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Basic Function Spaces and Related Inequalities

Incipe parve puer risu cognoscere matrem.

VERGILIUS, Bucolica IV, v.60

Introduction

In this chapter we shall introduce some function spaces and enucleate certain
properties of fundamental importance for further developments. Particular
emphasis will be given to what are called homogeneous Sobolev spaces, which
will play a fundamental role in the study of flow in exterior domains. We shall
not attempt, however, to give an exhaustive treatment of the subject, since
this is beyond the scope of the book. Therefore, the reader who wants more
details is referred to the specialized literature quoted throughout. As a rule,
we give proofs where they are elementary or relevant to the development of
the subject, or also when the result is new or does not seem to be widely
known.

I1.1 Preliminaries

In this section we collect a number of preparatory results. After introducing
some basic notation, we shall recall the relevant properties of Banach spaces
and of certain classical spaces of smooth functions as well. We shall finally
define and analyze the properties of special subsets of the Euclidean space.
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I1.1.1 Basic Notation'®

The symbols N and N denote the set of all non-negative and of all positive
natural numbers, respectively.

For X aset, we denote by X™, m € N, the Cartesian product of m copies
of X. Thus, denoting by R the real line, R™ is the n-dimensional Euclidean
space. Points in R™ will be denoted by = = (z1,...,2,) = (z;) and corre-
sponding vectors by u = (u1,...,u,) = (u;). Sometimes, the ith component
u; of the vector u will be denoted by (w);. More generally, for T a tensor of
order m > 2, its generic component T;;.. r; will be also denoted by (T):;.. k-
The components of the identity tensor I, are denoted by d,; (Kronecker delta).

The distance between two points x and y of R™ is indicated by |z — y|, and
we have
1/2

o —yl = [Zm —y)?

i=1

More generally, the distance between two subsets A and B of R™ is indicated
by dist (A, B), where

dist (A, B) = inf 5 |z —yl.

rEA,yE

The modulus of a vector w is indicated by |u| (or by u) and it is

N 1/2
ul = (z ) |
=1

Given two vectors u, v, the second-order tensor having components u;v;
(dyadic product of w,v) will be denoted by u ® v.

The canonical basis in R™ is indicated by
{e;} = {el7 .. .,en}
with
e; =(1,0,...,0), e2=(0,1,0,...,0), ...,e,=1(0,...,0,1).
We also set
R} ={z e R" : 2, > 0}

R" ={z e R" : 2, < 0}.

! For other notation, we refer the reader to footnotes 8, 9, and 10 of Section I.1
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For r > 0 and = € R" we denote by B, (z) the (n-dimensional) open ball
of radius r centered at x, i.e.,

B(z)={yeR": |[x—y| <r}.

For r = 1, we shall put
Bi(z) = B(x),

and for x = 0,
B, (0) = B,.

Unless the contrary is explicitly stated, the Greek letter {2 shall always
mean a domain, i.e., an open connected set of R".

Let A be an arbitrary set of R™. We denote by A its closure, by A = R"—A

o
its complementary set (in R™), by A its interior, and by d.A its boundary. For
n > 2, the boundary of the n-dimensional unit ball centered at the origin (i.e.,
the n-dimensional unit sphere) is denoted by S~ !:

S = 0B;.
Moreover, §(.A) is the diameter of A, that is,

0(A) = sup |z —yl.
z,yeA

If 2¢ C B, for some p € (0, 00) and with the origin of coordinates in £2°,
we set

Qr:QﬂBm T>P7
=0 -Q., r>p,

QT,R:QR*QM ,D<T‘<R.

If A is Lebesgue measurable and iy, is the (Lebesque) measure in R™, we
put

|A] = nr(A).

The measure of the n-dimensional unit ball is denoted by w,,; therefore,
2,n_n/2
Wy =

" nl(n/2)

where I is the Euler gamma function
By ¢, ¢;, C, C;, i = 1,2, ..., we denote generic positive constants, whose

possible dependence on parameters &1, ..., &, will be specified whenever it is

needed. In such a case, we write ¢ = ¢(&1,...,&m), C = C(&,...,&n), or,
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especially in formulas, c¢, ... ¢,., Ce,... ¢, etc. Sometimes, we shall use the
symbol ¢ to denote a positive constant whose numerical value or dependence
on parameters is not essential to our aims. In such a case, ¢ may have several
different values in a single computation. For example, we may have, in the
same line, 2¢ < c.

For a real function w in {2, we denote by supp (u) the support of u, that is,
supp (u) = {x € 2: wu(z) #0}.

For a real smooth function v in {2 we set

likewise,

Vu = (Dyu,...,Dyu)

denotes the gradient of u,
D2u = {Diju}

is the matriz of the second derivatives. Occasionally, the gradient of u will be
indicated by D'u or, more simply, by D u. We also set?

