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The age structure of any population is shaped by the processes of fertility, mortality 
and migration, and for a human population it reflects the net effect of those processes 
during the previous 100 years. When the levels of fertility, mortality and migration 
have been constant for a long time, the age distribution is also constant. Numbers in 
each age group may grow or fall over time, depending on the balance between fertility 
and immigration on the one hand, and mortality and emigration on the other – but 
their relative share in the total population remains unchanged. When the age distribu-
tion varies over time, it signals changing levels of fertility, mortality and migration. 
The purpose of the present paper is to review the literature that deals with the follow-
ing question: What lessons can we draw from changes in the age structure of the 
populations in industrialized countries? Given the interest in the industrialized world 
for issues connected to the elderly, the focus will be on what we can learn about the 
level of mortality, and changes therein, based on age-structural transitions.

Given the sum of two numbers A and B, we cannot infer A and B from that sum 
alone. Only by adding extra information can we compute them, for instance when 
their difference is also given, or their product. Similarly, since the current age 
structure is the net result of historical age-specific fertility, mortality and migration, 
we are unable to infer the levels of the components of change from the age structure 
alone. Extra information is needed, for instance:

1.	 The population is closed to migration.
2.	 Fertility and mortality rates have been constant for a long time.
3.	 Growth rates are the same for each age group and they are independent of time.
4.	 Growth rates are constant in time, but differ between age groups.
5.	 The age patterns of fertility and mortality are known, but not their levels 

(e.g. TFR or life expectancy).
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Frequently, the extra “information” is merely an assumption, sometimes a very strong 
one. For instance, the combined assumption that a closed population (no. 1) has 
constant growth rate (no. 2) and constant age distribution (no. 3) defines a stable 
population. This assumption may be realistic in some cases, but more often, it is not. 
A population in which the growth rates of age groups are independent of time, but 
differ across age groups is called a variable growth rate population. The assumptions 
underlying this model are weaker than those for the stable population, and therefore 
more realistic when one knows that the population is not stable. Yet, the assumption 
of a stable population is widely used in demography for the following two reasons.

1.	 Because the assumption is such a strong one, there are also strong mathematical 
relationships between population size, age structure and fertility and mortality 
levels in a stable population. These relationships can be used to arrive at powerful 
conclusions that would be impossible with a weaker assumption.

2.	 The mathematical relationships mentioned above are good approximations in 
many cases, in particular when deviations from stability are the result of changing 
mortality levels, with the changes more or less evenly spread over many age 
groups.

Information or assumptions of the types 1–5 above may be used in combination as 
already mentioned in connection with the notion of a stable population. Similarly, 
we may have more than one observation of the age structure and combine those 
data with one or more assumptions. Examples of such combinations will be given 
in the sections that follow. The first section discusses stable population theory 
and shows how an age structure may be used to infer mortality levels. Most of 
the theory was developed before 1960 and has been widely applied up to today. 
The variable growth rate method of the second section emerged in the 1980s 
and relaxes some of the strong assumptions of a stable population. It is much less used 
than the methods of stable population theory, not only because it is of more recent 
date, but also because it allows less powerful conclusions. Two entirely different 
techniques, that of inverse projection and the closely connected method of back 
projection were developed in the 1970s and 1980s. They are presented in the 
third section on “Inverse projection, back projection and generalizations”, together 
with a recent generalization that encompasses both: generalized inverse projection. 
Next, the section on “Errors in historical projections of age structures” discusses what 
we can learn about mortality when we compare age structures observed in the recent 
past with historical projections of those age structures. The accuracy of age structure 
projections for the elderly leads us in a natural way to the question of how we can 
improve the accuracy of mortality forecasts. In the section on “Improving forecasts 
for the elderly”, causality runs from (future) mortality to (future) age structures.

Important applications of stable population theory and variable growth rate theory 
involve checking the quality of the available data. When a population is known to be 
stable, but its data cannot be fit to the stable model, one should suspect incomplete 
registration. Applications of this kind will not be given in the first and second sections, 
as the focus is on industrialized countries. In other words, unless explicitly stated, 
it is assumed that all data used in the empirical examples are of sufficient quality.
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Stable Population Theory

Alfred Lotka developed stable population theory in the first half of the previous 
century1, although Leonard Euler (in 1760) and Joshua Milne (in 1815) made early 
contributions. Ansley Coale (1987) gives an overview. A population is said to be 
stable when:

It is closed to migration, i.e. when net migration is zero at all ages•	
Both its crude birth rate and crude death rate are independent of time•	
Its age distribution is independent of time•	

A large number of mathematical relationships have been derived between indicators 
for fertility, mortality and the age distribution of a stable population. These expres-
sions, some of which will be given below, have been used to estimate demographic 
measures from incomplete data and to adjust inaccurate population statistics.

