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Abstract. In this lecture, steady-state convective heat transfer in different 
microchannels (microtube and parallel plates) will be presented in the slip 
flow regime. Laminar, thermally and/or hydrodynamically developing flows 
will be considered. In the analyses, in addition to rarefaction, axial conduction, 
and viscous dissipation effects, which are generally neglected in macroscale 
problems, surface roughness effects, and temperature-variable thermophysical 
properties of the fluid will also be taken into consideration. Navier–Stokes 
and energy equations will be solved and the variation of Nusselt number, 
the dimensionless parameter for convection heat transfer, along the channels 
will be presented in tabular and graphical forms as a function of Knudsen, 
Peclet, and Brinkman numbers, which represent the effects of rarefaction, 
axial conduction, and viscous dissipation, respectively. The results will be 
compared and verified with available experimental, analytical, and numerical 
solutions in literature. 

1. Introduction 

Devices having the dimensions of microns have been used in many fields 
such as; biomedicine, diagnostics, chemistry, electronics, automotive industry, 
space industry, and fuel cells, to name a few. With the increase of integrated 
circuit density and power dissipation of electronic devices, it is becoming 
more necessary to employ effective cooling devices and cooling methods to 
maintain the operating temperature of electronic components at a safe  
level. Especially when device dimensions get smaller, overheating of micro-
electronic components may be a serious issue. Microchannel heat sinks, 
with hydraulic diameters ranging from 10 to 1,000 μm, appear to be the 
ultimate solution for removing these high amounts of heat. This pressing 
requirement of cooling of electronic devices has initiated extensive research 
in microchannel heat transfer. Many analytical and experimental studies 
have been performed to have a better understanding of heat transfer at the 
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microscale. Both liquids and gases have been investigated. However, none 
of them has been able to come to a general conclusion. For example, there 
are controversial results in the literature about the boundary conditions, for 
liquids flows. It is not clear whether discontinuity of velocity and temperature 
exists on the wall or not. 

The pioneering conclusion drawn by Tuckerman and Pease in 1982 [1] 
that the heat transfer coefficient for laminar flow through microchannels 
may be greater than that for turbulent flow, accelerated research in this area. 
Many experimental [2–6], numerical [7–10], and analytical [11–14] studies 
have been performed, with some focusing on the effects of roughness  
[15–21] and temperature-variable thermophysical properties of the fluid 
[22–26]. 

Some of these works have been compiled in review articles such as those 
by Gad-El-Hak [27], Morini [28], Bayazitoglu [29], Hetsroni [30], Yener 
[31], Cotta [32], and Rosa [33]. The reader is also referred to excellent 
books by Karniadakis [34], Sobhan [35], and Yarin [36].  

Several conflicting results may be drawn from the above-mentioned 
studies. First, some investigators reported laminar fully-developed friction 
factors and Poiseuille numbers lower than the conventional values, some 
reported higher values, while others reported agreement with conventional 
values. Another conflict occurs in laminar to turbulent transition Re values, 
varying between 3,000 and 6,000. A similar conclusion can be made about 
the laminar regime Nusselt number (Nu = hD/k, h being the convection heat 
transfer coefficient, and D the hydraulic diameter) and the effect of energy 
dissipation on heat transfer. However, it should also be noted that as the 
precision and reliability of the experimental set-ups and measurement devices 
increase, the deviation margin of theoretical and experimental results obtained 
from similar experiments conducted by different investigators reduces. In any 
case, future research is still needed for fundamental understanding, as 
pointed out in Refs. [28–33, 37, 38]. 

2. General Considerations 

For the effective and economical design of microchannel heat sinks, some 
key design parameters should be considered and optimized. These are, the 
pressure required for pumping the cooling fluid, the mass flow rate of  
the cooling fluid, the hydraulic diameter of the channels, the temperature of the 
fluid and the channel wall, and the number of channels. In order to understand 
the effect of these parameters on the system, the dynamic behavior and heat 
transfer characteristics of fluids at the microscale must be well-understood. 

