
Chapter 2
Elements of Linear Algebra

2.1 Introduction

This book will use some basic concepts of linear algebra. In this chapter we will
briefly recall the essential elements that will be necessary in the rest of the book to
understand the various tools devoted to the analysis of variance. Readers that are
interested in the more detailed treatment of the subject are directed, for instance, to
Golub and Van Loan (1996), Horn and Johnson (1991), Meyer (2000).

2.2 Elementary Vectors

The typical geometric definition introduces a vector as a segment emanating from
the origin, with an arrow at the second extreme, indicating a “pointing” direction,
or orientation (cf. Fig. 2.1), showing that a vector may be characterized by two
properties: length and direction. Although this definition is usually employed on
the plane, the same characterization can be used in higher dimension, that is on
hyper-planes (e.g. space). While magnitude and direction, for instance, would be
sufficient to uniquely identify a vector on the plane, this is not so in higher di-
mensions. In high dimensions, it is thus more appropriate to characterize vectors
by means of their “components”. In Cartesian coordinates, these are the orthogonal
projections of the vector on each Cartesian axis. Rigorously speaking, a vector is
given by an ordered n-uple of real or complex numbers, that is, b D .b1; : : : ; bn/

is a (row) vector with n components, where each bi is a real or complex num-
ber. Note that the order of the components is important, so that, e.g., the vector
a D .1; 3/ is different from the vector b D .3; 1/. The ensemble of all possible vec-
tors is then identified by the ensemble of all possible n-uples of numbers that can be
formed with real or complex numbers. A vector with only one component is called
a scalar. The vector 0 D .0; : : : ; 0/ is the zero vector. It is customary to identify
the whole of the real and complex numbers with the symbols R and C, respectively.
It thus follows, for instance, that the set of all possible couples is denoted by the
symbol R � R D R2. In general, Rn is the set of vectors having n components.
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Fig. 2.1 Elementary vectors
on the plane
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The addition between two vectors with the same number of components, is defined
as the vector whose components are the sum of the corresponding vector compo-
nents. If a D .a1; a2; : : : ; an/ and b D .b1; b2; : : : ; bn/, then c WD a C b as
c D .a1 C b1; a2 C b2; : : : ; an C bn/. Note that c is a vector of n components.
By again acting at the component level, we can stretch a vector by multiplying it
with a scalar k: we can define c D ak where c D .ka1; ka2; :::; kan/, meaning
that each component is multiplied by the factor k. These are the basic operations
that allow us to generate a key space for our analysis. In particular, Rn is closed
with respect to the sum and with respect to multiplication by a real scalar, which
means that the result of these operations is still an element of Rn. A real vector
space is a set that is closed with respect to the addition and multiplication by a real
scalar. Therefore, Rn is a real vector space. There are more complex instances of
vector spaces, but for the moment we will content ourselves with this fundamental
example. An immediate generalization is given by the definition of a real vector
subspace, which is a subset of a real vector space.

2.3 Scalar Product

We next introduce an operation between two vectors that provides the main
tool for a geometric interpretation of vector spaces. Given two real vectors
a D .a1; a2; : : : ; an/ and b D .b1; b2; : : : ; bn/, we define the scalar product
(or inner product) the operation ha; bi D a1b1 C a2b2 C � � � C anbn. Note that the
operation is between vectors, whereas the result is a real scalar. We remark that if
a and b were complex vectors, that is vectors with complex components, then a
natural inner product would be defined in a different way, and in general, the result
would be a complex number (see end of section). The real inner product inherits
many useful properties from the product and sum of real numbers. In particular, for
any vector a; b; c with n real components and for any real scalar k, it holds

1. Commutative property: ha; bi D hb; ai
2. Distributive property: h.a C c/; bi D ha; bi C ha; ci
3. Multiplication by scalar: h.ka/; bi D kha; bi D ha; .kb/i



2.3 Scalar Product 7

The scalar product between a vector and itself is of great interest, that is

ha; ai D a2
1 C a2

2 C � � � C a2
n:

Note that ha; ai is always non-negative, since it is the sum of non-negative numbers.
For n D 2 it is easily seen from Fig. 3.1 that this is the square of the length of a
vector. More generally, we define the Euclidean norm (or simply norm) as

jjajj D
p

ha; ai:

A versor is a vector of unit norm. Given a non-zero vector x, it is always possible
to determine a versor x0 by dividing x by its norm, that is x0 D x=jjxjj. This is a
standard form of normalization, ensuring that the resulting vector has norm one.
Other normalizations may require to satisfy different criteria, such as, e.g., the first
component equal to unity. If not explicitly mentioned, we shall always refer to nor-
malization to obtain unit norm vectors. Given a norm, in our case the Euclidean
norm, the distance associated with this norm is

d.a; b/ D jja � bjj D
p

.a1 � b1/2 C .a2 � b2/2 C � � � C .an � bn/2:

Scalar products and the induced distance can be defined in several ways; here we are
showing only what we shall mostly use in this text. Any function can be used as a
norm as long as it satisfies three basic relations: (i) Non-negativity: kak � 0 and
kak D 0 if and only if a D 0; (ii) Commutative property: d.a; b/ D d.b; a/; (iii)
Triangular inequality: d.a; b/ � d.a; c/ C d.c; b/. Using norms we can distinguish
between close vectors and far away vectors, in other words we can introduce a topol-
ogy in the given vector space. In particular, property (i) above ensures that identical
vectors (a D b) have a zero distance. As an example of the new possibility offered
by vector spaces, we can go back to Fig. 2.1 and consider the angles ˛ and ˇ that
the vectors a and b in R2 make with the reference axes. These angles can be easily
expressed in terms of the components of the vectors,

cos ˇ D b1q
b2

1 C b2
2

sin ˇ D b2q
b2

1 C b2
2

;

cos ˛ D a1q
a2

1 C a2
2

sin ˛ D a2q
a2

1 C a2
2

;

and also the angle between the two vectors, cos.ˇ � ˛/,

cos.ˇ � ˛/ D cos ˇ cos ˛ C sin ˇ sin ˛

D b1q
b2

1 C b2
2

a1q
a2

1 C a2
2

C b2q
b2

1 C b2
2

a2q
a2

1 C a2
2

; (2.1)
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(1,0)

(0,1)
(cos(π/4), sin(π/4))

π/4

Fig. 2.2 Angles between vectors

or, equivalently,

cos.ˇ � ˛/ D ha; bi
jjajj jjbjj : (2.2)

We just proved that this relation holds in R2. In higher dimension, the cosine of the
angle of two vectors is defined as the ratio between their inner product and their
norms, which is nothing but (2.2).

We explicitly observe that the scalar product of two versors gives directly the
cosine of the angle between them. By means of this new notion of angle, relative
direction of vectors can now be expressed in terms of the scalar product. We say
that two vectors are orthogonal if their inner product is zero. Formula (2.2) provides
a geometric justification for this definition, which can be explicitly derived in R2,
where orthogonality means that the angles between the two vectors is �=2 radians
(90ı); cf. Fig. 2.2. If in addition the two vectors are in fact versors, they are said to
be orthonormal.

We can also introduce another geometric interpretation of scalar products that
follows from (2.2). The scalar product is also the projection of the vector a on b:
from Fig. 2.3 and from the definition of the cosine the projection of a onto the
direction of b is Proja D jjajj cos �. Analogously, the projection of b onto the
direction of a is Projb D jjbjj cos �. For normalized vectors the norm disappears
and the scalar product gives directly the projections, that are obviously the same
in both cases (bottom panel in Fig. 2.3). We close this section with the definition
of inner product in the case of complex vectors. Let x; y be vectors in Cn. Then
hx; yi D Nx1y1 C Nx2y2 C � � � C Nxnyn, where Nx D a � ib denotes the complex
conjugate of x D a C ib, i D p�1. With this definition, the norm of a complex
vector is defined as jjxjj2 D hx; xi D jx1j2 C � � � C jxnj2.
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Fig. 2.3 Angles between vectors

Exercises and Problems

1. Given the two vectors a D .1; �2; 0/, b D .�3; �1; 4/, compute a C b, a � b,
a C 2b and ha; bi.
We have aCb D .1�3; �2�1; 0C4/ D .�2; �3; 4/, a�b D .1C3; �2C1; 0�
4/ D .4; �1; �4/ and aC2b D .1C2.�3/; �2C2.�1/; 0C2.4// D .�4; �4; 8/.
Finally, we have ha; bi D 1.�3/ C .�2/.�1/ C 0.4/ D -3+2+0=-1.

2. Given the two complex vectors x D .1 C i; �2 C 3i/, y D .�5 C i; 4i/, compute
x C y and hx; yi.
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We have x C y D .1 � 5 C .1 C 1/i; �2 C .3 C 4/i/ D .�4 C 2i; �2 C 7i/.
Moreover, using the definition of the product between complex numbers, hx; yi D
.1 � i/.�5 C i/ C .�2 � 3i/.4i/ D 8 � 2i .

3. Given the vectors a D .1; �2; 1/ and b D .0; 2; �3/, compute jjajj, jjbjj and
jja � bjj. Moreover, normalize a so as to have unit norm.
We have jjajj D .12C.�2/2C12/1=2 D 61=2 and jjbjj D .02C22C.�3/2/1=2 D
131=2. Moreover, jja � bjj D ..1 � 0/2 C .�2 � 2/2 C .1 � 3/2/1=2 D 211=2 .
Finally, ai D a=jjajj D .1=6/1=2.1; �2; 1/.

4. Check whether the following operations or results are admissible: (i) x C y, with
x D .1; �1/, y D .1; 2; 0/; (ii) hx; yi with x and y as in (i); (iii) jjajj D �1; (iv)
ha; bi D �hb; ai, with a; b real vectors of equal dimension; (v) d.c; d/ D �1:5.
None of the statement above is correct. (i) x and y have a different number of
components hence the two vectors cannot be added. (ii) Same as in (i). (iii)
The norm of any vector is non-negative, therefore it cannot be equal to -1. (iv) The
inner product of real vectors is commutative, therefore ha; bi D hb; ai. (v) Same
as in (iii).