Au = Diiu
is the Laplacean of u.
For a vector function w = (uq, ..., uy,), the divergence of u, V-, is defined
by
V U = Diui y
and, if n = 3,

V x u = (Daus — Dsug, D3uy — Dyuz, Dyuz — Douy)

denotes the curl of w. Similarly, if n = 2, V x u has only one component,
orthogonal to u, given by (Djus — Dauq).

If o is an n-tuple of non-negative integers «;, we set

n
lal = _a
i=1

and

«
Doy — lely
Ozt ... .0z

2 According to Einstein’s summation convention, unless otherwise explicitly stated,
pairs of identical indices imply summation from 1 to n.
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The n-tuple « is called a multi-index.
If D is a domain with |D| < 0o, and w : D — R™, n > 1, we denote by up
the mean value of the function w over the domain D, namely,

D — )
Dl Jp

whenever the integral is meaningful.
We shall also use the following standard notation, for functions f and g
defined in a neighborhood of infinity:

J(@) = Olg(x)) means | ()| < Milg(w)] for all [o] > My,
£(z) = olg(a)) means lim |£(a)|/lg(a)] =0

where M7, M> denote positive constants.
Finally, the symbols [J and B will indicate the end of a proof and of a
remark, respectively.

11.1.2 Banach Spaces and their Relevant Properties

For the reader’s convenience, in this subsection we shall collect all relevant
properties of Banach spaces that will be frequently use throughout this book.

Let X be a wvector (or linear) space on the field of real numbers, with
corresponding operations of sum of two elements, x + y, and multiplication
of an element z by a real number o, ax. Then, X is a normed space if there
exists a map, called norm,

I'[[x:zeX —|z||x €R
satisfying the following conditions, for all & € R and all z,y € X:

(1) Jlz|lx >0, and ||z||x = 0 implies = 0;
(2) lexlx = [of ] x;
B3) [z +yllx <llzllx + llyllx -

In what follows, X denotes a normed space.

Two norms ||-||x and || || on X are equivalentif c1]]-||x < ||-[|% < ezl |l x,
for some constants ¢; < cs.

A sequence {zx} in X is convergent to x € X if

klim ler —z||x =0, (I1.1.1)

or, in equivalent notation, r; — .
A subset S of X is a subspace if ax + Sy isin S, for all z,y € S and all
a, B eR.
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A subset B of X is bounded if there exists a number M > 0 such that
sup||lz||lx < M.
reEB

A subset C of X is closed if for every sequence {zj} C C such that x — x
for some x € X, implies x € C.

The closure of a subset S of X consists of those points of x € X such that
zy, — x for some {z}} C S.

A subset K of X is compact if from every sequence {x;} C K we can find
a subsequence {zj } and a point © € K such that xp — .

A subset of X is precompact if its closure is compact.

A subset S of X is dense in X if for any x € X there is a sequence {x} C S
such that z, — x.

A subset of X is separable if it contains a countable dense set. We have
the following result (see, e.g. Smirnov 1964, Theorem in §94).

Theorem I1.1.1 Let X be a separable normed space. Then every subset of
X is separable.

A space X is (continuously) embedded in a space Y if X is a linear subspace
of Y and the identity map 7 : X — Y maps bounded sets into bounded sets,
that is, ||z|ly < ¢||lz||x, for some constant ¢ and all z € X. In this case, we

shall write
X =Y.

X is compactly embedded in Y if X — Y and, in addition, ¢ maps bounded
sets of X into precompact sets of Y. In such a case we write

X ——=Y.

Two linear subspaces X1, Y7 of normed spaces X and Y, respectively, are
isomorphic [respectively, homeomorphic] if there is a map L from X; onto
Y7, called isomorphism [respectively, homeomorphism], such that (i) L is lin-

ear; (ii) L is a bijection, and, moreover, (iii) ||L(z)||x = ||z|y [respectively,
allzllx < ||L(z)|ly < czllz|x, for some ¢ < ¢g], for all x € Xy, where || - || x,
and || - ||y denote the norms in X and Y.

A sequence {xp} C X is called Cauchy if
given € > 0 there isn =n(e) € N: |lop — zp||x < e forall k, k' > n.

If every Cauchy sequence in X is convergent to an element of X, then X
is called complete.

A Banach space is a normed space where every Cauchy sequence is there
convergent or, equivalently, a Banach space is a complete normed space.

If X is not complete, namely, there is at least one Cauchy sequence in X
that is not convergent to an element of X, we can nevertheless find a uniquely
determined® Banach space X, with the property that X is isomorphic to a

3 Up to an isomorphism.
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dense subset of X. The space X is called (Cantor) completion of X, and

its elements are classes of equivalence of Cauchy sequences, where two such

sequences, {x}, {x],}, are called equivalent if llim llz: — || x = 0; see, e.g.,
— 00

Smirnov (1964, §85).

Suppose, now, that on the vector space X we can introduce a real-valued
function (-,-)x defined in X x X, satisfying the following properties for all
z,y,z€ X and all o, 0 € R

(1) (x7y)X = (y7x)X7
(ll) (am+5y7z)x:a(x7z)x+5(y7z)){7
(iii) (x,2)x >0, and (x,2)x = 0 implies z = 0.

