
Chapter 2
On the Number of Conjugacy Classes
of Symmetries of Riemann Surfaces

As said in the Introduction, under the correspondence between compact Riemann
surfaces and smooth irreducible complex projective algebraic curves, the fact that a
Riemann surface S is symmetric means that the corresponding complex curve C can
be defined over the field R of real numbers. This is why such a symmetry is often
called a real form of C. Symmetries which are non-conjugate in the automorphism
group Aut(S) of S correspond to non-isomorphic real forms of C. In this chapter
we shall pay attention to quantitative results concerning the number of conjugacy
classes of symmetries. We will distinguish cases according to whether the sets of
fixed points of the symmetries are empty or not.

We start with a study of conjugacy classes of involutions in 2-groups at large.

2.1 Conjugacy Classes of Involutions in 2-Groups

Given an abstract group G, it makes sense to say that an involution x ∈ G is a
“symmetry” provided that a concept of orientation in such a group is defined. This
is done in the following definitions.

Definitions 2.1.1. Let G be an abstract group.

(1) G is said to be abstractly orientable if there exists an epimorphism α : G →
Z2 = {±1}. In such a case, α is an orientation of the group G. If an orientation
α is chosen then we say that G is abstractly oriented.

(2) Let α be an orientation of G. An element x ∈ G is orientation preserving
(respectively orientation reversing) with respect to the orientation α if
α(x) = +1 (respectively α(x) = −1).

Examples of orientable groups are provided by proper NEC groups and groups
of automorphisms of symmetric Riemann surfaces.

Lemma 2.1.2. Let G be a 2-group containing a cyclic group ZN = 〈x〉 as a sub-
group of index 2r. Then G has at most 2r+1 − 1 conjugacy classes of involutions.
Furthermore, if G is abstractly oriented and x preserves the orientation then G has
at most 2r conjugacy classes of orientation reversing involutions.
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Proof. Let

ZN = H0

2≤ H1

2≤ H2

2≤ · · · 2≤ Hr−1

2≤ Hr = G

be a subnormal series for G and let xi ∈ Hi \ Hi−1 for i = 1, . . . , r. Then each
element g ∈ G can be uniquely represented as g = xεxε1

1 · · ·xεr
r for some integers

ε ∈ {0, . . . , N − 1} and εi ∈ {0, 1}. Let us denote w = xε1
1 · · ·xεr

r and observe
that there are 2r − 1 non-trivial elements of this form. We shall show that for any
such element w �= 1 there are at most 2 conjugacy classes of involutions among the
elements of the set {w, xw, x2w, . . . , xN−1w}. This will complete the proof of the
first part of the lemma since for w = 1 this set has one involution. Observe that w
may not be an element of order 2 and, furthermore, among these elements there may
not even exist elements of order 2.

Assume then that there are at least two elements xkw and x�w of order 2 and
assume also that k and � are chosen so that k > � and m = k − � is minimal. We
shall show that each involution xnw is conjugate either to xkw or to x�w. We have

1 = (xkw)2 = xm(x�w)2w−1xmw = xmw−1xmw.

So wx−m = xmw and therefore x�+smw has order 2 for each integer s. Moreover,

xsm(x�w)x−sm = x�+2smw, (2.1)

xsm(xkw)x−sm = xk+2smw = x�+(2s+1)mw. (2.2)

Now let xnw be an arbitrary element of order 2. Then n = � + tm + j for some
integers t, j, where 0 ≤ j < m, and since both xnw and x�+tmw have order 2, it
follows by the minimality of m that j = 0. Thus xnw = x�+tmw which, by (2.1)
and (2.2), is conjugate to x�w if t is even, and it is conjugate to xkw if t is odd. This
shows the first part of the lemma.

Assume now that G is abstractly oriented and that x preserves the orientation.
Then half of the 2r elements w = xε1

1 · · ·xεr
r reverses orientation and the other

half preserves it. For each of the 2r−1 orientation reversing ones, the (at most two)
conjugacy classes of involutions in the set {w, xw, x2w, . . . , xN−1w} are the only
ones that reverse the orientation. This shows the second part of the lemma. �	

Let DN be a dihedral group and let x, y ∈ DN be two generating involutions. If
DN is abstractly oriented and x and y reverse the orientation then ZN = 〈xy〉 is a
subgroup of DN of index 2 generated by an orientation preserving element. So, as a
consequence of the above Lemma 2.1.2, we get the following result.