5. Compute the cosine of the angle between the vectors a D .�1; 2/ and b D
.�3; 0/.
We first compute ha; bi D �1.�3/ C 2.0/ D 3, jjajj D p

5 and jjbjj D 3, from
which we obtain cos � D ha; bi=.jjajj jjbjj/ D 1p

5
.

2.4 Linear Independence and Basis

Some vectors can be combined and stretched by scalars, hence they can be obtained
one from the other. For instance, the vector .4; 4; 4/ can be obtained as .1; 1; 1/ � 4

in such a way that all vectors of the form .k; k; k/ are really different stretched
versions of the same vector .1; 1; 1/. Vectors that cannot be reached with a simple
stretching can be obtained with a combination, for instance the vector .5; 2/ can
be written as 2 � .1; 1/ C 3 � .1; 0/. With this simple example we see that we can
choose some particularly convenient vectors to represent all other vectors in the
given space. Given r nonzero vectors x1; x2; : : : ; xr , we say that a vector x is a
linear combination of these r vectors if there exist r scalars ˛1; : : : ; ˛r , not all equal
to zero, such that

x D ˛1x1 C ˛2x2 C � � � C ˛r xr :

This definition is used to distinguish between linearly dependent and independent
vectors. In particular, x1; x2; : : : ; xr are said to be linearly dependent if there ex-
ist r scalars, not all equal to zero, such that ˛1x1 C ˛2x2 C � � � C ˛r xr D 0. In
other words, they are linearly dependent if one of the vectors can be expressed as
a linear combination of the other vectors. We are thus ready to define linearly in-
dependent vectors, and the associated concept of a basis of a vector space. We say
that r vectors x1; x2; : : : ; xr are linearly independent if the only linear combination
that gives the zero vector is obtained by setting all scalars equal to zero, that is if
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the relation ˛1x1 C ˛2x2 C � � � C ˛r xr D 0 implies ˛1 D ˛2 D � � � D ˛r D 0.
The maximum number of linearly independent vectors is called the dimensionality
of the vector space, maybe is not surprising that for Rn this number turns out to be
n. Given n linearly independent vectors in Rn, any other vector can be obtained as a
linear combination of these n vectors. For this reason, n linearly independent vectors
of Rn, are called a basis of Rn. Clearly, a basis is not uniquely determined, since any
group of n linearly independent vectors represents a basis. However, choices that
are particularly convenient are given by sets of normalized and mutually orthogo-
nal and thus independent vectors, namely, we select an “orthonormal basis”. In the
case of R2, orthonormal bases are for instance .1; 0/; .0; 1/, and also .1=

p
2; 1=

p
2/,

.1=
p

2; �1=
p

2/. In fact, the latter can be obtained from the first one with a rotation,
as it is shown in Fig. 2.2.

The orthonormal basis e1; e2; : : : ; en, where ek D .0; 0; : : : ; 1; 0; : : : ; 0/,
that is, all components are zero except the unit kth component, is called the canon-
ical basis of Rn. Note that it is very simple to obtain the coefficients in the linear
combination of a vector of Rn in terms of the canonical basis: these coefficients
are simply the components of the vector (see Exercise 3 below). The choice of a
particular basis is mainly dictated by either computational convenience or by ease
of interpretation. Given two vectors x; y in Rn, it is always possible to generate
a vector from x, that is orthogonal to y. This goes as follows: we first define the
vector y0 D y=jjyjj and the scalar t D hy0; xi, with which we form x0 D x � y0t .
The computed x0 is thus orthogonal to y. Indeed, using the properties of the inner
product, hy0; x0i D hy0; x � y0ti D hy0; xi � thy0; y0i D t � t D 0.

Determining an orthogonal basis of a given space is a major task. In R2 this is
easy: given any vector aD.a1; a2/, the vector bD.�a2; a1/ (or cD�b D .a2; �a1/)
is orthogonal to a, therefore the vectors a; b readily define an orthogonal basis. In
Rn the process is far less trivial. A stable way to proceed is to take n linearly in-
dependent vectors u1; : : : ; un of Rn, and then orthonormalize them in a sequential
manner. More precisely, we first normalize u1 to get v1; we take u2, we orthog-
onalize it against v1 and then normalize it to get v2. We thus continue with u3,
orthogonalize it against v1 and v2 and get v3 after normalization, and so on. This
iterative procedure is the famous Gram-Schmidt process.

Exercises and Problems

1. Given the two vectors a D .�1; �2/ and b D .�3; �1/: (i) verify that a and b
are linearly independent. (ii) Compute a vector orthogonal to a. (iii) If possible,
determine a scalar k such that c D ka and a are linearly independent.
(i) In R2 vectors are either multiple of each other or they are independent. Since
b is not a multiple of a, we have that a and b are linearly independent. (ii) The
vector d D .2; �1/ is orthogonal to a, indeed ha; di D .�1/.2/C.�2/.�1/ D 0.
(iii) From the answer to (i), it follows that there is no such c.

