
2

Combinatorial Optimization and
Computational Complexity

Combinatorial optimization problems arise in several applications. Examples
are the task of finding the shortest path from Paris to Rome in the road net-
work of Europe or scheduling exams for given courses at a university. In this
chapter, we give a basic introduction to the field of combinatorial optimiza-
tion. Later on, we discuss how to measure the computational complexity of
algorithms applied to these problems and point out some general limitations
for solving difficult problems.

2.1 Combinatorial Optimization

Optimization problems can be divided naturally into two categories. The first
category consists of problems with continuous variables. Such problems are
well known from school courses on mathematics. A simple example consists of
finding the minimum of the function f : R → R with f(x) = x2. It is obvious
that x0 = 0 is the unique solution for this problem. More complicated prob-
lems are often tackled by computing the derivatives, using Newton methods
or linear programming techniques. As this book deals with combinatorial op-
timization problems, we will not go into detail the different methods to tackle
continuous optimization problems, and refer the interested reader to Nocedal
and Wright (2000).

In the case of discrete variables we are dealing with discrete optimiza-
tion. When speaking of combinatorial optimization problems, most people
have “natural” discrete optimization problems in mind, such as computing
shortest paths or scheduling different jobs on a set of available machines. In a
combinatorial optimization problem, one aims at either minimizing or maxi-
mizing a given objective function under a given set of constraints.

A problem consists of a general question that has to be answered and is
given by a set of input parameters. An instance of a problem is given by the
problem together with a specified parameter setting. Formally, a combinatorial
optimization problem can be defined as a triple (S, f, Ω), where S is a given

F. Neumann, C. Witt, Bioinspired Computation
in Combinatorial Optimization, Natural Computing Series,
DOI 10.1007/978-3-642-16544-3 2, © Springer-Verlag Berlin Heidelberg 2010

9

http://dx.doi.org/10.1007/978-3-642-16544-3_2

10 2 Combinatorial Optimization and Computational Complexity

Fig. 2.1. Example graph G

search space, f is the objective function, which should be either maximized or
minimized, and Ω is the set of constraints that have to be fulfilled to obtain
feasible solutions. The goal is to find a globally optimal solution, which is in the
case of a maximization problem a solution s∗ with the highest objective value
that fulfills all constraints. Similarly, in the case of minimization problems,
one tries to achieve a smallest objective value under the condition that all
constraints are fulfilled.

Throughout this book, we consider many combinatorial optimization prob-
lems on graphs. A directed graph G is a pair G = (V, E), where V is a finite
set and E is a binary relation on V . The elements of V are called vertices. E
is called the edge set of G and its elements are called edges. For an illustration
see Figure 2.1.

We use the notation e = (u, v) for an edge in a directed graph. Note that
self-loops that are edges of the kind (u, u) are possible. In an undirected graph
G = (V, E), no self-loops are possible. The edge set E consists of unordered
pairs of vertices in this case, and an edge is a set {u, v} consisting of two
distinct vertices u, v ∈ V . Note that one can think of an undirected edge
{u, v} as two directed edges (u, v) and (v, u). If (u, v) is an edge in a directed
graph G = (V, E) we say that v is adjacent to vertex u. This leads to the
representation of graphs by adjacency matrices, which will be discussed later
in greater detail. A path of length k from a vertex v0 to a vertex vk in a graph
G = (V, E) is a sequence v0, v1, . . . , vk of vertices such that (vi−1, vi) ∈ E, 1 ≤
i ≤ n, holds. Note that a path implies a sequence of directed edges. Therefore,
it is sometimes useful to denote a path (v0, v1, . . . , vk) by its sequence of
directed edges (v0, v1), (v1, v2), . . . , (vk−1, vk).

