
Chapter 1
Introduction

The aim of this chapter is to give the reader a better orientation. For convenience
of the reader we summarize the contents of the following chapters first, then we
continue with some remarks to the history and finally, we collect the definitions of
various function spaces and their coincidence relations.

1.1 A Short Summary of the Book

Chapter 2. For all s, τ ∈ R, all p ∈ (0,∞], and all q ∈ (0,∞], we introduce the
inhomogeneous Besov-type spaces Bs,τ

p,q(Rn). Triebel-Lizorkin-type spaces Fs,τ
p,q(Rn)

are defined for the same range of parameters except that p has to be less than infin-
ity. Also corresponding sequence spaces, bs,τ

p,q(Rn) and f s,τ
p,q(Rn) (see Definitions 2.1

and 2.2 below), are introduced. The spaces Bs,τ
p,q(Rn) and Fs,τ

p,q(Rn) are the inhomo-
geneous counterparts of Ḃs,τ

p,q(Rn) and Ḟs,τ
p,q(Rn) introduced earlier in [164,165]. Via

the Calderón reproducing formulae we establish the ϕ-transform characterization
of these spaces in the sense of Frazier and Jawerth for all admissible values of the
parameters s,τ, p, and q (see Theorem 2.1 below). On the one side this generalizes
the classical results for Bs

p,q(R
n) and Fs

p,q(R
n) in [64, 65] by taking τ = 0, on the

other hand it also implies that Bs,τ
p,q(Rn) and Fs,τ

p,q(Rn) are well-defined. This method
has to be traced to Frazier and Jawerth ([62,64]; see also [65]), and has been further
developed by Bownik [23–25]. We continue by deriving some embedding properties
for different metrics by using the ϕ-transform characterization; see Sect. 2.2 below.
Finally, the Fatou property of Bs,τ

p,q(Rn) and Fs,τ
p,q(Rn) is established.

Chapter 3. To begin with, in Definition 3.1, we introduce a class of ε-almost
diagonal operators on bs,τ

p,q(Rn) and f s,τ
p,q(Rn). Any ε-almost diagonal operator is an

almost diagonal operator in the sense of Frazier and Jawerth [64]. The main result in
the first part of this chapter is given in Theorem 3.1 and concerns the boundedness of
these operators on bs,τ

p,q(Rn) and f s,τ
p,q(Rn), respectively. As an application we estab-

lish characterizations by atomic and molecular decompositions (see Theorems 3.2
and 3.3). In case τ = 0, Theorems 3.1, 3.2 and 3.3 reduce to the well-known char-
acterizations of Bs

p,q(R
n) and Fs

p,q(R
n), for which we refer to [25, 64, 65].
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2 1 Introduction

In the second section of this chapter we shall compare the spaces Bs,τ
p,q(Rn) and

Fs,τ
p,q(Rn) with other approaches to introduce spaces of Besov-Triebel-Lizorkin type

built on Morrey spaces. Let N s
pqu(Rn) denote the Besov-Morrey spaces; see (xxv)

in Sect. 1.3. Then our main result consists in

Bs,1/u−1/p
u,∞ (Rn) = N s

p∞u(R
n) , 0 < u ≤ p ≤ ∞ ,

in the sense of equivalent quasi-norms and, if 0 < q < ∞,

N s
pqu(R

n) ⊂ Bs,1/u−1/p
u,q (Rn) , N s

pqu(R
n) �= Bs,1/u−1/p

u,q (Rn) , 0 < u ≤ p ≤ ∞ .

Let E s
pqu(Rn) (p �= ∞) denote the Triebel-Lizorkin-Morrey spaces studied in [88,

126, 139]. Then we have

Fs,1/u−1/p
u,q (Rn) = E s

pqu(R
n) , 0 < u ≤ p < ∞ ,

with equivalent quasi-norms. In particular, if 1 < u ≤ p < ∞

F0,1/u−1/p
u,2 (Rn) = E 0

p2u(R
n) = M p

u (Rn) ,

also in the sense of with equivalent norms. Thus, these conclusions combined with
Theorem 2.1 also give the ϕ-transform characterization of the spaces N s

p∞u(R
n) and

E s
pqu(Rn), which seems to be also new.

Chapter 4. Following a well-known but rather long and technical procedure (see,
for example, [109] and [145]), we establish some equivalent characterizations of
the spaces Bs,τ

p,q(Rn) and Fs,τ
p,q(Rn). Step by step we establish the following chain

of inequalities. First we shall show that Littlewood-Paley characterizations can be
dominated by characterizations by differences. The second step consists in proving
that characterizations by differences can be estimated from above either by charac-
terizations by oscillations or in terms of wavelet coefficients. The third step consists
in estimating oscillations by wavelet coefficients. Finally, as an application of our
atomic characterizations we can close the circle and estimate these expressions in
terms of wavelet coefficients by the Littlewood-Paley characterization. Here we
obtain generalizations of the well-known corresponding results for Bs

p,q(Rn) and
Fs

p,q(R
n) (p < ∞). They seem to be new for the classes Fs

∞,q(R
n). A few more inter-

esting localization properties of Bs,τ
p,q(Rn) and Fs,τ

p,q(Rn) will given as well. In fact, at
least for small s, membership of a continuous function in Fs,τ

p,q(Rn) and Bs,τ
p,q(Rn) can

be checked by investigating the local behavior of this function in the corresponding
space with τ = 0.

Chapter 5. Based on the smooth atomic and molecular decompositions, de-
rived in Theorems 3.2 and 3.3, we shall prove here the boundedness of exotic
pseudo-differential operators on Bs,τ

p,q(Rn) and Fs,τ
p,q(Rn) (see Theorem 5.1) under

some restrictions for τ . This has several useful consequences. As applications of
Theorem 5.1, we can establish mapping properties of f → ∂ f as well as the so-called
lifting property. Furthermore, we study the boundedness of nonlinear composition
operators Tf : g → f ◦ g on spaces As,τ

p,q(Rn)∩C(Rn).
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Chapter 6. This chapter is devoted to so-called key theorems; see [146, Chap. 4].
Assertions on pointwise multipliers (see Theorem 6.1), on diffeomorphisms (see
Theorem 6.7) and traces (see Theorem 6.8) belong to this group. These theorems
are basic for the definitions of Besov-Triebel-Lizorkin-type spaces on domains. We
finally introduce Besov-Triebel-Lizorkin-type spaces on R

n
+ and on bounded C∞

domains in R
n and discuss a few properties.