There are two major approaches to modeling fluid flow at the microscale: 
In the first model, the molecular model, the fluid is assumed to be a collection 
of molecules whereas in the second model, the continuum model, the fluid 
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is assumed to be continuous and indefinitely divisible. In macroscale flows, 
the continuum approach is generally accepted. The velocity, density, pressure, 
etc., for the fluid are defined at every point and time in space. Conservation 
of mass, momentum, and energy are applied and a set of nonlinear partial 
differential equations (Navier–Stokes and energy equations) are obtained. These 
equations are solved to obtain the fluid flow and heat transfer characteristic 
parameters at the macroscale. However as the dimensions of the channels 
get smaller, the continuum assumption starts to break. For microscale slip 
flow regime, the continuum approach is still valid, and Navier–Stokes and 
energy equations may still be used, but with a modification of boundary 
conditions. 

One important dimensionless parameter characterizing the flow regime 
is the Knudsen number (Kn). Knudsen number, which signifies the degree 
of rarefaction in the flow and the degree of validity of the continuum model, 
is defined as the ratio of the mean free path of the molecules, λ, to the 
characteristic length, L (Kn = λ/L). The different Kn regimes are determined 
empirically and are therefore only approximate for a particular flow 
geometry. For example, for gases, below L ≈ 100 nm, the rarefaction effect 
seems to be significant, while for liquids, below L ≈ 0.3 nm, the interfacial 
electro-kinetic effects near the solid–liquid interface become important. In 
general, the following is a commonly used scale for Kn to differentiate flow 
regimes [34]: 

Kn < 0.001  Continuum flow 
0.001 < Kn < 0.1 Slip-flow (slightly rarefied) 
0.1 < Kn < 10  Transition flow (moderately rarefied) 
Kn > 10  Free-molecular flow (highly rarefied) 

When the flow is in the higher Kn regime (transition and free-molecular), 
a molecular approach, such as direct simulation Monte Carlo method using 
the Boltzmann equation should be employed. For L  λ, the continuum 
approach will be applicable with traditional no-slip, no-temperature jump 
boundary conditions. However as this condition is violated, the linear relation 
between stress and the rate of strain, thus the no-slip velocity condition will 
not be valid. Similarly, the linear relation between heat flux and temperature 
gradient, thus the no-temperature jump condition at the solid–fluid interface 
will no longer be accurate [39]. The fluid and solid particles cannot retain 
thermodynamic equilibrium at the surface, thus the fluid molecules close to 
the surface do not have the velocity and temperature of the surface. Therefore, 
the slip-flow regime may be modeled with classical Navier–Stokes and 
energy equations by making some modifications in the boundary conditions 
for velocity and temperature at the wall, because the rarefaction effect is not 
small enough to be negligible in the slip-flow regime. As a result, fluid 
molecules at the wall will have finite slip-velocity and temperature-jump at 
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the wall. These modified conditions depend on the Kn value, some thermo-
physical properties of the fluid, and accommodation factors.  

Besides the Knudsen number, some other dimensionless parameters 
become important in microscale flow and heat transfer problems. The first 
such number is the Peclet number (Pe), which is the product of Reynolds 
(Re) and Prandtl (Pr) numbers (Pe = Re·Pr), and signifies the ratio of rates 
of advection to diffusion. Peclet number enumerates the axial conduction 
effect in flow. In macro-sized conduits, Pe is generally large and the effect 
of axial conduction may be neglected. However as the channel dimensions 
get smaller, it may become important. 