2. Obtain an orthonormal set from the two linearly independent vectors: a D .2; 3/

and b D .1; 1/.
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We use the Gram-Schmidt process. First, a0 D a=jjajj D 1p
13

.2; 3/. Then, we

compute ha0; bi D 5p
13

, so that b D b � a0ha0; bi D .1; 1/ � 5p
13

a0 D .1; 1/ �
5

13
.2; 3/ D 1

13
.3; �2/, from which b0 D b=jjbjj D 1

2�13
.3; �2/. Hence, a0; b0 is

the sought after set. Not surprisingly (cf. text), b0 is the normalized version of
.�3; 2/, easily obtainable directly from a.

3. Given the vector x D .3; �2; 4/, determine the coefficients in the canonical basis.
We simply have x D 3e1 � 2e2 C 4e3.

4. By simple inspection, determine a vector that is orthogonal to each of the follow-
ing vectors: a D .1; 0; 0; 1/; b D .4; 3; 1; 0; 0/; c D .0:543; 1:456; 1; 1/.
It can be easily verified that any of the vectors .0; ˛; ˇ; 0/, .�1; ˛; ˇ; 1/,
.1; ˛; ˇ; �1/, with ˛; ˇ scalars, are orthogonal to a. Analogously, .0; 0; 0; ˛; ˇ/

are orthogonal to b, together with .�1; 1; 1; ˛; ˇ/, .1; �1; �1; ˛; ˇ/.
For c, simple choices are .0; 0; �1; 1/ and .0; 0; 1; �1/.

2.5 Matrices

A matrix is an n � m rectangular array of scalars, real or complex numbers, with n

rows and m columns. When m D n the matrix is “square” and n is its dimension.
In this book, we will use capital bold letters to indicate matrices, whereas roman
small case letters in bold are used to denote vectors; Greek letters will commonly
denote scalars. The following are examples of matrices of different dimensions,

A D
�

0 �1 4
1
2

2 1

�
; B D

�
0 1

i 0

�
; C D

0

B
B
B
B
B
@

1 0

0 1 C 2i

0:05 �1

1:4 C 5i 2

0 3

1

C
C
C
C
C
A

: (2.3)

Matrix A is 2 � 3, B is 2 � 2 and C is 5 � 2. Note that B and C have complex
entries. The components of a matrix A are denoted by ai;j , where i corresponds to
the i th row and j to the j th column, that is at the .i; j / position in the array. In the
following we shall use either parentheses or brackets to denote matrices. The n � m

matrix with all zero entries is called the zero matrix. The square matrix with ones
at the .i; i/ entries, i D 1; : : : ; n and zero elsewhere, is called the identity matrix
and is denoted by I. If the order is not clear from the context, we shall use In.
The position of the scalars within the array is important: matrices with the same
elements, but in a different order, are distinct matrices. Of particular interest is the
transpose matrix, i.e. the matrix bAT obtained by exchanging rows and columns of
the matrix A. For instance, for the matrices in (2.3),
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AT D
0

@
0 1

2

�1 2

4 1

1

A ; BT D
�

0 i

1 0

�
;

CT D
�

1 0 0:05 1:4 C 5i 0

0 1 C 2i �1 2 3

�
;

are the transpose matrices of the previous example. In the case of matrices with com-
plex entries, we can also define the complex transposition, indicated by the subscript
‘�’, obtained by taking the complex conjugate of each element of the transpose,

B� WD NBT
, so that

B� D
�

0 �i

1 0

�
; C� D

�
1 0 0:05 1:4 � 5i 0

0 1 � 2i �1 2 3

�
:

Clearly, for real matrices the Hermitian adjoint B� coincides with the transpose ma-
trix. Transposition and Hermitian adjoint share the reverse order law, i.e. .AB/� D
B�A� and .AB/T D BT AT , where A and B have conforming dimensions. See later
for the definition of matrix-matrix products. Matrices that satisfy A�A D AA� are
called normal. A real square matrix X such that XT X D I and XXT D I is said
to be an orthogonal matrix. A square complex matrix X such that X�X D I and
XX� D I is said to be unitary.

An n�n matrix A is invertible if there exists a matrix B such that AB D BA D I.
If such a matrix B exists, it is unique, and it is called the inverse of A, and it is de-
noted by A�1. An invertible matrix is also called nonsingular. Therefore, a singular
matrix is a matrix that is not invertible. Recalling the definition of orthogonal matri-
ces, we can immediately see that an orthogonal matrix is always invertible and more
precisely, we have that its inverse coincides with its transpose, that is XT D X�1

(for a unitary matrix X, it is X� D X�1). Matrices with special structures are given
specific names. For instance,

D D

0

B
B
@

1 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

1

C
C
A ;

U D

0

B
B
@

1 1 C 2i 4 C 2i 3

0 2 1 3

0 0 5 4i

0 0 0 1

1

C
C
A ; L D

0

B
B
@

1 0 0 0

1 � 2i 2 0 0

4 � 2i 1 5 0

3 3 4i 1

1

C
C
A : (2.4)
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Note also that in this example, L D U�. Matrices like D are called diagonal (zero
entries everywhere but on the main “diagonal”), whereas matrices like U and L are
called upper triangular and lower triangular, respectively, since only the upper (resp.
lower) part of the matrix is not identically zero. Note that it is very easy to check
whether a diagonal matrix is invertible. Indeed, it can be easily verified that a diag-
onal matrix with diagonal components the inverses of the original diagonal entries
is the sought after inverse. For the example above, we have D�1 D diag.1; 1

2
; 1

5
; 1/

(we have used here a short-hand notation, with obvious meaning). Therefore, if all
diagonal entries of D are nonzero, D is invertible, and vice versa. Similar considera-
tions can be applied for (upper or lower) triangular matrices, which are nonsingular
if and only if their diagonal elements are nonzero. Explicitly determining the in-
verse of less structured matrices is a much more difficult task. Fortunately, in most
applications this problem can be circumvented.