Corollary 2.1.3. Let G be a 2-group containing a dihedral group DN as a sub-
group of index 2r. Then G has at most 2r+2 − 1 conjugacy classes of involutions.
Furthermore if G is abstractly oriented and DN is generated by two involutions
which reverse the orientation then G has at most 2r+1 conjugacy classes of orien-
tation reversing involutions.

The next technical lemma deals with 2-groups of automorphisms of a Riemann
surface. Together with Lemma 2.1.2 and Corollary 2.1.3, it will play a key role in
the sequel.
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Lemma 2.1.4. Let S be a Riemann surface of genus g≥ 2, and let 2r−1 be the
largest power of 2 dividing g−1. Let G be a 2-group of automorphisms of S of order
2t and assume that t ≥ r + 1. Then G contains a cyclic or a dihedral subgroup of
index 2r.

Proof. Let us write S = H/Γ for some surface Fuchsian group Γ and G = Λ/Γ for
some NEC group Λ containing Γ as a normal subgroup. Assume that Λ has signature

s(Λ) = (h;±; [m1, . . . , mν ]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk
)}). (2.3)

We claim that s(Λ) has either a proper period or a link period. In fact, by the
Hurwitz–Riemann formula we have

g − 1
2r−1

= 2t−r

⎛
⎝ηh − 2 + k +

ν∑
i=1

mi − 1
mi

+
k∑

i=1

si∑
j=1

nij − 1
2nij

⎞
⎠

where either η = 1 or η = 2 depending on the sign of s(Λ). Since (g − 1)/2r−1 is
odd and t− r ≥ 1, the expression in brackets cannot be an integer. So there must be
a non-trivial mi or nij , as claimed. Moreover, since G is a 2-group, all periods of
Λ are powers of 2, since otherwise Γ would have elements of finite order. It follows
that mi ≥ 2t−r for some i or nij ≥ 2t−r−1 for some i, j.

Assume first that Λ has a proper period m ≥ 2t−r; in this case the image x in
G of an elliptic generator of Λ of order m is still an element of order m and so
for m′ = m/2t−r, the element xm′

generates a cyclic subgroup of G of index 2r.
Assume now that Λ has a link period n ≥ 2t−r−1; in this case the images c and c′

in G of two consecutive reflections of Λ whose product has order n are involutions,
since otherwise Γ would be a proper NEC group. Moreover, for n′ = n/2t−r−1, the
element (cc′)n′

has order 2t−r−1 and so c and (cc′)n′
generate a dihedral subgroup

of G of index 2r. This completes the proof. �	
Remark 2.1.5. The proof shows that in fact G contains a cyclic subgroup gener-
ated by an orientation preserving element or a dihedral subgroup generated by two
orientation reversing elements, of index 2r in both cases.

Remark 2.1.6. Let G+ denote the subgroup of G consisting of its orientation pre-
serving elements. With the notations in the above proof of Lemma 2.1.4, the
existence of a proper period or a link period in the signature of Λ shows that G+

acts on S with fixed points.

2.2 Symmetries with Non-Empty Set of Fixed Points

The quantitative study of conjugacy classes of symmetries started with a seminal
result of Natanzon [95] who proved, using topological methods, that a complex
algebraic curve of genus g ≥ 2 has at most 2(

√
g + 1) non-isomorphic real forms
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with real points. He also showed that this bound is attained for infinitely many values
of g, those being of the form (2n − 1)2. Here we go further, namely, we determine
the maximal number of conjugacy classes of symmetries with fixed points that a
compact Riemann surface S of genus g ≥ 2 can admit.

Assume that σ1, . . . , σk are representatives of the conjugacy classes of symme-
tries of S. Since each σi belongs to a Sylow 2-subgroup of Aut(S) and all Sylow
2-subgroups are conjugate, we may assume that all these symmetries generate a
2-group G. We now establish a fundamental result on this topic, whose first proof
appeared in [23].