Brinkman number is the dimensionless parameter representing the relative 
importance of heat generated by viscous dissipation (work done against 
viscous shear) to heat transferred by fluid conduction across the microchannel 
cross-section in the flow. Its definition varies with the boundary condition 
at the wall. For example, for constant wall temperature, Br = μum

2/kΔT and 
for constant wall heat flux, Br = μum

2/qwR, where μ is the fluid dynamic 
viscosity, um is the mean flow velocity, k is the fluid thermal conductivity, 
ΔT is the fluid inlet-to-wall temperature difference, R is the hydraulic radius 
of the channel, and qw is the wall heat flux. Br is usually neglected in low-
speed and low-viscosity flows through conventionally-sized channels of 
short lengths. However in flows through conventionally-sized long pipelines, 
Br may become important. For flows in microchannels, the length-to-diameter 
ratio can be as large as for flows through conventionally-sized long pipelines, 
thus Br may become important in microchannels as well. 

In this lecture, the effects of the abovementioned dimensionless para-
meters, namely, Knudsen, Peclet, and Brinkman numbers representing 
rarefaction, axial conduction, and viscous dissipation, respectively, will be 
analyzed on forced convection heat transfer in microchannel gaseous slip 
flow under constant wall temperature and constant wall heat flux boundary 
conditions. Nusselt number will be used as the dimensionless convection 
heat transfer coefficient. A majority of the results will be presented as the 
variation of Nusselt number along the channel for various Kn, Pe, and Br 
values. The lecture is divided into three major sections for convective heat 
transfer in microscale slip flow. First, the principal results for microtubes 
will be presented. Then, the effect of roughness on the microchannel wall 
on heat transfer will be explained. Finally, the variation of the thermophysical 
properties of the fluid will be considered. 

3. Microtubes  

The geometry of the problem for microtubes is shown in Fig. 1. Steady-
state, two-dimensional, incompressible, laminar, and single-phase gas flow 
is considered. An unheated section is provided, where the velocity profile 
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develops. As mentioned before, in the slip flow regime, slip-velocity and 
temperature-jump boundary conditions should be applied to the momentum 
and energy equations. These are: 
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Figure 1. The problem geometry for microtubes. 

In Eq. (1), Fm is the momentum accommodation factor and has a value 
close to unity for the gas–solid couples used most commonly in engineering, 
and is also taken so in this work. In Eq. (2), Ts is the temperature of the 
fluid molecules at the wall, Tw is the wall temperature, γ is the ratio of the 
specific heats of the fluid, and Ft is the thermal accommodation factor.  
Ft may take a value in the range 0.0–1.0, depending on the gas and solid 
surface, the gas temperature and pressure, the temperature difference 
between the gas and the surface, and is determined experimentally. 

Using the slip-velocity boundary condition, the fully developed velocity 
profile may be written as [40]  
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where η = r/R is the nondimensional radial coordinate. Figure 2 presents the 
variation of the nondimensional velocity along the radial distance as a 
function of rarefaction in the flow. As can be observed therein, for continuum 
(Kn = 0), the no-slip velocity is present at the wall while as the degree of 
rarefaction increases, so does the slip velocity at the wall [41].  
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3.1. CONSTANT WALL TEMPERATURE 

For this boundary condition, the nondimensional energy equation and  
the boundary conditions for the flow inside a microtube, including axial 
conduction and viscous dissipation are 

 Figure 2. Velocity profile variation with Kn along the radial direction. 
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In Eqs. (4–7), the following parameters have been used for non-
dimensionalization: 

        ( ) m

*

wi

2
m

wi

w

u
uu,

R
r,

PeR
x,

TTk
uBr,

TT
TT

==η=ξ
−

μ
=

−
−

=θ ,     (8) 

 
 
 
 
 

Dimensionless Velocity (u/um)

0,0 0,5 1,0 1,5 2,0

D
im

en
si

on
le

ss
 R

ad
iu

s 
( η
=

η= η=η
=r

/R
)

0,0

0,5

1,0

Kn=0(continuum)
Kn=0.02
Kn=0.04

Kn=0.08

Kn=0.06

Kn=0.10



CONVECTIVE HEAT TRANSFER IN MICROSCALE SLIP FLOW 21

and κ is a parameter that accounts for temperature jump at the wall as 
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The energy equation has been solved numerically [40] and analytically, 

using general Eigen functions expansion [42], and the details can be found 
in related references. Using the temperature distribution, the local Nusselt 
number may be determined as 
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where θm is the nondimensional mean temperature defined by 
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3.2. CONSTANT WALL HEAT FLUX 

In this case, the nondimensional energy equation and the boundary conditions 
become [40], 
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In Eqs. (12–15) the following additional parameters have been used for 
non-dimensionalization: 
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The temperature profile is determined numerically, and using the temperature 
distribution, local Nusselt number may be determined as [40], 
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where θs is the nondimensional temperature of the fluid at the surface. 