If we look closely at the definition of a matrix we can see that there are several
analogies to the definition of vectors we have used in the preceding sections. In fact
we can think of each column as a vector, for instance the first column of the ma-
trix C is the vector .1; 0; 0:05; 1:4 C 5i; 0/ a vector of the four-dimensional vector
space C4. More generally, any row or column of C can be viewed as a single vector.
In the following we will need both kinds of vectors, but we will follow the conven-
tion that we will use the name “vector” for the column orientation, i.e. matrices with
dimension n � 1. Since a vector is just a skinny matrix, we can go from a column to
a row vector via a transposition:

u D
0

@
1

2

3

1

A ; uT D .1 2 3/:

From now on, the use of row vectors will be explicitly indicated by means of the
transposition operation.

It can be shown that matrices are representations of linear transformations con-
necting vector spaces. In other words, an m � n matrix M is an application that
maps a vector u of an n-dimensional vector space U onto an element v of an
m-dimensional vector space V , that is

v D Mu:

The vector space U is known as the domain of M and the vector space V is called the
range. Another important vector space associated with a matrix M is the null space,
i.e. the subset of the domain such that for all u in this space, it holds Mu D 0.

The product of a matrix A D .ai;j / on a vector is defined as another vector
v D Au whose components are obtained by the row-by-column multiplication rule

vi D
mX

j D1

ai;j uj ; i D 1; : : : ; n:
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It can be noticed that the i th component of the resulting vector v is the scalar product
of the i th row of A with the given vector u. The matrix–vector product rule can be
used to define a matrix–matrix multiplication rule by repeatedly applying the rule
to each column of the second matrix, such that the element of the product matrix
C D AB of the q � m matrix A with the m � p matrix B is given by

ci;j D
mX

kD1

ai;kbk;j ; i D 1; : : : ; q; j D 1; : : : ; p:

Note that the resulting matrix C has dimension q � p. For the product to be cor-
rectly defined, the number of columns of the first matrix, in this case A, must be
equal to the number of rows of the second matrix, B. Note that this operation is not
commutative, that is, in general AB ¤ BA, even if both products are well defined.
On the other hand, matrices that do satisfy the commutative property are said to
commute with each other. Subsets of matrices that commute with each other have
special properties that will appear in the following. A simple class of commuting
matrices is given by the diagonal matrices: if D1 and D2 are diagonal matrices, then
it can be verified that it always holds that D1D2 D D2D1.

Our last basic fact concerning matrices is related to the generalization to matrices
of the vector notion of norm. In particular, we will use the Frobenius norm, which
is natural generalization to matrices of the Euclidean vector norm. More precisely,
given bA 2 Rn�m,

kAk2
F WD

mX

j D1

nX

iD1

a2
i;j ; (2.5)

which can be equivalently written as kAk2
F DD Pm

j D1 kaj k2, where aj is the j th
column of A (a corresponding relation holds for the rows). In particular, it holds that
kAk2 D trace.AT A/, where the trace of a matrix is the sum of its diagonal elements.
The definition naturally generalizes to complex matrices. It is also interesting that
the Frobenius norm is invariant under rotations, that is the norm remains unchanged
whenever we multiply an orthonormal matrix by the given matrix. In other words,
for any orthonormal matrix Q it holds that kAkF D kQAkF .

Exercises and Problems

1. Given the matrices A D
��1 �3

�1 2

�
and B D

�
0 �1

�3 1

�
, compute AB.

We have

AB D
��1 �3

�1 2

� �
0 �1

�3 1

�
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D
� �1.0/ � 3.�3/ �1.1/ � 3.1/

�1.0/ C 2.�3/ �1.�1/ C 2.1/

�
D
�

9 �4

�6 3

�
:

2. Given the matrix A above, compute AT .

We have AT D
��1 �1

�3 2

�
.

3. Given the matrix A above, and the row vector xT D .�1; 5/, compute xT A.

We have xT A D .�1; 5/

��1 �1

�3 2

�
D . .�1/.�1/ C 5.�3/; .�1/.�1/ C

5.2/ / D .�14; 11/.
4. Compute xyT with xT D .1; �3/ and yT D .2; �2/.