Theorem 2.2.1. Let S be a Riemann surface of genus g ≥ 2 and let us write g =
2r−1u+1 with u odd. Then the maximum number of non-conjugate symmetries with
fixed points that S admits is 2r+1. Furthermore, this bound is attained if and only if
u ≥ 2r+1 − 3.

Proof. Let k be the number of conjugacy classes of symmetries with fixed points
of S. As we observed above, we can choose representatives of these classes such
that they generate a 2-group, say of order 2t. If t ≤ r then k < 2t ≤ 2r and so the
first part of the statement is proved in this case. If t ≥ r + 1 then the first part is a
direct consequence of Lemma 2.1.4, Corollary 2.1.3 and Lemma 2.1.2.

Let now S = H/Γ be a Riemann surface with the maximum number 2r+1 of
conjugacy classes of symmetries with fixed points and let G be a 2-group generated
by 2r+1 representatives of these classes. Let us write G = Λ/Γ for some NEC group
Λ with signature (2.3). Let C1, . . . , Cn be the different period cycles of Λ involving
these symmetries, and assume that C1, . . . , Cm are non-empty and Cm+1, . . . , Cn

are empty. Observe that n > 0 because they are symmetries with fixed points. As
each empty period cycle involves at most one symmetry we see that C1, . . . , Cm

involve at least 2r+1 − (n−m) symmetries. As each non-empty period cycle Ci of
length si involves at most si non-conjugate symmetries, see Remark 1.1.6, we get

s1 + · · · + sm ≥ 2r+1 − n + m.

We shall show that

Area(Λ) ≥ 2π

(
2r+1 − 3

4
− 2r

|G|
)

.

Observe that each term (1/2)(1 − 1/nij) occurring in the formula of Area(Λ) is
not smaller than 1/4 because nij ≥ 2.

Since G is generated by 2r+1 orientation reversing involutions, we see that |G| ≥
2r+2. In particular, we may repeat the proof of Lemma 2.1.4 to show that Λ has a
proper period ≥ |G|/2r or a link period ≥ |G|/2r+1. In the first case

Area(Λ) ≥ 2π

(
n − 2 +

(
1 − 2r

|G|
)

+
s1 + · · · + sm

4

)

≥ 2π

(
2r+1 + 3n + m − 4

4
− 2r

|G|
)

> 2π

(
2r+1 − 3

4
− 2r

|G|
)

.
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If Λ has a link period ≥ |G|/2r+1 then m > 0 and

Area(Λ) ≥ 2π

(
n − 2 +

s1 + · · · + sm − 1
4

+
1
2
− 2r

|G|
)

≥ 2π

(
2r+1 + 3n + m − 7

4
− 2r

|G|
)

≥ 2π

(
2r+1 − 3

4
− 2r

|G|
)

.

So, in both cases,

4π(g − 1) = Area(Γ) = |G|Area(Λ) ≥ 2π

(
2r+1 − 3

4
− 2r

|G|
)
|G|.

Since |G| ≥ 2r+2 we get

g − 1 ≥ (2r+1 − 3)
|G|
8

− 2r−1 ≥ (2r+1 − 3)2r−1 − 2r−1 = 2r−1(2r+1 − 4).

Therefore u = (g − 1)/2r−1 ≥ 2r+1 − 4. However, u is odd by assumption and
consequently u ≥ 2r+1 − 3.

Conversely, let g = 2r−1u + 1 with u ≥ 2r+1 − 3 and let s = u + 3. Con-
sider a maximal NEC group Λ with signature (0; +; [−]; {(2, s+1. . . , 2)}), and let
{c0, . . . , cs+1} be a canonical set of generators of Λ. Let us consider the group
G = Zr+2

2 = 〈x1〉 ⊕ · · · ⊕ 〈xr+2〉 and let a1, . . . , a2r+1 be the involutions in G
whose length in x1, . . . , xr+2 is odd. We define a homomorphism θ : Λ → G by
choosing θ(ci) ∈ {a1, . . . , a2r+1} for 0 ≤ i ≤ s + 1 so that θ(ci) �= θ(ci+1) for
0 ≤ i ≤ s, and such that θ is in fact an epimorphism. Observe that this is indeed
possible because s ≥ r + 1.