3.3. RESULTS 

In this section, the results will be presented in tabular and graphical forms, 
for Nusselt number for both constant wall temperature and constant wall 
heat flux cases with variable Kn, Br, Pe values to investigate the effects  
of rarefaction, viscous dissipation, and axial conduction in the slip-flow 
regime for microtubes. Table 1 presents the effect of rarefaction on laminar 
flow fully developed Nu values for constant wall temperature (NuT) and 
constant wall heat flux (Nuq) cases, where viscous dissipation and axial 

TABLE 1. Laminar flow fully-developed Nu values for the present work for constant wall 
temperature (NuT) and constant wall heat flux (Nuq) cases, compared with analytical results 
from Ref. [43] (Pr = 0.6). 

Kn NuT [43] NuT Nuq [43] Nuq 

0.00 3.6751 3.6566 4.3627 4.3649 

0.02 3.3675 3.3527 3.9801 4.0205 
0.04 3.0745 3.0627 3.5984 3.6548 
0.06 2.8101 2.8006 3.2519 3.3126 
0.08 2.5767 2.5689 2.9487 3.0081 
0.10 2.3723 2.3659 2.6868 2.7425 
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To observe the effect of viscous dissipation on heat transfer, in Table 2, 
the fully developed Nusselt number is presented for constant wall temperature 
and constant wall heat flux cases with and without viscous dissipation. For 
all cases, the fully developed Nusselt number decreases as Kn increases. For 
Tw = constant, for the no-slip condition (Kn = 0), when Br = 0.01, Nu = 
9.5985, while it drops down to 3.8227 for Kn = 0.1, a decrease of 60.2%. 
Similarly for qw = constant, for the no-slip condition, when Br = 0.01, Nu = 
4.1825, while it drops down to 2.9450 for Kn = 0.1, with a decrease of 
29.6%. This is due to the fact that the temperature jump, which increases 
with increasing rarefaction, reduces heat transfer, as can be observed from 
Eqs. (10) and (17). A negative Br value for the constant wall heat flux 
condition refers to the fluid being cooled, therefore Nu takes higher values 
for Br < 0 and lower values for Br > 0 compared with those for no viscous 
heating. 

TABLE 2. Laminar flow fully-developed Nu with and without viscous dissipation for  
Tw = constant and qw = constant cases (Pr = 0.7). 

 Tw = constant qw = constant 
Kn Br = 0.00 Br = 0.01 Br = 0.00 Br = 0.01 Br = −0.01 

0.00 3.6566 9.5985 4.3649 4.1825 4.5640 
0.02 3.4163 7.4270 4.1088 4.0022 4.2212 
0.04 3.1706 6.0313 3.8036 3.7398 3.8695 
0.06 2.9377 5.0651 3.4992 3.4598 3.5395 
0.08 2.7244 4.3594 3.2163 3.1912 3.2419 
0.10 2.5323 3.8227 2.9616 2.9450 2.9784 

 
In Fig. 3, the variation of local Nusselt number along the constant wall 

temperature tube is presented as a function of Peclet number, representing 
axial conduction in the fluid. For Pe = 50, which represents a case with 
negligible axial conduction, the solution of the classical Graetz problem,  
Nu = 3.66, is reached [44], while for Pe = 1, Nu = 4.03 [45] is obtained as 
the fully developed values of Nu. The temperature gradient at the wall 
decreases at low Pe values, thus the local and fully developed Nu values 
increase with decreasing Pe. 

conduction effects have been neglected. The table serves as a verification of 
the solution procedure, as comparisons with analytical solutions from literature 
[43] are also provided. 
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Figure 3. Variation of local Nu with Pe when Kn = 0 and Br = 0. 