The relationship between the age distribution of a stable population and its levels 
of fertility and mortality is

	 ( ) ( ),rac a be p a−= 	 (1)

where a represents age, r is the growth rate of the stable population, c(a) is the share 
of the population aged a, b is the birth rate and p(a) is the share of the population that 
survives from birth until age a (“probability of surviving to age a”). Since age is 
defined here as a continuous variable, c(a)da is the population’s share aged between 
a and a + da, to be more precise. Integration of (1) gives the following expression 
for the life expectancy at birth e

0
:
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In empirical applications, data for the age structure c(a) alone are obviously not 
sufficient to determine the characteristics of the stable population. But given an 
initial estimate of p(a), (1) can be rewritten as

	
( )
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= −  

	 (3)

and a regression over a results in estimates for b and r (Keyfitz et  al. 1967). 
However, an approach that avoids regression has become more popular. It is based 
on tabulated values of the age distribution c(a) of stable populations with varying 
levels of the growth rate r, the birth rate b, the life expectancy e

0
 and the age pattern 

1 Lotka and Sharpe (1911). See also Lotka’s Analytical theory of biological populations. New York: 
Plenum Press, 1998 (Plenum Series on Demographic Methods and Population Analysis). This is 
an English translation of the work that Lotka published in the two-part Théorie Analytique des 
Associations Biologiques in 1934 and 1939, and represents Lotka’s contributions to the field of 
demographic analysis.
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of mortality p(a) (see Coale and Demeny 1983). The idea is, first, to select an 
initial model life table (i.e. an age pattern p(a) and a mortality level e

0
) and next to 

find a stable population for which the age structure closely resembles that of the 
empirical population2. The goodness of fit indicates whether or not one should 
choose a different life table. When the stable population has been identified in 
Coale and Demeny’s extensive tabulations, the corresponding growth rate r and 
birth rate b can be read off, as well as numerous other quantities for this particular 
population. Box 1 contains an empirical example for Norway with data from its 
population census of 1801.

2 In practice one does not work with the age distribution c(a), but with the cumulative distribution 

0
( ) ( ) .

a
C a c da a= ∫  This way one avoids problems caused by irregularities in the empirical age

structure due to digit preference, age heaping and shifting. Probably this is an important reason 
why the regression approach is not widely used.

Box 1  Application of stable population theory to Norway’s age  
distribution in 1801

The Population Census of 1801 in Norway is generally believed to be of high 
quality (Drake 1969). The age pyramid below suggests that the population 
might have been nearly stable. Norwegian crude birth and death rates were 
rather constant at 30–32 and 24–26 per 1,000, respectively, in the period 
1735–1801 (Drake 1969, Table 3.6). Age groups between 25 and 45 signal 
non-stability, although some digit preference probably also contributed to the 
irregularities. By working with cumulated age groups, this problem will have 
only minor impact on the findings.

Age structure, Norway, Census of 1801
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The approach outlined above starts from an assumed level and age pattern of mor-
tality. Thus an important issue is how sensitive the results are for the choice of a 
particular life table. In other words, how do the characteristics of the stable popula-
tion change when the mortality pattern changes? There is no general analytical 
answer to this question, but the effects are probably not large for actual populations. 
Coale (1972) and Keyfitz (1985) have analysed the case in which the mortality 
change is the same for all ages. Assume that all age-specific death rates are reduced 
by an amount k. In that case, it can be shown that the age distribution of the popula-
tion is not affected, that the growth rate increases by k, that the birth rate is 
unchanged and that the death rate reduces by k.3

Closely related is the concept of a quasi-stable population, defined as a popula-
tion, in which fertility has been approximately constant, while mortality has steadily 
declined over the past few decades (Bourgeois-Pichat 1958). Such a population has 
an age distribution, which differs little from that of the stable population implied by 
current fertility and mortality schedules.

When a population’s age distribution is measured at two successive censuses, 
two sets of fertility and mortality indicators can be inferred, one for each census. 
Next, we can combine the birth rate from the first census with the life table from the 
other. This will tell us to what extent the mean age, or the dependency ratio, or any 
other indicator derived from the age structure, has changed over the period between 

Box 1  (continued)

I compared the cumulated age distributions C(a) for men and women to 
those of stable populations based on Regional Life Tables Model North of levels 
11–15, i.e. life expectancy values of 45–55 for women and 41.8–51.4 for men. 
For successive values of a, I found the stable growth rate by interpolation 
between tabulated growth rates. A perfectly stable population should result 
in the same interpolated growth rate for each a. In empirical applications, 
interpolated rates vary by age. Variation across levels was lowest for level 12, 
the standard deviation in the rate over ages 15–70 being 1.1 and 0.7 per 
thousand for the two sexes. The mean interpolated growth rates were equal 
to 12.2 and 10.2 per thousand for men and women, respectively. This suggests 
a life expectancy of around 45 years before 1801.

For men aged 35–39 or 65–69, and women aged 30–34, 40–44, or 70–74, 
the estimated growth rates were remarkably lower than those for other age 
groups. Exceptionally low birth rates and high death rates in the 1740s and 
1770s explain some of these effects (Drake 1969).

3 When the reduction of the death rates varies by age, the age distribution of the stable population 
is changed in such a way that age segments with the strongest mortality reduction get more weight. 
The typical mortality decline has been strongest below age five. As a result, mortality declines have, 
throughout human history, tended to make populations younger (Preston et al. 2001, p. 160).
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the two censuses as a result of changes in mortality or in fertility (Keyfitz and 
Flieger 1969). An important assumption is, of course, that the population be stable 
at both points in time. Such an analysis requires that one calculate a hypothetical 
age distribution based on a given birth rate and a certain life table. This can be done 
based on expression (1), provided one knows the intrinsic growth rate r of the stable 
population. The latter is achieved by solving r from Lotka’s fundamental equation

	 ( ) 1,rxx e dx
a

a

−φ =∫ 	 (4)

where f(x) = m(x)p(x) represents the net female fertility rate at age x. Coale (1957) 
describes an iterative algorithm for determining r, which converges quickly.

