent
Γ ` ∆ , we assume all Γ and want to show that one of the ∆ is true. For some simple
sequents like Γ ,φ ` φ ,∆ , we directly know that they are valid, because we can cer-
tainly show φ if we assume φ (in fact, we will use this as an axiom). For other
sequents, it is more difficult to see whether they are valid (true under all circum-
stances) and it is the purpose of a proof calculus to provide a means to find out.

For handling quantifiers in the dL calculus, we cannot use the standard proof
rules [147, 122, 123], because these are for uninterpreted first-order logic and (ul-
timately) work by instantiating quantifiers, either eagerly as in ground tableaux or
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lazily by unification as in free-variable tableaux [147, 122, 123]. Also, see App. A
for an exposition of proving in uninterpreted first-order logic. The basis of dL ,
in contrast, is first-order logic interpreted over the reals or in the theory of real-
closed fields [287, 288]. A formula like ∃a∀x(x2 +a > 0) cannot be proven by
instantiation-based quantifier rules but is valid in the theory of real-closed fields.
Unfortunately, quantifier elimination (QE) over the reals [81, 288], which is the
standard decision procedure for real arithmetic, cannot be applied to formulas with
modalities either. Hence, we introduce new quantifier rules that integrate quantifier
elimination in a way that is compatible with dynamic modalities (as we illustrate in
Sect. 2.5.3).

Definition 2.9 (Quantifier elimination). A first-order theory admits quantifier elim-
ination if, with each formula φ , a quantifier-free formula QE(φ) can be associated
effectively that is equivalent (i.e., φ ↔ QE(φ) is valid) and has no additional free
variables or function symbols. The operation QE is further assumed to evaluate
ground formulas (i.e., without variables), yielding a decision procedure for closed
formulas of this theory (i.e., formulas without free variables).

Example 2.18. Quantifier elimination uses the special structure of real arithmetic to
express quantified arithmetic formulas equivalently without quantifiers and without
using more free variables. For instance, QE yields the following equivalence:

QE(∃x(ax2 +bx+ c = 0)) ≡ (a 6= 0∧b2−4ac≥ 0)∨ (a = 0∧ (b = 0→ c = 0)).

In this particular case, the equivalence can be found by using the generic condition
for solvability of quadratic equations over the reals plus special cases when coef-
ficients are zero. For details on quantifier elimination in real-closed fields and an
overview of decision procedures for real arithmetic, also see App. D.2. �

As usual in sequent calculus rules—although the direction of entailment in the
proof rules is from premises (above rule bar) to conclusion (below)—the order of
reasoning is goal-directed: Rules are applied backwards, i.e., starting from the de-
sired conclusion at the bottom (goal) to the resulting premises (subgoals). To high-
light the logical essence of the dL calculus, Fig. 2.11 provides rule schemata with
which the following definition associates the calculus rules that are applicable in dL
proofs. The calculus consists of propositional rules (¬r–cut), first-order quantifier
rules (∀r–i∃), rules for dynamic modalities (〈;〉–[′]), and global rules ([]gen–con).
All substitutions in the rules in Fig. 2.11 need to be admissible for the rules to be
applicable, including the substitution that inserts s(X1, . . ,Xn) into φ(s(X1, . . ,Xn)).
Proof schemata come in three kinds with which the following definition associates
proof rules: 1) sequent proof schemata that mention the sequent symbol ` , 2) sym-
metric proof schemata that do not mention the sequent symbol ` and can be applied
on either side of the sequent, 3) the special proof schema i∃ that merges multiple
branches.

Definition 2.10 (Rules). The rule schemata in Fig. 2.11—in which all substitutions
need to be admissible for the rules to be applicable, including the substitution that
inserts s(X1, . . ,Xn) into φ(s(X1, . . ,Xn))—induce calculus rules by:
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1. If
Φ1 `Ψ1 . . . Φn `Ψn

Φ0 `Ψ0
(2.11)

is an instance of a rule schema in Fig. 2.11 (rules ∀r–∀l, i∀, and the propositional
and global rule schemata have this form), then

Γ ,〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ ,〈J 〉Φn ` 〈J 〉Ψn,∆

Γ ,〈J 〉Φ0 ` 〈J 〉Ψ0,∆

can be applied as a proof rule of the dL calculus, where Γ ,∆ are arbitrary
finite sets of additional context formulas (including empty sets) and J is a
discrete jump set (including the empty set). Hence, the rule context Γ ,∆ and
prefix 〈J 〉 remain unchanged during rule applications; only the formulas men-
tioned in (2.11) are affected.

2. Symmetric schemata can be applied on either side of the sequent: If

φ1

φ0

is an instance of one of the symmetric rule schemata (the dynamic rules) in
Fig. 2.11, then

Γ ` 〈J 〉φ1,∆

Γ ` 〈J 〉φ0,∆
and

Γ ,〈J 〉φ1 ` ∆

Γ ,〈J 〉φ0 ` ∆

can both be applied as proof rules of the dL calculus, where Γ ,∆ are arbitrary
finite sets of context formulas (including the empty set) and J is a discrete
jump set (including empty sets). In particular, symmetric schemata yield equi-
valence transformations, because the same rule applies in the antecedent as in
the succedent.

3. Schema i∃ applies to all goals containing X at once: If Φ1 `Ψ1, . . ,Φn `Ψn
is the list of all open goals of the proof that contain free variable X , then an
instance

` QE(∃X ∧i(Φi `Ψi))

Φ1 `Ψ1 . . . Φn `Ψn

of rule schema i∃ can be applied as a proof rule of the dL calculus.

Propositional Rules

For propositional logic, standard propositional rules ¬r–cut with the cut rule are
listed in the first block of Fig. 2.11. They decompose the propositional structure of
formulas. Rules ¬r and ¬l use simple dualities caused by the implicative semantics
of sequents. Essentially, instead of showing ¬φ in the succedent, we assume the
contrary φ in the antecedent with rule ¬r. In rule ¬l, instead of assuming ¬φ in
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(¬r)
φ `
` ¬φ

(¬l)
` φ

¬φ `

(∨r)
` φ ,ψ

` φ ∨ψ

(∨l)
φ ` ψ `

φ ∨ψ `

(∧r)
` φ ` ψ

` φ ∧ψ

(∧l)
φ ,ψ `

φ ∧ψ `

(→r)
φ ` ψ

` φ → ψ

(→l)
` φ ψ `
φ → ψ `

(ax)
φ ` φ

(cut)
` φ φ `
`

(〈;〉) 〈α〉〈β 〉φ〈α;β 〉φ

([; ])
[α][β ]φ

[α;β ]φ

(〈∪〉) 〈α〉φ ∨〈β 〉φ〈α ∪β 〉φ

([∪]) [α]φ ∧ [β ]φ
[α ∪β ]φ

(〈∗n〉) φ ∨〈α〉〈α∗〉φ
〈α∗〉φ

([∗n])
φ ∧ [α][α∗]φ

[α∗]φ

(〈?〉) χ ∧ψ

〈?χ〉ψ

([?])
χ → ψ

[?χ]ψ

(〈:=〉) φ
θ1
x1 . . .

θn
xn

〈x1 :=θ1, . . ,xn :=θn〉φ

([:=])
〈x1 :=θ1, . . ,xn :=θn〉φ
[x1 :=θ1, . . ,xn :=θn]φ

(〈′〉) ∃t≥0
(
(∀0≤t̃≤t 〈St̃〉χ)∧〈St〉φ

)
〈x′1 = θ1, . . ,x′n = θn & χ〉φ

1

([′])
∀t≥0

(
(∀0≤t̃≤t 〈St̃〉χ)→ 〈St〉φ

)
[x′1 = θ1, . . ,x′n = θn & χ]φ

1

(∀r) ` φ(s(X1, . . ,Xn))

` ∀xφ(x)
2

(∃l) φ(s(X1, . . ,Xn)) `
∃xφ(x) `

2

(i∀) ` QE(∀X (Φ(X) `Ψ(X)))

Φ(s(X1, . . ,Xn)) `Ψ(s(X1, . . ,Xn))
3

(∃r) ` φ(X)

` ∃xφ(x)
4

(∀l) φ(X) `
∀xφ(x) `

4

(i∃) ` QE(∃X ∧i(Φi `Ψi))

Φ1 `Ψ1 . . . Φn `Ψn

5

([]gen)
` ∀α (φ → ψ)

[α]φ ` [α]ψ

(ind)
` ∀α (φ → [α]φ)

φ ` [α∗]φ

(〈〉gen)
` ∀α (φ → ψ)

〈α〉φ ` 〈α〉ψ

(con)
` ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1))
∃vϕ(v) ` 〈α∗〉∃v≤0ϕ(v)

6

1 t and t̃ are fresh logical variables and 〈St〉 is the jump set 〈x1 :=y1(t), . . ,xn :=yn(t)〉 with sim-
ultaneous solutions y1, . . ,yn of the respective differential equations with constant symbols xi as
symbolic initial values.
2 s is a new (Skolem) function symbol and X1, . . ,Xn are all free logical variables of ∀xφ(x).
3 X is a new logical variable. Further, QE needs to be defined for the formula in the premise.
4 X is a new logical variable.
5 Among all open branches, free logical variable X only occurs in the branches Φi `Ψi. Further,
QE needs to be defined for the formula in the premise, especially, no Skolem dependencies on X
can occur.
6 Logical variable v does not occur in α .

Fig. 2.11 Rule schemata of the free-variable proof calculus for differential dynamic logic

the antecedent, we show the contrary φ in the succedent. Rule ∨r uses the fact that
formulas are combined disjunctively in succedents, rule ∧l that they are conjunctive
in antecedents. The comma between formulas in an antecedent has the same effect as
a conjunction, and the comma between formulas in the succedent has the same effect
as a disjunction. Rules ∨l and ∧r split the proof into two cases, because conjuncts in
the succedent can be proven separately (∧r) and, dually, disjuncts of the antecedent
can be assumed separately (∨l). For ∧r we want to show conjunction φ ∧ψ , so in
the left branch we proceed to show Γ ` φ ,∆ and, in addition, in the right branch we
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show Γ ` ψ,∆ , which, together, entail Γ ` φ ∧ψ,∆ . If, as in rule ∨l, we assume
disjunction φ ∨ψ as part of the antecedent, then we do not know if we can assume
φ to hold or if we can assume ψ to hold in the antecedent, but know only that one of
them holds. Hence, as in a case distinction, ∨l considers both cases, the case where
we assume φ in the antecedent, and the case where we assume ψ . If both subgoals
can be proven, this entails Γ ,φ ∨ψ ` ∆ . Rules→r and→l can be derived from the
equivalence of φ → ψ and ¬φ ∨ψ . Rule→r uses the fact that implication→ has the
same meaning as the sequent arrow ` of a sequent. Intuitively, to show implication
φ → ψ , rule→r assumes φ (in the antecedent) and shows ψ (in the succedent). Rule
→l assumes an implication φ → ψ to hold in the antecedent, but we do not know
if this implication holds because φ is false, or because ψ is true, so →l splits into
those two branches.

The axiom rule ax closes a goal (there are no further subgoals, which we some-
times mark ∗ explicitly), because assumption φ in the antecedent trivially entails φ

in the succedent (sequent Γ ,φ ` φ ,∆ is a simple syntactic tautology). Rule cut is
the cut rule that can be used for case distinctions: The right subgoal assumes any
additional formula φ in the antecedent that the left subgoal shows in the succedent.
Dually: regardless of whether φ is actually true or false, both cases are covered by
proof branches. We only use cuts in an orderly fashion to derive simple rule dualities
and to simplify meta-proofs. In practical applications, cuts are not usually needed
and we conjecture that this is no coincidence.

According to the definition in Definition 2.10, all propositional rules can be ap-
plied with an additional context Γ ,∆ . In particular, rules ax and cut can also be
applied as:

ax
Γ ,φ ` φ ,∆

and cut
Γ ` φ ,∆ Γ ,φ ` ∆

Γ ` ∆

First-Order Quantifier Rules

The quantifier rules ∀r,∃l,∃r,∀l,i∀,i∃ constitute a purely modular interface to arith-
metic mathematical reasoning. They can use any theory that admits quantifier elim-
ination and has a decidable ground theory (formulas without quantifiers or vari-
ables), including the theory of real arithmetic or real-closed fields [288, 81]. Rules
∀r,∃l,∃r,∀l handle quantifiers and replace quantified variables by Skolem function
terms (∀r,∃l) or free logical variables (∃r,∀l), respectively. Later in the proof, rules
i∀,i∃ can reintroduce quantifiers for these previously quantified symbols and apply
quantifier elimination in real-closed fields once the remaining formulas are first-
order in the relevant symbols.

Rule ∃l, with which we want to show ∃xφ(x) in the succedent, introduces a new
free logical variable X for an existentially quantified variable x. Essentially, free
variable X can be thought of as a variable for which an appropriate value still needs
to be found for the proof to close. This makes sense, because at the time of applying
proof rule ∃l, it is mostly impossible to know which particular instance to choose
for X that will help. But once we find such an X that proves the subgoal Γ ` φ(X),∆
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later, we have also proven the goal Γ ` ∃xφ(x),∆ , because X will be a witness for
the existence. We have also proven the goal if, later during the proof, we prove the
existence of an X satisfying the constraints indirectly, without directly instantiating
a witness. This is what rule i∃ is for.

The dual rule ∀l, which assumes ∀xφ(x) in the antecedent, introduces a new free
logical variable X for the universally quantified variable x in the antecedent. If, later,
we have found an instance of X that proves subgoal Γ ,φ(X) ` ∆ , then we have also
proven goal Γ ,∀xφ(x) ` ∆ , because if we can prove the subgoal just from assuming
the particular φ(X) in the antecedent, then the goal also holds where we even assume
φ(x) holds for all x. While this reasoning is perfectly good if it works, it is somewhat
surprising why this should always work for all cases. Why should one instance be
enough? Why should it not be necessary to assume two different instances φ(X) and
φ(Y ) during the proof? The fact that this is not necessary comes from proof rule i∃,
which can reintroduce quantifiers and eliminate them equivalently.

Rule ∀r, with which we want to show ∀xφ(x) in the succedent, introduces a new
(Skolem) function symbol s for the previously quantified variable x and replaces x
by a (Skolem) term s(X1, . . . ,Xn) where X1, . . . ,Xn are all the free logical variables
of the original formula ∀xφ(x). This works like a proof in mathematics, where we
want so show ∀xφ(x) in the succedent and do so by choosing a fresh symbol s for
which we prove that φ(s(X1, . . . ,Xn)) holds. Because s was arbitrary and we did
not assume anything special about the value of s, this implies that ∀xφ(x) holds.
The free variables X1, . . . ,Xn of the Skolem terms keep track of the dependencies of
the symbols for nested quantifiers. Having all free logical variables X1, . . . ,Xn in the
Skolem term is important for soundness in order to prevent unsound rearrangements
of quantifiers, as we elaborate in Sect. 2.5.3.

The dual rule ∃l is similar. When we assume ∃xφ(x) in the antecedent, then
we only know that such an x exists, not what value it has. Hence, ∃l introduces
a new name for this object in the form of a new (Skolem) function symbol s and
replaces x by a (Skolem) term s(X1, . . . ,Xn) where X1, . . . ,Xn are all the free logical
variables of the original formula ∃xφ(x). If we can prove the subgoal, the subgoal
entails the goal, because we did not assume anything special about s. Having all
free logical variables X1, . . . ,Xn in the Skolem term to track the dependencies of
the symbols is again important for soundness to prevent unsound rearrangements
of quantifiers. Intuitively, for a formula like ∀x∃yφ(x,y) in the antecedent—which
will yield ∃yφ(X ,y) after applying ∀l—we need to track the dependency of y on X ,
which yields φ(s(X),X) when applying ∃l. We need to remember that the choice
for s may depend on X , because the choice of y may depend on x.

With the rule i∀, we can reintroduce a universal quantifier for a Skolem term
s(X1, . . . ,Xn), which corresponds to a previously universally quantified variable in
the succedent or a previously existentially quantified variable in the antecedent. The
point of reintroducing the quantifier is that this makes sense when the remaining
formulas are first-order in the quantified variable so that they can be handled equi-
valently by quantifier elimination in real-closed fields. When we have proven the
subgoal (with for all X) then this entails the goal for the particular s(X1, . . . ,n ). In
particular, when we remove a quantifier with ∀r,∃l to obtain a Skolem term, we can
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continue with other proof rules to handle the dynamic modalities and then reintro-
duce the quantifier for the Skolem term with i∀ once quantifier elimination for real
arithmetic becomes applicable.