The graph G in Figure 2.1 consists of the vertex set

2.1 Combinatorial Optimization 11

Fig. 2.2. Single source shortest path tree for G and s = v1

V = {v1, v2, v2, v3, v4, v5}

and the edge set
E = {e1, e2, e3, e4, e5, e6, e6, e7, e8}

where e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v1, v4}, e4 = {v2, v3}, e5 = {v2, v5},
e6 = {v3, v4}, e7 = {v3, v5}, and e8 = {v4, v5}. In addition, there is a weight
function w : E → N assigning weights to the edges, i.e., w(e1) = w(e4) =
w(e6) = 3, w(e2) = w(e7) = 1, and w(e3) = w(e5) = w(e8) = 4. Clearly,
(v1, v2, v3, v5) is a path in G whereas (v1, v5, v2) is not as there is no edge
from v1 to v5.

There are many well-known combinatorial optimization problems on weigh-
ted graphs. We want to introduce two basic problems in the following. In the
case of the single source shortest path problem, an undirected connected graph
G = (V, E) with positive weights on the edges is given. The goal is to com-
pute from a designated vertex s ∈ V the shortest paths to all other vertices of
V \{s}. The solution of this problem can be given by a tree rooted at s which
contains the shortest paths. Considering the graph G of Figure 2.1 and s = v1,
a shortest path tree is shown in Figure 2.2. Another well-known combinatorial
optimization problem on undirected connected graphs with positive weights
is the minimum spanning tree problem. Here, one searches for a connected
subgraph of the given graph G that has minimal cost. As the edge weights are
positive, such a graph does not contain cycles, i.e., it is a tree. Considering
again the graph G of Figure 2.1, a minimum spanning tree of G is given in
Figure 2.3.

Other important problems on graphs are covering problems. In the case of
the so-called vertex cover problem for a given undirected graph G = (V, E),

12 2 Combinatorial Optimization and Computational Complexity

Fig. 2.3. Minimum spanning tree of G

one searches for a minimal subset of vertices V ′ ⊆ V such that each edge
e ∈ E contains at least one vertex of V , i.e., ∀e ∈ E : e ∩ V ′ �= ∅ holds.

Another class of combinatorial optimization problems that has been widely
examined in the literature is scheduling problems. Here, n jobs are given
that have to be processed on m ≥ 1 machines. Associated with each job j,
1 ≤ j ≤ n, is usually a processing time pj . The processing time need not be
the same for each machine. There are variants of scheduling problems where
the processing time may depend on the machine by which it is processed.
Often, also a specific due date for each job is given. Consider the following
simple scheduling problem on two machines. Given are n jobs and for each
job j a processing time pj which holds independently of the chosen machine.
The goal is to find an assignment of the jobs to the two machines such that
the overall completion time is minimized. Let x ∈ {0, 1}n be a decision vector.
Job j is on machine 1 iff xj = 0 holds and on machine 2 iff xj = 1 holds. The
goal is to minimize

max

{
n∑

i=1

pjxj ,

n∑
i=1

pj(1 − xj)

}
.

2.2 Computational Complexity

In contrast to the description of a problem, which is usually short, the search
space is most of the time exponential in the problem dimension. In addition,
for a lot of combinatorial optimization problems, one cannot hope to come up

2.2 Computational Complexity 13

with an algorithm that produces for all problem instances an optimal solu-
tion within a time bound that is polynomial in the problem dimension. The
performance measure most widely used to analyze algorithms is the time an
algorithm takes to present its final answer. Time is expressed in terms of num-
ber of elementary operations such as comparisons or branching instructions
(Papadimitriou and Steiglitz, 1998). The time an algorithm needs to give the
final answer is analyzed with respect to the input size. The input of a combi-
natorial optimization problem is often a graph or a set of integers. This input
has to be represented as a sequence of symbols of a finite alphabet. The size
of the input is the length of this sequence, that is, the number of symbols in
it.

In this book, we are dealing with combinatorial optimization problems.
Often we are considering a graph G = (V,E) with n vertices and m edges and
are searching for a subgraph G′ = (V ′, E′) of the given one that fulfills given
properties.