Chapter 7. The main aim of this chapter consists in defining and investigat-
ing a class of spaces which have as duals the classes As,τ

p,q(Rn). These spaces are
introduced by using the Hausdorff capacity. For this reason we call them Besov-
Hausdorff spaces BHs,τ

p,q(Rn) and Triebel-Lizorkin-Hausdorff spaces FHs,τ
p,q(Rn),

respectively. They are the predual spaces of B−s,τ
p′,q′(R

n) and F−s,τ
p′,q′ (R

n) (see
Theorem 7.3 below). If τ = 0, these results reduce to the classical duality asser-
tions for Besov spaces Bs

p,q(R
n) and Triebel-Lizorkin spaces Fs

p,q(R
n). These new

scales BHs,τ
p,q(Rn) and FHs,τ

p,q(Rn) have many properties in common with the classes
Bs,τ

p,q(Rn) and Fs,τ
p,q(Rn). In particular, we establish the ϕ-transform characterization,

characterizations by smooth atomic and molecular decompositions, boundedness
of certain pseudo-differential operators, the lifting property, a pointwise multiplier
and a diffeomorphism theorem and finally assertions on traces. However, the most
important property is the following: let s ∈ R, p = q ∈ (0,∞) and τ ∈ [0, 1

p ], then

(0Bs,τ
p,p(R

n))∗ = BH−s,τ
p′,p′ (R

n) ,

where 0Bs,τ
p,p(Rn) denotes the closure of C∞

c (Rn) ∩ Bs,τ
p,p(Rn) in Bs,τ

p,p(Rn) (see
Theorem 7.12 below). By taking s = 0, p = 2 and τ = 1/2 we get back the
well-known result

(cmo(Rn))∗ = h1(Rn) ,

where cmo(Rn) is the local CMO(Rn) space and h1(Rn) is the local Hardy
space; see Sect. 1.3. For suitable indices, the behavior of the scales BHs,τ

p,q(Rn)
and FHs,τ

p,q(Rn) under real interpolation is investigated; see Theorem 7.14 below.
Chapter 8. In the last chapter we focus on the homogeneous case. The ho-

mogeneous spaces, including homogeneous Besov-type spaces Ḃs,τ
p,q(Rn), Triebel-

Lizorkin-type spaces Ḟs,τ
p,q(Rn) and their preduals, homogeneous Besov-Hausdorff

spaces BḢs,τ
p,q(Rn) and Triebel-Lizorkin-Hausdorff spaces FḢs,τ

p,q(Rn), were intro-
duced and investigated in [127,164,165,168]. We gather some corresponding results
for these spaces. In particular, we establish their wavelet characterizations (see
Theorem 8.2 below).

1.2 A Piece of History

Here we will give a very rough overview about the history, mentioning some pio-
neering work, but without having the aim to reach completeness.
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1.2.1 Besov-Triebel-Lizorkin Spaces

Nikol’skij [108] introduced in 1951 the Nikol’skij-Besov spaces, nowadays denoted
by Bs

p,∞(Rn). However, he was mentioning that this was based on earlier work of
Bernstein [10] (p = ∞) and Zygmund [170] (periodic case, n = 1,1 < p < ∞). Besov
[11, 12] complemented the scale by introducing the third index q in 1959. We also
refer to Taibleson [136–138] for the early investigations of Besov spaces. Around
1970 Lizorkin [91, 92] and Triebel [142] started to investigate the scale Fs

p,q(R
n),

nowadays named after these two mathematicians. Further, we have to mention the
contributions of Peetre [111, 113, 114], who extended around 1973–1975 the range
of the admissible parameters p and q to values less than one.

Of particular importance for us has been the fundamental paper [64] of Frazier
and Jawerth; see also [62,63] and the monograph [65] of Frazier, Jawerth and Weiss
in this connection. In these papers, the authors describe the Besov and Triebel-
Lizorkin spaces in terms of a fixed countable family of functions with certain
properties, namely, smooth atoms and molecules, which have been a second break-
through in a certain sense (after the Fourier-analytic one in the seventieth), preparing
the nowadays widely used wavelet decompositions. However, these decomposi-
tions were prepared by earlier contributions to the Calderón reproducing formula
in [32,38,150,155] and the studies in [41,115]. We refer to the introduction in [64]
for more details.

The theory is summarized in the monographs [14, 109, 114, 145–149]. A much
more detailed history can be found in [146, 148]; see also [153].

1.2.2 Morrey-Campanato Spaces

In 1938 Morrey [102] introduced the classes M p
u (Rn) which are generalizations of

the ordinary Lebesgue spaces. Next we would like to mention the work of John and
Nirenberg, which introduced BMO in 1961 (see [79]). At the beginning of the
sixties, in a series of papers, Campanato introduced and studied the spaces
L p,λ (Rn), nowadays named after him; see also Meyers [101]. Peetre [110] gave a
survey on the topic (to which we refer also for more detailed comments to the early
history) and studied the interpolation properties of these classes. Section 2.4 in the
monograph [88] of Kufner, John and Fučik is devoted to the study of Morrey and
Campanato spaces and summarizes the state of the art at 1975.

Function spaces, defined by oscillations, i. e., local approximation by polyno-
mials, were studied by Brudnij [26, 27], Il’in [13, 14], Christ [40], Bojarski [15],
DeVore and Sharpley [46], Wallin [153], Seeger [130], and Triebel [146, Sect. 1.7],
to mention only a few. Important for us has been also the general approach of
Hedberg and Netrusov [70] to those function spaces.