The dual rule i∃ can reintroduce an existential quantifier for a free logical vari-
able that was previously existentially quantified in the succedent or previously uni-
versally quantified in the antecedent. Again, this makes sense when the resulting
formula in the premise is first-order in the quantified variable X so that quantifier
elimination can eliminate the quantifier equivalently. When we remove a quantifier
with ∃r,∀l to obtain a free logical variable, we can continue using other proof rules
to handle the dynamic modalities and then reintroduce the quantifier for the free
logical variable with i∃ once quantifier elimination is applicable.

The quantifier rules ∀r and ∃l correspond to the liberalised δ+-rule of Hähnle and
Schmitt [147]. Rules ∃r and ∀l resemble the usual γ-rule but, unlike in [122, 123,
147, 134], they cannot be applied twice because the original formula is removed
(∃xφ(x) in ∃r). The calculus still has a complete handling of quantifiers due to i∀
and i∃, which can reconstruct and eliminate quantifiers once QE is applicable as
the remaining constraints are first-order in the respective variables. In the premise
of i∀ and i∃, we again consider sequents Φ `Ψ as abbreviations for formulas. For
closed formulas, we do not need other arithmetic rules. We defer illustrations and
further discussion of quantifier rules to Sect. 2.5.3. For comparison, App. A gives a
summary of the standard γ-rules and δ+-rules that are used for handling quantifiers
in uninterpreted first-order logic. In Sect. 3.5.5, we show an alternative way of hand-
ling real arithmetic in a modular way using deduction modulo by side deductions.

Dynamic Rules

The dynamic modality rules transform a hybrid program into structurally simpler
logical formulas by symbolic decomposition. Rules 〈;〉,[; ],〈∪〉,[∪],〈∗n〉,[∗n],〈?〉,[?]
are as in discrete dynamic logic [149, 37]. Also, see Fig. 2.12 for an illustration of
the correspondence of a representative set of proof rules for dynamic modalities to
the transition semantics of hybrid programs (from Definition 2.7).

Nondeterministic choices split into their alternatives (〈∪〉,[∪]). For rule [∪]: If all
α transitions lead to states satisfying φ (i.e., [α]φ holds) and all β transitions lead
to states satisfying φ (i.e., [β ]φ holds), then, all transitions of program α ∪β that
choose between following α and following β also lead to states satisfying φ (i.e.,
[α ∪β ]φ holds). Dually for rule 〈∪〉, if there is an α transition to a φ state (〈α〉φ ) or
a β -transition to a φ state (〈β 〉φ ), then, in either case, there is a transition of α ∪β to
φ (〈α ∪β 〉φ holds), because α ∪β can choose which of those transitions to follow.
A general principle behind the dL proof rules that is most noticeable in 〈∪〉,[∪] is
that these proof rules symbolically decompose the reasoning into two separate parts
and analyse the fragments α and β separately, which is good for scalability. For
these symbolic structural decompositions, it is very helpful that dL is a full logic
that is closed under all logical operators, including disjunction and conjunction, for
then the premises in [∪],〈∪〉 are dL formulas again (unlike in Hoare logic [161]).
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Fig. 2.12 Correspondence of dynamic proof rules and transition semantics

Sequential compositions are proven using nested modalities (〈;〉,[; ]). For rule [; ]:
If after all α-transitions, all β -transitions lead to states satisfying φ (i.e., [α][β ]φ
holds), then also all transitions of the sequential composition α;β lead to states sat-
isfying φ (i.e., [α;β ]φ holds). See, again, Fig. 2.12 for a graphical illustration of this
proof principle. The dual rule 〈;〉 uses the fact that if there is an α-transition, after
which there is a β -transition leading to φ (i.e., 〈α〉〈β 〉φ ), then there is a transition
of α;β leading to φ (that is, 〈α;β 〉φ ), because the transitions of α;β are just those
that first do any α-transition, followed by any β -transition (Definition 2.7).
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Rules 〈∗n〉,[∗n] are the usual iteration rules, which partially unwind loops. Rule
〈∗n〉 uses the fact that φ holds after repeating α (i.e., 〈α∗〉φ ), if φ holds at the begin-
ning (for φ holds after zero repetitions then), or if, after one execution of α , φ holds
after any number of repetitions of α , including zero repetitions (i.e., 〈α〉〈α∗〉φ ). So
rule 〈∗n〉 expresses that for 〈α∗〉φ to hold, φ must hold either immediately or after
one or more repetitions of α . Rule [∗n] is the dual rule expressing that φ must hold
after all of those combinations for [α∗]φ to hold.

Tests are proven by showing (with a conjunction in rule 〈?〉) or assuming (with an
implication in rule [?]) that the test succeeds, because test ?χ can only make a trans-
ition when condition χ actually holds true (Definition 2.7). Thus, for dL formula
〈?χ〉φ rule 〈?〉 is used to prove that χ holds true (otherwise there is no transition
and thus the reachability property is false) and that φ holds after the resulting no-op.
Rule [?] for dL formula [?χ]φ , in contrast, assumes that χ holds true (otherwise
there is no transition and thus nothing to show) and that φ holds after the resulting
no-op.

Rule 〈:=〉 uses simultaneous substitutions from Fig. 2.10 for handling discrete
jump sets. To show that φ is true after a discrete jump, 〈:=〉 shows that φ has been
true before, when replacing the affected variables xi with their new values θi in φ by
an admissible substitution (Definition 2.8). Alternatively, the discrete jump set can
also remain an unchanged prefix (J in Definition 2.10) for other dL rules applied
to φ , until the substitution for rule 〈:=〉 becomes admissible. This is what our proof
calculus uses instead of what we have shown in Example 2.16. Rule [:=] uses the
fact that discrete jump sets characterise a unique deterministic transition. Hence,
its premise and conclusion are actually equivalent, because there is exactly one ter-
minating transition for each discrete jump set. Assuming the presence of vacuous
identity jumps a :=a for variables a that do not otherwise change (vacuous identity
jumps can be added as they do not change state), we can further use rule 〈:=〉 to
merge subsequent discrete jumps into a single discrete jump set (see previous res-
ults [37] for a compatible calculus detailing jump set merging, which works without
the need to add vacuous identity jumps a :=a):

` 〈z :=− b
2 t2 +Vt,v :=V +1,a :=−b〉[β ]φ

〈:=〉 ` 〈a :=−b,v :=V 〉〈z := a
2 t2 + vt,v :=v+1,a :=a〉[β ]φ

[:=] ` 〈a :=−b,v :=V 〉[z := a
2 t2 + vt,v :=v+1,a :=a][β ]φ

[; ] ` 〈a :=−b,v :=V 〉[z := a
2 t2 + vt,v :=v+1,a :=a;β ]φ

More generally, 〈x1 :=θ1, . . . ,xn :=θn〉〈x1 :=ϑ1, . . . ,xn :=ϑn〉φ can be merged by
〈:=〉 to 〈x1 :=ϑ1

θ1
x1
. . .θn

xn , . . . ,xn :=ϑn
θ1
x1
. . .θn

xn 〉φ . Also see previous work [37] for more
advanced and optimised merging techniques for state changes.

Given first-order definable flows for their differential equations, proof rules 〈′〉,[′]
handle continuous evolutions (see [15, 189, 238] and App. B for flow approxima-
tion and solution techniques). These flows are combined in the discrete jump set St .
Given a solution St for the differential equation system with symbolic initial val-
ues x1, . . . ,xn, continuous evolution along differential equations can be replaced by
a discrete jump 〈St〉with an additional quantifier for the evolution time t. The effect
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of the constraint on χ is to restrict the continuous evolution such that its solution St̃
remains in the evolution domain χ at all intermediate times t̃ ≤ t. This constraint
simplifies to true if the evolution domain restriction χ is true, which makes sense,
because there are no special constraints on the evolution (other than the differential
equations) if the evolution domain region is described by true, hence the full space
Rn. A notable special case of rules [′] and 〈′〉 is when the evolution domain χ is true:

∀t≥0〈St〉φ
[x′1 = θ1, . . ,x′n = θn]φ

∃t≥0〈St〉φ
〈x′1 = θ1, . . ,x′n = θn〉φ

(2.12)

Similar simplifications can be made for convex invariant conditions (Sects. 2.9
and 3.8).

Global Rules

The last block of rules []gen,〈〉gen,ind,con are global rules. They depend on the truth
of their premises in all states reachable by hybrid program α , which is ensured by
the universal closure ∀α with respect to all bound state variables (Definition 2.8) of
the respective hybrid program α . This universal closure overapproximates all pos-
sible change caused by α , because it comprises all bound variables. This universal
closure is required for soundness in the presence of contexts Γ ,∆ (Definition 2.10)
or free variables. The global rules are given in a form that best displays their under-
lying logical principles. The general pattern for applying global rules to prove that
the succedent of their conclusion holds is to prove that both their premise and the
antecedent of their conclusion hold. In particular, the antecedent can be thought of
as holding in the current state, whereas the premise can be thought of as holding in
all reachable states because of the universal closure.

Rules []gen,〈〉gen are generalisation rules and can be used to strengthen postcon-
ditions: antecedent [α]φ is sufficient for proving succedent [α]ψ when postcondi-
tion φ entails ψ in all relevant states reachable by α , which are overapproximated
by the universal closure ∀α with respect to the bound variables of α . Clearly, for
rule []gen, if all states reachable by α satisfy φ ([α]φ ) and φ implies ψ in all these
states (∀α φ → ψ), then ψ also holds in all states reachable by α ([α]ψ). Similarly,
for rule 〈〉gen, if some state reachable by α satisfies φ (〈α〉φ ) and φ implies ψ in all
reachable states (∀α φ → ψ), then ψ also holds in some state reachable by α (〈α〉ψ).

Rule ind is an induction schema with inductive invariant φ . Similarly, con is a
generalisation of Harel’s convergence rule [149] to the hybrid case with decreasing
variant ϕ . Both rules are given in a form that best displays their underlying logical
principles and similarity. Rule ind says that φ holds after any number of repetitions
of α if it holds initially (antecedent) and, for all reachable states (as overapproxim-
ated by ∀α ), invariant φ remains true after one iteration of α (premise). If φ is true
after executing α whenever φ has been true before, then, if φ holds in the begin-
ning, φ will continue to hold, no matter how often we repeat α in [α∗]φ ; again, see
Fig. 2.12 for an illustration. Rule con expresses that the variant ϕ(v) holds for some
real number v≤ 0 after repeating α sufficiently often if ϕ(v) holds for some real
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number at all in the beginning (antecedent) and, by premise, ϕ(v) decreases after
every execution of α by 1 (or another positive real constant). This rule can be used
to show positive progress (by 1) with respect to ϕ(v) by executing α .

For practical verification, rules ind or con can be combined with generalisation
([]gen,〈〉gen) to prove a postcondition ψ of a loop α∗ by showing that (a) the ante-
cedents of the respective goals of ind and con, which represent the induction start,
holds initially (b) their subgoals, which represent the induction step, hold and (c) the
postcondition of the succedentd in their goals entails ψ . The corresponding variants
of ind and con are derived rules. That is, these rules are non-essential, because they
can be derived easily by chaining the proof rules from Fig. 2.11 together in an ap-
propriate way.

(ind′)
` φ ` ∀α(φ → [α]φ) ` ∀α(φ → ψ)

` [α∗]ψ

(con′)
` ∃vϕ(v) ` ∀α∀v>0(ϕ(v)→ 〈α〉ϕ(v−1)) ` ∀α(∃v≤0ϕ(v)→ ψ)

` 〈α∗〉ψ
For example, using a cut with φ → [α∗]φ , rule ind′ can be derived from ind and
[]gen as follows:

` ∀α(φ → [α]φ)
ind

φ ` [α∗]φ
→r ` φ → [α∗]φ

` φ

` ∀α(φ → ψ)
[]gen[α∗]φ ` [α∗]ψ

→l
φ → [α∗]φ ` [α∗]ψ

cut ` [α∗]ψ

These derived rules are not necessary in theory, but still useful in practise.

Derivability and Proofs

We call any formula φ provable or derivable (in the dL calculus) if we can find
a dL proof for it that starts with axioms (rule ax) at the leaves and ends with a
sequent ` φ at the bottom. While constructing proofs, however, we would start with
the desired goal ` φ at the bottom and work our way backwards to the subgoals
until they can be proven to be valid as axioms (ax). Once all subgoals have been
proven to be valid axioms, they entail their consequences, which, recursively, entail
the original goal ` φ . This property of preserving truth or preserving entailment,
which we prove in Sect. 2.6, is called soundness. Thus, while constructing proofs,
we work bottom-up from the goal. When we have found a proof, we justify formulas
from the axioms top-down to the original goal.

The notions of derivations and proofs for the dL calculus are standard, except
that i∃ produces multiple conclusions. Hence, we define derivations as finite acyclic
graphs instead of trees. We want proofs to be acyclic and not accept a formula that
is used to prove itself.

Definition 2.11 (Provability). A derivation is a finite acyclic graph labelled with
sequents such that, for every node, the (set of) labels of its children must be the (set
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of) premises of an instance of one of the calculus rules (Definition 2.10) and the (set
of) labels of the parents of these children must be the (set of) conclusions of that rule
instance. A formula ψ is provable from a set Φ of formulas, denoted by Φ `dL ψ ,
iff there is a finite subset Φ0 ⊆Φ for which the sequent Φ0 ` ψ is derivable, i.e.,
there is a derivation with a single root (i.e., node without parents) labelled Φ0 ` ψ .

Example 2.19. A very simple (in fact essentially propositional) proof of the formula

v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10) (2.13)

is shown in Fig. 2.13. The proof starts with the proof goal as a sequent at the bottom:

` v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10).

∗
ax v2 ≤ 10,b > 0 ` b > 0
∧lv2 ≤ 10∧b > 0 ` b > 0

∗
ax v2 ≤ 10,b > 0 ` ¬(v≥ 0),v2 ≤ 10
∧lv2 ≤ 10∧b > 0 ` ¬(v≥ 0),v2 ≤ 10
∨rv2 ≤ 10∧b > 0 ` ¬(v≥ 0)∨ v2 ≤ 10

∧r v2 ≤ 10∧b > 0 ` b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)
→r ` v2 ≤ 10∧b > 0→ b > 0∧ (¬(v≥ 0)∨ v2 ≤ 10)

Fig. 2.13 Simple propositional example proof

The first (i.e., bottom most) proof step applies proof rule→r to turn the implic-
ation (→) to the sequent level by moving the assumption into the antecedent. The
next proof step applies rule ∧r to split the proof into the left branch for showing that
conjunct b > 0 follows from the assumptions in the antecedent and into the right
branch for showing that conjunct ¬(v≥ 0)∨ v2 ≤ 10 follows from the antecedent
also. On the left branch, the proof closes with an axiom ax after splitting the con-
junction ∧ on the antecedent with rule ∧l. We mark closed proof goals with ∗. The
right branch closes with an axiom ax after splitting the disjunction (∨) in the suc-
cedent with rule ∨r and then splitting the conjunction (∧) in the antecedent with rule
∧l. Now that all branches of the proof have closed (with ax), we know that all leaves
at the top are valid, and, hence, since the premises are valid, each application of a
proof rule ensures that their respective conclusions are valid also. By recursively
following this derivation from the leaves at the top to the original root at the bottom,
we see that the original goal is valid and formula (2.13) is, indeed, true under all
circumstances (valid).

While this proof does not show anything particularly exciting, because it only
uses propositional rules, it shows how a proof can be build systematically in the dL
calculus and gives an intuition about how validity is inherited from the premises to
the conclusions. �
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2.5.3 Deduction Modulo with Invertible Quantifiers and Real
Quantifier Elimination

The first-order quantifier rules in Fig. 2.11 lift quantifier elimination to dL by
following a generalised deduction modulo approach. They integrate decision pro-
cedures, e.g., for real quantifier elimination as a background prover [32], into the
deductive proof system. Yet, unlike in the approaches of Dowek et al. [103] and
Tinelli [290], the information given to the background prover is not restricted to
ground formulas [290] or atomic formulas [103]. Further, real quantifier elimina-
tion is different from uninterpreted logic [147, 122, 134] in that the resulting formu-
las are not obtained by instantiation but by intricate arithmetic recombination. The
quantifier rules can use any theory that admits quantifier elimination (see Defini-
tion 2.9) and has a decidable ground theory, for instance, the first-order theory of
real arithmetic (which is equivalent to the theory of real-closed fields [288, 81]). A
formula of real arithmetic is a first-order formula with +,−, ·,/,=,≤,<,≥,> as
the only function or predicate symbols besides constant symbols of Σ and logical
variables of V . Also see App. D.2.