Figure 4 presents the local Nusselt number variation along the microtube 
for the constant wall temperature boundary condition for cases where both 
viscous dissipation and axial conduction effects have been considered. A 
positive Br for this boundary condition refers to the fluid being cooled as it 
flows along the tube. Local Nu value first decreases due to temperature 
jump at the wall, then increases to its fully-developed value because of the 
heating due to the viscous dissipation effect. Before the increase, the values 
of local Nu match those for the Br = 0 case presented in Fig. 3 [10, 42]. 
However, because of the definition of Pe, local Nu curves deviate from 
those for Br = 0 as the minima are approached. This effect results in the 
overall increase in the average Nu in the tube, thus we can conclude that 
average Nu increases as the effect of axial conduction is more prominent. 
Also, the amount of viscous dissipation does not affect the fully developed 
Nu value. 
 

0.01 0.1 1.0 10
2

4

6

8

10
L

o
ca

l N
u

3.66 
4.03 

Kn = 0, Br = 0 

   Decreasing
Pe (50, 10, 5, 1)

x = x / (R Pe) 



CONVECTIVE HEAT TRANSFER IN MICROSCALE SLIP FLOW 25

 
Figure 4. Variation of local Nu with Pe when viscous dissipation is present (Br > 0, Kn = 0). 

When the fluid is being heated along the tube, i.e., the fluid inlet temper-
ature is less than that of the wall, for the constant wall temperature case, Br 
is negative and the local Nu variation is as shown in Fig. 5. As can be 
observed therein, local Nu reaches an asymptotic value when the fluid 
temperature is equal to the wall temperature, when viscous dissipation and 
axial conduction are included. Thermal development continues after this 
point, and the fully developed Nu is reached. Similar to positive Br cases, 
the amount of viscous dissipation effects the location where the sudden 
change in local Nu occurs, but the fully developed Nu is the same for all 
non-zero Br values. 

Table 3 summarizes a majority of the results for fully developed Nu for 
slip-flow in microtubes presented in this section for constant wall temperature 
boundary condition, and provides comparisons with available results from 
literature. Here, κ = 0 refers to no temperature jump while κ = 1.667 refers 
to temperature jump for air flow. The present results show excellent agreement 
with literature. 
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Figure 5. Variation of local Nu with Pe when viscous dissipation is present (Br < 0, Kn = 0). 

TABLE 3. Comparison of fully developed Nu with results from literature. 

Pe = 1.0 Pe = 5.0 Pe = 10 Pe → ∞ Kappa 
( κ ) Nu Nu* Nu Nu** Nu Nu* Nu Nu*** Kn 

0 4.028 4.030 3.767 3.767 3.695 3.697 3.656 3.656 
1.667 4.028 4.030 3.767 3.767 3.695 3.697 3.656 3.656 0.00 

0 4.358 – 4.131 – 4.061 – 4.020 4.020 
1.667 3.604 – 3.387 – 3.325 – 3.292 3.292 0.04 

0 4.585 – 4.386 – 4.319 – 4.279 4.279 
1.667 3.093 – 2.949 – 2.909 – 2.887 2.887 0.08 

Nu: Present results     Nu**: Results from Ref. [46] 
Nu*: Results from Ref. [45]    Nu***: Results from Ref. [9] 

4. Roughness Effect 

The effect of surface roughness may be particularly important in microchannel 
flows. Roughness characteristics of microchannels are strictly dependent on 
the manufacturing process. Since the random distribution and small size  
of the roughness peaks along a surface are quite difficult to define, most 
investigators neglect this effect in their studies. There is a limited number of 
publications in open literature compared to other effects in microscale. In 
one of the first experimental studies in this area water flow through rough 
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from laminar to turbulent flow, were found [15]. Later, heat transfer 
characteristics were also investigated and due to the surface roughness effect, 
smaller Nu values were determined [47]. Different models were proposed to 
represent the effects of surface roughness; such as roughness-viscosity 
model [15], porous medium layer model [48], and the explicit model [17, 
18]. Roughness can reduce or increase Nu depending on the distribution, 
spacing, and geometry of the obstructions. However one common conclusion 
is that roughness is more effective at low Kn values. 