The result of this computation is the 2 � 2 matrix given by

xyT D
�

1

�3

�
.2 ; �2/ D

�
2 �2

�6 6

�
:

(In the computation, the vectors x; yT are viewed as 2 � 1 and 1 � 2 matrices,
respectively)

2.6 Rank, Singularity and Inverses

The maximum number of columns or rows that are linearly independent in a matrix
A is called rank, denoted in the following by rank(A). For a given m � n matrix A,
clearly rank(A) � minfn; mg. The rank can be used very efficiently to characterize
the existence of the solution of a linear system of equations. In matrix terms, a linear
system can be written as

Ax D b; (2.6)

where x represents the vector of the unknown variables, the entries of A the
system’s coefficients, and the components of b are the given right-hand sides of
each equation. The system in (2.6) can either have no solution, one solution or in-
finite solutions. Let us write A D .a1; a2; : : : ; an/, where ai , i D 1; : : : ; n are the
columns of A. By reading (2.6) backwards, we look for x D .x1; : : : ; xn/T such that
b D Ax, that is, we seek the coefficients x1; : : : ; xn, such that b D a1x1C� � �Canxn.
In other words, the solution vector x yields the coefficients that allow us to write b
as a linear combination of the columns of A. At least one solution exists if rank(A)
= rank(.A; b/), where .A; b/ is the matrix obtained by adding the vector b as a col-
umn besides A. This corresponds to saying that the nC1 vectors fa1; a2; : : : ; an; bg
are linearly dependent. The condition on the rank also shows that the existence of
solutions to the system is related to the rank of the coefficient matrix A. For square
matrices, using the definition of inverse, Ax D b is equivalent to A�1Ax D A�1b,
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that is x D A�1b. Hence, assuming that b is a nonzero vector, a unique solution x
exists if and only if A is nonsingular. A crucial result of linear algebra is the follow-
ing: an n � n (square) matrix A is invertible if and only if rank(A) = n. In particular,
this result implies that if A is singular, the columns of A are linearly dependent
(rank(A/ < n), or equivalently, there exists a vector x, not identically zero, such that
Ax D 0. We have thus found that a singular matrix is characterized by a non-empty
null space (cf. Sect. 3.5).

2.7 Decomposition of Matrices: Eigenvalues and Eigenvectors

A complex scalar � and a nonzero complex vector x are said to be an eigenvalue
and an eigenvector of a square matrix A, respectively, if they satisfy

Ax D �x: (2.7)

A vector satisfying (2.7) has the special property that multiplication by A does not
change its direction, but only its length. In the case of Hermitian A (i.e. A D A�),
it can be shown that such vectors arise in the problem of maximizing hx; Axi, over
all vectors x such that jjxjj D 1. It is then found that the solution must satisfy
the equation Ax D �x, where � is a scalar. The pair .�; x/ is called an eigenpair
of A. The set of all eigenvalues of A is called the spectrum of A. It is important
to notice that eigenvectors are not uniquely determined. For instance, if x is an
eigenvector associated with �, then ˛x with ˛ ¤ 0 is also an eigenvector associated
with �. Finally, we observe that if A is singular, then there exists a vector x such
that Ax D 0 D 0x, that is, � D 0 is an eigenvalue of A and x is the corresponding
eigenvector.

A fundamental result is that each square matrix A of dimension n has exactly
n complex eigenvalues, not necessarily all distinct. In case of multiple copies of
the same eigenvalue, such a number of copies is called the multiplicity of that
eigenvalue.1 On the one hand, there can be at most n linearly independent eigen-
vectors. If an eigenvalue has multiplicity m larger than one, then there may be at
most m linearly independent eigenvectors associated with that eigenvalue. On the
other hand, eigenvectors corresponding to different eigenvalues are always linearly
independent. Therefore, for a general matrix A, the only case when there may not
be a full set of independent eigenvectors is when there are multiple eigenvalues.

The case of Hermitian matrices is particularly fortunate, since in this case, there
always exists a set of n linearly independent, and even mutually orthonormal, eigen-
vectors, regardless of the eigenvalue multiplicity. For a general square matrix A, if
there exist n linearly independent eigenvectors, A can be written as

A D XƒX�1; (2.8)

1 To be more precise, this number is the algebraic multiplicity of the eigenvalue.
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where ƒ is a diagonal matrix having the eigenvalues of A as diagonal entries, while
X D Œx1; x2; : : : ; xn� is a matrix formed by normalized eigenvectors. The inverse
of X exists in this case because we are assuming that the eigenvectors are linearly
independent, namely X has rank n. If a form as in (2.8) can be written, we say
that A is diagonalizable. In the important case of Hermitian matrices, thanks to the
orthogonality of the eigenvectors, we can write

A D XƒX�

where X is the matrix of the eigenvectors, normalized so as to have unit norm.
Therefore, for Hermitian matrices, no inversion is required, as X� D X�1. If A is
real and symmetric, then the eigenpairs are real.

It can be shown that the eigenvalues can be found by solving the following scalar
equation as a function of �,

det.A � �I/ D 0; (2.9)

whose left-hand side is a polynomial (the characteristic polynomial) of degree n

in �. Afterwards, the eigenvectors are obtained by solving the singular system

.A � �i I/xi D 0; i D 1; : : : ; k;

where the index i runs over all k distinct eigenvalues found from solving (2.9). From
the theory of polynomials, it follows that if A is real, then its eigenvalues are real
or, they appear as complex conjugates, that is, if � is a complex eigenvalue of A,
then N� is also an eigenvalue of A. Eigenvectors corresponding to real eigenvalues of
a real matrix A, can be taken to be real. Finally, Hermitian matrices have only real
eigenvalues.