Integrating quantifier elimination to deal with statements about real quantities
is quite challenging in the presence of modalities that influence the values of flex-
ible symbols. In principle, quantifier elimination can be used to handle quantified
constraints such as those arising for continuous evolutions. In dL , however, real
quantifiers interact with modalities containing further discrete or continuous trans-
itions, which is an effect nherent in the interacting nature of hybrid systems. A hy-
brid formula like ∃z〈z′′ =−b; ?m− z≥ s;z′′ = 0〉m− z < s is not first-order; hence
quantifier elimination cannot be applied. Even more so, the effect of a modality de-
pends on the solutions of the differential equations contained therein. The dynamics
of a hybrid program depends on the values of its parameters (z,b,m,s in the above
case), but, at the same time, the constraints on a quantified variable like z depend on
the effect of the hybrid program. For instance, it is hard to know in advance, which
first-order constraints need to be solved by QE for the above formula. To find out
how z evolves from quantifier ∃z to postcondition m−z < s, the system dynamics in
the modality needs to be taken into account (as for repetitions). Hence, our calculus
first unwraps the first-order structure before applying QE to the resulting arithmetic
formulas.

2.5.3.1 Lifting Quantifier Elimination by Invertible Quantifier Rules

The purpose of the quantifier rules in Fig. 2.11 is to postpone QE until the actual
arithmetic constraints become apparent. The idea is that ∀r,∃l,∃r, and ∀l temporar-
ily remove quantifiers by introducing new auxiliary symbols for quantified variables
such that the proof can be continued beyond the occurrence of the quantifier to fur-
ther analyse the modalities contained therein. Later, when the actual first-order con-
straints for the auxiliary symbol have been discovered, the corresponding quantifier
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v≥ 0,z < m ` v2 > 2b(m− z)
→r,∧l ` v≥ 0∧ z < m→ v2 > 2b(m− z)

i∃ v≥ 0,z < m ` T ≥ 0

v≥ 0,z < m ` − b
2 T 2 + vT + z > m

〈:=〉v≥ 0,z < m ` 〈z :=− b
2 T 2 + vT + z〉z > m

∧r v≥ 0,z < m ` T ≥ 0∧〈z :=− b
2 T 2 + vT + z〉z > m

∃r v≥ 0,z < m ` ∃t≥0〈z :=− b
2 t2 + vt + z〉z > m

〈′〉 v≥ 0,z < m ` 〈z′ = v,v′ =−b〉z > m
→r,∧l ` v≥ 0∧ z < m→ 〈z′ = v,v′ =−b〉z > m

Fig. 2.14 Deduction modulo for analysis of MA violation in braking mode

can be reintroduced (i∀, i∃) and quantifier elimination QE is applied to reduce the
sequents equivalently to a simpler formula with less (distinct) symbols. In ∃r,∀l,i∃,
the respective auxiliary symbols are free logical variables. In ∀r,∃l,i∀, Skolem func-
tion terms are used instead for reasons that are crucial for soundness and will be
illustrated in the remainder of this section. In this context, we think of free logical
variables as being introduced by γ-rules (∃r and ∀l), and hence implicitly existen-
tially quantified.

To illustrate how quantifier and dynamic rules of dL interact to combine arith-
metic with dynamic reasoning in hybrid systems, we analyse the braking behaviour
in train control. The proof in Fig. 2.14 can be used to analyse whether a train can
violate its MA although it is braking. That is, if the train position z can leave m
(z > m) although it starts inside (z < m) and is braking will full braking force all the
time:

v≥ 0∧ z < m→ 〈z′ = v,v′ =−b〉z > m.

As the proof reveals, the answer depends on the initial velocity v. The proof starts
with the conjecture at the bottom and applies propositional transformation rules
→r,∧l to obtain a decomposed sequent form. Then it uses rule 〈′〉 to replace the dif-
ferential equation with a quantified formula about its solution. For notational con-
venience, we use the simplified 〈′〉 rule from (2.12), as the differential equation is
not restricted to an evolution domain. Now we have a quantified modal formula,
∃t≥0〈z :=− b

2 t2 + vt + z〉z > m, which, unfortunately, cannot be handled by quan-
tifier elimination in real-closed fields, because it is not first-order. Using rule ∃r,
however, the proof can continue by introducing a new free variable T for the quan-
tified variable t and postpone QE. After introducing T , the proof can continue by
splitting a conjunction in the succedent into two branches (rule ∧r) and applying
the assignment with a substitution on the right branch (rule 〈:=〉). Finally, the previ-
ously quantified free variable T only occurs in first-order formulas on all open goals.
Then rule i∃ can be applied in Fig. 2.14 to merge all open proof goals mentioning T ,
reintroduce the quantifier for T , and apply quantifier elimination. The conjunction
of the two goals can be handled by QE and simplification, yielding the resulting
subgoal:
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QE
(
∃T ((v≥ 0∧ z < m→ T ≥ 0)∧ (v≥ 0∧ z < m→−b

2
T 2 + vT + z > m))

)
≡ v≥ 0∧ z < m → v2 > 2b(m− z).

After applying rules →r,∧l for structural reasons again, the open branch with this
formula reveals the speed limit and can be used to synthesise a corresponding para-
meter constraint. When v2 > 2b(m− z) holds initially, m can eventually be violated
even in braking mode, as the velocity exceeds the braking force.

Similarly, the dual constraint v2 ≤ 2b(m− z) guarantees that m can be respected
by appropriate braking. The constraint so discovered thus forms a controllability
constraint of ETCS, i.e., a constraint that characterises from which states control
choices exist that guarantee safety. It is essentially equivalent to [z′′ =−b]z≤ m
and ∃a(−b≤ a≤ A∧ [z′′ = a]z≤ m). The resulting controllable region of the state
space of ETCS is illustrated in Fig. 2.15.

Fig. 2.15 Controllable region
of ETCS dynamics

z

v

m

v2 ≤ 2b(m− z)

For comparison, the dual formula v≥ 0∧ z < m→ [z′ = v,v′ =−b]z≤ m can be
analysed as shown in Fig. 2.16 to study under which circumstances the MA is always
respected ([z′′ =−b]z≤ m) rather than under which it can fail (〈z′′ =−b〉z > m).
The outcome again discovers the controllability constraint. The difference of the

v≥ 0,z < m ` v2 ≤ 2b(m− z)
→r,∧l ` v≥ 0∧ z < m→ v2 ≤ 2b(m− z)

i∀ v≥ 0,z < m,s≥ 0 ` − b
2 s2 + vs+ z≤ m

〈:=〉 v≥ 0,z < m,s≥ 0 ` 〈z :=− b
2 s2 + vs+ z〉z≤ m

[:=] v≥ 0,z < m,s≥ 0 ` [z :=− b
2 s2 + vs+ z]z≤ m

→r v≥ 0,z < m ` s≥ 0→ [z :=− b
2 s2 + vs+ z]z≤ m

∀r v≥ 0,z < m ` ∀t≥0 [z :=− b
2 t2 + vt + z]z≤ m

[′] v≥ 0,z < m ` [z′ = v,v′ =−b]z≤ m
→r,∧l ` v≥ 0∧ z < m→ [z′ = v,v′ =−b]z≤ m

Fig. 2.16 Deduction modulo for analysis of MA-safety in braking mode

deduction in Fig. 2.16 compared to that in Fig. 2.14 is that we now use rule [′], which
gives a universal quantifier for time t. With rule ∀r, the quantifier can be turned into
a Skolem constant term s, which does not have any arguments, because no free
logical variables occur. After applying the solution of the differential equation with
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[:=],〈:=〉, the resulting formula is first-order in the Skolem term s. Then rule i∀ can
be used to reintroduce a universal quantifier for the previously quantified variable,
and to apply quantifier elimination:

QE
(
∀s(v≥ 0∧ z < m∧ s≥ 0→−b

2
s2 + vs+ z≤ m)

)
≡ v≥ 0∧ z < m → v2 ≤ 2b(m− z).

2.5.3.2 Admissibility in Invertible Quantifier Rules

The requirement that substitutions in i∀ are admissible implies that no occurrence
of s(X1, . . . ,Xn) is within the scope of a quantifier for any of these Xi. Admissibil-
ity makes sense, because variables in s(X1, . . . ,Xn) would otherwise be captured by
quantifiers when substituting. The admissibility condition prevents i∀ from rearran-
ging the order of quantifiers from ∃Xi∀s to the weaker ∀s∃Xi . Such a rearrangement
would be unsound, because it is not sufficient to show the weak subgoal ∀s∃Xi
(each s has an Xi) in order to prove the strong statement ∃Xi∀s saying that the
same Xi works for all s. Because this is an important part of soundness, we illustrate
in detail why unsound rearrangements are prevented.

i∀ is not applicable
` QE(∃X (2X +1 < s(X)))

i∃ ` 2X +1 < s(X)
〈:=〉 ` 〈x :=2X +1〉(x < s(X))
∀r ` ∀y〈x :=2X +1〉(x < y)
∃r ` ∃x∀y〈x :=2x+1〉(x < y)

`
false︷ ︸︸ ︷

QE (∃X QE(∀s(2X +1 < s)))
i∃ ` QE(∀s(2X +1 < s))
i∀ ` 2X +1 < s(X)
〈:=〉 ` 〈x :=2X +1〉(x < s(X))
∀r ` ∀y〈x :=2X +1〉(x < y)
∃r ` ∃x∀y〈x :=2x+1〉(x < y)

Fig. 2.17a Wrong rearrangement with de-
duction modulo by invertible quantifiers

Fig. 2.17b Correct reintroduction order with
deduction modulo by invertible quantifiers

For the moment, suppose the rules did not contain QE. The requirement for ad-
missible substitutions (Definition 2.8) ensures that the proof attempt of an invalid
formula in Fig. 2.17a cannot close in the dL calculus. At the indicated position at
the top, i∀, which would unsoundly invert the quantifier order to ∀S∃X , cannot be
applied: In i∀, the substitution inserting s(X) gives ∃Y (2Y +1 < s(X)) by bound
variable renaming instead of ∃X (2X +1 < s(X)), because the substitution would
not otherwise be admissible. Thus, i∀ is not applicable, because the quantified for-
mula is not of the form Ψ(s(X)).

Now, we consider what happens in the presence of QE. The purpose of QE is
to (equivalently) remove quantifiers like ∃X . Thus it is no longer obvious that the
admissibility argument applies, because the blocking variable X would have disap-
peared after successful quantifier elimination. However, quantifier elimination over
the reals is defined in the first-order theory of real arithmetic [288, 81]. Yet, when
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eliminating X in Fig. 2.17a, the Skolem term s(X) is no term of real arithmetic, as,
unlike that of +, the interpretation of the Skolem function s is arbitrary. The truth-
value of ∃X (2X +1 < s(X)) depends on the interpretation of s. If I(s) happens to be
a constant function, the formula is true, if I(s)(a) = 2a, however, it is false. In gen-
eral, such cases cannot be distinguished without quantifiers, because two functions
cannot be shown to be identical by evaluating them at finitely many points. Thus,
in the presence of uninterpreted function terms, real arithmetic does not generally
admit quantifier elimination. Consequently, i∃ and i∀ are only applicable if QE is
defined. Yet, we show that QE can be lifted to formulas with Skolem functions,
nevertheless, when these are instances of real arithmetic formulas:

Lemma 2.5 (Quantifier elimination lifting). Quantifier elimination can be lifted
to instances of formulas of first-order theories that admit quantifier elimination, i.e.,
to formulas that result from the base theory by substitution.

Proof. Let formula φ be an instance of ψ , with ψ being a formula of the base
theory, i.e., φ is ψ

θ1
z1 . . .

θn
zn for some variables zi and arbitrary terms θi. As QE is

defined for the base theory, let QE(ψ) be the quantifier-free formula belonging to ψ

according to Definition 2.9. Then QE (ψ)θ1
z1
. . .θn

zn satisfies the requirements of Defin-

ition 2.9 for φ , because � ψ
θ1
z1 . . .

θn
zn ↔ QE (ψ)θ1

z1
. . .θn

zn : For F defined as ψ ↔ QE(ψ),

we have that � F implies � Fθ1
z1 . . .θn

zn by a standard consequence of the Substitution
Lemma 2.2. And ψ ↔ QE(ψ) is indeed valid, by the properties of QE; see Defini-
tion 2.9. ut

With this, consider again the example in Fig. 2.17a. By Lemma 2.5, QE is defined
in the presence of Skolem terms that do not depend on quantified variables, e.g.,
for ∃X (2X +1 < t(Y,Z)), which is an instance of the form (∃X (2X +1 < z))t(Y,Z)

z .
However, QE is not defined in the premise of i∃ when Skolem dependencies on X
occur. In Fig. 2.17a, ∃X (2X +1 < s(X)) is no instance of first-order real arithmetic,
because, by bound variable renaming (∃X (2X +1 < z))s(X)

z yields a different for-
mula ∃Y (2Y +1 < s(X)). An occurrence of s(X), which corresponds to a quantifier
nesting of ∃X ∀s , thus requires s(X) to be eliminated by i∀ before i∃ can elimin-
ate X ; see Fig. 2.17b. Hence, inner universal quantifiers are enforced to be handled
first and unsound quantifier rearrangements are prevented even in the presence of
QE.

Finally, observe that i∀ and i∃ do not require quantifiers to be eliminated in the
exact same order in which they occurred in the original formula. The elimination
order within homogeneous quantifier blocks like ∀x1∀x2 is not restricted as there
are no Skolem dependencies among the corresponding auxiliary Skolem terms. Yet,
eliminating such a quantifier block is sound in any order (accordingly for ∃x1∃x2 ).
Similarly, i∃ and i∀ could interchange the order of ∀x∃y to the stronger ∃y∀x, be-
cause the resulting Skolem term s for x in the former formula does not depend
on y. In this direction, however, the interchange is sound, as it amounts to proving a
stronger statement. This quantifier rearrangement is not necessarily wise, because it
requires proving a stronger formula, but it is at least sound.
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2.5.3.3 Quantifier Elimination and Modalities

Quantifier elimination over the first-order theory of reals cannot handle modal for-
mulas. Hence, the dL calculus first reduces modalities to first-order constraints
before applying QE. Yet, this is not necessary for all modalities. The modal sub-
formula in the following example does not impose any constraints on X , but its
truth-value only determines which first-order constraints are imposed on X :

QE(∃X
(
X < 0∧

(
(〈y :=2y+1〉y > 0)→ X > y

))
) ≡ (〈y :=2y+1〉y > 0)→ y < 0.

Modal formulas not containing elimination variable X can be handled by propos-
itional abstraction in QE and remain unchanged. Syntactically, the reason for this
is that dL rule applications on modal formulas that do not contain X will never
produce formulas which do. The semantical reason for the same fact is a general-
isation of the coincidence lemma to dL , which says that values of variables that
do not occur will neither affect the transition structure of a hybrid program nor the
truth-value of formulas.

Lemma 2.6 (Coincidence lemma). If the interpretations (and assignments and
states, respectively) I,η ,ν and J,ε,ω agree on all symbols that occur freely in the
formula φ , then valI,η(ν ,φ) = valJ,ε(ω,φ).

Proof. The proof is by a simple structural induction using the definitions of valu-
ation valI,η(ν , ·) and ρI,η(·) in Definitions 2.5–2.7. ut

2.5.3.4 Global Invertible Quantifier Rules

Rules i∀ and i∃ display an asymmetry. While i∀ works locally on a branch, i∃ needs
to inspect all branches that contain X . The reason for this is that branches are im-
plicitly combined conjunctively in sequent calculus, as all branches have to close
simultaneously for a proof to succeed (Definition 2.11). Universal quantifiers can be
handled separately for conjunctions by ∀x(φ ∧ψ)≡ ∀xφ ∧∀xψ . Existential quan-
tifiers, however, can only be dealt with separately for disjunctions but not for con-
junctions: ∃x(φ ∨ψ)≡ ∃xφ ∨∃xψ . In calculi with a disjunctive proof structure, the
roles of i∀ and i∃ would be interchanged but the phenomenon remains.

Rule i∃ can be applied to the full proof (i.e., all open goals) as a global closing
substitution in the free-variable tableau calculus [122]; cf. App. A. By Lemma 2.6,
however, rule i∃ only needs to consider the set of all open goals Φi ` Ψi that ac-
tually contain X . Rule i∃ resembles global closing substitutions in uninterpreted
free-variable tableaux [134]. Both avoid the backtracking over closing substitutions
that local closing substitutions require. Unlike closing substitutions, however, rule
i∃ uses the fixed semantics of function and predicate symbols of real arithmetic such
that variables can be eliminated equivalently by QE before the proof completes. Ap-
plying i∀ or i∃ early does not necessarily close the proof. Instead, equivalent con-
straints on the remaining variables will be revealed, which can simplify the proof or
help in deriving parametric constraints or invariants.