1.2 A Piece of History 5

1.2.3 Spaces Built on Morrey-Campanato Spaces

The Besov-Morrey spaces N s
pqu(R

n), 1 < u ≤ p < ∞, 1 < q ≤ ∞, were studied
for the first time by Kozono and Yamazaki [88] in connection with applications
to the Navier-Stokes equation. Also in connection with applications to pde the
homogeneous version ˙N s

pqu(Rn), 1 < u ≤ p < ∞, 1 < q ≤ ∞, were studied by
Mazzucato [97]. The next step has been done by Tang and Xu [139]. They in-
troduced the scale E s

pqu(R
n) (the Triebel-Lizorkin counterpart of N s

pqu(R
n)) and

made first investigations for the extended range 0 < u ≤ p < ∞, 0 < q ≤ ∞, of
parameters for both types of spaces. Later, Sawano and Tanaka [126] presented var-
ious decompositions including quarkonial, atomic and molecular characterizations
of A s

pqu(Rn) and ˙A s
pqu(Rn), where A ∈ {N ,E }. Jia and Wang [78] investigated the

Hardy-Morrey spaces, which are special cases of Triebel-Lizorkin-Morrey spaces.
In [154], Wang obtained the atomic characterization and the trace theorem for
Besov-Morrey and Triebel-Lizorkin-Morrey spaces independently of Sawano and
Tanaka. Recently, Sawano [125] investigated the Sobolev embedding theorem for
Besov-Morrey spaces. Recall that the Besov-Morrey and Triebel-Lizorkin-Morrey
spaces cover many classic function spaces, such as Besov spaces, Triebel-Lizorkin
spaces, Morrey spaces and Sobolev-Morrey spaces. For the Sobolev-Morrey spaces,
we refer to Najafov [103–105].

The Besov-type space Bs,τ
p,q(Rn) and its homogeneous version Ḃs,τ

p,q(Rn), re-
stricted to the Banach space case, were first introduced by El Baraka in [49–51].
In these papers, El Baraka investigated embeddings as well as Littlewood-Paley
characterizations of Campanato spaces. El Baraka showed that the spaces Bs,τ

p,q(Rn)
cover certain Campanato spaces (see [51]).

Triebel-Lizorkin-Morrey spaces Ė s
pqu(R

n) (p �= ∞) have been studied in [88,126,
139]. The identity

Ḟs,τ
p,q (Rn) = Ė s

pqu(R
n)

has been proved in [127].
The Besov-type spaces Ḃs,τ

p,q(Rn) and the Triebel-Lizorkin-type spaces Ḟs,τ
p,q(Rn)

were introduced in [164, 165].

1.2.4 Q Spaces

The history of Qα spaces (or simply Q spaces) started in 1995 with a paper by
Aulaskari, Xiao and Zhao [7]. Originally they were defined as spaces of holomor-
phic functions on the unit disk, which are geometric in the sense that they transform
naturally under conformal mappings (see [7, 160]). Following earlier contributions
of Essén and Xiao [55] and Janson [76] on the boundary values of these functions
on the unit circle, Essén, Janson, Peng and Xiao [54] extended these spaces to the
n-dimensional Euclidean space R

n. There is a rapidly increasing literature devoted
to this subject, we refer to [7, 44, 45, 54, 55, 76, 157–162, 169].
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Most recently, in [164, 165], two of the authors (W.Y and D.Y) have introduced
the scales of homogeneous Besov-Triebel-Lizorkin-type spaces Ḃs,τ

p,q(Rn) and
Ḟs,τ

p,q(Rn) (p �= ∞), which generalize the homogeneous Besov-Triebel-Lizorkin
spaces (Ḃs

p,q(R
n), Ḟs

p,q(R
n)) and Q spaces simultaneously, and hence answered an

open question posed by Dafni and Xiao in [44] concerning the relation of these
spaces. In fact, it holds

Ḟ
α , 1

2− α
n

2,2 (Rn) = Qα(Rn)

if α ∈ (0,1) (n ≥ 2).
Recently, Xiao [161], Li and Zhai [90] applied certain special cases of Ḃs,τ

p,q(Rn)
and Ḟs,τ

p,q(Rn), including the Q spaces, to study the Navier-Stokes equation.

1.3 A Collection of the Function Spaces Appearing in the Book

As a service for the reader and also for having convenient references inside the
book we give a list of definitions of the spaces of functions (distributions) showing
up in this book. Sometimes a few comments will be added. We picked up this idea
from [145, Sect. 2.2.2] and [153] and a part of our list is just a copy of the list given
in [145].

As a general rule within this book we state that all spaces consist of complex-
valued functions. We shall divide our collection into three groups:

• Function spaces defined by derivatives and differences.
• Function spaces defined by mean values and oscillations (local polynomial

approximations).
• Function spaces defined by Fourier analytic tools.

The first item contains the classical approaches to define smoothness. In the sec-
ond item we recall the definitions of spaces related to Morrey-Campanato spaces.
Finally, in the third item we define spaces by Fourier analytic tools, in most of the
cases by using a smooth dyadic resolution of unity.

1.3.1 Function Spaces Defined by Derivatives and Differences

(i) Lebesgue spaces. Let p ∈ (0,∞). By Lp(Rn) we denote the space of all mea-
surable functions f such that

‖ f‖Lp(Rn) ≡
(∫

Rn
| f (x)|p dx

)1/p

< ∞ .

In case p = ∞ the space L∞(Rn) is the collection of all measurable functions
f such that

‖ f‖L∞(Rn) ≡ esssup
x∈Rn

| f (x)| < ∞ .
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Of a certain importance for the book are the following modified Lebesgue-
type spaces. Let τ ∈ [0,∞) and p ∈ (0,∞]. Let Lp

τ (Rn) be the collection of
functions f ∈ Lp

loc (R
n) such that

‖ f‖Lp
τ (Rn) ≡ sup

1
|P|τ

(∫
P
| f (x)|p dx

)1/p

,

where the supremum is taken over all dyadic cubes P with side length
l(P) ≥ 1.

(ii) The space C(Rn) consists of all uniformly continuous functions f such that

‖ f‖C(Rn) ≡ sup
x∈Rn

| f (x)| < ∞ .

(iii) Let m ∈ N. The space Cm(Rn) consists of all functions f ∈C(Rn), having all
classical derivatives ∂ α f ∈C(Rn) up to order |α| ≤ m and such that

‖ f‖Cm(Rn) ≡ ∑
|α |≤m

‖∂ α f‖C(Rn) < ∞ .