Clearly, ker θ is a surface Fuchsian group. The orbit space S = H/ ker θ is a
Riemann surface of genus 2r−1u + 1 (by the Hurwitz–Riemann formula) having
G as its full group Aut(S) of automorphisms (by the maximality of Λ). Since the
image under θ of each canonical reflection ci is a symmetry with fixed points we
see that S has 2r+1 non-conjugate symmetries with fixed points. �	

Every even value of g can be written as 2r−1u + 1 with r = 1 and u odd. In this
way we obtain the main result in [53] as a corollary of Theorem 2.2.1.

Corollary 2.2.2. A Riemann surface of even genus g has at most 4 non-conjugate
symmetries with fixed points. Furthermore this bound is attained for every even
genus g ≥ 2.
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Remark 2.2.3. Given an arbitrary integer g ≥ 2, there is an integer r ≥ 1 and an
odd integer u ≥ 1 such that g = 2r−1u + 1. Fix r ≥ 1 and consider all values of g
of this form. Observe that the numbers g−1 are just the solutions of the congruence
x ≡ 2r−1 (mod 2r). Suppose that u ≥ 2r+1 − 3. Then

g ≥ 2r−1(2r+1 − 3) + 1 = 22r − 3 · 2r−1 + 1 > 22r − 4 · 2r−1 + 1 = (2r − 1)2.

Henceforth 2(
√

g + 1) > 2r+1 and thus, for the values of g corresponding to
u ≥ 2r+1 − 3, the bound 2(

√
g + 1) obtained by Natanzon in [95] for the number

of non-conjugate symmetries with fixed points is not sharp. On the other hand, if
u ≤ 2r+1 − 5 then

g ≤ 2r−1(2r+1 − 5) + 1 = 22r − 5 · 2r−1 + 1 < 22r − 4 · 2r−1 + 1 = (2r − 1)2.

Hence 2(
√

g + 1) < 2r+1 in this case and so, for the values of g corresponding to
u ≤ 2r+1 − 5, Natanzon’s bound is better than the one in Theorem 2.2.1. We now
calculate sharp bounds for the remaining values of g.

Notation 2.2.4. For each integer g ≥ 2 we denote by μf (g) the maximal number of
conjugacy classes of symmetries with fixed points that a genus g Riemann surface
can admit.

With this notation, Theorem 2.2.1 can be stated as

μf (g) = 2r+1 for g = 2r−1u + 1 with u odd and u ≥ 2r+1 − 3.

Next we shall calculate the remaining values of this function, as stated in [23]. To
that end we fix r ≥ 2 (since the case r = 1 is solved in Corollary 2.2.2) and consider
the function

f(s) =
2s−4 − 1

2r−s
,

which is strictly increasing for s > 3. Since f(4) = 0 and f(r + 3) = 2r+2 − 8
we see that for each odd positive integer u < 2r+2 − 7 there exists a unique integer
s ∈ {4, . . . , r + 2} such that f(s) < u ≤ f(s + 1), that is,

2s−4 − 1
2r−s

< u ≤ 2s−3 − 1
2r−s−1

.

The next theorem shows that μf (g) depends on this value of s; in fact, it shows
that μf (g) = min{2r−s+2u + 4, 2s−1}.

Theorem 2.2.5. Let g = 2r−1u + 1, where r ≥ 2 and u < 2r+2 − 7 is odd. Let s
be defined as above. Then
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μf (g) =

⎧⎪⎪⎨
⎪⎪⎩

2r−s+2u + 4 if
2s−4 − 1

2r−s
< u ≤ 2s−3 − 1

2r−s
;

2s−1 if
2s−3 − 1

2r−s
< u ≤ 2s−2 − 2

2r−s
.