94 2 Differential Dynamic Logic dL

2.5.4 Verification Example

As a simple example to prove, recall the bouncing ball system (ball) from Ex-
ample 2.5 on p. 45 and its dL specification from Example 2.7 on p. 48. Consider the
intuitive property that the bouncing ball never bounces higher than initial height H
when the precondition of property (2.3) holds initially:

(v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0)→ [ball](0≤ h≤H). (2.3∗)

The bouncing ball is very simple, but shows some interesting aspects of proofs. In
order to simplify the proof notation, let us discard clock variable τ . Clock τ is not
necessary for the property, and only used to ensure natural switching during the
bounce to prevent the ball from bouncing multiple times while still on the ground
(which would be superdense switching with multiple discrete switches at the exact
same point in time).

For the proof, we define some abbreviations. Let ψ denote the general assump-
tions in the precondition about parameters that do not change during bouncing ball
runs, and let φ denote the state-dependent part of the precondition, that is:

ψ ≡ g > 0∧H ≥ 0∧1 > c≥ 0,

φ ≡ v2 ≤ 2g(H−h)∧h≥ 0.

The dL proof for the bouncing ball property (2.3) is shown in Fig. 2.18.
The proof starts with the property (2.3) at the bottom (goal). After normalising

to sequent form with rules →r,∧l, the proof follows an induction (using the rule
ind′ from p. 86) with invariant φ . Rule ind′ produces two other proof subgoals that
are not shown in Fig. 2.18: the proof goal that the precondition ψ ∧φ implies the
invariant φ (i.e., ψ,φ ` φ ) and the proof goal that the invariant φ implies the post-
condition, which gives ψ,φ ` ∀h∀v(φ → 0≤h≤H). Both goals are trivial to prove
by ax and ∀r,i∀, respectively. The quantifiers ∀h∀v in the latter goal result from the
universal closure ∀α in rule ind′. Universal closures are not strictly necessary in
this particular proof, because the premise only contains invariant φ and formula ψ

about symbols that do not change during the hybrid program runs. Thus, the uni-
versal closure immediately disappears after applying ∀r. In general, however, uni-
versal closures in ind and the other global proof rules are critical for soundness; see
Fig. 2.19a versus Fig. 2.19b.

After splitting the sequential composition by dL rule [; ], the proof uses rule [′]
with the solution 〈h :=h+ vt− g

2 t2,v :=v−gt〉 of the differential equation system
h′ = v,v′ =−g. We abbreviate this solution by 〈St〉. Again, we use the simplified
[′] rule from (2.12). QE cannot be applied to the result quantifier ∀t≥0〈St〉 . . . , be-
cause the quantified variable t occurs in modalities to which QE is not applicable.
Thus the proof uses ∀r to introduce a Skolem function s for the previously quan-
tified variable t. But unlike for the proof in Fig. 2.14, we do not directly apply the
resulting solution 〈Ss〉 by rule 〈:=〉. The reason is the different system structure
of the bouncing ball. In the bouncing ball program, the differential equation comes
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∗
i∀

ψ,φ ,s≥0,h+ vs− g
2 s2 = 0 ` (−c(v−gs))2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
ψ,φ ,s≥0,〈Ss〉h = 0 ` 〈Ss〉〈v :=−cv〉φ

[:=]
ψ,φ ,s≥0,〈Ss〉h = 0 ` 〈Ss〉[v :=−cv]φ

→r
ψ,φ ,s≥0 ` 〈Ss〉(h = 0→ [v :=−cv]φ)

[?]
ψ,φ ,s≥0 ` 〈Ss〉[?h = 0][v :=−cv]φ

[; ]
ψ,φ ,s≥0 ` 〈Ss〉[?h = 0;v :=−cv]φ

∗
i∀

ψ,φ ,s≥0,h+ vs− g
2 s2 > 0 ` (v−gs)2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
ψ,φ ,s≥0,〈Ss〉h > 0 ` 〈Ss〉φ

→r
ψ,φ ,s≥0 ` 〈Ss〉(h > 0→ φ)

[?]
ψ,φ ,s≥0 ` 〈Ss〉[?h > 0]φ

. . .

ψ,φ ,s≥0 ` 〈Ss〉[?h > 0]φ

. . .

ψ,φ ,s≥0 ` 〈Ss〉[?h = 0;v :=−cv]φ
∧r

ψ,φ ,s≥0 ` 〈Ss〉([?h > 0]φ ∧ [?h = 0;v :=−cv]φ)
[∪]

ψ,φ ,s≥0 ` 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
→r

ψ,φ ` s≥0→ 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
∀r

ψ,φ ` ∀t≥0〈St〉[?h > 0∪ (?h = 0;v :=−cv)]φ
[′]

ψ,φ ` [h′′ =−g][?h > 0∪ (?h = 0;v :=−cv)]φ
[; ]

ψ,φ ` [h′′ =−g;(?h > 0∪ (?h = 0;v :=−cv))]φ
ind′

ψ,φ ` [(h′′ =−g;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)
→r,∧l ` ψ∧φ → [(h′′ =−g;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)

Fig. 2.18 Bouncing ball proof (no evolution domain)

unsound
x≤ 0,x≤ 1 ` x+1≤ 1
x≤ 0,x≤ 1 ` [x :=x+1]x≤ 1

x≤ 0 ` x≤ 1→ [x :=x+1]x≤ 1
x≤ 0 ` [(x :=x+1)∗]x≤ 1

not provable
x≤ 0,y≤ 1 ` y+1≤ 1

[:=],〈:=〉x≤ 0,y≤ 1 ` [y :=y+1]y≤ 1
→r x≤ 0 ` y≤ 1→ [y :=y+1]y≤ 1
∀r x≤ 0 ` ∀x(x≤ 1→ [x :=x+1]x≤ 1)
ind x≤ 0 ` [(x :=x+1)∗]x≤ 1

Fig. 2.19a Unsound attempt of induction
without universal closure ∀α

Fig. 2.19b Correct use of induction with uni-
versal closure ∀α , i.e., ∀x
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first, and the discrete control equations are executed after that. Thus we keep the
discrete jump set for the solution 〈Ss〉 as an unmodified discrete jump prefix (〈J 〉
in Definition 2.10) for the following rule applications and only apply the assignment
with rule 〈:=〉 to first-order formulas at the end of the proof.

On a side note: we could, in fact, just as well have used rule 〈:=〉 here right away
and substituted v,h inside the hybrid programs immediately, because there are no
remaining loops or differential equations. That would clutter the notation, though,
and we want to illustrate how discrete jump sets can be used as unmodified proof
rule prefixes in Fig. 2.18.

Leaving prefix 〈Ss〉 unchanged, the proof in Fig. 2.18 continues by splitting the
choice between h > 0 and h = 0 with rule [∪] into two conjuncts, which split into
two branches by rule ∧r. On both branches, which are continued as indicated by the
arrows, the test statements are turned into implications by rule [?] and, ultimately,
the accumulated discrete jump sets are applied (with rules [:=],〈:=〉) when the re-
maining formulas are simple. The last step of the proof is to reintroduce quantifiers
for Skolem term s by rule i∀ and apply quantifier elimination to the resulting first-
order formulas on the left and right branches respectively:

QE
(
∀s
(
ψ ∧φ ∧ s≥0∧h+ vs− g

2
s2 > 0

→ (v−gs)2 ≤ 2g(H− (h+ vs− g
2

s2))∧h+ vs− g
2

s2 ≥ 0
))
≡ true;

QE
(
∀s
(
ψ ∧φ ∧ s≥0∧h+ vs− g

2
s2 = 0

→ (−c(v−gs))2 ≤ 2g(H− (h+ vs− g
2

s2))∧h+ vs− g
2

s2 ≥ 0
))
≡ true.

In the proof of Fig. 2.18, we have used a bouncing ball without an evolution do-
main restriction. The bouncing ball property can also be proven with its evolution
domain restricted to h≥ 0 on the differential equation system as in Fig. 2.2; see
Fig. 2.20 for a proof. The proof is slightly more involved compared to Fig. 2.18,
because of the extra constraints from the non-simplified rule [′]. This time, for
a change, we simply choose the full precondition as invariant, although the part
marked in grey is still unaffected by the dynamics:

φ ≡ v2 ≤ 2g(H−h)∧h≥ 0∧g > 0∧H ≥ 0∧1 > c≥ 0.

Note, in particular, that there are many invariants that can be used to prove the same
property. We just need to find one invariant that works.
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∗
i∀

φ ,s≥0, ,h+ vs− g
2 s2 = 0 ` (−c(v−gs))2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
φ ,s≥0, ,〈Ss〉h = 0 ` 〈Ss〉〈v :=−cv〉φ

[:=]
φ ,s≥0, ,〈Ss〉h = 0 ` 〈Ss〉[v :=−cv]φ

→r
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉(h = 0→ [v :=−cv]φ)

[?]
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h = 0][v :=−cv]φ

[; ]
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h = 0;v :=−cv]φ

∗
i∀

φ ,s≥0, ,h+ vs− g
2 s2 > 0 ` (v−gs)2 ≤ 2g(H− (h+ vs− g

2 s2))∧h+ vs− g
2 s2 ≥ 0

〈:=〉
φ ,s≥0, ,〈Ss〉h > 0 ` 〈Ss〉φ

→r
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉(h > 0→ φ)

[?]
φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h > 0]φ

. . .

. . . ` 〈Ss〉[?h > 0]φ

. . .

φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h = 0;v :=−cv]φ
∧r

φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉([?h > 0]φ ∧ [?h = 0;v :=−cv]φ)
[∪]

φ ,s≥0,〈Ss〉h≥ 0 ` 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
→r

φ ,s≥0 ` 〈Ss〉h≥ 0→ 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ
→r

φ ` s≥0→ (〈Ss〉h≥ 0→ 〈Ss〉[?h > 0∪ (?h = 0;v :=−cv)]φ)
∀r

φ ` ∀t≥0(〈St〉h≥ 0→ 〈St〉[?h > 0∪ (?h = 0;v :=−cv)]φ)
[′]

φ ` [h′′ =−g&h≥ 0][?h > 0∪ (?h = 0;v :=−cv)]φ
[; ]

φ ` [h′′ =−g&h≥ 0;(?h > 0∪ (?h = 0;v :=−cv))]φ
ind′

φ ` [(h′′ =−g&h≥ 0;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)
→r ` φ → [(h′′ =−g&h≥ 0;(?h > 0∪ (?h = 0;v :=−cv)))∗](0≤h≤H)

Fig. 2.20 Bouncing ball proof (with evolution domain)

2.6 Soundness

In this section, we prove that the dL calculus is a sound axiomatisation of the
transition behaviour of hybrid systems. Whatever we can prove in the dL calculus
is actually true.

The proof calculus for dL in Fig. 2.11 needs to fit to the semantics of differential
dynamic logic from Sect. 2.3; otherwise, the proof rules would not be meaningful.
Fortunately, every differential dynamic logic formula that can be derived in the dL
calculus from Fig. 2.11 really is a valid formula! This property of the calculus is
called soundness and is crucial, because it would be disastrous if a formula would
be called “proven” when it is actually not valid, since we could not trust our proofs
then. A calculus is sound iff every formula that can be derived in the calculus is also
valid according to the semantics.
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We prove that a successful deduction in the dL calculus always produces correct
verification results about hybrid systems: The dL calculus is sound, i.e., all prov-
able (closed) formulas are valid in all states of all interpretations. We can restrict
our attention to closed formulas, i.e., formulas without free variables to begin with,
because we can start with the universal closure of the formula for validity just as
well. To reflect the interaction of free variables and Skolem terms, we adapt the no-
tion of soundness for the liberalised δ+-rule in free-variable tableau calculi [147] to
sequent calculus.

A formula φ has a model [147] if there is an interpretation I and a state ν such
that for all variable assignments η we have I,η ,ν |= φ . Closed tableaux prove the
unsatisfiability of the negated goal [147]. Sequent calculi work dually and show
validity of the original proof goal. Consequently, we use the dual notion and say
that formula ψ is a consequence of φ iff, for every I,ν there is an assignment η

such that I,η ,ν |= ψ provided that, for every I,ν , there is an assignment η such
that I,η ,ν |= φ . A proof rule that concludes Ψ from the premises Φ is sound if Ψ

is, indeed, a consequence of Φ in the sense just defined. As usual, multiple branches
in Ψ or Φ are combined conjunctively.

In this context, we think of free logical variables as being introduced by γ-rules,
i.e., ∃r and ∀l (hence the implicit existential quantification of free logical variables
by η). For closed formulas (without free logical variables), validity corresponds to
being a consequence from an empty set of open goals. Hence, closed formulas that
are provable with a sound deduction are valid (true in all states of all interpretations).

Theorem 2.1 (Soundness of dL ). The dL calculus is sound.

Proof. The calculus is sound if each rule instance is sound. All rules of the dL cal-
culus except ∀r,∃l and i∃ are also locally sound, i.e., their conclusion is true at I,η ,ν
if all its premises are true in I,η ,ν , which implies soundness. It is also easy to show
that locally sound rules remain sound when adding contexts Γ ,∆ ,〈J 〉 as in Defin-
ition 2.10, since a discrete jump set 〈J 〉 characterises a unique state transition.
Local soundness proofs of 〈;〉,[; ],〈∪〉,[∪],〈∗n〉,[∗n],〈?〉,[?] and propositional rules are
as usual. Note that, for symmetric rules, local soundness implies that the premise
and conclusion are equivalent, i.e., true in the same states. For an illustration of the
dynamics behind the dynamic proof rules, we recall Fig. 2.12 from p. 83.

〈:=〉 The rule 〈:=〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= φ

θ1
x1 . . .

θn
xn . We have to show that I,η ,ν |= 〈x1 :=θ1, . . ,xn :=θn〉φ ,

i.e., I,η ,ω |= φ for a state ω with (ν ,ω) ∈ ρI,η(x1 :=θ1, . . ,xn :=θn). This
follows directly from the Substitution Lemma 2.2 for admissible substi-
tutions (Definition 2.8). The proof for rule [:=] uses the fact that discrete
jumps are deterministic.

〈;〉 Rule 〈;〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= 〈α〉〈β 〉φ . We have to show that the conclusion holds in I,η ,ν ,
i.e., I,η ,ν |= 〈α;β 〉φ . By premise, I,η ,ν |= 〈α〉〈β 〉φ , we know that there
is a state µ such that (ν ,µ) ∈ ρI,η(α) and I,η ,µ |= 〈β 〉φ . Hence, there is a
state ω such that (µ,ω) ∈ ρI,η(β ) and I,η ,ω |= φ . Now, by the semantics
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of α;β (Definition 2.7), there is a transition from ν to ω (via intermediate
state µ) along α;β . Thus, (ν ,ω) ∈ ρI,η(α;β ) and I,η ,ω |= φ , which im-
plies I,η ,ν |= 〈α;β 〉φ . The converse direction can be proven similarly to
show equivalence and the local soundness of the dual rule [; ].

〈∪〉 Rule 〈∪〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= 〈α〉φ ∨〈β 〉φ . We have to show that the conclusion holds in I,η ,ν ,
i.e., I,η ,ν |= 〈α ∪β 〉φ . If the disjunction in the premise is true, then one of
its disjuncts must hold in I,η ,ν . Consider the case where I,η ,ν |= 〈α〉φ .
Then there is a state ω such that (ν ,ω) ∈ ρI,η(α) and I,η ,ω |= φ . By
the semantics of α ∪β in Definition 2.7, every transition of α is a trans-
ition of α ∪β . Hence (ν ,ω) ∈ ρI,η(α ∪β ) and I,η ,ω |= φ , which imply
I,η ,ν |= 〈α ∪β 〉φ . If, instead, the second disjunct I,η ,ν |= 〈β 〉φ holds,
then the proof is similar. Either way, we have I,η ,ν |= 〈α ∪β 〉φ . The con-
verse direction can be proven accordingly to show equivalence and the local
soundness of the dual rule [∪].

〈∗n〉 Rule 〈∗n〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
assume I,η ,ν |= φ ∨〈α〉〈α∗〉φ . We have to show that the conclusion holds
in I,η ,ν , i.e., I,η ,ν |= 〈α∗〉φ . The disjunction in the premise holds; hence,
one of the disjuncts holds. Consider the case where I,η ,ν |= φ ; then
I,η ,ν |= 〈α∗〉φ already holds with zero repetitions α∗ for φ is true in the
beginning. Consider the case where I,η ,ν |= 〈α〉〈α∗〉φ . Thus, there is an
α-transition to a state µ such that (ν ,µ) ∈ ρI,η(α) with I,η ,µ |= 〈α∗〉φ .
Consequently, there is an α∗-transition to a state ω with (µ,ω) ∈ ρI,η(α

∗)
and I,η ,ω |= φ . Obviously, every α-transition also is an α∗-transition, be-
cause repetitions may choose to repeat only once. In particular, by chain-
ing the α-transition (ν ,µ) ∈ ρI,η(α)⊂ ρI,η(α

∗) with the α∗-transition
(µ,ω) ∈ ρI,η(α

∗), we obtain a longer α∗-transition (ν ,ω) ∈ ρI,η(α
∗) by

the transition semantics in Definition 2.7. Hence, in either case, we con-
clude I,η ,ν |= 〈α∗〉φ . The converse direction can be proven accordingly
to show equivalence and the local soundness of the dual rule [∗n].