We put C0(Rn) ≡C(Rn).
(iv) Hölder spaces. Let m ∈ Z+ and s ∈ (m,m + 1). Then Cs(Rn) denotes the

collection of all functions f ∈Cm(Rn) such that

‖ f‖Cs(Rn) ≡ ‖ f‖Cm(Rn) + ∑
|α |=m

sup
x�=y

|∂ α f (x)− ∂ α f (y)|
|x− y|s−m < ∞ .

(v) Lipschitz spaces. Let s ∈ (0,1]. The Lipschitz space Lips(Rn) consists of all
functions f ∈C(Rn) such that

‖ f‖Lips(Rn) ≡ sup
x�=y

| f (x)− f (y)|
|x− y|s < ∞ .

(vi) Zygmund spaces. Let m ∈ N. The Zygmund space Z m(Rn) consists of all
functions f ∈Cm−1(Rn) such that

‖ f‖Z m(Rn) ≡ ‖ f‖Cm−1(Rn)

+ max
|α |=m

sup
h �=0

sup
x∈Rn

|∂ α f (x + 2h)−2∂ α f (x + h)+ ∂ α f (x)|
|h| < ∞ .

In case of s > 0, s �∈ N, we use the convention Z s(Rn) = Cs(Rn).
(vii) Sobolev spaces. Let p ∈ (1,∞) and m ∈ N. Then W m

p (Rn) is the collection of
all functions f ∈ Lp(Rn) such that the distributional derivatives ∂ α f are func-
tions belonging to Lp(Rn) for all α , |α| ≤ m. We equip this set with the norm

‖ f‖Wm
p (Rn) ≡ ∑

|α |≤m

‖∂ α f‖Lp(Rn) .

As usual, we define W 0
p (Rn) ≡ Lp(Rn).
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(viii) Slobodeckij spaces. Let p ∈ [1,∞) and let s ∈ (0,∞) be not an integer. Let
m ∈ Z+ such that s ∈ (m,m + 1). Then W s

p(R
n) consists of all functions

f ∈W m
p (Rn) such that

‖ f‖W s
p(Rn) ≡‖ f‖Wm

p (Rn)+ ∑
|α |=m

(∫
Rn×Rn

|∂ α f (x)− ∂ α f (y)|p
|x− y|n+(m+1−s)p

dxdy

)1/p

< ∞ .

(ix) Besov spaces (classical variant). Let s ∈ (0,∞) and p, q ∈ [1,∞]. Let M ∈ N.
Then, if s ∈ [M − 1,M), the space Bs

p,q(Rn) is the collection of all functions
f ∈ Lp(Rn) satisfying

‖ f‖Bs
p,q(Rn) ≡ ‖ f‖Lp(Rn) +

(∫
Rn

|h|−sq‖Δ M
h f ( ·)‖q

Lp(Rn)
dh
|h|n

)1/q

< ∞ .

Besov spaces can be defined in various ways; see in particular item (xx)
below. In Chaps. 2–4 we shall prove the equivalence of some of these ap-
proaches in a much more general context.

1.3.2 Function Spaces Defined by Mean Values and Oscillations

Now we turn to a group of spaces which are related to Morrey-Campanato spaces.

(x) Functions of bounded mean oscillations. The space BMO (Rn) is the set of
locally integrable functions f on R

n such that

‖ f‖BMO(Rn) ≡ sup
Q

1
|Q|

∫
Q
| f (x)− fQ| dx < ∞ ,

where the supremum is taken on all cubes Q with sides parallel to the coordi-
nate axes and where

fQ ≡ 1
|Q|

∫
Q

f (x)dx

denotes the mean value of the function f on Q.
(xi) According to Sarason [122], a function f of BMO(Rn) which satisfies the

limiting condition

lim
a→0

(
sup
|Q|≤a

1
|Q|

∫
Q
| f (x)− fQ| dx

)
= 0

is said to be of vanishing mean oscillation. The subspace of BMO(Rn)
consisting of the functions of vanishing mean oscillation is denoted by
VMO(Rn). We note that the space VMO(Rn) considered by Coifman and
Weiss [42] is different from that considered by Sarason, and it coincides with
our CMO(Rn); see the next item.
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(xii) We denote by CMO(Rn) the closure of C∞
c (Rn) in BMO(Rn), and we endow

CMO(Rn) with the norm of BMO(Rn).
(xiii) Functions of local bounded mean oscillations. The space bmo(Rn) con-

sists of all functions f ∈ BMO (Rn) which satisfy also the following condi-
tion

sup
|Q|≥1

1
|Q|

∫
Q
| f (x)|dx < ∞ .

We equip this space with the norm

‖ f‖bmo(Rn) ≡ ‖ f‖BMO(Rn) + sup
|Q|=1

∫
Q
| f (x)|dx .

(xiv) Functions of local vanishing mean oscillations. We set

vmo(Rn) ≡ VMO(Rn)∩ bmo(Rn) ,

and we endow the space vmo(Rn) with the norm of bmo(Rn).
(xv) We denote by cmo(Rn) the closure of C∞

c (Rn) in bmo(Rn), and we endow
cmo(Rn) with the norm of bmo(Rn).

(xvi) Morrey spaces. Let 0 < u ≤ p ≤ ∞. The space M p
u (Rn) is defined to be the

set of all u-locally Lebesgue-integrable functions f on R
n such that

‖ f‖M p
u (Rn) ≡ sup

B
|B|1/p−1/u

(∫
B
| f (x)|u dx

)1/u

< ∞ ,

where the supremum is taken over all balls B in R
n; see [89, Sect. 2.4].

(xvii) Campanato spaces. Let λ ∈ [0,∞) and p∈ [1,∞). The collection of all func-
tions f ∈ Lp

loc (R
n) such that

‖ f‖L p,λ (Rn) ≡ sup
B

1

|B|λ/n

(∫
B
| f (x)− fB|p dx

)1/p

< ∞ ,

where the supremum is taken over all balls B in R
n.