Variable Growth Rate Method

The methods outlined in the previous section assume that the population is stable, 
quasi-stable, or nearly stable. For industrialized countries nowadays, this is an 
unreasonable assumption. Following low fertility levels in the 1930s, many of these 
countries experienced a baby boom in the first two decades after the Second World 
War and a drop in fertility in the 1970s. At the same time, female life expectancy 
increased continuously – for men there was a temporary stagnation in the 1960s. 
Industrialized countries in Eastern Europe showed dramatic declines in fertility around 
1990, and life expectancies improved hardly or not at all between 1985 and 1995, 
in particular for men. Because of these developments, fertility and mortality cannot 
be assumed to be constant, which means that the assumption of a stable population is 
too strict. The variable growth rate method relaxes that assumption. Whereas a stable 
population displays a growth rate that is constant, both with respect to age and time, 
the variable growth rate method assumes rates that may be dependent on age.

Various authors have contributed to the theory around the variable growth rate 
method, in a series of papers that were published in the first half of the 1980s 
(Bennett and Horiuchi 1981; Preston and Coale 1982; Arthur and Vaupel 1984). 
These papers followed on the work of McKendrick (1926) and Von Foerster (1959), 
among others. Bennett and Horiuchi started from the McKendrick-Von Foerster 
partial differential equation, which relates the rate of change in population size with 
respect to age and time to the force of mortality at that time. Preston et al. (2001) 
give a useful overview of the theory and various applications. For the purpose of 
the present paper it suffices to note that Eq. 1 for the age distribution of a stable 
population, which is closed to migration, is modified to4

4 Expression (5) can be generalized to include migration, by incorporating an age-specific net 
migration rate. The net migration rate is the difference of the immigration rate and the emigration rate. 
Note that the immigration rate is not a rate in the demographic (occurrence-exposure) sense, as the 
population exposed to the risk of immigration to the country is not included in the immigration rate.
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where p(a,t) is now an expression of the proportion that would survive to age a 
according to the mortality schedule at the moment t for which c(a,t) is the proportion 
at age a. The growth rate r(x,t) expresses population growth during an infinitesimally 
short time interval from t to t+dt for the fixed age group x. Note that when the 
growth rates are independent of age and time (r(a,t)=r for all a and t), the integral in 
(5) reduces to r▪a, cf. expression (1). In order to infer a mortality schedule from an 
observed age structure, both sides of Eq. 5 are multiplied by total population size 
at time t and solved for p(a,t). The result is

	
0
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aN a t
p a t r x t dx

N t
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Expression (6) tells us that a mortality schedule can be derived from knowledge of 
the age pyramid N(a,t) and the age-specific growth rates r(x,t). N(0,t) denotes 
births at time t. For an actual population the rates can be computed based on the 
age pyramid of two subsequent years. Box 2 illustrates the method for the case of 
Norway 1850–1995.

Box 2  Mortality schedules computed on the basis of the variable growth 
rate method, Norway, 1850–1995

Statistics Norway generously provided me with unpublished data on the 
population of Norway by 1-year age group and sex at 1 January of each 
calendar year beginning in 1846. First, I used the discrete-time version of 
expression (6), i.e.

	 ,
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the growth rate for age group (a, a + 1) at time t, L

a
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stationary population in age group (a, a + 1) at time t, and B(t) is the number 
of births in year t. Assuming that the life table radix l

0
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L
a
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(continued)
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Box 2  (continued)

Next, I computed the growth rates as r
a,t

 = [N
a,t+1

/N
a,t-1

]½−1, and inserted 
these in the expression above. The growth rates are the net result of 
mortality, immigration, and emigration. Migration can be disregarded for 
ages 60 and over, but not for younger ages. Therefore, I limited myself to 
the elderly.
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The graphs plot 5-year moving averages. They show two distinct features. 
First, the relative mortality reduction since 1850 was stronger for the youngest 
than for the oldest old. This led in turn to a rectangularization of the survival 
curves for both sexes (Mamelund and Borgan 1996, 39–40). Second, the decrease 
over time was quite uniform for women, although accelerating during the 
past 50 years. For men the strongest reductions occurred in the second half 
of the nineteenth century.
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Inverse Projection, Back Projection and Generalizations

Several methods have been used by historical demographers to infer time series of 
vital rates and age structures from a known or assumed age structure, together with 
time series of annual or quinquennial births and deaths. Ronald Lee introduced in 
1974 a technique called ‘inverse projection’. Given an age and sex structure at time 
t = 0, and a series of birth and death counts for the period (0,T), the method computes 
mortality rates, fertility rates and age structures for the years (0,T). It assumes that 
the age schedules of both fertility and mortality depend on a single parameter and 
that the population is closed to migration. The method proceeds from one time 
interval unit (1 or 5 years) to the next. For each interval, it computes a preliminary 
number of deaths based on the starting population by age and an initial schedule of 
age-specific death rates. The mortality schedule is scaled up or down on the basis 
of the observed number of deaths. The death rates thus obtained are used to survive 
the population to the end of the interval. Finally, birth rates are applied to the 
mid-period female population of reproductive ages, and these rates are adjusted so 
as to produce the correct number of births. The assumption of a closed population 
has been relaxed in later versions of the method (Brunborg 1976, 1992; Lee 1985): 
when population counts are known from more than one census, migration is 
determined by comparing intercensal population growth with natural growth. 
McCaa (1989, 1993) has developed the PC program ‘Populate’ which includes 
these and other features. Box 3 gives a summary of Brunborg’s application of the 
inverse projection method to the case of Norway, 1736–1970.