〈?〉 Rule 〈?〉 is locally sound. Assume that the premise holds in I,η ,ν , i.e.,
I,η ,ν |= χ ∧φ . We have to show that the conclusion holds in I,η ,ν , i.e.,
I,η ,ν |= 〈?χ〉φ . We have to show that there is a transition along ?χ to a
state where φ holds. By the semantics in Definition 2.7, there is only a trans-
ition along hybrid program ?χ if I,η ,ν |= χ and the state is not changed
by ?χ transitions. Now the premise implies I,η ,ν |= χ and I,η ,ν |= φ ,
which, together, imply I,η ,ν |= 〈?χ〉φ . Since this is the only case where
?χ can make a transition to a state satisfying φ , it shows equivalence. Local
soundness of the dual rule [?] follows from this.

〈′〉 The rule 〈′〉 is locally sound. Let y1, . . . ,yn be a solution for the dif-
ferential equation system x′1 = θ1, . . . ,x′n = θn with symbolic initial val-
ues x1, . . . ,xn. Let further 〈St〉 be the jump set 〈x1 :=y1(t), . . . ,xn :=yn(t)〉.
Assume I,η ,ν are such that the premise is true: I,η ,ν |= ∃t≥0(χ̄ ∧〈St〉φ)
with ∀0≤t̃≤t 〈St̃〉χ abbreviated as χ̄ . For any ζ ∈ R, we denote by ηζ the
assignment that agrees with η except that it assigns ζ to t. Then, by as-
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sumption, there is a real value r≥ 0 such that I,ηr,ν |= χ̄ ∧〈St〉φ . Abbre-
viate x′1 = θ1, . . ,x′n = θn & χ by D . We have to show that I,η ,ν |= 〈D〉φ .
Equivalently, by Lemma 2.6, we show I,ηr,ν |= 〈D〉φ , because t is a fresh
variable that does not occur in D or φ . Let function f : [0,r]→ Sta(Σ) be
defined such that (ν , f (ζ )) ∈ ρI,ηζ (St) for all ζ ∈ [0,r]. By premise, f (0)
is identical to ν and φ holds at f (r). Thus it only remains to be shown
that f respects the constraints of Definition 2.7 for D . In fact, f obeys the
continuity and differentiability properties of Definition 2.7 by the corres-
ponding properties of the yi. Moreover, valI,ηr( f (ζ ),xi) = valI,ηr(ν ,yi(t))
has a derivative of value valI,ηr( f (ζ ),θi), because yi is a solution of the
differential equation x′i = θi with corresponding initial value ν(xi). Fur-
ther, it can be shown that the evolution domain χ is respected along f
as follows: By premise, I,ηr,ν |= χ̄ holds for the initial state ν ; thus
valI,ηr( f (ζ ),χ) = true for all ζ ∈ [0,r]. Combining these results, we can
conclude that f is a witness for I,η ,ν |= 〈D〉φ . The converse direction can
be shown accordingly to prove the dual rule [′] using Lemma 2.1.

∀r The proof is a sequent calculus adaptation of that in [147]. By contra-
position, assume that there are I,ν such that for all η it is the case
that I,η ,ν 6|= ∀xφ(x); hence I,η ,ν |= ∃x¬φ(x). We construct an inter-
pretation I′ that agrees with I except for the new function symbol s.
Let b1, . . . ,bn ∈ R be arbitrary elements and let ηb assign bi to the re-
spective Xi for 1≤ i≤ n. As I,η ,ν |= ∃x¬φ(x) holds for all η , we pick
a witness d for I,ηb,ν |= ∃x¬φ(x) and choose I′(s)(b1, . . . ,bn) = d. For
this interpretation I′ and state ν we have I′,η ,ν 6|= φ(s(X1, . . . ,Xn)) for all
assignments η by Lemma 2.6, as X1, . . ,Xn are all free variables determ-
ining the truth-value of φ(s(X1, . . . ,Xn)). To see that the contexts Γ ,∆ of
Definition 2.10 can be added to instantiate this rule, consider the follow-
ing. Since s is new and does not occur in the context Γ ,∆ , the latter do not
change their truth-value by passing from I to I′. Likewise, s is rigid so that
it does not change its value by adding jump prefix 〈J 〉 which concludes
the proof. The proof of ∃l is dual.

i∀ i∀ is locally sound. Assume that I,η ,ν |= QE(∀X (Φ(X) `Ψ(X))). Since
QE yields an equivalence, we can conclude I,η ,ν |= ∀X (Φ(X) `Ψ(X)).
Then if the antecedent of the conclusion is true, I,η ,ν |= Φ(s(X1, . . . ,Xn)),
we conclude I,η ,ν |= Ψ(s(X1, . . . ,Xn)) by choosing valI,η(ν ,s(X1, . . . ,Xn))
for X in the premise. By admissibility of substitutions, variables X1, . . . ,Xn
are free at all occurrences of s(X1, . . . ,Xn), and hence their value is the same
in all occurrences.

∃r ∃r is locally sound by a simplified version of the proof in [147]. For
any I,η ,ν with I,η ,ν |= φ(X) we can conclude I,η ,ν |= ∃xφ(x) accord-
ing to the witness η(X). The proof of ∀l is dual.

i∃ For any I,ν let η be such that I,η ,ν |= QE(∃X ∧i(Φi `Ψi)). Again,
this implies I,η ,ν |= ∃X ∧i(Φi `Ψi), because quantifier elimination yields
an equivalence. We pick a witness d ∈ R for this existential quantifier.
As X does not occur anywhere else in the proof, it disappears from all
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open premises of the proof by applying i∃. Hence, by the Coincidence
Lemma 2.6, the value of X does not change the truth-value of the premise
of i∃. Consequently, η can be extended to η ′ by changing the interpreta-
tion of X to the witness d such that I,η ′,ν |= ∧

i(Φi `Ψi). Thus, η ′ ex-
tends I,η ,ν to a simultaneous model of all conclusions.

〈〉gen Rules []gen–con are locally sound by a variation of the usual proofs [149]
using universal closures for local soundness. []gen,〈〉gen are simple refine-
ments of Lemma 2.6 using the fact that the universal closure ∀α comprises
all variables that change in α . Let I,η ,ν |= 〈α〉φ , i.e., let (ν ,ν ′) ∈ ρI,η(α)
with I,η ,ν ′ |= φ . As α can only change its bound variables, which are
quantified universally in the universal closure ∀α , the premise implies
I,η ,ν ′ |= φ → ψ; thus I,η ,ν ′ |= ψ and I,η ,ν |= 〈α〉ψ . The proof of []gen
is similar.

ind For any I,η ,ν with I,η ,ν |= ∀α(φ → [α]φ), we know I,η ,ν ′ |= φ → [α]φ
for all ν ′ with (ν ,ν ′) ∈ ρI,η(α). As these share the same η , we can fur-
ther conclude I,η ,ν |= φ → [α∗]φ by induction along the series of states ν ′

reached from ν by repeating α . The universal closure is necessary as, oth-
erwise, the premise may yield different η in different states ν ′.

con Assume that the antecedent and premise hold in I,η ,ν . By premise, we
have I,η [v 7→ d],ν ′ |= v > 0∧ϕ(v)→ 〈α〉ϕ(v−1) for all d ∈ R and all
states ν ′ that are reachable by α∗ from ν , because ∀α comprises all vari-
ables that are bound by α , which are the same as those bound by α∗.
By antecedent, there is a d ∈ R such that I,η [v 7→ d],ν |= ϕ(v). Now,
the proof is a well-founded induction on d. If d ≤ 0, we directly have
I,η ,ν |= 〈α∗〉∃v≤0ϕ(v) for zero repetitions. Otherwise, if d > 0, we have,
by premise, that

I,η [v 7→ d],ν |= v > 0∧ϕ(v)→ 〈α〉ϕ(v−1).

As v > 0∧ϕ(v) holds true at I,η [v 7→ d],ν , we have for some ν ′ with
(ν ,ν ′) ∈ ρI,η [v 7→d](α) that I,η [v 7→ d],ν ′ |= ϕ(v−1). In particular, we can
conclude that I,η [v 7→ d−1],ν ′ |= ϕ(v) satisfies the induction hypothesis
for a smaller d and a reachable ν ′, because (ν ,ν ′) ∈ ρI,η(α) as v does not
occur in α . The induction is well-founded, because d decreases by 1 up to
the base case d ≤ 0. ut

With this soundness theorem, we now know that everything we prove in the dL
calculus accurately reflects reality, because the syntactic proofs built with Fig. 2.11
fit to the semantics defined in Sect. 2.3.

2.7 Completeness

In this section, we prove that the dL calculus is a sound and complete axiomatisa-
tion of the transition behaviour of hybrid systems relative to differential equations.
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With Soundness Theorem 2.1, we have shown that all provable formulas are
valid. So we know that will never prove something that does not even hold (is not
valid). The converse question is whether all valid formulas are also provable, i.e.,
whether we will always be able to prove all formulas that are “true” (valid). Have
we just been lucky with the successful proofs that we managed to show so far? Or
is there a deeper reason for which we can know that, in principle, we could also find
proofs for all other valid formulas?

2.7.1 Incompleteness

Theorem 2.1 shows that all provable closed dL formulas are valid. The converse
question is whether the dL calculus is complete, i.e., all valid dL formulas are
provable. Combining completeness for first-order logic [147] and decidability of
real arithmetic [81], it is easy to see that our calculus is complete for closed for-
mulas of first-order real arithmetic by chaining the quantifier rules ∀r,∃l,∃r,∀l with
the respective inverse rules i∀,i∃, using propositional rules as needed to unfold the
propositional structure. In the presence of modalities, however, dL is not axiomat-
isable and, unlike its basis of first-order real arithmetic, dL is undecidable. Both
unbounded repetition in the discrete fragment and unbounded evolution in the con-
tinuous fragment cause incompleteness. Beyond hybrid dynamics, where reachab-
ility is known to be undecidable [156], we show that even the purely discrete and
purely continuous parts of dL are not effectively axiomatisable. Hence, valid dL
formulas are not always provable.

Theorem 2.2 (Incompleteness of dL ). Both the discrete fragment and the con-
tinuous fragment of dL are not effectively axiomatisable, i.e., they have no sound
and complete effective calculus, because natural numbers are definable in both frag-
ments.

Proof. We prove that natural numbers are definable among the real numbers of dL
interpretations in both fragments. Then these fragments extend first-order integer
arithmetic such that the incompleteness theorem of Gödel [137] applies. Gödel’s
incompleteness theorem shows that no logic extending first-order integer arithmetic
can have a sound and complete effective calculus. Natural numbers are definable in
the discrete fragment without continuous evolutions using repetitive additions:

nat(n) ↔ 〈x :=0;(x :=x+1)∗〉 x = n.

In the continuous fragment, an isomorphic copy of the natural numbers is definable
using linear differential equations:

nat(n) ↔ ∃s∃c∃τ (s = 0∧c = 1∧τ = 0∧〈s′ = c,c′ =−s,τ ′ = 1〉(s = 0∧τ = n)).

These differential equations characterise sin and cos as unique solutions for s and c,
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τ

s

π 3π 5π2π 4π

Fig. 2.21 Characterisation of N as zeros of solutions of differential equations

respectively. Their zeros, as detected by τ , correspond to an isomorphic copy of
natural numbers, scaled by π , i.e., nat(n) holds iff n is of the form kπ for a k ∈ N;
see Fig. 2.21. The initial values for s and c prevent the trivial solution identical to 0.

ut

In this context, note that hybrid programs contain a computationally complete
sublanguage and that reachability of hybrid systems is undecidable [156].

2.7.2 Relative Completeness

The standard approach for showing adequacy of a calculus when its logic is not
effectively axiomatisable is to analyse the deductive power of the calculus relative
to a base logic or to an ineffective oracle rule for the base logic [87, 148, 149].
In calculi for discrete programs, completeness is proven relative to the handling
of data [87, 148, 149]. For hybrid systems, this is inadequate: By Theorem 2.2,
no sound calculus for dL can be complete relative to its data (the reals), because
its basis, first-order real arithmetic, is a perfectly decidable and axiomatisable the-
ory [288]. If the dL calculus itself would be complete relative to the data of first-
order real arithmetic, then, since this is a decidable logic, the dL calculus would be
complete altogether, which would contradict Theorem 2.2. Thus, we need a different
basis for a relative completeness argument. Unlike in classical discrete programs,
the data is not where the complexity comes from. In hybrid dynamical systems, the
complexity truly originates from the actual dynamics.

According to Theorem 2.2, both continuous evolutions and repetitive discrete
transitions, as well as their interaction, cause non-axiomatisability of dL . Discrete
transitions and repetition do not supersede the complexity of continuous transitions.
Even relative to an oracle for handling properties of discrete jumps and repetition,
the dL calculus is not complete, simply because not all differential equations have
solutions that are definable in first-order arithmetic so that rule [′] can be used.
For instance, the solutions of s′ = c,c′ =−s are trigonometric functions (like sin
and cos), which are not first-order definable. The question is whether the converse
is true, i.e., whether hybrid programs can be verified given that all required differ-
ential equations can be handled.
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To calibrate the deductive power of the dL calculus in light of its inherent in-
completeness, we analyse the quotient of reasoning about hybrid systems modulo
differential equation handling. Using generalisations of the usual notions of relative
completeness for discrete systems [87, 148, 149] to the hybrid case, we show that
the dL calculus completely axiomatises dL relative to one single additional axiom
about valid first-order properties of differential equations. Essentially, we drop the
effectiveness requirement for one oracle axiom and show that the resulting dL cal-
culus is sound and complete. We thus show that the dL calculus would be complete
if only we had a complete replacement for [′],〈′〉. Although repetitions and inter-
actions of hybrid programs are more involved than purely continuous systems, this
results emphasises the importance of studying approximations of this continuous
oracle for the analysis of hybrid systems, as we do in Chap. 3.

As a basis, we define FOD as the first-order logic of differential equations, i.e.,
first-order real arithmetic augmented with formulas expressing properties of differ-
ential equations, that is, dL formulas of the form [x′1 = θ1, . . . ,x′n = θn]F with a
first-order formula F . Dually, the diamond formula 〈x′1 = θ1, . . . ,x′n = θn〉F is ex-
pressible as ¬[x′1 = θ1, . . . ,x′n = θn]¬F .

Theorem 2.3 (Relative completeness of dL ). The dL calculus is complete rel-
ative to FOD, i.e., every valid dL formula can be derived from FOD tautologies.

Proof (Outline). The (constructive) proof, which, in full, is contained in the re-
mainder of this section, adapts the techniques of Cook [87] and Harel [148, 149] to
the hybrid case. The decisive step is to show that every valid property of a repeti-
tion α∗ can be proven by rules ind or con, respectively, with a sufficiently strong
invariant or variant that is expressible in dL . For this, we show that dL formulas
can be expressed equivalently in FOD, and that valid dL formulas can be derived
from corresponding FOD axioms in the dL calculus. In turn, the crucial step is to
construct a finite FOD formula that characterises the effect of unboundedly many
repetitive hybrid transitions and just uses finitely many real variables. ut

This main result completely aligns hybrid and continuous verification proof-the-
oretically. It gives a formal justification that reasoning about hybrid systems is pos-
sible to exactly the same extent to which it is possible to show properties of solutions
of differential equations. Theorem 2.3 shows that superpositions or combinations of
discrete jumps, continuous evolutions, and repetitions of hybrid processes can be
verified whenever corresponding (intermediate) properties of differential equations
are provable. Moreover, in a proof-theoretical sense, our calculus completely lifts
all verification techniques for dynamical systems to hybrid systems perfectly. Sum-
marising Theorems 2.1 and 2.3:

The dL calculus axiomatises the transition behaviour of hybrid systems com-
pletely relative to the handling of differential equations!

In the following subsections, we present a fully constructive proof of The-
orem 2.3, which generalises the techniques of Harel [148, 149] and Cook [87] to
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the hybrid case. It shows that for every valid dL formula, there is a finite set of
valid FOD formulas from which it can be derived in the dL calculus. Recall the
proof outline of Theorem 2.3 for a road map of the proof.

Natural numbers are definable in FOD by Theorem 2.2. In this section, we ab-
breviate quantifiers over natural numbers, e.g., ∀x(nat(x)→ φ) by ∀x :N φ and
∃x(nat(x)∧φ) by ∃x :N φ . Likewise, we abbreviate quantifiers over integers, e.g.,
∀x((nat(x)∨nat(−x))→ φ) by ∀x :Z φ .