Nondiagonalizable matrices cannot be written in the form (2.8) with ƒ diagonal.
In particular, a nondiagonalizable matrix of dimension n does not have n linearly
independent eigenvectors. This situation may only occur in the presence of multiple
eigenvalues (see Exercises 4 and 5 at the end of this chapter).

The transformation indicated by (2.8) is an example of a class of transformations
known as similarity transformations. Two matrices A and B are said to be similar if
they can be obtained from each other by a similarity transformation via a nonsingu-
lar matrix S, that is

A D SBS�1: (2.10)

Similar matrices share important properties, for instance, they have the same set of
eigenvalues. The similarity transformation is equivalent to a change of basis in the
representation of the matrix, in fact it can be shown that the transformation (2.10) is
equivalent to changing the basis of the column vectors of the matrix B, resulting in
different coordinates.
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2.8 The Singular Value Decomposition

Square as well as rectangular matrices can always be diagonalized if we allow the
usage of two transformation matrices instead of one. Any m � n matrix A with
m � n, can be decomposed as:

A D U
�

†

0

�
V�; (2.11)

where U D Œu1; u2; : : : ; um� and V D Œv1; v2; : : : ; vn� are square, unitary ma-
trices of dimension m and n, respectively. Matrix † is diagonal and real, † D
diag.�1; �2; : : : ; �n/, with �iC1 � �i , i D 1; : : : ; n � 1, and �i � 0, i D 1; : : : ; n.
A completely analogous decomposition holds for n � m. The decomposition in
(2.11) is called singular value decomposition (SVD); the columns of U and V are
left and right singular vectors, respectively; the real numbers �1; �2; : : :, �n are
called singular values. The following relations can be derived,

AA� D U†2U�; A�A D V†2V�;

indicating that the columns of the matrix U are the eigenvectors of the matrix AA�,
while the columns of V are the eigenvectors of the transpose matrix A�A. Using the
orthogonality of U and V in (2.11), we can write

AV D U
�

†

0

�
; A�U D V.†; 0/:

If A is real, then all matrices have real entries. A series of very important results links
the SVD with the determination of the rank of matrices. It can be shown that the
rank, i.e. the number of linearly independent columns or rows in a matrix, is given by
the number of non-zero singular values. The problem of finding the rank of a matrix
can therefore be reduced to the problem of finding the number of nonzero singular
values. Full rank square matrices of dimension n, have therefore exactly n strictly
positive singular values. Comparing (2.8) with (2.11) we can see that the singular
values decomposition extends the diagonalization property of the eigenvalues to
more general matrices, including rectangular ones. The eigenvalue decomposition
looks for a similarity transformation to a diagonal form, whereas in the singular
value decomposition, we look for two, in general different, unitary transformations
to a diagonal form.

We next briefly discuss the tight connection between the SVD and certain matrix
norms that are induced by a vector norm. Let A be an m � n matrix. Using the
Euclidean norm we can define

kAk2 D max
x¤0;x2Cn

kAxk2

kxk2

:
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It can be shown that the vector x that achieves this maximum is the first right singular
vector, v1, so that kAk2 D kAv1k2 D �1. The SVD allows us to also determine the
matrix of low rank that is closest to the original matrix A in the 2-norm. More
precisely, let

Ak D .u1; : : : ; uk/

0

B
@

�1 � � � 0

0
: : : 0

0 0 �k

1

C
A .v1; : : : ; vk/�

be the matrix formed by the first k singular triplets. In other words, Ak is the matrix
obtained by a truncated SVD of rank k. Then it holds

min
B2Cm�n;rank.B/Dk

kA � Bk2 D kA � Akk2 D �kC1:

The relation above says that Ak is the rank-k matrix that is closest to A when using
the 2-norm. Moreover, it provides an explicit value for the error of such approxima-
tion, which is given by the first neglected singular value, �kC1.

The SVD can also be employed for computing the Frobenius norm of a matrix;
see (2.5). Indeed, it holds that

kAk2
F D

minfn;mgX

j D1

�2
j ;

where �j ’s are the singular values of the n � m matrix A.
The singular value decomposition provides a formidable tool to replace the in-

verse of a singular or rectangular matrix. Assume that an m � n matrix A with
m � n is decomposed as in (2.11), where † is nonsingular. Then the Penrose
pseudo-inverse of A (cf., e.g., Golub and Van Loan 1996) is defined as2

A� WD V
�
†�1 0

�
U�: (2.12)

Note that V and U are unitary, so that

AA� D U
�

I 0

0 0

�
U�:

Note that in general, AA� ¤ I, unless A is square and nonsingular.
The definition above can be generalized to any singular square matrix.
Finally, we make a simple connection between eigenvalues, singular values and

singularity of a square matrix. Using the SVD of a given matrix A, we can say that A

2 Common notations for the pseudo-inverse also include A� and AC.
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is nonsingular if and only if † has nonzero diagonal elements, indeed A�1 exists if
and only if †�1 exists. A similar consideration holds with respect to the eigenvalue
decomposition.