One approach to represent a graph is to do it by an adjacency matrix
AG = [aij], where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. This matrix
has n2 entries, i.e., the number of entries is quadratic with respect to the
number of vertices. An entry aij = 1 means that there is an edge from vi to
vj and aij = 0 holds if this is not the case. Note that the adjacency matrix
of a given undirected graph is symmetric. An undirected graph may have up
to

(
n
2

)
= Θ(n2) edges. However, if we are considering so-called sparse graphs,

the number of edges is far less than
(
n
2

)
.

In the case of sparse graphs, it is better to represent a given graph by so-
called adjacency lists. Here, for each vertex v ∈ V we record a set A(v) ⊆ V
of vertices that are adjacent to it. The size of the representation is given by
the sum of the length of lists. As each edge contributes 2 to this total length,
we have to write down 2m elements. Another factor which effects the total
length of the representation is how to encode the vertices. Our alphabet has
finite size. Assume the alphabet is the set {0, 1}. Therefore we need Θ(log n)
bits to encode one single vertex. This implies that we need Θ(m log n) bits
(or symbols) to represent the graph G. In practice we say that a graph G can
be encoded in Θ(m) space, which seems to be a contradiction to the previous
explanation. The reason is that computers treat all integers in their range
the same. Here the same space is needed to store small integers such as 5 or
large integers such as 312. We assume that graphs are considered where the
number of vertices is within the integer range of the computer. This range
is in most cases 0 to 231, which means that integers are represented by 32
bits. Therefore Θ(m) is a reasonable approximation of the size of a graph and
analyzing graph algorithms with respect to m is accepted in practice. In most
cases both parameters n and m are taken into account when analyzing the
complexity of a graph algorithm.

Considering graph algorithms where we can bound the runtime by a poly-
nomial in n and m, we obviously get a polynomial-time algorithm. We have to
be careful when the input includes numbers. Let N(I) be the largest integer

14 2 Combinatorial Optimization and Computational Complexity

that appears in the input. An algorithm A is called pseudo-polynomial if it is
polynomial in the input size |I| and N(I). Note that N(I) can be encoded by
Θ(log(N(I))) bits. Therefore a function that is polynomial in |I| and N(I) is
not necessarily polynomial in the input size. Often the input consists of small
integers. In the case where N(I) is bounded by a polynomial in |I|, A is a
polynomial-time algorithm.

An important issue that comes up when considering combinatorial opti-
mization problems is the classification of difficult problems (Papadimitriou
and Steiglitz, 1998). To distinguish between easy and difficult problems, one
considers the class of problems that are solvable by a deterministic Turing
machine in polynomial time and problems that are solvable by a nondeter-
ministic Turing machine in polynomial time. We do not want to formalize
the characterization of the classes P and NP via Turing machines and prefer
to outline the characteristics and notions connected with these classes at a
more intuitive level. This leads to a straightforward definition to characterize
problems that belong to P .

Definition 2.1. A problem is in P iff it can be solved by an algorithm in
polynomial time.

Problems in P can therefore be solved in polynomial time by using an
appropriate algorithm. Examples of problems belonging to this class are the
single source shortest path problem and the minimum spanning tree problem
introduced in Section 2.1.

A class that is intuitively associated with hard problems is called NP .
Typically, NP is restricted to so-called decision problems, i.e., problems whose
output is either YES or NO. This restriction has a technical background and
captures the essentials of the problems without simplifying them too much.

Definition 2.2. A decision problem is in NP iff any given solution of the
problem can be verified in polynomial time.

For problems in NP , it is therefore not necessary that a solution be com-
putable in polynomial time. It is only necessary that we can verify the solution
of the problem in polynomial time. Therefore P ⊆ NP holds (slightly abusing
notation by restricting P to decision problems), and it is widely assumed that
P �= NP.