Proof. Let S be a Riemann surface of genus g = 2r−1u + 1 where u < 2r+2 − 7
such that S has k non-conjugate symmetries with fixed points. First we shall show
that k is not greater than the proposed value for μf (g). As before, by Sylow the-
ory, we may assume that the k symmetries generate a 2-group G, say of order 2t.
Observe that the product of two of these symmetries is an orientation preserving
element of G which generates a cyclic subgroup of index ≤ 2t−1. So Lemma 2.1.2
yields

k ≤ 2t−1. (2.4)

Let us write S = H/Γ and G = Λ/Γ for some surface Fuchsian group Γ and a
proper NEC group Λ containing Γ as a normal subgroup. It is easy to see, using argu-
ments similar to those in the proof of Theorem 2.2.1, that Area(Λ) ≥ π(k − 4)/2.
So, by the Hurwitz–Riemann formula, 4π(g − 1) = |G|Area(Λ) ≥ 2t−1π(k − 4),
which gives

k ≤ 2r−t+2u + 4. (2.5)

Let us suppose first that

(2s−4 − 1)/2r−s < u ≤ (2s−3 − 1)/2r−s. (2.6)

If t ≥ s then k ≤ 2r−s+2u + 4 by (2.5). If t < s then k ≤ 2t−1 ≤ 2s−2 by (2.4),
and so k < 2r−s+2u + 4, because 2s−2 < 2r−s+2u + 4 by (2.6).

We now suppose that

(2s−3 − 1)/2r−s < u ≤ (2s−2 − 2)/2r−s. (2.7)

If t ≥ s + 1 then k ≤ 2r−s+1u + 4 ≤ 2s−1, where we have used (2.5) for the first
inequality and (2.7) for the second. If t ≤ s then k ≤ 2t−1 ≤ 2s−1 by (2.4).

To finish the proof we consider an arbitrary integer s ∈ {4, . . . , r + 2} and an
arbitrary odd integer u in the range

(2s−4 − 1)/2r−s < u ≤ (2s−2 − 2)/2r−s.

Let G = Zs
2 = 〈x1〉 ⊕ · · · ⊕ 〈xs〉. Let A be the set consisting of the 2s−1 involu-

tions of G which can be written as words of odd length in x1, . . . , xs. Let us write
k = 2r−s+2u + 4 (k ≥ 5) and let Λ be a maximal NEC group with signature
(0; +; [−]; {(2, k. . ., 2)}). Observe that k > s because u > (2s−4 − 1)/2r−s. Hence
there exists an epimorphism θ : Λ → G such that the image θ(ci) of each canonical
reflection belongs to A and θ(ci) �= θ(ci+1). In addition, if k ≤ 2s−1 then θ can
be defined so that the k canonical reflections c1, . . . , ck are mapped onto distinct
elements of A.
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Then ker θ is a surface Fuchsian group and the orbit space S = H/ ker θ is a
Riemann surface of genus 2r−1u + 1 having G as its full group of automorphisms.
Now, if k ≤ 2s−1, which happens if and only if u ≤ (2s−3 − 1)/2r−s, then {θ(ci) :
i = 1, . . . , k} are representatives of the conjugacy classes of symmetries with fixed
points in S. On the other hand, if k > 2s−1, which happens if and only if u >
(2s−3 − 1)/2r−s, then the 2s−1 elements in A are representatives of the conjugacy
classes of symmetries with fixed points in S. �	
Remark 2.2.6. The values of u in the range 2r+1 − 3 ≤ u < 2r+2 − 7 are covered
by both Theorems 2.2.1 and 2.2.5. Let us check that the formulae of μf (g) given
by these theorems coincide for these values of u. First, Theorem 2.2.1 gives directly
μf (g) = 2r+1. To apply the formula of Theorem 2.2.5 we observe that the value of
the parameter s corresponding to those u in the range 2r+1 − 3 ≤ u < 2r+2 − 7 is
s = r + 2. So,

μf (g) = min{2r−s+2u + 4, 2s−1} = min{u + 4, 2r+1} = 2r+1,

because u + 4 ≥ 2r+1 + 1.

Example 2.2.7. The function g �→ μf (g) is not increasing because μf (g) = 4 for
all even values of g (see Corollary 2.2.2). However, if we write g = 2r−1u + 1 and
fix a value of r then the function u �→ μf (2r−1u + 1) is increasing (but not strictly)
as a function of u. It attains the maximal value 2r+1 for u = 2r+1 − 3 and remains
constant from that moment onwards. We illustrate this in Table 2.1, where the pairs
(g, μf (g)) are computed for small values of r.