This set becomes a Banach space if functions are considered modulo
constants. Furthermore, L p,λ (Rn) consists of the constant functions only if
λ > n + p; see [33–36], [110] and [89, Sect. 2.4].

(xviii) Local approximation spaces I. Let p∈ [1,∞) and s ∈ [−n/p,∞). Let B(x, t)
be the ball with center x and radius t. Let M ∈ Z+. Denote by PM(Rn) the
set of all polynomials of total degree less than or equal to M. For u ∈ (0,∞]
we define the local oscillation of f ∈ Lu

�oc(R
n) by setting, for all x ∈ R

n and
all t ∈ (0,∞),

oscM
u f (x,t) ≡ inf

(
t−n

∫
B(x,t)

| f (y)−P(y)|u dy

)1/u

,
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where the infimum is taken over all polynomials P ∈PM(Rn) with the usual
modification if u = ∞, i. e.,

oscM
∞ f (x,t) ≡ inf sup

y∈B(x,t)
| f (y)−P(y)| .

Now we define the associated sharp maximal function

f M,s
u (x) ≡ sup

0<t<1
t−s oscM

u f (x, t) .

Let M ≡ max{−1, �s�}. Then T s
p(Rn) is the collection of all functions in

Lp
loc (R

n) satisfying

‖ f‖Ts
p(Rn) ≡ sup

x∈Rn

(∫
B(x,1)

| f (x)|p dx

)1/p

+ sup
x∈Rn

f M,s
u (x) < ∞ .

We followed [146, Sect. 1.7.2] (but change the notation because of item (i));
see also [153].

(xix) Local approximation spaces II. Let p ∈ (0,∞], s ∈ (0,∞) and
M ≡ �s�. The local approximation space Cp

s (Rn) is the collection of all
functions f ∈ Lmax{p,1}(Rn) such that

‖ f‖Cp
s (Rn) ≡ ‖ f‖Lp(Rn) +‖ f M,s

p ‖Lp(Rn) < ∞ .

We refer to [15, 40, 46, 153] and [146, Sect. 1.7.2].
(xx) Let α ∈ R. The space Qα(Rn) is defined to be the collection of all f ∈

L2
loc (R

n) such that

‖ f‖Qα (Rn) ≡ sup
I

{
1

|I|1− 2α
n

∫
I

∫
I

| f (x)− f (y)|2
|x− y|n+2α dxdy

}1/2

< ∞,

where I ranges over all cubes in R
n; see, for example, [7, 44, 54].

1.3.3 Function Spaces Defined by Fourier Analytic Tools

Except the first two all spaces here will be defined by using a decomposition in the
Fourier image induced by a smooth dyadic decomposition of unity. Let ψ ∈C∞

c (Rn)
be a radial function such that ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 3/2. Then by
means of

ψ0(x) ≡ ψ(x) , ψ j(x) ≡ ψ(2− jx)−ψ(2− j+1x) , j ∈ N , x ∈ R
n, (1.1)
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we obtain a smooth dyadic decomposition of unity, namely,

∞

∑
j=0

ψ j(x) = 1 for all x ∈ R
n .

We put

ϕ0 ≡ Φ ≡ F−1ψ , ϕ(x) ≡ F−1[ψ(2ξ )](x) and ϕ j ≡ F−1ψ j, j ∈ Z+ . (1.2)

Then ϕ j(x) = 2 jnϕ(2 jx), j ∈ Z+, follows.

(xxi) Local Hardy spaces. Let p ∈ (0,∞). Let ϕ ∈ S (Rn) such that ϕ̂(0) = 1.
Then hp(Rn) is the collection of all f ∈ S ′(Rn) such that

‖ f‖hp(Rn) ≡
∥∥∥∥ sup

0<t<1
F−1[ϕ(tξ )F f (ξ )]( ·)

∥∥∥∥
Lp(Rn)

< ∞ .

(xxii) Bessel-potential spaces (sometimes also called Lebesgue or Liouville
spaces). Let s ∈ R and p ∈ (1,∞). Then Hs

p(R
n) is the set of all tempered

distributions f ∈ S ′(Rn) such that F−1[(1 + |ξ |2)s/2 F f (ξ )]( ·) is a reg-
ular distribution and

‖ f‖Hs
p(Rn) ≡

∥∥∥F−1[(1 + |ξ |2)s/2 F f (ξ )]( ·)
∥∥∥

Lp(Rn)
< ∞ .

(xxiii) Besov spaces (general case). Let p, q ∈ (0,∞] and s ∈ R. Let {ϕ j} j∈Z+ be
as in (1.2). Then Bs

p,q(Rn) is the collection of all f ∈ S ′(Rn) such that

‖ f‖Bs
p,q(Rn) ≡

{
∞

∑
j=0

2 jsq
∥∥ϕ j ∗ f

∥∥q
Lp(Rn)

}1/q

< ∞ .

(xxiv) Triebel-Lizorkin spaces. Let p ∈ (0,∞), q ∈ (0,∞] and s ∈ R. Let
{ϕ j} j∈Z+ be as in (1.2). Then Fs

p,q(Rn) is the collection of all f ∈ S ′(Rn)
such that

‖ f‖Fs
p,q(Rn) ≡

∥∥∥∥∥∥
{

∞

∑
j=0

(2 js|ϕ j ∗ f |)q

}1/q
∥∥∥∥∥∥

Lp(Rn)

< ∞ .

We refer to [64,145]. The Triebel-Lizorkin space Fs
∞,q(R

n) is defined to be
the set of all f ∈ S ′(Rn) such that

‖ f‖Fs
∞,q(Rn) ≡ sup

Pdyadic
l(P)≤1

{
1
|P|
∫

P

∞

∑
j= jP

[2 js|ϕ j ∗ f (x)|]q dx

}1/q

< ∞ , (1.3)

where the supremum is taken over all dyadic cubes P with side length
l(P) ≤ 1 and jP ≡−log2 l(P); see [64].
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(xxv) Besov-Morrey spaces. Let s ∈ R, q ∈ (0,∞] and 0 < u ≤ p ≤ ∞. Let
{ϕ j} j∈Z+ be as in (1.2). Then N s

pqu(R
n) is defined to be the set of all

f ∈ S ′(Rn) satisfying

‖ f‖N s
pqu(Rn) ≡

{
∞

∑
j=0

2 jsq sup
B

|B|q/p−q/u
(∫

B
|ϕ j ∗ f (x)|u dx

)q/u
}1/q

< ∞ ,

where the supremum is taken over all balls B in R
n; see [88, 97].