2.9 Functions of Matrices

It is possible to define functions of matrices in analogy to the familiar function on the
real and complex numbers; see, e.g., Horn and Johnson (1991) for a more detailed
treatment of this topic. For a given square matrix A, a matrix polynomial of degree
k is defined as

p.A/ D ˛0I C ˛1A C ˛2A2 C ::: C ˛kAk ; (2.13)

where the scalar coefficients ˛0; : : : ; ˛k can be real or complex. The polyno-
mial p.A/ is a matrix and there is no ambiguity in its construction, as long
as matrix powers are carried out with the matrix product rule. If A is a diago-
nal matrix, that is A D diag.a1;1; : : : ; an;n/, then it can be easily verified that
p.A/ D diag.p.a1;1/; : : : ; p.an;n//, that is, the polynomial is applied to the sin-
gle diagonal entries (cf. Exercise 6). We stress that this is only true for diagonal
matrices, when their dimension is greater than one. If A is diagonalizable, that is
A D XƒX�1, then it is possible to write

p.A/ D p.XƒX�1/ D X

2

6
4

p.�1/ � � � 0

� � � : : : 0

0 � � � p.�n/

3

7
5X�1 D Xp.ƒ/X�1;

where we have used the property that p.XAX�1/ D Xp.A/X�1 (this can be easily
deduced first for Ak , for any k > 0, and then for p.A/ using (2.13); see also Exercise
6). The calculation is rather interesting if we replace the polynomial p with a more
general function f , such as exp.x/, ln.x/,

p
x, etc. Assume that f is a smooth

function at the eigenvalues of A. Then, as before, for diagonalizable A we can write

f .A/ D f .XƒX�1/ D X

2

6
4

f .�1/ � � � 0

� � � : : : 0

0 � � � f .�n/

3

7
5X�1 D Xf .ƒ/X�1:

In general the definition of a function of a matrix can be made rigorous without
resorting to the diagonalization of A, so that the matrix is not needed to be diag-
onalizable. We will assume that the function and the matrix we will use are all
sufficiently well-behaved that the above definition can be used without special care.
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Exercises and Problems

1. Given the matrix A D
�

2 �4

1 0

�
, and the vector bT D .�2; 1/, verify that the

vector xT D Œ1; 1� is the (unique) solution to the system Ax D b.
We need to check that the definition is satisfied. Indeed, we have

Ax D
�

2.1/ � 4.1/

1.1/ C 0.1/

�
D
��2

1

�
D b:

Note that A is nonsingular, since the first row of the matrix is not a multiple of the
second row (this is a sufficient consideration only in R2). Therefore the system
solution is unique.

2. Given the matrix A D
�

3 �4

�1 1

�
, verify that xT D .�1 � p

5; 1/ and � D
2 C p

5 are respectively an eigenvector and the associated eigenvalue of A.
We need to check that the definition is satisfied. Indeed, we have

Ax D
�

3.�1 � p
5/ � 4.1/

�1.�1 � p
5/ C 1

�
D
��7 � 3

p
5

2 C p
5

�
and �x D

��7 � 3
p

5

2 C p
5

�
:

3. Show that the eigenvalues of an n � n real triangular matrix A coincide with its
diagonal entries.
This can be checked by explicitly writing det.A � �I/ D 0. Indeed, we have
det.A � �I/ D .� � a1;1/.� � a2;2/ � : : : � .� � an;n/ D 0, which is satisfied for
� D ai;i , i D 1; : : : ; n.

4. Show that the matrix A D
�

2 1

0 2

�
only has one linearly independent

eigenvector.
The matrix is triangular, therefore the eigenvalues are the diagonal elements (see
exercise above). Hence, �1 D �2 D 2. Using the definition Ax D �x, eigenvec-
tors of A are obtained by solving the singular system .A � �I/x D 0 with � D 2.
We have

.A � �I/x D
�

0 1

0 0

��
x1

x2

�
D
�

0

0

�

whose solution is x D .x1; 0/T , x1 2 R. No other linearly independent solutions
exist.

5. Show that the matrix A D
0

@
2 1 0

0 2 0

0 0 2

1

A has two linearly independent

eigenvectors.
Proceeding as above, one finds that �1 D �2 D �3 D 2, and there are two lin-
early independent eigenvectors, x D .x1; 0; 0/T and y D .0; 0; y3/T , x1; y3 2 R.
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6. Show that if A is diagonal, A Ddiag.a1;1; : : : ; an;n/, then p.A/ D diag.p.a1;1/;

: : : ; p.an;n// for any polynomial p.
The result follows from observing that for any k � 0, Ak D diag.ak

1;1; : : : ; ak
n;n/.

7. Given a square diagonalizable matrix A D XƒX�1, show that p.A/ D
Xp.ƒ/X�1.
We write p.A/ D ˛0IC˛1AC� � � ˛kAk . We have A2 D AA D XƒX�1XƒX�1 D
Xƒ2X�1. This in fact holds for any j , that is Aj D Xƒj X�1. Therefore,

p.A/ D ˛0XX�1 C ˛1XƒX�1 C � � � C ˛kXƒkX�1 D Xp.ƒ/X�1;

where in the last equality the matrices X and X�1 have been collected on both
sides.
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