Table 2.1 Values of the pair (g, µf (g)) where
g = 2r−1u + 1 with u odd for small values of r

r = 1 r = 2 r = 3 r = 4

(2, 4) (3, 5) (5, 6) (9, 8)

(4, 4) (7, 7) (13, 8) (25, 10)

(6, 4) (11, 8) (21, 9) (41, 14)

(8, 4) (15, 8) (29, 11) (57, 16)

(10, 4) (19, 8) (37, 13) (73, 16)

(12, 4) (23, 8) (45, 15) (89, 16)

(14, 4) (27, 8) (53, 16) (105, 17)

(18, 4) (31, 8) (61, 16) (121, 19)

(20, 4) (35, 8) (69, 16) (137, 21)

(22, 4) (39, 8) (77, 16) (153, 23)

(24, 4) (43, 8) (85, 16) (169, 25)

(26, 4) (47, 8) (93, 16) (185, 27)

(28, 4) (51, 8) (101, 16) (201, 29)

(30, 4) (55, 8) (109, 16) (217, 31)

(32, 4) (59, 8) (117, 16) (233, 32)

(34, 4) (63, 8) (125, 16) (249, 32)
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2.3 Symmetries with Empty Set of Fixed Points

In this section we shall deal with symmetries without fixed points. These symme-
tries correspond to the so called purely imaginary curves, that is, complex algebraic
curves which can be defined over the reals but have no R-rational points.

For an arbitrary value of g ≥ 2, let μi(g) denote the maximal number of con-
jugacy classes of fixed point free symmetries that can be admitted by a Riemann
surface S of genus g which has no symmetry with fixed points.

Theorem 2.3.1. Let us write g = 2r−1u+1 with u odd. Then μi(g) ≤ 2r. Further-
more, this bound is attained whenever u ≥ 2r + 1.

Proof. Let S be a compact Riemann surface of genus g having no symmetry with
fixed points and let G be a 2-group of automorphisms of S generated by repre-
sentatives of all the conjugacy classes of fixed point free symmetries. Let us write
S = H/Γ and G = Λ/Γ, where Γ has signature (g;−) and Λ is a proper NEC
group. Since S has no symmetry with fixed points, Λ contains no reflection, and
so its signature is (h;−; [m1, . . . , mv]; {−}) for some h ≥ 1. Let 2s be the largest
proper period in s(Λ), if any (observe that each proper period mi is a power of 2).
Then, by the Hurwitz–Riemann formula, 4π(g − 1) = |G|2π(h − 2 + m/2s) for
some non-negative integer m. Since g − 1 = 2r−1u we get

u =
|G|
2r

(
h − 2 +

m

2s

)
=

|G|
2r+s

(2s(h − 2) + m) .

This yields that the order of G divides 2r+s because u is odd. The image in G of the
elliptic element of order 2s is an orientation preserving element which generates a
cyclic subgroup of index 2r. Hence μi(g) ≤ 2r by Lemma 2.1.2.

To prove the second part, let u ≥ 2r + 1 and let Λ be a maximal NEC group
with signature (h;−; [2, 2, 2]; {−}), where h = (u + 1)/2 ≥ r + 1. Take G =
Zr+1

2 with generating basis {z1, . . . , zr+1}, and let θ : Λ → G be the epimorphism
given by θ(di) = zi for 1 ≤ i ≤ r + 1, θ(di) = z1 for r + 2 ≤ i ≤ h and
θ(x1) = z1z2, θ(x2) = z2z3, θ(x3) = z1z3. Then Γ = ker θ is a surface Fuchsian
group and X = H/Γ is a Riemann surface of genus g = 2r−1u + 1, without
symmetries with fixed points and admitting 2r conjugacy classes of fixed point free
symmetries. �	

The results are more precise if we restrict our considerations to Riemann surfaces
whose full group Aut(S) acts without fixed points, that is, no automorphism of S
(either analytic or antianalytic) fixes points in S. These are the surfaces S for which
the normal covering S → S/ Aut(S) is unramified.