(xxvi) Triebel-Lizorkin-Morrey spaces. Let s ∈ R, q ∈ (0,∞] and 0 < u ≤
p ≤ ∞, u �= ∞. Let {ϕ j} j∈Z+ be as in (1.2). The class E s

pqu(Rn) is defined
to be the collection of all f ∈ S ′(Rn) satisfying

‖ f‖E s
pqu(Rn) ≡ sup

B
|B|1/p−1/u

⎧⎨
⎩
∫

B

(
∞

∑
j=0

2 jsq|ϕ j ∗ f (x)|q
)u/q

dx

⎫⎬
⎭

1/u

< ∞,

where the supremum is taken over all balls B in R
n. We refer, e. g., to [88,

126, 139].
(xxvii) Inhomogeneous Besov-type spaces. Let τ, s ∈ R and p,q ∈ (0,∞]. Let

{ϕ j} j∈Z+ be as in (1.2). The inhomogeneous Besov-type space Bs,τ
p,q(Rn) is

defined to be the set of all f ∈ S ′(Rn) such that

‖ f‖Bs,τ
p,q(Rn) ≡ sup

P∈Q

1
|P|τ

{
∞

∑
j=( jP∨0)

[∫
P
(2 js|ϕ j ∗ f (x)|)p dx

]q/p
}1/q

< ∞ .

(xxviii) Inhomogeneous Triebel-Lizorkin-type spaces. Let τ, s ∈ R, q ∈ (0,∞]
and p ∈ (0,∞). Let {ϕ j} j∈Z+ be as in (1.2). The inhomogeneous Triebel-
Lizorkin-type space Fs,τ

p,q(Rn) is defined to be the set of all f ∈ S ′(Rn)
such that

‖ f‖Fs,τ
p,q(Rn) ≡ sup

P∈Q

1
|P|τ

⎧⎨
⎩
∫

P

[
∞

∑
j=( jP∨0)

(2 js|ϕ j ∗ f (x)|)q

]p/q

dx

⎫⎬
⎭

1/p

< ∞ .

A comment. The definitions of the spaces in (1.3) and (xxv)–(xxviii) are all of
the same spirit. The major difference between Besov-Morrey and Triebel-Lizorkin-
Morrey spaces on the one side and the spaces Bs,τ

p,q(Rn) and Fs,τ
p,q(Rn) on the other

side consists in the starting index for the summation with respect to j. In (xxv)
and (xxvi) the summation starts always with 0, whereas in the (xxvii) and (xxviii)
the summation starts at jP ∨ 0. Comparing with (1.3) we find that this time there
is a difference in the set of admissible cubes. The distribution spaces Fs,τ

p,q(Rn) and
Bs,τ

p,q(Rn) have some overlap with all 26 different classes we have introduced above;
see the next subsection.
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(xxix) Homogeneous Besov-type spaces. Let τ, s ∈ R and p,q ∈ (0,∞]. Let
ϕ j(x) ≡ 2 jnϕ(2 jx), j ∈ Z. The Besov-type space Ḃs,τ

p,q(Rn) is defined to
be the set of all f ∈ S ′

∞(Rn) such that ‖ f‖Ḃs,τ
p,q(Rn) < ∞, where

‖ f‖Ḃs,τ
p,q(Rn) ≡ sup

P∈Q

1
|P|τ

{
∞

∑
j= jP

[∫
P
(2 js|ϕ j ∗ f (x)|)p dx

]q/p
}1/q

with suitable modifications made when p = ∞ or q = ∞.
(xxx) Homogeneous Triebel-Lizorkin-type spaces. Let τ, s ∈ R, q ∈ (0,∞] and

p ∈ (0,∞). Let ϕ j(x) ≡ 2 jnϕ(2 jx), j ∈ Z. The Triebel-Lizorkin-type space
Ḟs,τ

p,q(Rn) is defined to be the set of all f ∈ S ′
∞(Rn) such that ‖ f‖Ḟs,τ

p,q(Rn) <

∞, where

‖ f‖Ḟs,τ
p,q(Rn) ≡ sup

P∈Q

1
|P|τ

⎧⎨
⎩
∫

P

[
∞

∑
j= jP

(2 js|ϕ j ∗ f (x)|)q dx

]p/q
⎫⎬
⎭

1/p

with suitable modifications made when q = ∞.
(xxxi) Besov-Hausdorff spaces and Triebel-Lizorkin-Hausdorff spaces. The

inhomogeneous classes BHs,τ
p,q(Rn) and FHs,τ

p,q(Rn) will be investigated in
Chap. 7. For the homogeneous counterparts, see Sect. 8.4.
Let s ∈R, p ∈ (1, ∞), q ∈ [1, ∞) and τ ∈ [0, 1

(p∨q)′ ], {ϕ j} j∈Z+ be as in (1.2).

The Besov-Hausdorff spaces BHs,τ
p,q(Rn) and the Triebel-Lizorkin-Hausdorff

spaces FHs,τ
p,q(Rn) (q �= 1) are defined, respectively, to be the sets of all

f ∈ S ′(Rn) such that

‖ f‖BHs,τ
p,q(Rn) ≡ inf

ω

{
∞

∑
j=0

2 jsq‖ϕ j ∗ f [ω(·,2− j)]−1‖q
Lp(Rn)

}1/q

< ∞

and

‖ f‖FHs,τ
p,q(Rn) ≡ inf

ω

∥∥∥∥∥∥
{

∞

∑
j=0

2 jsq|ϕ j ∗ f |q[ω(·,2− j)]−q

}1/q
∥∥∥∥∥∥

Lp(Rn)

< ∞,

the infimums here are taken over all nonnegative Borel measurable func-
tions ω on R

n × (0,∞) with

∫
Rn

[Nω(x)](p∨q)′ dΛ (∞)
nτ(p∨q)′(x) ≤ 1,

and with the restriction that ω(·,2− j) is allowed to vanish only where
ϕ j ∗ f vanishes, where Nω is the nontangential maximal function of ω
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and Λ (∞)
nτ(p∨q)′ is the nτ(p∨q)′-dimensional Hausdorff capacity; see Sect. 7.1

below.
(xxxii) There is a number of further spaces appearing in the book. But they will be

of restricted importance.