Consider the following decision variant of the vertex cover problem. The
question is whether a given graph G = (V,E) contains a vertex cover of at
most k vertices. Given a solution x we can easily check whether each edge is
covered by x. This can be done in linear time by examining each edge at most
once. Additionally, we can count the number of vertices chosen by x in linear
time and therefore verify whether x is a vertex cover with at most k vertices
in polynomial time.

Many optimization and decision problems, including the vertex cover prob-
lem, are at least as difficult as any problem in NP . Such problems are called

2.2 Computational Complexity 15

NP -hard. Showing that a problem is NP -hard is usually done by giving a
polynomial-time reduction from an NP -hard problem to the considered prob-
lem. This reduction involves a transformation of the known NP -hard problem
to the considered one, which has to be done in polynomial time. Such a re-
duction links the considered problem to the known NP -hard problem in such
a way that iff the considered problem can be solved in polynomial time also
the NP -hard problem to which it has been reduced can. We do not want to go
into the details and refer the reader to a book on complexity theory (Wegener,
2005a) for further reading.

Definition 2.3. A problem is called NP-hard iff it is at least as difficult as
any problem in NP, i.e., each problem in NP can be reduced to it.

As we are considering optimization problems in this book, we want to
point out that many optimization problems are NP -hard but not in NP . We
consider the vertex cover problem again, but at this time its optimization
variant where the task is to compute a vertex cover of minimal size. Clearly,
this optimization variant is at least as difficult as the problem of deciding
whether a given graph contains a vertex cover of at most k vertices. However,
since the output of the optimization problem is a number, it is not a decision
problem and, therefore, not in NP .

In summary, many optimization problems are at least as difficult as any
problem in NP , i.e., NP -hard but not in NP . Problems that are NP -hard and
also in NP are called NP -complete. This holds for many decision variants of
NP -hard optimization problems.

Definition 2.4. A problem is NP-complete iff it is NP-hard and in NP.

The classical approach to deal with NP -hard problems is to search for
good approximation algorithms (Hochbaum, 1997; Vazirani, 2001). These are
algorithms that run in polynomial time but guarantee that the produced solu-
tion is within a given ratio of an optimal one. Such approximation algorithms
can be totally different for different optimization problems. In the case of the
NP -hard bin packing problem, even simple greedy heuristics work very well
whereas in the case of more complicated scheduling problems often methods
based on linear programming are used.

Another approach to solve NP -hard problems is to use sophisticated exact
methods that have in the worst case an exponential runtime. The hope is that
such algorithms produce good results for interesting problem instances in a
small amount of time. A class of algorithms that tries to come up with exact
solutions is branch and bound. Here the search space is shrunk during the
optimization process by computing lower bounds on the value of an optimal
solution in the case where we are considering maximization problems. The
hope is to come up in a short period of time with a solution that matches
such a lower bound. In this case an optimal solution has been obtained.

Related to this is the research on parametrized complexity (Downey and
Fellows, 1999). Here, parametrized versions of given optimization problems are

16 2 Combinatorial Optimization and Computational Complexity

studied. These are usually decision problems in the classical sense. Consider
for example the decision variant of the vertex cover problem where we ask
whether a given graph has a vertex cover of at most k vertices. This question
can be answered in time O(1.2738k +kn) (Chen, Kanj, and Xia, 2006), i.e., in
polynomial time for any fixed k, and a corresponding solution with k vertices
can be computed within that time bound if it exists. Obviously, this approach
can be turned into an optimization algorithm that is efficient iff the value of
an optimal solution is small.