For each g ≥ 3, let μw
i (g) denote the maximal number of conjugacy classes of

symmetries that a genus g Riemann surface whose full group Aut(S) acts without
fixed points may admit. Observe that μw

i (g) does not make sense for g = 2 since all
surfaces of genus 2 are hyperelliptic and the hyperelliptic involution fixes points.
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Theorem 2.3.2. Let us write g = 2r−1u + 1 with u odd. Then μw
i (g) ≤ 2r−1.

Assume that g /∈ {3, 5}. Then the bound is attained if and only if u ≥ r − 2. For
g ∈ {3, 5} we have μw

i (3) = 1 and μw
i (5) = 2.

Proof. Let S be a genus g Riemann surface such that Aut(S) acts fixed point freely
and let G be a 2-group of automorphisms of S generated by representatives of the
conjugacy classes of its symmetries. Let us write S = H/Γ and G = Λ/Γ, where
Γ has signature (g;−) and Λ is a proper NEC group. Since the automorphisms in
G act fixed point freely, the group Λ contains no reflection and no elliptic element;
hence s(Λ) = (h;−; [−]; {−}) for some integer h > 2.

By the Hurwitz–Riemann formula, 2π|G|(h−2) = 4π(g−1) = 2r+1πu, which
implies that |G| divides 2r because G is a 2-group and u is odd. The product of
two symmetries generates a dihedral group of index ≤ 2r−2 and so Corollary 2.1.3
yields μw

i (g) ≤ 2r−1.
Assume that g /∈ {3, 5}. If this bound is attained then |G| = 2r, h − 2 = u

and, by Lemma 2.1.2, no element of G has order greater than two. So G = Zr
2.

Moreover, since G is generated by the cosets Γdi, where d1, . . . , dh form a set of
canonical generators of Λ, it follows that h ≥ r and so u ≥ r − 2.

Conversely, if u ≥ r − 2 then u + 2 ≥ 4 since otherwise g = 3 or 5. So
we may take a maximal NEC group Λ with signature (u + 2;−; [−]; {−}). Let
{d1, . . . , du+2} be a set of canonical generators of Λ. Take G = Zr

2 with generating
basis {z1, . . . , zr}, and let θ : Λ → G be the epimorphism induced by the assign-
ment θ(di) = zi for 1 ≤ i ≤ r and θ(dj) = z1 for r + 1 ≤ j ≤ u + 2. Then
ker θ is a surface Fuchsian group and S = H/ ker θ is a Riemann surface of genus
g = 2r−1u+1 with exactly 2r−1 conjugacy classes of symmetries whose full group
Aut(S) acts fixed point freely.

If the bound were attained for g = 3 or g = 5 then, with the above notations,
s(Λ) = (3;−; [−]; {−}), which is not a maximal signature. Indeed, according to the
list of normal pairs of NEC signatures given in [12], for each Λ with the above sig-
nature, there exists an NEC group Λ′ with signature s(Λ′) = (0; +; [2, 2, 2]; {(−)})
containing Λ as a normal subgroup of index 2. Up to automorphisms in Λ and
Λ′, there is a unique embedding of Λ in Λ′, given by d1 = x1c, d2 = cx2 and
d3 = x2cx3x2, see [12, Proposition 4.8], where {x1, x2, x3, c} is a set of canonical
generators of Λ′. Using this embedding it is easy to see that any smooth epimor-
phism θ : Λ → G, where G = Z2

2 if g = 3 and G = Z3
2 if g = 5, can be extended

to a smooth epimorphism θ′ : Λ′ → G′ where G′ = Z3
2 if g = 3 and G′ = Z4

2

if g = 5. Hence ker θ = ker θ′ and so the Riemann surface H/ ker θ = H/ ker θ′

admits automorphisms with fixed points, namely, the images under θ′ of the elliptic
elements of Λ′. This is a contradiction and so μw

i (3) < 2 and μw
i (5) < 4.