In this case, steady-state, laminar, developing air flow in a parallel-plate 
microchannel with one rough wall is considered. As shown in the channel 
schematic in Fig. 6, the roughness is modeled as two-dimensional equilateral 
triangular elements placed on the bottom wall surface. The relative surface 
roughness of the wall may be determined by ε = e/D, where e is the height 
of the roughness elements and D the hydraulic diameter of the channel. In 
most of the studies in literature, it is stated that silicon microchannels 
generally have a relative roughness value in the range 0–4%. Thus, in this 
work, ε = 1.325%, 2.0% are considered [49, 50]. 

 
 
 
 
 
 
 
 

Figure 6. Schematic of the rough microchannel. 

The equations to be solved are similar to those in the previous section 
with some minor differences due the change in geometry (parallel-plate 
microchannel versus microtube). In the solution, slip boundary conditions 
given in Eqs. (1) and (2) are applied and finite element method is used to 
solve for the velocity profile and the temperature distribution. Then, from 
the temperature profile, the local Nu is determined. 

For the continuum case (Kn = 0), without viscous dissipation, local Nu 
has a wavy pattern, as shown in Fig. 7, similar to the observations in Refs. 
[17, 20] for triangular roughness elements. Velocity and temperature gradients 
are higher at the peaks of the elements, thus local Nu is larger there, while 
at the bottom corners, the low gradients result in minimum local Nu. 
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fused silica and stainless steel microtubes was investigated, and deviations 
from theoretical predictions; such as higher friction factor, and early transition 
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Figure 7. Local Nu variation over the roughness elements for Kn = 0, Re = 100 and Br = 0 
when (a) ε = 1.325%, (b) ε = 2.0%. 

Graphical results are presented in Fig. 8 for the channel averaged Nu 
(including smooth inlet–outlet sections), including axial conduction and 
viscous dissipation (Br = 0.1). Without the rarefaction effect, roughness 
reduces heat transfer. However, with the rarefaction effect, an increase in 
the average Nu with respect to smooth channel values is observed. Due to 
the reduced interaction between the gas molecules and channel walls at high 
Kn values, the increase is less pronounced at high Kn values and more at 
low Kn values. Moreover, when rarefaction is considered, the average Nu 
values increase with increasing Pe and relative surface roughness height. In 
Table 4, average Nu values for the rough section of the channel (representing 
a channel with a completely rough wall from the inlet to the outlet) are 
presented for cases where axial conduction and viscous dissipation (Br = 
0.1) are both included, compared to smooth channel values. For this case, 
average Nu takes higher values, except Kn = 0 cases, where the reduction in 
local Nu between roughness elements is dominant and cannot be compensated 
by the higher local Nu computed at the other parts of the channel. The 
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increases with increasing roughness height. As the flow becomes more 
rarefied, the importance of relative surface roughness height is reduced and 
yields nearly the same average Nu values for the considered relative roughness 
heights.  

 

Figure 8. Channel averaged Nu compared with fully developed smooth channel values when 
axial conduction and viscous dissipation (Br = 0.1) are included. 

TABLE 4. Rough section averaged Nu compared with fully developed smooth channel 
values when axial conduction and viscous dissipation are included (Br = 0.1). 