A crucial consideration in combinatorial optimization problems and
stochastic search algorithms that search more or less locally is the neigh-
borhood of the current search point. Let s ∈ S be a search point in a given
search space. The neighborhood is defined by a mapping N : S → 2S . In the
case we are considering combinatorial optimization problems from the search
space {0, 1}n, the neighborhood can be naturally defined by all solutions hav-
ing at most Hamming distance k from the current solution s. The parameter
k determines the size of the neighborhood from which the next solution is
sampled. Choosing a small value k, e.g. k = 1, such a heuristic may get stuck
in local optima. If the value of k is large (in the extreme case k = n) and
all search points of the neighborhood are chosen with the same probability,
the next solution will be somehow independent of s. This leads to stochastic
search algorithms that behave almost as if they were choosing in each step
a search point uniformly at random from {0, 1}n. In this case the stochastic
search algorithm does not take the previously sampled function values into ac-
count and the search cannot be directed into “good” regions of the considered
search space.

2.3 Approximation Versus Exact Optimization

As already mentioned, NP -hard problems probably do not allow exact so-
lutions in polynomial time, so good approximations of optimal solutions are
desired. A formal definition of the quality of approximations is based on a
fixed approximation algorithm and the worst case from the set of instances
for the combinatorial optimization problem.

Definition 2.5. Given an algorithm A for the solution of a combinatorial
optimization problem (S, f, Ω), let sA ∈ S denote a solution produced by A
and fA := f(sA) its f -value. Given fopt, the f -value of an optimal solution,
the approximation ratio of sA is defined by fA/fopt for minimization problems
and by fopt/fA for maximization problems.

We say that an algorithm maintains a certain approximation ratio if it
produces solutions of this approximation ratio on all instances of the underly-
ing problem. In particular, we are interested in algorithms achieving a certain
approximation ratio within polynomial time.

2.4 Multi-objective Optimization 17

Definition 2.6. A polynomial-time approximation algorithm with ratio r to
a combinatorial optimization problem is an algorithm that computes solutions
of approximation ratio r in polynomial time with respect to the input size.

In the previous definition, r might depend on the problem size, which
is for example the case if the possible approximation ratios become worse
for growing inputs. The special case of a constant approximation ratio is
given if r can be bounded independently of the problem size. Often, constant
approximation ratios are obtainable even for NP -hard problems. An even
stronger property is demanded by specifying the constant approximation ratio
as a parameter of the approximation algorithm.

Definition 2.7. A polynomial-time approximation scheme (PTAS) to a com-
binatorial optimization problem is an algorithm with parameter ε that com-
putes solutions of approximation ratio 1+ ε in polynomial time with respect to
the input size. If the time is also polynomial with respect to 1/ε, the algorithm
is called fully polynomial-time approximation scheme (FPTAS).

Definitions 2.6 and 2.7 require polynomial time with probability 1 and are
more suitable for deterministic than for randomized algorithms. A natural
relaxation of the definitions is to allow expected polynomial time, resulting in
expected-polynomial-time approximation algorithms and schemes. However,
it is more convenient to prescribe polynomial time with a certain success
probability. This results in the following definition (Motwani and Raghavan,
1995).

Definition 2.8. A polynomial-time randomized approximation scheme
(PRAS) to a combinatorial optimization problem is an algorithm with param-
eter ε that with probability at least 3/4 computes solutions of approximation
ratio 1 + ε in polynomial time with respect to the input size.

The somewhat mysterious bound 3/4 on the success probability goes back
to applications of PRASs to a generalization of optimization problems, the
so-called number problems. However, the exact value is not too significant.
Any constant success probability can be boosted to at least 3/4 by running
the approximation algorithm a constant number of times and taking the best
solution out of the runs. In the domain of EAs, this is usually referred to as
multistart schemes.

We will get to know characterizations of EAs as approximation algorithms
in Chapter 12 and characterizations as PRASs in Chapters 6 and 7.

2.4 Multi-objective Optimization

Many problems in computer science ask for solutions with certain attributes
or properties that can be expressed as functions mapping possible solutions

18 2 Combinatorial Optimization and Computational Complexity

to scalar numeric values. The usual optimization approach is to take these
attributes as constraints to determine the feasibility of a solution, while one
of them is chosen as an objective function to determine the preference order
of the feasible solutions. In the minimum spanning tree problem, as a simple
example, constraints are imposed on the number of connected components
(one) and the number of cycles (zero) of the chosen subgraph, while the total
weight of its edges is the objective to be minimized.