2.7.3 Characterising Real Gödel Encodings

As the central device for constructing a FOD formula that captures the effect of un-
boundedly many repetitive hybrid transitions and just uses finitely many real vari-
ables, we prove that a real version of Gödel encoding is definable in FOD. That is,
we give a FOD formula that reversibly packs finite sequences of real values into a
single real number.

Observe that a single differential equation system is not sufficient for defin-
ing these pairing functions as their solutions are differentiable, and yet, as a con-
sequence of Morayne’s theorem [213], there is no differentiable surjection R→R2,
nor to any part of R2 of positive measure. We show that real sequences can be
encoded nevertheless by chaining the effects of solutions of multiple differential
equations and quantifiers.

Lemma 2.7 (R-Gödel encoding). The formula at(Z,n, j,z), which holds iff Z is a
real number that represents a Gödel encoding of a sequence of n real numbers with
real value z at position j (for 1≤ j ≤ m), is definable in FOD. For a formula φ(z)
we abbreviate ∃z(at(Z,n, j,z)∧φ(z)) by φ(Z(n)

j ).

∞

∑
i=0

ai

2i = a0.a1a2 . . .

∞

∑
i=0

bi

2i = b0.b1b2 . . .

∞

∑
i=0

(
ai

22i−1 +
bi

22i

)
= a0b0.a1b1a2b2 . . .

Fig. 2.22 Fractional encoding principle of R-Gödel encoding by bit interleaving

Proof. The basic idea of the R-Gödel encoding is to interleave the bits of real num-
bers as depicted in Fig. 2.22 (for a pairing of n = 2 numbers a and b). For de-
fining at(Z,n, j,z), we use several auxiliary functions to improve readability; see
Fig. 2.23. Note that these definitions need no recursion. Hence, as in the nota-
tion φ(Z(n)

j ), we can consider occurrences of the function symbols as syntactic ab-
breviations for quantified variables satisfying the respective definitions.
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at(Z,n, j,z) ↔∀i :Z digit(z, i) = digit(Z,n(i−1)+ j)∧nat(n)∧nat( j)∧n > 0
digit(a, i) = intpart(2frac(2i−1a))
intpart(a) = a− frac(a)

frac(a) = z↔ ∃i :Z z = a− i∧−1 < z∧ z < 1∧az≥ 0
2i = z↔ i≥ 0∧∃x∃t (x = 1∧ t = 0∧〈x′ = x ln2, t ′ = 1〉(t = i∧ x = z))

∨ i < 0∧∃x∃t (x = 1∧ t = 0∧〈x′ =−x ln2, t ′ =−1〉(t = i∧ x = z))
ln2 = z↔ ∃x∃t (x = 1∧ t = 0∧〈x′ = x, t ′ = 1〉(x = 2∧ t = z))

Fig. 2.23 FOD definition characterising Gödel encoding of R-sequences in one real number

The function symbol digit(a, i) gives the ith bit of a ∈ R when represented with
basis 2. For i > 0, digit(a, i) yields fractional bits, and, for i≤ 0, it yields bits of the
integer part. For instance, digit(a,1) yields the first fractional bit, digit(a,0) is the
least-significant bit of the integer part of a. The function intpart(a) represents the
integer part of a ∈ R. The function frac(a) represents the fractional part of a ∈ R,
which drops all integer bits. The last constraint in its definition implies that frac(a)
keeps the sign of a (or 0). Consequently, intpart(a) and digit(a, i) also keep the
sign of a (or 0). Exponentiation 2i is definable using differential equations, using
an auxiliary characterisation of the natural logarithm ln2. The definition of 2i splits
into the case of exponential growth when i≥ 0 and a symmetric case of exponential
decay when i < 0. ut

2.7.4 Expressibility and Rendition of Hybrid Program Semantics

In order to show that dL is sufficiently expressive to state the invariants and vari-
ants that are needed for proving valid statements about loops with rules ind and
con, we prove an expressibility result. We give a constructive proof that the state
transition relation of hybrid programs is definable in FOD, i.e., there is a FOD for-
mula Sα(~x,~v) characterising the state transitions of hybrid program α from the state
characterised by the vector~x of variables to the state characterised by vector~v.

For this, we need to characterise hybrid processes equivalently by differential
equations in FOD. Observe that the existence of such characterisations does not fol-
low from results embedding Turing machines into differential equations [57, 140],
because, unlike Turing machines, hybrid processes are not restricted to discrete val-
ues on a grid (such as Nk) but work with continuous real values. Furthermore, Tur-
ing machines only have repetitions of discrete transitions on discrete data (e.g., N).
For hybrid programs, in contrast, we have to characterise repetitive interactions of
discrete and continuous transitions in continuous space (some Rk).

Lemma 2.8 (Hybrid program rendition). For every hybrid program α with vari-
ables among~x = x1, . . . ,xk, there is a FOD formula Sα(~x,~v) with variables among
the 2k distinct variables~x = x1, . . . ,xk and~v = v1, . . . ,vk such that

� Sα(~x,~v)↔ 〈α〉~x =~v
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or, equivalently, for every I,η ,ν ,

I,η ,ν |= Sα(~x,~v) iff (ν ,ν [~x 7→ valI,η(ν ,~v)]) ∈ ρI,η(α).

Sx1:=θ1,..,xk:=θk (~x,~v)≡
k∧

i=1

(vi = θi)

Sx′1=θ1,..,x′k=θk
(~x,~v)≡ 〈x′1 = θ1, . . ,x′k = θk〉~v =~x

Sx′1=θ1,..,x′k=θk & χ (~x,~v)≡ ∃t
(
t = 0∧〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉

(
~v =~x

∧ [x′1 =−θ1, . . ,x′k =−θk, t ′ =−1](t ≥ 0→ χ)
))

S?χ (~x,~v)≡~v =~x∧χ

Sβ∪γ (~x,~v)≡Sβ (~x,~v)∨Sγ (~x,~v)

Sβ ;γ (~x,~v)≡ ∃~z(Sβ (~x,~z)∧Sγ (~z,~v))

Sβ ∗ (~x,~v)≡ ∃Z∃n :N
(
Z(n)

1 =~x∧Z(n)
n =~v

∧∀i :N (1≤ i < n→Sβ (Z
(n)
i ,Z(n)

i+1))
)

Fig. 2.24 Explicit rendition of hybrid program transition semantics in FOD

Proof. By Lemma 2.6, interpretations of the vectors ~x and ~v characterise the input
and output states, respectively, as far as α is concerned. These vectors are finite
because α is finite. Vectorial equalities like~x =~v or quantifiers ∃~v are to be under-
stood componentwise. The program rendition is defined inductively in Fig. 2.24. To
simplify the notation, we assume that all variables x1, . . . ,xk are affected in discrete
jumps and differential equations by adding vacuous xi :=xi, or x′i = 0 if xi does not
change in the respective statement.

Differential equations give FOD formulas; no further reduction is needed. Evol-
ution along differential equations with evolution domain restrictions is definable by
following the unique flow (Lemma 2.1) backwards. Continuous evolution is revers-
ible, i.e., the transitions of x′i =−θ are inverse to those of x′i = θ . Consequently,
with an auxiliary variable t, all evolutions of [x′1 =−θ1, . . ,x′k =−θk, t ′ =−1] fol-
low the same flow as 〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉, but backwards. By also reversing
clock t, we ensure that, along the reverse flow, χ has been true at all times (because
of the box modality) until starting time t = 0; see Fig. 2.25.

To show reversibility, let (ν ,ω) ∈ ρI,η(x′1 = θ1, . . ,x′k = θk), that is, let f : [0,r]→
Sta(Σ) be a solution of x′1 = θ1, . . ,x′k = θk starting in state ν and ending in ω . Then
g : [0,r]→ Sta(Σ), defined as g(ζ ) = f (r−ζ ), starts in ω and ends in ν . Thus, it
only remains to show that g is a solution of x′1 =−θ1, . . ,x′k =−θk, which can be
seen for 1≤ i≤ k as follows:
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Fig. 2.25 Evolution domain
checks along backwards flow
over time t

t

~x

χ

~v reverse flow and time;
check χ backwards

x′ = θ

0 r

x′ =−θ

dg(t)(xi)

dt
(ζ ) =

d f (r−t)(xi)

dt
(ζ ) =

d f (u)(xi)

du
d(r−t)

dt
(ζ ) =−d f (u)(xi)

du
(ζ )

=− valI,η( f (ζ ),θi) = valI,η( f (ζ ),−θi).

Unlike all other cases, case Sx′1=θ1,..,x′k=θk & χ(~x,~v) in Fig. 2.24 uses nested FOD
modalities. Nested modalities can be avoided in Sα(~x,~v) using an equivalent FOD
formula without them; see Fig. 2.25:

∃t ∃r
(
t = 0∧〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉(~v =~x∧ r = t)∧
∀~x∀t (~x =~v∧ t = r→ [x′1 =−θ1, . . ,x′k =−θk, t ′ =−1](t ≥ 0→ χ))

)
.

With a finite formula, the characterisation of repetition Sβ ∗(~x,~v) in FOD needs to
capture arbitrarily long sequences of intermediate real-valued states and the correct
transition between successive states of such a sequence. To achieve this with first-
order quantifiers, we use the real Gödel encoding from Lemma 2.7 in Fig. 2.24 to
map unbounded sequences of real-valued states reversibly to a single real number Z,
which can be quantified over in first-order logic. ut

Using the program rendition from Lemma 2.8 to characterise modalities, we
prove that every dL formula can be expressed equivalently in FOD by structural
induction.

Lemma 2.9 (dL Expressibility). Logic dL is expressible in FOD: for all dL for-
mulas φ ∈ Fml(Σ ,V ) there is a FOD formula φ # ∈ FmlFOD(Σ ,V ) that is equivalent,
i.e., � φ ↔ φ #. The converse holds trivially.

Proof. The proof follows an induction on the structure of formula φ for which it
is imperative to find an equivalent φ # in FOD. Observe that the construction of φ #

from φ is effective.

0. If φ is a first-order formula, then φ # := φ already is a FOD formula such that
nothing has to be shown.

1. If φ is of the form ϕ ∨ψ , then by the induction hypothesis there are FOD for-
mulas ϕ#,ψ# such that � ϕ ↔ ϕ# and � ψ ↔ ψ#, from which we can con-
clude by congruence that � (ϕ ∨ψ)↔ (ϕ#∨ψ#), giving � φ ↔ φ # by choos-
ing ϕ#∨ψ# for φ #. Similar reasoning addresses the other propositional con-
nectives or quantifiers.

2. The case where φ is of the form 〈α〉ψ is a consequence of the characterisation of
the semantics of hybrid programs in FOD. The expressibility conjecture holds
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by the induction hypothesis using the equivalence of explicit hybrid program
renditions from Lemma 2.8:

� 〈α〉ψ ↔∃~v(Sα(~x,~v)∧ψ
#~v
~x).

3. The case where φ is [α]ψ is again a consequence of Lemma 2.8:

� [α]ψ ↔∀~v(Sα(~x,~v)→ ψ
#~v
~x)

ut

The above proofs directly carry over to rich test dL , i.e., the logic where dL
formulas are allowed in tests ?χ of hybrid programs and evolution domain restric-
tions χ of differential equations, when using χ# in place of χ in Fig. 2.24. Accord-
ingly, nested modalities can be avoided in FOD by using the following formula for
Sx′1=θ1,..,x′k=θk & χ(~x,~v):

∃t ∃r
(
t = 0∧〈x′1 = θ1, . . ,x′k = θk, t ′ = 1〉(~v =~x∧ r = t)∧
∀~z
(
∃~x∃t (~x =~v∧ t = r∧〈x′1 =−θ1, . . ,x′k =−θk, t ′ =−1〉(t ≥ 0∧~z =~x))

→ χ
#~z
~x
))
.

2.7.5 Relative Completeness of First-Order Assertions

As special cases of Theorem 2.3, we first prove relative completeness for first-order
assertions about hybrid programs. These first-order cases constitute the basis for the
general completeness proof for arbitrary formulas of differential dynamic logic.

In the following relative completeness proofs, we use the notation `D φ to indic-
ate that a dL formula φ is derivable (Definition 2.11) from a set of FOD tautologies,
which is equivalent to saying that φ is derivable in the dL calculus augmented with
a single oracle axiom D that gives all valid FOD instances. Likewise, we use the
notation Γ `D ∆ to indicate that the sequent Γ ` ∆ is derivable from D .

For the completeness proof, we use several simplifications. For uniform proofs,
we assume formulas to use a simplified vocabulary. A formula φ is valid iff it is true
in all I,η ,ν . In particular, we can assume valid φ to use Skolem constants (or state
variables) instead of free logical variables. Existential quantifiers can be represented
as modalities: ∃xφ ≡ 〈x′ = 1〉φ ∨〈x′ =−1〉φ . For simplicity, we use cut (cut) and
weakening to glue together subproofs propositionally. Weakening (i.e., from φ ` ψ

infer φ1,φ ` ψ,ψ1) can be emulated using contexts Γ ,∆ from Definition 2.10, and
we use it implicitly together with rule cut in the following. Derivability of sequents
and derivability of corresponding formulas are equivalent by the following lemma.

Lemma 2.10 (Derivability of sequents). `D φ → ψ iff φ `D ψ .
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Proof. When we consider sequents as abbreviations for formulas, both sides are
identical. Otherwise, let `D φ → ψ be derivable from D . Using cut (and weakening)
with φ → ψ , this derivation can be extended to one of φ `D ψ:

∗
φ ` φ → ψ,ψ

∗
ax

φ ` φ ,ψ
∗

ax
ψ,φ ` ψ

→l
φ ,φ → ψ ` ψ

cut
φ ` ψ

The converse direction is by an application of→r. ut
Lemma 2.11 (Generalisation). If `D φ is provable without free logical variables,
then so are `D ∀xφ and `D 〈x1 :=θ1, . . .xn :=θn〉φ .

Proof. For the second conjecture, let 〈A 〉 abbreviate 〈x1 :=θ1, . . .xn :=θn〉. We
prefix each formula in the proof of φ with 〈A 〉 and show that this gives a proof
of 〈A 〉φ . i∃ is not needed in the proof due to the absence of free logical variables. As
an intermediate step, we first show that prefixing with 〈A 〉 gives an (extended) proof
with rule applications generalised to allow for nested jump prefixes 〈A 〉〈J 〉: By
the argument in Theorem 4.1, it is easy to see for discrete jump sets 〈A 〉 and 〈J 〉
that the dL rules remain sound with nested jump prefix 〈A 〉〈J 〉 in place of only
a single prefix 〈J 〉 from Definition 2.10. Applicability conditions of rules do not
depend on jump prefixes, as Definition 2.10 allows adding any jump prefix. Thus,
we obtain a sound (extended) proof of 〈A 〉φ when replacing—with arbitrary un-
changed context Γ ,∆ ,〈J 〉—every rule application of the form

Γ ,〈J 〉Φ1 ` 〈J 〉Ψ1,∆ . . . Γ ,〈J 〉Φn ` 〈J 〉Ψn,∆

Γ ,〈J 〉Φ0 ` 〈J 〉Ψ0,∆

in the proof of φ by a rule application with the additional unchanged prefix 〈A 〉 for
corresponding Γ ,∆ ,〈J 〉:

Γ ,〈A 〉〈J 〉Φ1 ` 〈A 〉〈J 〉Ψ1,∆ . . . Γ ,〈A 〉〈J 〉Φn ` 〈A 〉〈J 〉Ψn,∆

Γ ,〈A 〉〈J 〉Φ0 ` 〈A 〉〈J 〉Ψ0,∆
(2.14)

Next, we show that these nested jump prefixes can be reduced to a single jump
prefix as Definition 2.10 allows: Let 〈A J 〉 denote the discrete jump set obtained by
merging 〈A 〉 and 〈J 〉 using 〈:=〉 as in Sect. 2.5.2. We replace each rule application
(with nested prefixes) of the form (2.14) by the following derivation with only a
single prefix (assuming n = 1 for notational convenience):

. . .
Γ ,〈A 〉〈J 〉Φ1 ` 〈A J 〉Ψ1,∆

∗
ax

Γ ,〈A J 〉Φ1 ` 〈A J 〉Φ1,∆
〈:=〉

Γ ,〈A J 〉Φ1 ` 〈A 〉〈J 〉Φ1,∆
cut

Γ ,〈A J 〉Φ1 ` 〈A J 〉Ψ1,∆
Γ ,〈A J 〉Φ0 ` 〈A J 〉Ψ0,∆

〈:=〉,〈:=〉
Γ ,〈A 〉〈J 〉Φ0 ` 〈A 〉〈J 〉Ψ0,∆
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The bottom most 〈:=〉 applications merge 〈A 〉 into 〈J 〉 in the antecedent and suc-
cedent, respectively. The unmarked rule applies the same rule that has been used
in (2.14), which is applicable on Φ0 `Ψ0 for any context by Definition 2.10, in-
cluding Γ ,∆ ,〈A J 〉. The subsequent cut with 〈A 〉〈J 〉Φ1 restores the form of
the premise in (2.14). The left branch continues using a dual argument to turn suc-
cedent 〈A J 〉Ψ1 into 〈A 〉〈J 〉Ψ1, thereby yielding a set of non-extended rule ap-
plications with the same conclusions and premises as the extended rule applica-
tion (2.14):

Γ ,〈A 〉〈J 〉Φ1 ` 〈A 〉〈J 〉Ψ1,∆

∗
ax

Γ ,〈A J 〉Ψ1 ` 〈A J 〉Ψ1,∆
〈:=〉

Γ ,〈A 〉〈J 〉Ψ1 ` 〈A J 〉Ψ1,∆
cut

Γ ,〈A 〉〈J 〉Φ1 ` 〈A J 〉Ψ1,∆

For reducing the first conjecture of this lemma to the second, let s be a Skolem
constant for state variable x. By the above proof, we derive `D 〈x := s〉φ . Using ∀r,
we continue this derivation to a proof of ∀X 〈x :=X〉φ , which we abbreviate as ∀xφ

(see the text below Definition 2.8). Rule ∀r is applicable for Skolem constant s as no
free logical variables occur in the proof. ut

Now we prove two special cases of Theorem 2.3 for formulas of a special form.