Box 3  Brunborg’s application of the IP-method to Norway, 1735–1974

Brunborg (1976) used annual data on births and deaths from Drake (1969) for 
the years 1735–1769, and official data for the period 1770–1974 (Statistics 
Norway 1994). Both series suffer probably from underregistration and 
other errors. Norway’s first census was held in 1769, but the recorded age 
distribution is inaccurate (Drake 1969). Brunborg computed total population 
in 1735 on the basis of birth and death counts for the period 1735–1769, and 
total population in 1769. An assumed stable age distribution corresponding 
to level 8 Model North mortality, with crude birth and death rates equal to 
31 and 26 per 1,000 resulted in an estimated age distribution for 1735. 
The choice of the stable age distribution is not crucial for the results after ca. 
1800, see footnote 5. Brunborg selected Model North life tables at levels 7 
(e

0
 = 33.5 for men and women combined) and 24 (e

0
 = 75.9) as the basis for 

the range of mortality schedules. The fertility schedule was an average for 
1874–1876 and 1889–1892 (the oldest available schedules at that time), with 
a mean age at childbearing of 33.2 years, and the migration schedule was 
based on data from 1866–1895. The general pattern for the life expectancy 

(continued)
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Box 3  (continued)

(and the Net Reproduction Rate) is reproduced well compared to observed 
values. Brunborg found also that estimated proportionate age distributions in 
1801, 1875, and 1966 were very close to observed values: most differences 
(10-year age groups) were smaller than 0.4% points, and none exceeded 
1.2% points. One may conclude that life expectancy was between 35 and 40 
years in the eighteenth century, and considerably lower in crisis periods 
(1741–1745: 31.2; 1771–1775: 33.6).

Life expectancy at birth, Norway 1736-1970
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Note: solid line: Inverse Projection Method (Brunborg 1976); 
broken line: observed ( Brunborg and Mamelund 1994).

Brunborg’s life expectancy values are 5–10 years lower than those obtained 
on the basis of stable population theory (Box 1). Several explanations are 
possible.

1.	 Brunborg’s birth data may suffer from underregistration. McCaa (1989) 
analyses the sensitivity of Brunborg’s life expectancy estimates for 
underregistration of vital events. From McCaa’s Figure 1 I estimate that a 
continuous underregistration of births by 10% implies life expectancy values 
that are too low by 3–5 years in the last three decades of the eighteenth 
century. Although this explanation in itself is plausible, one may object 
that the most likely source of birth underregistration is infant mortality, 
which must have resulted in too low counts for deaths as well. McCaa finds 
that a 10% underregistration of deaths counteracts the effect of too low 
birth counts by about the same number of years of life expectancy. On the 
other hand, stillbirths unduly registered as deaths but not as births, may 
have led to too low life expectancies.

(continued)



33On Age Structures and Mortality

Box 3  (continued)

2.	 The 1769 census (723,000) may have underreported total population size. 
Drake (1969) assumes that the official figure was too low by about 19,000, 
or 2.6%. If the error is the same for all ages and the number of deaths is 
fixed, the one-parameter mortality schedule results in death rates that are 
too high by 2.6%. This means that the life expectancy is too low by an 
amount of 0.026.H.e

0
, where H is Keyfitz’ concentration index (Keyfitz 

1985). By definition, H is lower than 1 – for pre-industrial Norway it is 
probably around 0.5 (Model North at level 12 gives H-values equal to 0.52 
for men and 0.48 for women). With a life expectancy of around 40 years, 
the undercount in the census of 1769 explains roughly half a year of the life 
expectancy difference, but certainly not more than 1 year.

3.	 Brunborg’s results are not entirely reliable before 1800, due to the 
arbitrary choice of the age distribution for 1735 (Model North, level 8). 
After 1800, the initial age distribution is washed out. Unfortunately, we do 
not know how sensitive the life expectancy estimates before 1800 are for 
different choices of the stable age distribution in 1735.

4.	 The 1801 population was not stable. Fertility and mortality levels between 
1735 and 1801 do not indicate any severe deviation from stability (Box 1), 
but there was probably some emigration (around 270 persons per year, or 
0.3 per thousand, according to Drake’s estimates). If this is accepted, the 
stable population estimate for the life expectancy in Box 1 should even be 
higher, but only slightly so.

In spite of the fact that IP rests on weaker assumptions than stable population 
theory, all in all I assume that Brunborg’s life expectancy estimates are too 
low, for two reasons. First, because the deaths data he used included stillbirths. 
The effect on life expectancy is stronger than McCaa suggested, because the 
overregistration of deaths was concentrated in the first few weeks of the life 
span. McCaa used a one-parameter life table, and thus he assumed implicitly 
that the overregistration was evenly spread over the entire age span. Second, 
because the choice of level 8 Model North stable age distribution in 1735 was 
too pessimistic.