 Rough 
1.325% 

Rough 
2.0% 

0.00 17.484 11.389 11.175 
0.02 13.680 26.499 29.783 
0.04 16.450 17.768 16.450 
0.06 12.289 13.160 12.289 
0.08 9.782 10.466 9.782 

3.5 

0.10 8.090 8.662 8.090 

0.00 17.547 11.585 11.384 
0.02 13.775 28.354 32.332 
0.04 11.298 18.330 20.324 
0.06 9.563 13.820 15.345 
0.08 8.280 11.062 12.340 
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general trend is similar to the channel averaged cases presented in Fig. 8; at 
low Kn, the effect of surface roughness is more prominent and average Nu 
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5. Temperature-Variable Thermophysical Properties 

The earliest studies related to thermophysical property variation in tube 
flow conducted by Deissler [51] and Oskay and Kakac [52], who studied 
the variation of viscosity with temperature in a tube in macroscale flow. The 
concept seems to be well-understood for the macroscale heat transfer 
problem, but how it affects microscale heat transfer is an ongoing research 
area. Experimental and numerical studies point out to the non-negligible 
effects of the variation of especially viscosity with temperature. For example, 
Nusselt numbers may differ up to 30% as a result of thermophysical 
property variation in microchannels [53]. Variable property effects have 
been analyzed with the traditional no-slip/no-temperature jump boundary 
conditions in microchannels for three-dimensional thermally-developing 
flow [22] and two-dimensional simultaneously developing flow [23, 26], 
where the effect of viscous dissipation was neglected. Another study includes 
the viscous dissipation effect and suggests a correlation for the Nusselt number 
and the variation of properties [24]. In contrast to the abovementioned 
studies, the slip velocity boundary condition was considered only recently, 
where variable viscosity and viscous dissipation effects on pressure drop 
and the friction factor were analyzed in microchannels [25]. 

Because of the limited number of studies conducted in this area, simul-
taneously developing, steady-state, single phase gaseous flow and heat transfer 
in parallel plate microchannels in the slip flow regime (with slip-flow and 
temperature-jump boundary conditions) is studied numerically by taking 
into account the effects of rarefaction, viscous dissipation, and viscosity and 
thermal conductivity variation with temperature. The geometry is similar to the 
rough channel geometry, but without the roughness elements. Temperature 
dependent thermal conductivity is approximated by using a third-order 
polynomial function 
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where ai are constants. Temperature dependent dynamic viscosity is modeled 
by using Sutherland’s formula 
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where μ0 is the dynamic viscosity evaluated at the reference temperature T0 
(273 K), and C is the Sutherland constant (111 K for air). 

Energy and momentum equations are solved in a coupled manner to 
account for the viscosity variation. Coupled solutions are made for pressure 
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and velocity for investigating simultaneously developing flow. Variation of 
specific heat (Cp) and density (ρ) with temperature is not included, since 
these properties vary in negligible amounts within the studied temperature 
range (from 20°C, the inlet temperature, to 85°C, the wall temperature). 

The results, grouped into two categories as variable property (vp) and 
constant property (cp) are presented in Figs. 9–12. Both negative (fluid 
heating along the channel) and positive (fluid cooling along the channel) 
Brinkman values are analyzed, with Tinlet/Twall = 0.75 for heating and 
Tinlet/Twall = 1.5 for fluid cooling. Moreover Kn = 0.0 and 0.1, and Br = 
0.001, 0.01, and 0.1 are considered [54]. 

An examination of Figs. 9–12 shows that the variation of Nu for cp and 
vp cases differ up to a certain distance in the channel and there is no 
significant difference in the fully developed Nu values. Both for the cooling 
and heating cases, the difference due to variable properties is non-negligible 
for part of the channel length. The difference in the cp and vp local Nu 
values decreases with increasing Br. An increase in Br, the nondimensional 
number representing viscous dissipation, results in the development of the 
flow in a shorter distance, and in return, the temperature gradients decrease. 
Since the temperature gradients directly affect the variation in properties, an 
increase in viscous dissipation reduces the difference due to variable 
properties. Moreover, the difference in the cp and vp local Nu values also 
decreases slightly with increasing Kn, representing the degree of rarefaction 
in the flow. As Kn increases, the flow is less affected by the wall 
conditions. As the heat transfer at the wall decreases, temperature gradients 
are reduced, and the difference due to variable properties decreases, as 
explained above. 