Proposition 2.1 (Relative completeness of first-order safety). For every hybrid
program α ∈ HP(Σ ,V ) and all FOD formulas F,G ∈ FmlFOD(Σ ,V )

� F → [α]G implies `D F → [α]G (and F `D [α]G by Lemma 2.10).

Proof. We generalise the relative completeness proof by Cook [87] to dL and fol-
low an induction on the structure of program α . In the following, IH is short for the
induction hypothesis.

1. The cases where α is of the form x1 :=θ1, . . . ,xn :=θn, ?χ , β ∪ γ , or β ;γ

are consequences of the soundness of the symmetric rules [; ],[∪],[?],〈:=〉,[:=].
Since these rules are symmetric, they perform equivalent transformations. Con-
sequently, whenever their conclusion is valid, their premise is valid and of smal-
ler complexity (the programs get simpler), and hence derivable by IH. Thus, we
can derive F → [α]G by applying the respective rule. We explicitly show the
proof for β ;γ as it contains an extra twist.

2. � F → [β ;γ]G, which implies � F → [β ][γ]G. By Lemma 2.9, there is a FOD
formula G# such that � G#↔ [γ]G. From the validity of � F → [β ]G#, we can
conclude by IH that F `D [β ]G# is derivable. Similarly, due to � G#→ [γ]G,
we conclude `D G#→ [γ]G by IH. Using Lemma 2.11, we conclude that also
`D ∀β (G#→ [γ]G). With an application of []gen, the latter derivation can be
extended to a derivation of [β ]G# `D [β ][γ]G. Combining the above derivations
propositionally by a cut with [β ]G#, we can derive F `D [β ][γ]G, from which [; ]
yields F `D [β ;γ]G as desired (and Lemma 2.10 or→r yield `D F → [β ;γ]G).
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3. � F → [x′1 = θ1, . . . ,x′n = θn]G is a FOD formula and hence derivable as a D
axiom. Continuous evolution x′1 = θ1, . . . ,x′n = θn & χ with evolution domain
restrictions is definable in FOD by Lemma 2.8, which we consider as an abbre-
viation in this proof.

4. � F → [β ∗]G can be derived by induction. For this, we define the invariant as
a FOD encoding of the statement that all potential post-states of β ∗ satisfy G
according to Lemma 2.9:

φ ≡ ([β ∗]G)# ≡ ∀~v(Sβ ∗(~x,~v)→ G~v
~x).

Since F → φ and φ → G are valid FOD formulas, they are derivable by D ; so is
F `D φ derivable by Lemma 2.10. By Lemma 2.11 and []gen, [β ∗]φ `D [β ∗]G is
derivable. Likewise, φ → [β ]φ is valid according to the semantics of repetition,
and thus derivable by IH, since β is less complex. Using Lemma 2.11, we can
derive `D ∀β (φ → [β ]φ), from which ind yields φ `D [β ∗]φ . Combining the
above derivations propositionally by a cut with [β ∗]φ and φ yields F `D [β ∗]G.

ut

Proposition 2.2 (Relative completeness of first-order liveness). For each hybrid
program α ∈ HP(Σ ,V ) and all FOD formulas F,G ∈ FmlFOD(Σ ,V )

� F → 〈α〉G implies `D F → 〈α〉G (and F `D 〈α〉G by Lemma 2.10).

Proof. We generalise the arithmetic completeness proof by Harel [148] to the hybrid
case. Most cases of the proof are simple adaptations of the corresponding cases in
Proposition 2.1. What remains to be shown is the case of repetitions. Assume that
� F → 〈β ∗〉G. To derive this formula by con, we use a FOD formula ϕ(n) as a
variant expressing that, after n iterations, β can lead to a state satisfying G. This
formula is obtained from Lemmas 2.8 and 2.9 as (〈β ∗〉G)# ≡ ∃~v(Sβ ∗(~x,~v)∧G~v

~x),
except that the quantifier on the repetition count n is removed such that n becomes
a free variable (plus index shifting to count repetitions):

ϕ(n−1) ≡ ∃~v∃Z
(
Z(n)

1 =~x∧Z(n)
n =~v∧∀i :N (1≤ i < n→Sβ (Z

(n)
i ,Z(n)

i+1))∧G~v
~x
)
.

By Lemma 2.7, ϕ(n) can only hold true if n is a natural number.
According to the loop semantics, � n > 0∧ϕ(n)→ 〈β 〉ϕ(n−1) is valid by con-

struction: If n > 0 is a natural number then so is n−1, and if β reaches G after n
repetitions, then, after executing β once, n−1 repetitions of β reach G. By IH, this
formula is derivable, since β contains less loops. By Lemma 2.11, we extend this
derivation to `D ∀β∀n>0(ϕ(n)→ 〈β 〉ϕ(n−1)). Thus ∃vϕ(v) `D 〈β ∗〉∃v≤0ϕ(v)
by con. It only remains to show that the antecedent is derivable from F and 〈β ∗〉G is
derivable from the succedent. From our assumption, we conclude that the following
are valid FOD formulas, hence D axioms:

• � F →∃vϕ(v), because � F → 〈β ∗〉G, and
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• � (∃v≤0ϕ(v))→ G, because v≤ 0, and the fact, that by Lemma 2.7, ϕ(v) only
holds true for natural numbers, imply ϕ(0). Further, ϕ(0) entails G, because zero
repetitions of β have no effect.

From the latter we derive `D ∀β (∃v≤0ϕ(v)→ G) by Lemma 2.11 and extend the
derivation to 〈β ∗〉∃v≤0ϕ(v) `D 〈β ∗〉G by 〈〉gen. From `D F →∃vϕ(v) we con-
clude F `D ∃vϕ(v) by Lemma 2.10. Now, the above derivations can be combined
propositionally by a cut with 〈β ∗〉∃v≤0ϕ(v) and with ∃vϕ(v) to yield F `D 〈β ∗〉G.

ut

2.7.6 Relative Completeness of the Differential Logic Calculus

Having succeeded with the proofs of the above statements we can finish the proof
of Theorem 2.3, which is the central theoretical result of this chapter.

Proof (of Theorem 2.3). The proof follows a basic structure analogous to that of
Harel’s proof for the discrete case [148, Theorem 3.1]. We have to show that every
valid dL formula φ can be proven from FOD axioms within the dL calculus: from
� φ we have to prove `D φ . The proof proceeds as follows: By propositional re-
combination, we inductively identify fragments of φ that correspond to φ1→ [α]φ2
or φ1→ 〈α〉φ2 logically. Next, we express subformulas φi equivalently in FOD by
Lemma 2.9, and use Propositions 2.1 and 2.2 to resolve these first-order safety or
liveness assertions. Finally, we prove that the original dL formula can be re-derived
from the subproofs.

We can assume φ to be given in conjunctive normal form by appropriate pro-
positional reasoning. In particular, we assume that negations are pushed inside
over modalities using the dualities ¬[α]φ ≡ 〈α〉¬φ and ¬〈α〉φ ≡ [α]¬φ . The re-
mainder of the proof follows an induction on a measure |φ | defined as the num-
ber of modalities in φ . For a simple and uniform proof, we assume quantifi-
ers to be abbreviations for modal formulas: ∃xφ ≡ 〈x′ = 1〉φ ∨〈x′ =−1〉φ and
∀xφ ≡ [x′ = 1]φ ∧ [x′ =−1]φ .

0. |φ |= 0; then φ is a first-order formula; hence derivable by D .
1. φ is of the form ¬φ1; then φ1 is first-order, as we assumed negations to be

pushed inside. Hence, |φ |= 0 and Case 0 applies.
2. φ is of the form φ1∧φ2, then individually deduce the simpler proofs for `D φ1

and `D φ2 by IH, which can be combined by rule ∧r.
3. φ is a disjunction and—without loss of generality—has one of the following

forms (otherwise use associativity and commutativity to select a different order
for the disjunction):

φ1 ∨ [α]φ2

φ1 ∨ 〈α〉φ2



114 2 Differential Dynamic Logic dL

As a unified notation for those cases we use φ1∨〈[α]〉φ2. Then, |φ2|< |φ |,
since φ2 has less modalities. Likewise, |φ1|< |φ | because 〈[α]〉φ2 contributes
one modality to |φ | that is not part of φ1.
According to Lemma 2.9 there are FOD formulas φ #

1 ,φ
#
2 with � φi↔ φ #

i for
i = 1,2. By congruence, the validity � φ yields � φ #

1 ∨〈[α]〉φ #
2 , which directly

implies � ¬φ #
1 → 〈[α]〉φ #

2 . Then by Propositions 2.1 or 2.2, respectively, we can
derive

¬φ
#
1 `D 〈[α]〉φ #

2 . (2.15)

Further � φ1↔ φ #
1 implies � ¬φ1→¬φ #

1 , which is derivable by IH, because
|φ1|< |φ |. By Lemma 2.10, we obtain ¬φ1 `D ¬φ #

1 , which we combine with
(2.15) by a cut with ¬φ #

1 to

¬φ1 `D 〈[α]〉φ #
2 . (2.16)

Likewise � φ2↔ φ #
2 implies � φ #

2 → φ2, which is derivable by IH, as |φ2|< |φ |.
We can extend the derivation of `D φ #

2 → φ2 to one of `D ∀α(φ #
2 → φ2) by

Lemma 2.11 and conclude 〈[α]〉φ #
2 `D 〈[α]〉φ2 by []gen–〈〉gen. Finally we com-

bine the latter derivation propositionally with (2.16) by a cut with 〈[α]〉φ #
2 to

derive ¬φ1 `D 〈[α]〉φ2, from which `D φ1∨〈[α]〉φ2 can be obtained, again using
cut, to complete the proof. ut

This concludes the main theoretical proof of relative completeness of the dL
calculus, i.e., of Theorem 2.3.

2.8 Relatively Semidecidable Fragments

To strengthen the completeness result from Theorem 2.3, we consider fragments of
dL where the required FOD tautologies are sufficiently simple as differential equa-
tions have first-order definable flows and the required loop invariants (or variants)
are expressible in first-order logic over the reals. In these fragments, the only dif-
ficulty is to find the required invariants and variants for the proof. Relative to an
(ineffective) oracle that provides first-order invariants and variants for repetitions,
the dL calculus can be used as a semidecision procedure. That is, when we assume
the oracle to provide suitable (in)variants, validity of formulas can be proven in the
dL calculus. If an imperfect oracle chooses inadequate (in)variants, applying the
dL calculus rules results in goals that are not valid, which is again decidable by
quantifier elimination in the dL calculus.

Theorem 2.4 (Relatively semidecidable fragment). Relative to an oracle gener-
ating first-order invariants and variants, the dL calculus gives a backtracking-free
semidecision procedure for (closed) dL formulas with differential equations having
first-order definable flows.
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Proof (Outline). The (constructive) proof, which, in full, can be found in the re-
mainder of this section, shows that there are always applicable dL rules that trans-
form the formulas equivalently and that formulas in this dL proof descend along
a well-founded order. For loops, we assume that suitable (in)variants are obtained
from the oracle and we can guarantee termination when these (in)variants are first-
order (or contain fewer loops). ut

As a consequence, enumerating first-order invariants or variants gives a semide-
cision procedure for the fragment of Theorem 2.4. As a corollary to Theorems 2.2
and 2.4, there are valid dL formulas that need proper dL (or FOD) invariants to be
provable and cannot be proven just using (in)variants of first-order real arithmetic.
Similarly, the fragment with first-order definable flows and bounded loops is decid-
able: When loops α∗ are annotated with natural numbers indicating the maximum
number of repetitions of α , an effective oracle for Theorem 2.4 can be obtained by
unrolling, e.g., by rule 〈∗n〉.

As an auxiliary result for proving Theorem 2.4, we show that, in dL proofs,
Skolem symbols occur in a uniform way, i.e., a Skolem symbol s always occurs
with the same list of arguments.

Lemma 2.12 (Uniform Skolem symbols). Let φ be a dL formula without Skolem
symbols. In any derivation of φ , Skolem symbols only occur with a unique list of free
logical variables as arguments, provided that the formulas in cuts (rule cut) obey
this restriction.

Proof. The proof is by induction on the structure of proofs in the dL calculus. For
derivations of length zero, the conjecture holds, because φ does not contain Skolem
symbols. We show that the conjectured Skolem occurrence property is preserved in
all subgoals when applying a rule to a goal that satisfies the conjecture.

∀r The symbols s(X1, . . . ,Xn) introduced by rules ∀r,∃l are of the required
form as the Xi are precisely the free logical variables. In addition, the sym-
bol s(X1, . . . ,Xn) does not occur nested in other Skolem terms, because, by the
induction hypothesis, the bound variable x does not occur in Skolem terms of
the goal.

i∀ Rules i∀ and i∃ are only applicable to instances of first-order real arithmetic
(Lemma 2.5), for which the equivalence transformations of quantifier elimin-
ation preserve the Skolem occurrence property, because they never introduce
quantifiers to bind free variables.

〈′〉 Rule 〈′〉 preserves the property, as it only substitutes state variables xi ∈ Σ ,
not logical variables Xi ∈V .

cut Cuts preserve the Skolem occurrence property, as we assumed the formulas
that cut introduces to adhere to the Skolem occurrence property.

– The other rules of the dL calculus preserve the property as they never replace
arguments of Skolem function symbols (which are free variables by induction
hypothesis). ut

Proof (of Theorem 2.4). The proof is by well-founded induction. We prove that there
is a well-founded strict partial order ≺ such that:
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IH: For all non-atomic formulas occurring in the sequents during a proof, there
is an applicable series of dL rules such that all resulting subgoals are sim-
pler with respect to ≺ and have no additional free variables or function sym-
bols, and their conjunction is equivalent to the conclusion (for suitable oracle
choices).

By applying these dL rules exhaustively, we obtain a decision procedure relative
to the oracle, because the subgoals descend along the well-founded order ≺, which
has no infinite descending chain. Finally, validity of the remaining sequents with
atomic formulas is decidable by evaluating ground instances (Definition 2.9), be-
cause, by IH, the resulting formulas have no free variables when the initial formula
is closed (open formulas, in contrast, yield equivalent parameter constraints as res-
ults). We use the derived rules ind′ and con′ from p. 86 in place of ind and con;
see Sect. 2.5.2. To obtain a backtracking-free procedure, we remove rules 〈∗n〉,[∗n],
[]gen,〈〉gen,ind,con and cut from the calculus: If a calculus with less rules gives a
decision procedure, then so does the full calculus.

We define the order ≺ as the lexicographical order of, respectively, the num-
ber of: loops, differential equations, sequential compositions, choices, modalities,
quantifiers, number of different variables and Skolem function symbols, and the
number of logical connectives. As a lexicographical order of natural numbers, ≺ is
well-founded [99]. It lifts to sequents in rule applications (Definition 2.10) when all
subgoals of all rule schemata are simpler than their goals with respect to ≺, which
can be shown to retain well-foundedness as a multiset ordering [99].

Now the proof of IH is by induction along ≺. Let φ be a non-atomic formula of
a sequent in an open branch of the proof. We assume φ to occur in the succedent;
the respective proofs for the antecedent are dual. Hence, we consider the sequent to
be of the form Γ ` φ ,∆ .

1. If φ is of the form ψ1∧ψ2, then rule ∧r is applicable, yielding smaller sequents
(with less logical connectives) that are equivalent. Other logical connectives are
handled likewise using rules ¬r,∨r,∧r,→r, respectively.