Unlike projection by the traditional cohort-component method (CCM), inverse 
projection (IP) starts from birth and death counts and infers age-specific vital rates. 
CCM computes births and deaths on the basis of age-specific vital rates. Both 
methods proceed forward in time. ‘Back projection’ (BP) goes backward. The method 
was developed by Wrigley, Schofield and Oeppen, see Wrigley and Schofield (1982). 
It starts with a known age structure at time T and births and deaths counts for an 
earlier period (0,T). Next, using a number of assumptions, it calculates age struc-
tures for that period, as well as age-specific vital rates and net-migration. Unlike IP, 
where population totals are specified externally (so that migration can be handled), 
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BP computes population totals within the model. BP has been criticized on two 
grounds (Lee 1985). First, the model is underidentified: for T periods, the 
BP-model has T more unknowns than equations. Therefore ad hoc assumptions are 
necessary. Second, the weak ergodicity principle states that any two age struc-
tures, however different, that are submitted to the same series of fertility and 
mortality rates will eventually converge towards the same age structure5. This 
implies that BP selects one path of the demographic variables from among an infin-
ity of reasonably smooth paths, and thus any number of alternative but equally 
plausible paths may be constructed.

Further work by Jim Oeppen (1993a, b) attempted to respond to Lee’s critique, 
in particular the first point. This resulted in a general method called Generalized 
Inverse Projection (GIP), which can be related to both IP and BP. Like IP, GIP 
assumes one-parameter families of age schedules for mortality and migration. The 
aim of GIP is to estimate a series of mortality and migration parameters that 
correspond to the period for which birth and death counts are available and, simul-
taneously, a series of population age structures that are consistent with the data and 
the parameters. (Fertility schedules are not required for computing age structures 
– births are given.) First, Oeppen expresses the general equations for population 
movement, defining the population aged a at time t, N

a,t
, as a function of N

a−1,t−1
 

together with the death probability and the emigration rate, both at age a. Births in 
(t − 1,t) are related to N

0,t
 by means of the appropriate survival probability and 

migration rate. Next, migrants result from the migration rate and the mid-period 
population, while deaths are computed based on the death probabilities, the population 
at the beginning of the period and the number of migrants. Starting from an assumed 
initial population N

a,0
, subsequent application of these equations results in a system 

of non-linear equations with the totals of births and deaths for each of the T periods 
and age groups at time T, as given. For K age groups, there are T + K equations and 
there are 2T parameters to be estimated – a scaling constant for mortality and one 
for migration in each period. The GIP-method estimates these parameters, given the 
constraints, by minimizing a penalty function which contains three terms: one for 
the relative deviations in estimated and observed deaths, one for the deviations in 
the age structure at time T and a third one with period-to-period fluctuations in the 
migration scale parameter. Thus, the method obtains an optimal fit of the model to 
the data on deaths and final age structure, while at the same time the migration 
parameter changes as little as possible. Additional information, for example, known 
population sizes or age structures for censuses before time T, can easily be included 
in the penalty function. If the initial population structure N

a,0
 is given, instead of the 

final structure N
a , T

, the method solves the IP problem (GIP-IP). If the final structure 
is given, GIP is reduced to BP (GIP-BP).

5 This is exactly the reason why the starting age structure of IP is not critical. For example, starting 
from two very different stable populations (female, North, e

0
 = 47.5, r = 0; and female, North, 

e
0
 = 27.5, r = 0.01) for the case of England in the period 1540 to 1871, Lee (1985) finds converging 

IP-results after a few decades already.
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Oeppen has tested the BP-version of the method on various data sets, including 
Brunborg’s data for Norway since 1735. Total population was estimated very accu-
rately, even on the basis of the total population for only 1 year (1980), together with 
quinquennial births and deaths counts. I compared Oeppen’s unpublished estimates 
for the Norwegian population by 5-year age groups for the years 1850, 1870, 1890, 
…, 19706 with official data and found that errors in the proportionate age structure 
never were larger than 1.2% points. Averages over the age groups for the absolute 
errors ranged from 0.19% to 0.33% points for these 7 years. Thus for this particular 
data set, GIP-BP reproduced observed age structures very accurately. The net 
migration estimates were considerably smoother than the ‘observed’ values, but 
this can be improved by giving less weight to the migration smoothness in the 
penalty function. Similar conclusions hold for data from England 1801–1871. It 
turns out that Oeppen’s GIP-BP estimates are very close to the original ones of 
Wrigley and Schofield obtained by BP. Other applications that produced excellent 
fits for the age structure are those for Denmark 1665–1840 and Amsterdam 
1681–1920 (see Johansen and Oeppen 2001; Van Leeuwen and Oeppen 1993).

GIP-BP does not resolve the problem connected to weak ergodicity. Oeppen 
assumed that the initial population is stable and estimated its growth rate from the 
series of births. Alternatively, it could be estimated from the deaths series, or it 
could be made endogenous and estimated by the method. Different estimates of the 
growth rate will produce different initial populations. In one application (England 
1540–1871; see Oeppen 1993b Table. 2.17), the initial population estimated by 
GIP-BP fell linearly by 36% when the growth rate was increased from zero to 10%, 
with strong implications for the estimates of the first decades after 1540. After about 
50 years, the initial differences were washed out. In other words, GIP-BP results are 
not reliable for roughly the first 50 years, due to the weak ergodicity principle. GIP-BP 
shares this characteristic with IP, unless the initial age structure is known for IP.

It is surprising that GIP-BP produces reliable empirical results, in spite of the 
weak ergodicity problem mentioned above. One possible explanation is that the 
number of feasible solutions is severely restricted by the fact that age-specific 
mortality depends on only one scaling parameter.

Errors in Historical Projections of Age Structures

Age structure forecasts reflect expected changes in fertility, mortality and migration 
levels. Thus, when old forecast results are compared to actual figures, errors in pro-
jected age structures reflect unexpected developments of the components of change.