1.4 A Table of Coincidences

As mentioned above there is some overlap of these different definitions. We are
collecting some of these coincidence relations in what follows.

1.4.1 Besov-Morrey Spaces

(i) It holds Bs,0
p,q(Rn) = Bs

p,q(R
n) for all s, p, and q; see Lemma 2.1. This implies

Bs,0
∞,∞(Rn) = Bs

∞,∞(Rn) = Z s(Rn) , s > 0 ,

Bs,0
∞,∞(Rn) = Bs

∞,∞(Rn) = Cs(Rn) , s > 0 , s �∈ N ,

Bs,0
∞,∞(Rn) = Bs

∞,∞(Rn) , 0 < s < 1 ,

Bs,0
p, p(R

n) = Bs
p, p(R

n) = W s
p(R

n) , s > 0 , s �∈ N , 1 ≤ p < ∞

(all in the sense of equivalent norms); see, e. g., [145, Sect. 2.2.2] and the ref-
erences given there.

(ii) Let s ∈ R, 0 < u ≤ p ≤ ∞ and q ∈ (0,∞]. On the one hand we have

Bs,0
p,q(R

n) = N s
pqp(R

n) = Bs
p,q(R

n) and Bs,1/u−1/p
u,∞ (Rn) = N s

p∞u(R
n)

(in the sense of equivalent quasi-norms), but on the other hand, it holds

Bs,1/u−1/p
u,q (Rn) � N s

pqu(R
n) if 0 < u < p < ∞ and 0 < q < ∞ ;

see Corollary 3.3.
(iii) Let 0 < p < p0 < ∞, k ∈ N and

s >
k
p

+ n max

{
0,

1
p
−1

}
.

Then

B
s−k/p, 1

p
n+k

n
p,q (Rn) = Z s(Rn) if p ≤ q ≤ ∞ ,
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and

B
s− k+n

p + n
p0

, 1
p

n+k
n

p0,q (Rn) = Z s(Rn) if p ≤ q ≤ ∞ ,

in the sense of equivalent quasi-norms; see Theorem 6.9 below.

1.4.2 Triebel-Lizorkin-Morrey Spaces

(i) It holds Fs,0
u,q (Rn) = Fs

p,q(R
n); see Lemma 2.1. This implies

Fm,0
p,2 (Rn) = Fm

p,2(R
n) = W m

p (Rn) , m ∈ N , 1 < p < ∞ ,

Fs,0
p, p(R

n) = Fs
p, p(R

n) = W s
p(R

n) , s > 0 , s �∈ N , 1 ≤ p < ∞ ,

F0,0
p,2 (Rn) = F0

p,2(R
n) = hp(Rn) , 0 < p < ∞ ,

F0
∞,2(R

n) = bmo(Rn)

(all in the sense of equivalent norms); see, e. g. [145, Sect. 2.2.2] and the ref-
erences given there.

(ii) Let p ∈ (0,∞) and s ∈ (nmax{0, 1
p −1},∞). Then

Fs,0
p,∞(Rn) = Fs

p,∞(Rn) = Cp
s (Rn) ;

see [130] and [146, Theorem 1.7.2].
(iii) Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Then

Fs,1/p
p,q (Rn) = Fs

∞,q(R
n)

with equivalent quasi-norms; see [64] or Proposition 2.4 below. In particular,

F0,1/p
p,2 (Rn) = F0

∞,2(R
n) = bmo(Rn) .

(iv) Let q ∈ (0,∞] and 0 < u ≤ p ≤ ∞, u �= ∞. Then

Fs,1/u−1/p
u,q (Rn) = E s

pqu(R
n) .

For s = 0 and 1 < u ≤ p < ∞ this yields

F0,1/u−1/p
u,2 (Rn) = E 0

p2u(R
n) = M p

u (Rn) (1.4)

and with 1 < u = p < ∞

F0,0
p,2 (Rn) = E 0

p2p(R
n) = M p

p (Rn) = Lp(Rn) ,

all in the sense of equivalent quasi-norms; see Corollary 3.3 below.
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(v) Let α ∈ (0,1) if n ≥ 2 and α ∈ (0,1/2) if n = 1. Then we have

F
α , 1

2− α
n

2,2 (Rn) = Qα(Rn)∩L2
1
2− α

n
(Rn) ,

in the sense of equivalent norms; see Corollary 4.5 and Remark 4.7.
(vi) Let 0 < p < p0 < ∞, k ∈ N and

s >
k
p

+ n max

{
0,

1
p
−1

}
.

Then

F
s−k/p, 1

p
n+k

n
p,q (Rn) = Z s(Rn) if p ≤ q ≤ ∞ ,

and

F
s− k+n

p + n
p0

, 1
p

n+k
n

p0,q (Rn) = Z s(Rn) if 0 < q ≤ ∞ ,

in the sense of equivalent quasi-norms; see Theorem 6.9 below.
(vii) Pointwise multipliers. For a quasi-Banach space X of functions, the space

M(X) denotes the associated space of all pointwise multipliers; see Sect. 6.1.
Let s ∈ (0,1). Then

M(Fs
1,1(R

n)) = L∞(Rn)∩Fs,τ
1,1,unif(R

n) , τ = 1− s/n ;

see Corollary 6.2 below.

1.4.3 Morrey-Campanato Spaces

(i) Let 0 < u ≤ p ≤ ∞. Then

M u
u (Rn) = Lu(Rn) and M ∞

u (Rn) = L∞(Rn) .

(ii) Let p ∈ [1,∞) and λ ∈ (n,n + p). Then L p,n(Rn) = BMO(Rn),

L p,n(Rn) = Z
λ−n

p (Rn) and L p,n+p(Rn) = Lip1(Rn) ;

see [34, 36] and [89, Theorem 2.4.6.1].
(iii) Let p ∈ [1,∞). Then

T−n/p
p (Rn) = Lp(Rn) and T 0

p (Rn) = bmo(Rn) .