A more general approach is multi-objective optimization (Ehrgott, 2005),
where several attributes are employed as objective functions and used to define
a partial preference order of the solutions, with respect to which the set of min-
imal (maximal) elements is sought. Most of the best known single-objective
polynomial solvable problems like shortest path or minimum spanning tree
become NP-hard when at least two weight functions have to be optimized
at the same time. In this sense, multi-objective optimization is considered as
more (at least as) difficult than (as) single-objective optimization.

In the case of multi-objective optimization, the objective function f =
(f1, . . . , fk) is vector-valued, i.e., f : S → Rk. Since there is no canonical
complete order on Rk, one compares the quality of search points with respect
to the canonical partial order on Rk, namely f(s) ≤ f(s′) iff fi(s) ≤ fi(s′) for
all i ∈ {1, . . . , k}. A Pareto optimal search point s is a search point such that
(in the case of minimization problems) f(s) is minimal with respect to this
partial order and all f(s′), s′ ∈ S. Again, there can be many Pareto optimal
search points, but they do not necessarily have the same objective vector. The
Pareto front, denoted by F , consists of all objective vectors y = (y1, . . . , yk)
such that there exists a search point s where f(s) = y and f(s′) ≤ f(s) implies
f(s′) = f(s). The Pareto set consists of all solutions whose objective vector
belongs to the Pareto front. The problem is to compute the Pareto front and
for each element y of the Pareto front one search point s such that f(s) = y.
We sometimes say that a search point s belongs to the Pareto front, which
means that its objective vector belongs to the Pareto front.

As in the case of optimization problems, one may be satisfied with approx-
imate solutions. This can be formalized as follows. For each element y of the
Pareto front, we have to compute a solution s such that f(s) is close enough to
y. Close enough is measured by an appropriate metric and an approximation
parameter. In the single-objective case, one switches to the approximation
variant if exact optimization is too difficult. The same reason may hold in
the multi-objective case. There may be another reason. The size of the Pareto
front may be too large for exact optimization.

The Pareto front F may contain exponentially many objective vectors.
Papadimitriou and Yannakakis (2000) have examined how to approximate
the Pareto front for different multi-objective combinatorial optimization prob-
lems. W. l. o. g., they have considered the task of maximizing all objective func-
tions. Given an instance I and a parameter ε > 0 they have examined how to
obtain an ε-approximate Pareto set. This is a set of solutions X with the prop-
erty that there is no solution s′ such that for all s ∈ X fi(s′) ≥ (1 + ε) · fi(s)

2.4 Multi-objective Optimization 19

holds for at least one i. Papadimitriou and Yannakakis (2000) showed that
there exists an algorithm which constructs such a set X, which is polyno-
mially bounded in |I| and 1/ε if and only if the corresponding gap problem
problem can be solved. Given an instance I of the considered problem and
a vector (b1, . . . , bk), the gap problem consists of either presenting a solution
s with fi(s) ≥ bi, 1 ≤ i ≤ k, or answering that there is no solution s′ with
fi(s′) ≥ (1+ε) ·bi, 1 ≤ i ≤ k. In the case of some multi-objective optimization
problems (e.g., the multi-objective variants of the minimum spanning tree
problem and the shortest path problem), such a set can also be computed
within a time bound that is polynomial in |I| and 1/ε. Algorithms with such
properties constitute an FPTAS (Definition 2.7), which is the best we can
hope for when dealing with NP-hard problems.

http://www.springer.com/978-3-642-16543-6

	Combinatorial Optimization and Computational Complexity
	Combinatorial Optimization
	Computational Complexity
	Approximation Versus Exact Optimization
	Multi-objective Optimization