The cohort component method (CCM) is the standard method for preparing a 
population forecast. In the CCM-tradition, forecast errors occur for two reasons: 
assumptions on fertility, mortality and migration may be wrong, or the forecast may 
be based on inaccurate data. The latter source of forecast errors is frequently 

6 Generously provided by Jim Oeppen (2001) (personal communication).
7 There is a printing error in Oeppen’s Table 2.1: growth rates are too low by a factor ten.
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observed for less developed countries, where data quality often is poor (Keilman 
2001). In the present paper, the focus is on industrialized countries and, therefore, 
I shall assume that inaccurate age structure forecasts are only caused by wrong 
assumptions for the components of change.

Errors in projected age structures for various industrialized countries turn out to 
have a common pattern. The errors are large and positive for young age groups and 
more or less equally large but negative for the elderly. The overprojections among the 
young in the 1970s indicated unforeseen sharp declines in birth rates. The elderly 
were underestimated, because forecasters have been too pessimistic regarding mortality, 
in particular for women. (There is one exception, however. For middle-aged men in 
the 1960s, life expectancy forecasts were too optimistic, due to unforeseen mortality 
increases caused by neoplasms, cardiovascular diseases and motor vehicle accidents, 
see Preston 1974.) This error pattern for age structure projections made by the UN 
was found for Northern America, Europe, Latin America and Oceania (Keilman 
2001), and in projections prepared by statistical agencies in developed countries such 
as Canada, Denmark, the Netherlands, Norway and the United Kingdom (Keilman 
1997). Box 4 illustrates the case of Japan, based on UN projections since 1975. Data 
from the 1998-round of UN projections were taken as actual.

Box 4  Errors in age structure projections

Percentage errors in UN-projections for age structures. Japan
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I calculated mean percentage projection errors by age group, the means 
taken over successive UN projections, controlling for duration. The figure 
shows a systematic underprojection of the number of elderly, caused by too 
pessimistic mortality projections. Japan’s life expectancy increased from 
around 75 years in the mid-1970s to almost 80 years, 20 years later. However, 
UN life expectancy projections were consistently too low by 1.3–1.9 years in 
that period (Keilman 2001).
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Improving Forecasts for the Elderly

[Note: The discussion in this section reflects the literature as of early 2002. 
During the past few years, two important developments have taken place, which 
are relevant for the conclusions below. First, the findings of a series of reports 
on mortality forecasting in industrialized countries (Palmer 2003–2007, see 
Social Insurance Studies volumes 1–5, http://forsakringskassan.se/sprak/eng/
publications/) suggest that a statistical approach to predicting life expectancy 
and survival is to be preferred over a causal approach. Second, Alho’s approach 
to stochastic population forecasting (the so-called Program for Error Propagation, 
or PEP model, see Alho and Spencer 2005) has become the benchmark for pre-
paring and using such forecasts (Tuljapurkar 2008). It has been applied to a 
large number of individual countries, as well as to a group of 18 European coun-
tries (Alho et al. 2006, 2008; Alders et al. 2007). The multi-country setup in this 
latter project avoided the idiosyncrasies often connected with single-region sto-
chastic and deterministic forecasts].

The general conclusion that mortality improvements for industrialized 
countries have been underestimated leads to the question of how mortality 
projections, and thus forecasts for the elderly population, can be improved. To that 
end, one first has to understand the reasons why mortality forecasts failed. 
Broadly speaking, there are two main reasons: assumption drag and inherent 
uncertainty. First, the extrapolative character of mortality forecasts leads to 
difficulties each time a trend shift occurs. Empirical studies show that it takes 
about 10 years before population forecasters acknowledge the new trend 
(Keilman 1997). Such an ‘assumption drag’ is clearly visible in life expectancy 
extrapolations. Second, much of the uncertainty is caused by the fact that 
experts disagree as to the prospects for further mortality decline. Some assume 
that there are biological or practical limits to the life expectancy, although these 
are not necessarily to be reached within the next 50 years (Olshansky et al. 1990; 
Olshansky and Carnes 1996). Others expect medical breakthroughs in the future, 
which will lead to rapid mortality decline among the elderly (Vaupel 1997). 
The empirical evidence is not conclusive either. While human longevity 
generally improves in industrialized countries, mortality for the oldest old stagnates 
or even increases slightly in a few countries, such as in Denmark (Denmark 
Statistik 2000), the USA (Kranczer 1997), the Netherlands and Norway 
(Nusselder and Mackenbach 2000). At the same time, survival curves show very 
little or no sign of further rectangularization since the 1950s in some countries 
(USA, Sweden and Japan; see Wilmoth and Horiuchi 1999), while in other 
countries the curves continue to become more rectangular, after the rapid 
developments into that direction until the 1950s (France, England, the Netherlands 
and Switzerland; see Robine 2001).