(iv) Let p ∈ [1,∞) and s ∈ (−n/p,0). Then

L p,λ (Rn) = M
−n/s
p (Rn) = T s

p(Rn) , s =
λ −n

p
;

see [89, Theorem 2.4.6.1] and [146, Sect. 1.7.2].
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(v) Let p ∈ [1,∞) and s ∈ (0,∞). Then

T s
p(Rn) = Z s(Rn) ;

see [146, Sect. 1.7.2] and the references given there.

1.4.4 Homogeneous Spaces

Here we make use of the following interpretation. When comparing a class of func-
tions, which is defined modulo polynomials of a certain order, with the spaces
Ȧs,τ

p,q(Rn), then we always associate to an element of the first space the equivalence
class

[ f ] ≡ {g : g = f + p , p is an arbitrary polynomial} .

By means of this interpretation the following relations are known.

(i) We have
Ḟ0

∞,2(R
n) = BMO(Rn) .

(ii) Let s ∈ R, p ∈ (0,∞) and q ∈ (0,∞]. Then

Ḟs,1/p
p,q (Rn) = Ḟs

∞,q(R
n)

with equivalent quasi-norms. In particular,

Ḟ0,1/p
p,2 (Rn) = Ḟ0

∞,2(R
n) = BMO(Rn) .

(iii) Let α ∈ (0,1) if n ≥ 2 and α ∈ (0,1/2) if n = 1. Then we have

Ḟ
α , 1

2− α
n

2,2 (Rn) = Qα(Rn)

in the sense of equivalent norms; see [164].
(iv) Let λ ∈ [0,n + 2). Then

Ḟ0,2λ/n
2,2 (Rn) = L 2,λ (Rn) ;

see [50].

1.5 Notation

At the end of this chapter, we make some conventions on notation.
Throughout this book, C denotes unspecified positive constants, possibly differ-

ent at each occurrence; the symbol X � Y means that there exists a positive constant



18 1 Introduction

C such that X ≤CY , and X ∼Y means C−1Y ≤ X ≤CY. We also use C(γ,β , · · · ) to
denote a positive constant depending on the indicated parameters γ, β , · · · .

The real numbers are denoted by R. Many times we shall use the abbreviations

a+ ≡ max(0,a),

�a� for the integer part of the real number a, and a∗ ≡ a−�a�. The symbol χE is
used to denote the characteristic function of set E ⊂ R

n. If q ∈ [1, ∞] then by q′ we
mean its conjugate index, i. e., 1/q+1/q′ = 1. Further we shall use the abbreviations

p∨q ≡ max{p, q}

and

p∧q ≡ min{p, q}.
When dealing with the classes As,τ

p,q(Rn), then four restrictions for the set of
parameters s, p,q,τ will occur relatively often. They are connected with the
quantities

σp ≡ max{n(1/p−1), 0} and σp,q ≡ max{n(1/min{p,q}−1), 0} , (1.5)

(restrictions for s) and

τs,p ≡ 1
p

+

{
1−(σp+n−s)∗

n if s ≤ σp ,
s−σp

n if s > σp ,
(1.6)

τs,p,q ≡ 1
p

+

{
1−(σp,q+n−s)∗

n if s ≤ σp,q ,
s−σp,q

n if s > σp,q
(1.7)

(restrictions for τ). Also, set N ≡ {1,2, · · ·} and Z+ ≡ N∪ {0}. By C∞
c (Rn) we

denote the set of all infinitely differentiable and compactly supported functions on
R

n. The symbol S (Rn) is used in place of the set of all Schwartz functions ϕ on
R

n, i. e., ϕ is infinitely differentiable and

‖ϕ‖SM ≡ sup
γ∈Zn

+, |γ|≤M
sup
x∈Rn

|∂ γ ϕ(x)|(1 + |x|)n+M+|γ| < ∞

for all M ∈ N. The topological dual of S (Rn), the set of tempered distributions,
will be denoted by S ′(Rn).

For k = (k1, · · · ,kn) ∈ Z
n and j ∈ Z, Q jk denotes the dyadic cube

Q jk ≡ {(x1, · · · ,xn) : ki ≤ 2 jxi < ki + 1 for i = 1, · · · ,n} .

For the collection of all such cubes we use

Q ≡ {Q jk : j ∈ Z, k ∈ Z
n} .
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Furthermore, we denote by xQ the lower left-corner 2− jk of Q = Q jk. When the
dyadic cube Q appears as an index, such as ∑Q∈Q and {·}Q∈Q, it is understood that
Q runs over all dyadic cubes in R

n. For each cube Q, we denote its side length by
l(Q), its center by cQ, and for r > 0, we denote by rQ the cube concentric with Q
having the side length rl(Q). Further, the abbreviation jQ ≡− log2 l(Q) is used.

For j ∈ Z, ϕ ∈ S (Rn) and x ∈ R
n, we set ϕ̃(x) ≡ ϕ(−x),

ϕ̂(x) ≡ Fϕ(x) ≡
∫

Rn
ϕ(ξ )e−ix·ξ dξ ,

ϕ j(x) ≡ 2 jnϕ(2 jx), and

ϕQ(x) ≡ |Q|−1/2ϕ(2 jx− k) = |Q|1/2ϕ j(x− xQ) if Q = Q jk .

For a dyadic cube Q, we shall work also with the L2(Rn)-normalized version

χ̃Q(x) ≡ |Q|−1/2 χQ(x) .

Let E denote a class of tempered distributions. Then E loc denotes the collection of
all f ∈ S ′(Rn) such that the product ϕ · f belongs to E for all test functions ϕ ∈
C∞

c (Rn). Furthermore, if E is in addition quasi-normed, then Eunif is the collection
of all f ∈ S ′(Rn) such that

‖ f ‖Eunif ≡ sup
λ∈Rn

‖ψ( · −λ ) f ( ·)‖E < ∞ .

Here ψ is a nontrivial function in C∞
c (Rn).
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