Figure 9. Local Nu variation with positive Br = 0.001, 0.01, 0.1 (fluid cooling) values along 
the microchannel for Kn = 0.01 (Tinlet/Twall = 1.5). 
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Figure 10. Local Nu variation with positive Br = 0.001, 0.01, 0.1 (fluid cooling) values along 
the microchannel for Kn = 0.1 (Tinlet/Twall = 1.5). 
 

Figure 11. Local Nu variation with negative Br = −0.001, −0.01, −0.1 (fluid heating) values 
along the microchannel for Kn = 0.01 (Tinlet/Twall = 0.75). 
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Figure 12. Local Nu variation with negative Br = −0.001, −0.01, –0.1 (fluid heating) values 
along the microchannel for Kn = 0.1 (Tinlet/Twall = 0.75). 

6. Conclusions 

In this lecture, a variety of results for convective heat transfer in microtubes 
and microchannels in the slip flow regime under different conditions have 
been presented. Both constant wall temperature and constant wall heat flux 
cases have been analyzed in microtubes, including the effects of rarefaction, 
axial conduction, and viscous dissipation. In rough microchannels the 
abovementioned effects have also been investigated for the constant wall 
temperature boundary condition. Then, temperature-variable dynamic viscosity 
and thermal conductivity of the fluid were considered, and the results were 
compared with constant property results for microchannels, with the effects 
of rarefaction and viscous dissipation. 

The conclusions drawn for microscale slip flow may be summarized as 
follows: 

1. For high values of rarefaction (high Kn) and temperature jump (high κ), 
the effect of axial conduction is negligible. However for lower rarefaction 
and temperature jump values, as Pe decreases (axial conduction effect 
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When the fluid is cooled (Br > 0 for constant wall temperature and Br < 0 
for constant wall heat flux) Nu takes higher values. The increase in fully 
developed Nu value with the added effect of viscous dissipation suggests 
that this effect should not be neglected for long channels. Since micro 
conduits have high length-to-diameter ratios, even for low values of Br, 
viscous dissipation effect must be considered. 

3. In general, for constant wall temperature and constant wall heat flux 
conditions, velocity slip and temperature jump affect the heat transfer in 
opposite ways: a large slip on the wall will increase the convection along 
the surface. On the other hand, a large temperature jump will decrease the 
heat transfer by reducing the temperature gradient at the wall. Therefore, 
neglecting temperature jump will result in the overestimation of the heat 
transfer coefficient. 

4. When viscous dissipation is neglected, the effect of axial conduction 
should be included for Pe < 100. When viscous dissipation is included in 
the analysis, axial conduction is significant for Pe < 100 for short channels. 

5. When surface roughness is considered, the fully developed Nu increases 
with respect to the smooth channel value for rarefied flows, but not for 
continuum, for all values of Peclet number. The increase in Pe increases 
Nu more for low values of rarefaction. It appears that, for the range Kn 
considered in this work, the maximum heat transfer is observed for Kn = 
0.02. When viscous dissipation effect is included, in either fluid heating 
or fluid cooling, Nu increases, and more significantly with higher relative 
roughness values. 

6. The variation of thermophysical properties affects the temperature profile, 
but not the velocity field. For both fluid heating cooling cases, the 
variation in local Nu due to temperature-variable properties is significant in 
the developing region. However the fully developed Nu is almost invariant 
for constant and variable properties cases due to reduced temperature 
gradients in this region. 
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increases), the fully developed Nu increases more significantly. It may 
be concluded from these observations that the effect of axial conduction 
should not be neglected for low-rarefied flows and with low values of 
temperature jump. 

2. Regardless of the effect of axial conduction, for a given Kn and κ value, 
the flow reaches the same fully developed Nu value for all values of Br. 
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