How can mortality forecasts be improved, in the sense that they predict the 
number of elderly more accurately? Several possibilities have been suggested, of 
which I will mention four.
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Mortality Laws

Demographers, statisticians and actuaries have long been occupied with finding a 
suitable ‘law of mortality’, i.e. a mathematical representation of age-specific 
mortality – most often (but not exclusively) in terms of the death rates. Once such 
a law is identified, its parameters are estimated for a sufficiently long period and 
next they are extrapolated. A large number of mortality laws have been proposed, 
a process that started with De Moivre in 1725 and that continues until the present 
day (Hannerz 2001). For a recent review, see Tabeau (2001). Some of the laws are 
restricted to adult or old age mortality (Coale-Kisker, Himes-Preston-Condran, 
Gompertz, Perks, Weibull). Tabeau (2001) and Boleslawski and Tabeau (2001) 
compare 27 of such laws. Relational models, such as Brass’ logit model and the 
Lee-Carter model, are also considered. Among the laws and models, the Heligman-
Pollard curve is widely applied (Rogers and Gard 1991; McNown and Rogers 
1989; Hartmann 1987; Kostaki 1992a,b). Compared to other models, the H-P curve 
has the advantage that it pairs accuracy in prediction with flexibility, in particular 
when describing mortality changes over time. Hartmann (1987) used Swedish mor-
tality data for the period 1900–1970 and concluded that the H-P curve is a useful 
model for making population projections, one reason being the fact that it accom-
modates for changing age patterns of mortality as the level of mortality changes. 
Another popular model, namely the one proposed by Lee and Carter (Lee and 
Carter 1992; Carter and Lee 1992) apparently is much less flexible than the H-P 
model (see Büttner 1999). Moreover, it tends to produce extremely low mortality 
for young age groups when it is forced to project very high levels of the life expec-
tancy. Adding a lower bound to the death rates may solve that problem (Büttner 
1999). However, an important advantage of the Lee-Carter model is that it contains, 
in effect, only one parameter that has to be extrapolated. A detailed comparative 
study could shed further light on the issue under which circumstances the Lee-
Carter model results in better mortality forecasts than the Heligman-Pollard model, 
and vice versa. This would extend the single-country comparison of the H-P and 
the L-C models by Bell (1997). For US white male and female mortality 1940–
1991, he finds slightly better performance of the H-P model, although certain bias 
corrections to the L-C model do better than the original H-P model.

Cause of Death

One could include cause of death (c.o.d.) in the mortality extrapolations. While 
c.o.d. is useful when analysing historical mortality, it is doubtful that it will help to 
predict future mortality more accurately. In addition, c.o.d. registration for the 
elderly is thought to be rather unreliable. Following are two reasons for this, an 
empirical one and a statistical one. (1) Tabeau et al. (2001a) found very similar life 
expectancy extrapolations to 2020 with and without c.o.d. in an empirical study for 
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France, Italy, the Netherlands and Norway, using data for the period 1950–1994. 
Wilmoth (1995) showed analytically for linear extrapolation models that including 
c.o.d. will result in lower future life expectancy than ignoring c.o.d. Thus the fact 
that c.o.d. has been omitted in most official forecasts cannot have been the reason 
for the underprojection of the life expectancy. Finally, three Dutch c.o.d. mortality 
forecasts made between 1970 and 1975 were less accurate than six other forecasts 
based upon traditional mortality extrapolations (i.e. by age and sex only) that were 
made between 1950 and 1980 (Keilman 1990). (2) Traditional models assume that 
causes of death are independent. This is an unrealistic assumption: persons who are 
expected to die from a specific cause obviously have an increased risk of dying 
from other causes, depending on the illness in question. There is no generally 
accepted way to take the association between causes of death into account in 
empirical studies (Chiang 1991).

Endogenizing Mortality

One could include risk factors, life style, health and morbidity status as independent 
factors in the mortality extrapolations. Marital status, living arrangement, traffic 
accidents, the introduction of antibiotics and smoking have been used for that pur-
pose (Alderson and Ashwood 1985; Joung 1996; Van Hoorn and De Beer 2001). 
The simultaneous extrapolation of health, morbidity and mortality has also been 
suggested (Manton et al. 1992; Murray and Lopez 1997). For a review, see Van den 
Berg Jeths et al. (2001). The accuracy of such mortality forecasts, as opposed to the 
rather mechanical ones based on a mortality law, has not been investigated.

Stochastic Mortality Forecasts

A radically different solution is to quantify uncertainty and accept the fact that 
forecast errors are unavoidable. In the last decade, a number of stochastic forecast 
models based on the Cohort Component Method (CCM) have been developed (Lee 
and Tuljapurkar 1994; Lutz and Scherbov 1998; Alho 1998; De Beer and Alders 
1999; Keilman et al. 2001). The basic idea is to think of the population in the future 
not as one number, but as a whole distribution: some numbers are more likely than 
others. If life expectancies and numbers of elderly are presented in the form of 
predictive distributions of this kind, the user is forced to take forecast uncertainty 
into account. At the same time, forecasts of this nature are less vulnerable to sudden 
changes in real mortality trends than traditional deterministic forecasts. Box 5 gives 
an empirical illustration for the life expectancy of Norwegian women.

Stochastic population forecasting uses the CCM. But instead of one set of 
parameters for fertility, mortality and migration, as in the traditional deterministic 
method (or perhaps three, when a high, a medium and a low forecast variant are 
computed), one specifies the joint statistical distribution of all input parameters. 