2. If φ is of the form [α]ψ or 〈α〉ψ and α is of the form ?χ , β ;γ or β ∪ γ , the
corresponding rule 〈;〉,[; ],〈∪〉,[∪] or 〈?〉,[?] is applicable, yielding a simpler yet
equivalent formula.

3. If φ is of the form [x′1 = θ1, . . . ,x′n = θn & χ]ψ , then rule [′] is applicable, as
we assumed differential equations to have first-order definable flows. The res-
ulting formula is equivalent and simpler, because it contains fewer differen-
tial equations. It involves additional bound variables but not free variables.
Case 〈x′1 = θ1, . . . ,x′n = θn & χ〉ψ is similar, by rule 〈′〉.

4. If φ is of the form [α∗]ψ , then rule ind′ is applicable with a first-order invari-
ant F obtained from the oracle. The resulting subgoals are simpler according
to ≺, because they contain less loops (F does not contain loops). The resulting
subgoals do not have additional free variables as all bound variables of α∗ re-
main bound by the universal closure ∀α in the respective premises. Finally, we
assume the oracle to give an invariant such that the conjunction of the result-
ing subgoals is equivalent to the goal (otherwise we have nothing to show for
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inadequate choices by the oracle). The case 〈α∗〉ψ is similar, using rule con′

instead.
5. If φ is of the form 〈x1 :=θ1, . . . ,xn :=θn〉ψ , there are two cases. If rule 〈:=〉 is

applicable, it yields equivalent simpler sequents. Otherwise, we have

ψ ≺ 〈x1 :=θ1, . . . ,xn :=θn〉ψ.

Thus, by IH, there is a finite sequence of rule applications on ψ yielding
equivalent sequents with atomic formulas. Prefixing the resulting proof with
〈x1 :=θ1, . . . ,xn :=θn〉 yields a corresponding proof for deriving Γ ` φ ,∆ by
Lemma 2.11. The formulas of the open branches of this proof resulting from φ

are of the form 〈x1 :=θ1, . . . ,xn :=θn〉G for atomic formulas G, where, at the
latest, rule 〈:=〉 is applicable, as substitutions are admissible on atomic formu-
las. Case [x1 :=θ1, . . . ,xn :=θn]ψ is similar, using rule [:=] first.

6. If φ is of the form ∀xψ(x), we can apply rule ∀r giving ψ(s(X1, . . . ,Xn)). Now,
we have ψ(s(X1, . . . ,Xn))≺ ∀xψ(x); hence, by IH, ψ(s(X1, . . . ,Xn)) can be
transformed equivalently to a set of sequents of the form

Φi(s(X1, . . . ,Xn)) `Ψi(s(X1, . . . ,Xn))

with atomic formulas (without loss of generality, we can assume s(X1, . . . ,Xn)
to occur in all branches). Hence, QE is defined for these atomic formulas and
rule i∀ can be applied on each branch, yielding QE(∀s(Φi(s) `Ψi(s))). Con-
sequently, the original sequent Γ ` ∀xψ(x),∆ is equivalent to∧

i

QE(∀s(Φi(s) `Ψi(s)))

for the following reason: Γ ` ψ(s(X1, . . . ,Xn)),∆ is equivalent to∧
i

(Φi(s(X1, . . . ,Xn)) `Ψi(s(X1, . . . ,Xn)))

by IH, using the equivalence QE(∀s(F ∧G))≡ QE(∀sF)∧QE(∀sG) and the
fact that s does not occur in Γ ,∆ . After applying rule i∀, the result has no
additional free symbols, although intermediate formulas do.

7. If φ is of the form ∃xψ(x), then rule ∃r is applicable giving ψ(X) for a fresh lo-
gical variable X . Then ψ(X)≺ ∃xψ(x); hence, by IH, ψ(X) can be transformed
equivalently to a set of sequents Φi `Ψi with atomic formulas. If no Skolem
dependency on X occurs in Φi `Ψi, then QE is defined and rule i∃ applicable,
giving QE(∃X ∧i(Φi `Ψi)), which is equivalent to ∃X ∧i(Φi `Ψi). By IH, this
is equivalent to Γ ` ∃X ψ(X),∆ , because X does not occur in Γ ,∆ . Other-
wise, if a Skolem term s(X1, . . . ,X , . . . ,Xn) occurs in a Φi `Ψi, then, by IH, the
Skolem function s already occurred in ψ(X). By Lemma 2.12, the Skolem term
s(X1, . . . ,X , . . . ,Xn) itself must already have occurred in ψ(X), which contra-
dicts the fact that X is fresh and that bound variable x does not occur in Skolem
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terms of ∃xψ(x), again by Lemma 2.12. After applying rule i∃ the additional
free variable X disappears. ut

This completes the proof of Theorem 2.4, showing that the dL calculus can be
used as a semidecision procedure for a particular set of (in)variants provided by an
oracle. Consequently, these results show that, in a certain sense, finding (in)variants
is the only challenge in hybrid systems’ verification, because the dL calculus takes
care of everything else. In Chap. 3 we revisit and strengthen this result, because we
show that properties of differential equations can be proven by appropriate general-
isations of (in)variants that we call differential invariants. Furthermore, we turn to
the challenge of finding these (differential) invariants in Chap. 6.

2.9 Train Control Verification

In this section, we verify collision avoidance of the train control system presented
in Sect. 2.4. Especially, we identify the constraints required for the free parameters
of the system and discover the preconditions for safe driving.

2.9.1 Finding Inductive Candidates

Recall the dL formula from Sect. 2.4 that expresses that the simplified ETCS train
control system ensures that trains always stay inside their movement authority m to
ensure collision-freedom:

ψ → [(ctrl ;drive)∗]z≤ m (2.7∗)

We want to prove safety statement (2.7) of the simplified version of the European
Train Control System. Note that this is a significantly simplified version showing
only the true essentials of ETCS. We consider the ETCS cooperation protocol in
more detail in Chap. 7.

Using parametric extraction techniques, we identify both the requirement ψ for
safe driving and the induction hypothesis φ that is required for the proof. Similar to
the proof in Fig. 2.16, which is dual to the proof in Fig. 2.14, an unwinding of the
loop in (2.7) by rule [∗n] can be used to extract a candidate for a parametric inductive
hypothesis. It expresses that there is sufficient braking distance at current speed v,
which basically corresponds to the controllability constraint for ETCS (as illustrated
in Fig. 2.15 on p. 90):

φ ≡ v2 ≤ 2b(m− z)∧b > 0∧A≥ 0 . (2.17)
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2.9.2 Inductive Verification

Using proof rule ind to prove dL formula (2.7) by induction, we show that (a) in-
variant φ holds initially, i.e., ψ ` φ (implying the antecedent of the conclusion of
ind), (b) the invariant is sustained after each execution of ctrl ;drive, and (c) invari-
ant φ implies postcondition z≤ m. Case (c) holds by QE, as 0≤ v2 ≤ 2b(m− z)
and b > 0. The induction start (a) will be examined after the full proof, since we
want to identify the prerequisite ψ for safe driving by proof analysis. In the proof
of the induction step φ → [ctrl ;drive]φ , we omit condition m− z≤ s from ctrl, be-
cause it is not used in the proof (braking remains safe with respect to z≤ m). The
induction is provable in dL as follows (for notational convenience, we assume rule
∀r calls the Skolem constant for m again m, and so on, as there are no free logical
variables):

. . .
φ ` 〈a :=−b〉[drive]φ

. . .
φ ,m− z≥ s ` 〈a :=A〉[drive]φ

[?],→r
φ ` [?m− z≥ s;a :=A][drive]φ

[∪],∧r
φ ` [ctrl][drive]φ

[; ]
φ ` [ctrl ;drive]φ

→r ` φ → [ctrl ;drive]φ
∀r ` ∀α(φ → [ctrl ;drive]φ)
ind

φ ` [(ctrl ;drive)∗]φ

The differential equation system in drive is linear with a constant coefficient mat-
rix M. Its solution can be obtained by symbolically computing the exponential
series eMtη with symbolic initial value η = (z,v) and similar symbolic integration
of the inhomogeneous part [297, §18.VI]; also see App. B.4. We abbreviate the solu-
tion 〈z :=− b

2 t2 + vt + z,v :=−bt + v〉 thus obtained by 〈St〉. See Example B.3 in
App. B for an explanation of why this is a solution of the differential equations.
In this example, the evolution domain restrictions are convex; hence the constraint
∀0≤t̃≤t 〈St̃〉χ of rule [′] can be simplified to 〈St〉χ as in (2.12) to save space. Fur-
ther, we leave out conditions which are unnecessary for closing the above proof.
In the left branch, the constrained evolution of clock τ is irrelevant and will be left
out to save space (braking is the safest operation and can be continued indefinitely
without extra risk). The left branch closes (marked ∗):

∗
〈:=〉,i∀

φ , t ≥ 0,−bt + v≥ 0 ` 〈St〉φ
〈:=〉

φ , t ≥ 0,〈v :=−bt + v〉v≥ 0 ` 〈St〉φ
→r,→r

φ ` t ≥ 0→ (〈v :=−bt + v〉v≥ 0→ 〈St〉φ)
∀r

φ ` ∀t≥0(〈v :=−bt + v〉v≥ 0→ 〈St〉φ)
[′]

φ ` [z′ = v,v′ =−b&v≥ 0]φ
〈:=〉

φ ` 〈a :=−b〉[drive]φ
[:=]

φ ` [a :=−b][drive]φ
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The right branch does not need the evolution domain constraint v ≥ 0, because v
does not decrease when accelerating. We again use 〈St〉 as an abbreviation for the
solution 〈z := A

2 t2 + vt + z,v :=At + v〉.

. . .

φ ,m− z≥ s ` s≥ v2

2b +
(A

b +1
)(A

2 ε2 + εv
)

〈:=〉,i∀
φ ,m− z≥ s,0≤ t ≤ ε ` 〈St〉φ

→r,〈:=〉
φ ,m− z≥ s ` t ≥ 0→ (〈τ := t〉τ ≤ ε → 〈St〉φ)

∀r
φ ,m− z≥ s ` ∀t≥0(〈τ := t〉τ ≤ ε → 〈St〉φ)

〈:=〉
φ ,m− z≥ s ` 〈τ :=0〉∀t≥0(〈τ := t + τ〉τ ≤ ε → 〈St〉φ)

[′]
φ ,m− z≥ s ` 〈τ :=0〉[z′ = v,v′ = A,τ ′ = 1&τ ≤ ε]φ

[:=]
φ ,m− z≥ s ` [τ :=0][z′ = v,v′ = A,τ ′ = 1&τ ≤ ε]φ

〈:=〉
φ ,m− z≥ s ` 〈a :=A〉[τ :=0][z′ = v,v′ = a,τ ′ = 1&τ ≤ ε]φ

[; ]
φ ,m− z≥ s ` 〈a :=A〉[drive]φ

[:=]
φ ,m− z≥ s ` [a :=A][drive]φ

2.9.3 Parameter Constraint Discovery

The right branch only closes when the succedent of its open goal is guaranteed.
That formula expresses that there will still be sufficient braking distance even after
accelerating by ≤ A for up to ε seconds:

s≥ v2

2b
+

(
A
b
+1
)(

A
2

ε
2 + εv

)
. (2.18)

This constraint can be discovered automatically in the above proof by the indic-
ated application of rule i∀ using quantifier elimination with some simplifications.
Constraint (2.18) is required to make sure invariant (2.17) still holds after acceler-
ating. In fact, augmenting the case study with (2.18) makes the argument inductive,
and the whole proof of the safety statement (2.7) closes when ψ is chosen identical
to φ . Here, the conditions of ψ cannot be removed without leaving the proof open
due to a counterexample, as the invariant (2.17) is a controllability constraint; see
Sect. 2.5.3.1.

Quite unlike in the acceleration-free case [231], constraint (2.18) needs to be
enforced dynamically as the affected variables change over time. That is, at the
beginning of each ctrl cycle, s needs to be updated in accordance with (2.18), which
admits complex behaviour as in Fig. 2.9b on p. 63. Further, this constraint can be
used to find out how densely a track can be packed with trains in order to maximise
ETCS throughput without compromising safety. The resulting provably safe train
control system can be summarised as follows:

v2 ≤ 2b(m− z)∧b > 0∧A≥ 0 → [(ctrl ;drive)∗]z≤ m (2.19)



2.9 Train Control Verification 121

where ctrl ≡ s :=
v2

2b
+

(
A
b
+1
)(

A
2

ε
2 + εv

)
;

(?m− z≤ s;a :=−b)∪ (?m− z≥ s;a :=A)

drive ≡ τ :=0;(z′ = v,v′ = a,τ ′ = 1&v≥ 0∧ τ ≤ ε).

Using the dL calculus, similar constraints can be derived (Sect. 4.8) to find out how
early a train needs to start negotiation in order to minimise the risk of having to
reduce speed when the MA is not extensible in time, which is the ST parameter of
Fig. 2.8.

For the resulting ETCS system, liveness can be proven in the dL calculus by
showing that the train can pass every point p by an appropriate choice of m by the
RBC:

z = z0∧ v = v0 > 0∧ ε > 0∧b > 0∧A≥ 0→∀p∃m〈(ctrl ;drive)∗〉z≥ p. (2.20)

For A = 0, the proof of property (2.20) uses the variant ϕ(n)≡ z+nεv0 ≥ p∧ v = v0
for rule con, which expresses that the speed does not decrease (until n < 0) and that
the remaining distance from z to target p can be covered after at most n iteration
cycles. This directly proves the property even when A = 0 for appropriate accelera-
tion choices. For general A≥ 0, the following variant proves property (2.20) by con:

ϕ(n)≡ ((z+nεv0≥ p∧z0≤ z∧v2≤ v2
0+2A(z−z0)∧v≥ v0∧z≤ p)∨z≥ p)∧v≥ 0.

(2.21)
It expresses that, when z≤ p, the remaining distance can be covered after at most n
iterations while the train position and velocity increase, yet the velocity is bounded
depending on the initial velocity v0, acceleration A, and distance z− z0. The appro-
priate choice of m to prove property (2.20) with this variant is

m≥ p+
v2

o +2A(p− z0)

2b
+

(
A
b
+1
)(

A
2

ε
2
)
+ ε

√
v2

0 +2A(p− z0),

which can be obtained by overapproximating braking condition (2.18) with the
speed limit v2 ≤ v2

0 +2A(z− zo) from the variant. We will analyse ETCS in more
detail in Chap. 7.

In this example, we can see the effect of the dL calculus. It takes a specific-
ation of a hybrid system and successively identifies constraints on the parameters
which are needed for correctness. These constraints can then be handled in a purely
modular way by rules i∀ and i∃. As a typical characteristic of hybrid systems, fur-
ther observe that intermediate formulas are significantly more complex than the
original proof obligation, which can be expressed succinctly in the expressive lan-
guage of dL . This reflects the fact that the actual complexity of hybrid systems ori-
ginates from hybrid interaction, not from a single transition. Still, using appropriate
proof strategies (Chap. 5) for the dL calculus, the safety statement (2.7) with invari-
ant (2.17) can be verified automatically in a theorem prover that invokes Mathem-



122 2 Differential Dynamic Logic dL

atica for rules 〈′〉,[′], i∀, and i∃. In fact, using the invariant computation techniques
that we introduce in Chap. 6, the overall safety property (2.7) can be verified fully
automatically even without providing an invariant manually.

2.10 Summary

We have introduced a first-order dynamic logic for hybrid programs, which are uni-
form operational models for hybrid systems with interacting discrete jumps and
continuous evolutions along differential equations. For this differential dynamic lo-
gic, dL , we have presented a concise generalised free-variable proof calculus over
the reals.

Our sequent calculus for dL is a generalisation of classical calculi for discrete
dynamic logic [35, 37, 149, 148] to the hybrid case. It is a compositional verifica-
tion calculus for verifying properties of hybrid programs by decomposing them into
properties of their parts. In order to handle interacting hybrid dynamics, we lift real
quantifier elimination to the deductive calculus in a new modular way that is suit-
able for automation, using real-valued free variables, Skolem terms, and invertible
quantifier rules over the reals.

As a fundamental result aligning hybrid and continuous reasoning proof-theoret-
ically, we have proven our calculus to axiomatise the transition behaviour of hybrid
systems completely relative to the handling of differential equations. To the best
of our knowledge, this is the first relative completeness result for hybrid systems’
verification. Moreover, we have demonstrated that our calculus is well suited for
practical automatic verification in a realistic case study of a fully parametric version
of the European Train Control System.

Dynamic logic can be augmented [37] to support reasoning about dynamically
reconfiguring system structures, which we want to extend to hybrid systems in future
work. While the dL calculus is complete relative to the continuous fragment, it is a
subtle open problem whether a converse calculus can exist that is complete relative
to various discrete fragments.
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