Let us consider now a maximal NEC group Λ with signature (4;−; [−]; {−})
and define the epimorphisms θ1 : Λ → Z2 = 〈σ〉 by θ1(di) = σ for 1 ≤ i ≤ 4 and
θ2 : Λ → Z2

2 = 〈σ1, σ2〉 by θ2(d1) = θ2(d2) = σ1 and θ2(d3) = θ2(d4) = σ2.
The group Aut(Sj) of the Riemann surface Sj = H/ ker θj acts fixed point freely
and has one conjugacy class of symmetries if j = 1 and two if j = 2. This yields
μw

i (3) = 1 because S1 has genus 3, and μw
i (5) ≥ 2 because S2 has genus 5.
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We finally show that μw
i (5) < 3. Suppose, to get a contradiction, that there exists

a Riemann surface S = H/Γ of genus 5 with three conjugacy classes of symme-
tries and let G be a 2-group generated by representatives of them. Observe that
|G| ≥ 23. Writing G = Λ/Γ and using that G acts fixed point freely, we get, by the
Hurwitz–Riemann formula, that s(Λ) = (3;−; [−]; {−}) and |G| = 8. Then
G = Z3

2 and we may repeat the above arguments to show that the action of G
extends to a group G′ which does not act fixed point freely. �	

2.4 Symmetries of Surfaces Admitting a Fixed Point
Free Symmetry

In the previous sections we have studied either collections of symmetries having
fixed points or collections of fixed point free symmetries of surfaces that do not
admit symmetries with fixed points. Now we shall study hybrid configurations. In
this section we calculate the maximal number of conjugacy classes of symmetries
that can be admitted by a Riemann surface S of genus g which has a fixed point free
symmetry. The computation of this bound was also carried out in [18]. It turns out
that this bound is the same as in Theorem 2.2.1 (for symmetries with fixed points)
but now it is attained for a wider range of genera.

Theorem 2.4.1. Let S be a compact Riemann surface of genus g admitting a fixed
point free symmetry. Let us write g = 2r−1u + 1 with u odd. Then the number of
conjugacy classes of symmetries of S is at most 2r+1. Furthermore this bound is
attained whenever u ≥ r − 2.

Proof. Let G be a 2-group of automorphisms of S generated by representatives
of the conjugacy classes of symmetries of S. Let us write |G| = 2t. Clearly, G
has at most 2t−1 conjugacy classes of symmetries. If t ≥ r + 1 (otherwise there
is nothing to prove) then Lemma 2.1.4 yields that G contains either a cyclic or a
dihedral subgroup of index 2r. In the first case the number of conjugacy classes of
symmetries in G is ≤ 2r by Lemma 2.1.2 (see also Remark 2.1.5) and ≤ 2r+1 in the
second one by Corollary 2.1.3. Therefore S has at most 2r+1 conjugacy classes of
symmetries. In fact, the above shows that this bound is attained only if G contains
a dihedral subgroup of index 2r and the subgroup G+ of orientation preserving
elements acts with fixed points on S, see Remark 2.1.6.

Suppose now that u ≥ r − 2. Let s = u + 3 ≥ 4 and take a maximal NEC
group Λ with signature (0; +; [−]; {(2, s+1. . . , 2)}). Let {c0, . . . , cs+1} be a canonical
set of generators for Λ and let G = Zr+2

2 = 〈x1〉 ⊕ · · · ⊕ 〈xr+2〉. Since s ≥ r + 1,
the assignment ci �→ xi for 1 ≤ i ≤ s + 1, where the indices of xi are modulo
r + 1, induces an epimorphism θ : Λ → G. In fact, ker θ is a surface Fuchsian
group and so S = H/Γ is a Riemann surface; its genus equals 2r−1u + 1 and its
full automorphism group Aut(S) = Zr+2

2 has 2r+1 symmetries which are pairwise
non-conjugate. In addition, S admits fixed point free symmetries since, for instance,
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the image under θ of the glide reflection c1c2c3 is one of them. Hence the bound
2r+1 is achievable when u ≥ r − 2. �	

Recall from Theorem 2.2.1 that 2r+1 is also the upper bound for the number
of conjugacy classes of symmetries with fixed points. As a consequence of
Theorems 2.2.1 and 2.4.1 we get the following.

Corollary 2.4.2. The maximum number of non-conjugate symmetries (of any type)
that a Riemann surface of genus g may admit is 2r+1, where 2r−1 is the largest
power of 2 dividing g − 1.

Corollary 2.4.3. A Riemann surface with the maximum number of non-conjugate
symmetries with fixed points admits no symmetry with empty set of fixed points.
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