40 N. Keilman

Because of the large amount of input parameters (35 fertility rates, 200 death rates 
and 120 parameters for net migration for each forecast year), simplifying assump-
tions are used. First, one assumes that fertility, mortality and migrations are inde-
pendent. For industrial countries, this is a reasonable assumption. Second, one 
focuses on the distribution of a few summary indicators (for instance total fertility 
rate, life expectancy at birth, level of net-immigration), thereby ignoring the statistical 
distributions of the detailed parameters (age-specific rates). Three main methods 
are in use for computing probabilistic forecasts of the key parameters: time-series 
extrapolation, expert judgement and extrapolation of historical forecast errors. 
Time-series methods rely on statistical models that are fitted to historical data. 
These methods, however, result often in excessively wide prediction intervals when 
used for long-term forecasting. Judgemental methods can be used to correct or 
constrain such broad prediction intervals. Expert judgement is also used when 
expected values and corresponding prediction intervals are hard to obtain by formal 
methods. A group of experts is asked to indicate the probability that the key param-
eter in some future year falls within a certain pre-specified range. A weakness of 
this approach is that experts, often being unduly confident, tend to give overopti-
mistically high probabilities. Finally, empirical errors observed for past forecasts 
may be extrapolated to predict the expected errors for the current forecast. A prob-
lem here is that forecasts prepared in the 1960s or earlier were poorly documented, 
so that data on historical errors do not stretch back as far as one would like.

In practice, elements of the three methods are used in combination. For instance, 
time-series often result in unrealistically wide intervals on the long term, which 
may be reduced judgementally based on expert knowledge. Moreover, the intervals, 
whether obtained by time-series methods or expert opinion, can be checked against 
historical error patterns, in particular in the short term.

Irrespective of the method used, probabilistic forecasts of the youngest and 
oldest age groups show the most uncertainty, because fertility and mortality are 
hard to predict. In addition, prediction intervals are often narrower when vari-
ables are aggregated (for example, when 1-year age groups are combined into 
5-year age groups, or when the populations for the two sexes combined is analy-
sed), rather than looked at individually, because the errors tend to cancel each 
other out. These kinds of uncertainty assessments are crucial, and statistical agen-
cies would do a great service to users of forecasts if they would adopt probabilis-
tic methods rather than methods that are more traditional, which do not take 
uncertainty into account.

Conclusions

This paper shows various ways to infer mortality levels in a population from infor-
mation about the age structure, and changes therein. The age structure alone cannot 
be used for such a purpose. Additional data, or assumptions, are necessary. Stable 
population theory builds on strong assumptions, but has been used successfully for 
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Box 5  Prediction intervals for future life expectancy and elderly women in 
Norway

A bivariate ARIMA (2,0,0) model was estimated for the logs of annual life 
expectancies at birth for men and women in Norway 1950–1995, see Keilman 
et al. (2001). The model was used to predict future life expectancy after 1995, 
with targets of 80 and 84.5 years in 2050 for men and women, respectively. 
The figure below gives the prediction intervals for the female life expectancy. 
There is an expected 95% probability that the female life expectancy will be 
between 79 and 91 years of age in 2050. The correlation across the sexes was 
estimated as 0.65.

Life expectancy, women, Norway
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Our results indicate similar uncertainty for the life expectancy at birth as 
those obtained by De Beer and Alders (1999) for the case of the Netherlands. 
These authors found a 95% prediction interval of 12 years wide in 2050, both 
for men and for women. Intervals presented by Tuljapurkar et al. (2000) for 
the G7 countries (Canada, France, Germany, Italy, Japan, the United 
Kingdom, and the United States) are much smaller than ours. The width of 
their 90% intervals of combined-sex life expectancy at birth in 2050 ranges 
from a minimum of 2.8 years for Canada to a maximum of 7.5 years for the 
UK. The intervals are based on a one-parameter Lee-Carter model for age-
specific mortality for the two sexes combined, which is fitted to an abridged 
life table with 5-year age classes up to 80–84. Ages 85 years and higher were 
lumped into one age class (except for Japan). The age- and sex aggregation, 
which reduces random fluctuations, may have resulted in these relatively nar-
row intervals.

The stochastic forecast resulted in prediction intervals for the population 
by age up to 2050. For the elderly, these intervals were rather narrow, not 

(continued)
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near-stable historical populations. The method is quite robust against changes in 
mortality. The variable growth rate method rests on much weaker assumptions, but 
permits less powerful conclusions. The most detailed information on mortality (and 
fertility) may be derived in the case where one has series of birth and death counts, 
in combination with one or more age structures. Inverse projection and back projec-
tion have been applied to some historical populations. Finally, some qualitative 
insight can be derived from evaluating historical age structure projections against 
observed data. A recurrent finding in this connection is that population forecasters 
in industrialized countries in the past decades have been too pessimistic regarding 
mortality improvements. This in turn led to substantial underprojections of the 
number of elderly. Stochastic projections are an appropriate means of improving 
the quality of forecasts for the elderly (and other age groups as well), because they 
quantify forecast uncertainty. They force the users to think in uncertainty terms and 
anticipate unexpected trends.

Box 5  (continued)

because mortality is easy to predict, but simply because there are so few elderly. 
For purposes of comparison, it is instructive to inspect the width of the relative 
intervals, i.e. the intervals as a ratio of the median. The graph below illustrates 
that for the oldest old, uncertainty is almost is large as it is for the youngest age 
groups. The lines for 2010, 2030, and 2050 indicate relative uncertainty in a 
cross-sectional way. They suggest that uncertainty first decreases from birth to 
middle ages (up to an age equal to the forecast duration), and that it increases 
thereafter. These cross-sectional patterns do not reflect uncertainty over the life 
course correctly. The relative intervals for the birth cohort 1950–1954 illustrate 
that the age gradient for the elderly is much steeper than what the cross-sectional 
pattern indicates. The plot for birth cohort 1990–1994 shows that uncertainty 
increases for the youngest age groups as well.

Relative width of 67% prediction interval, women, Norway
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