Then X becomes a normed space with norm

|z)x = V/(2,2)x. (IL.1.2)

The bilinear form (-,-)x is called scalar product, and if X, endowed with the
norm (I1.1.2), is complete, then X is called Hilbert space.

A countable set B = {x} in a Hilbert space X is called a basis if (i)
(xj, ) = dji, for all z;, z, € B, and limy . || Zi\;l(x,xk)xk —z|x =0,
forall z € X.

A linear map £ : X — R on a normed space X, such that

S0 = sup [¢(x)] < o0 (I1.1.3)
zeX;||z||x =1

is called bounded linear functional or, in short, linear functional on X. The set,
X', of all linear functionals in X can be naturally provided with the structure
of vector space, by defining the sum of two functionals /1 and ¢ as that £ € X’
such that ¢(x) = ¢1(x)+l2(x) for all 2 € X, and the product of a real number
a with a functional ¢ as that functional that maps every x € X into af(x).
Moreover, it is readily seen that the map ¢ € X' — |[{||x» = s; € R, with
s¢ defined in (I1.1.3), defines a norm in X'. It can be proved that if X is a
Banach space, then also X', endowed with the norm || -|| x-, is a Banach space,
sometime referred to as strong dual; see, e.g. Smirnov (1964, §99).

A Banach space X is naturally embedded into its second dual (X’) = X"
via the map M : z € X — J, € X", where the functional J, on X' is defined
as follows: J,(¢) = ¢(x), £ € X’. One can show that the range, R(M), of M is
closed in X" and that M is an isomorphism of X onto R(M); see e.g. Smirnov
(1964, Theorem in §99). If R(M) = X", then X is reflexive.

We have the following result (see, e.g. Schechter 1971, Chapter VII, The-
orem 1.1, Theorem 3.1 and Corollary 3.2; Chapter VIII, Theorem 1.2).

Theorem I1.1.2 Let X be a Banach space. Then X is reflexive if and only
if X' is. Moreover if X' is separable, so is X. Therefore, if X is reflexive and
separable, then so is X'. Finally, if X is reflexive, then so is every closed
subspace of X.
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A sequence {z;} in a Banach space X is weakly convergent to x € X if

lim l(xg) =2, forall £ e X', (I1.1.4)

k—o00

or, in equivalent notation, xj — x. In contrast to this latter, convergence in
the sense of (II.1.1) will be also referred to as strong convergence. It is imme-
diately seen that a strongly convergent sequence is also weakly convergent,
while the converse is not generally true, unless X is isomorphic to R™; see
e.g. Schechter (1971, Chapter VIII, Theorem 4.3). The topological definitions
given previously (closedness, compactness, etc.) for subsets of X in terms of
strong convergence, can be extended to the more general case of weak conver-
gence in an obvious way. We shall then speak of weakly closed sets, or weakly
compact sets, etc. Moreover, we shall say that a sequence {xy} is weak Cauchy
if the following property holds, for all £ € X":

given € > 0 there is n = n(e, £) € N: [{(x, —xp/)| < e forall k, k' >n.
A Banach space X is weakly complete if every weak Cauchy sequence is weakly

convergent to some x € X.

Some significant properties related to weak convergence are collected in
the following.

Theorem 11.1.3 Let X be a Banach space. The following properties hold.

(i) If {xr} € X with z — =, then there is C' independent of k such that
llzk||x < C. Moreover,

Jllx < Tim inf [l x
k—o00

see, e.g., Smirnov (1964, §101, Theorem 1 and Theorem 5).

(ii) The closed unit ball {x € X : ||z||x < 1}, is weakly compact if and only
if X is reflexive; see, e.g., Miranda (1978, §§28, 30).

(iii) If X is reflexive, then X is also weakly complete; see, e.g., Smirnov (1964,
§101 Theorem 7).

Property (ii) will be sometime referred to as weak compactness property.

This property has, in turn, the following interesting consequence.

Theorem I1.1.4 Let X be a reflexive Banach space, and let £ € X'. Then,
there exists © € X such that

[l x = [€(z)], llzlx=1. (I.1.5)

Proof. If £ = 0, then (II.1.5) is obviously satisfied. So, we assume ¢ # 0. By
definition, we have
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[lx = sup  [l(z)].
zeX;||z||x=1

Therefore, there exists a sequence {z}} C X such that

1] x = klim [0(xr)], |lzkllx =1, for all k € N. (I1.1.6)

In view of Theorem II.1.3(ii), there exist a subsequence {zj/} and z € X such
that

Evaluating (II.1.6) along this subsequence , with the help of Theorem II.1.3(i),
we obtain that x satisfies the following conditions

[l = @)l [le]lx < 1. (I1.1.8)
If x = 0, it follows ||¢||x = 0 which was excluded, so that x # 0. Thus, since

[£(2))

1€l x>
el x

from this relation and (II.1.8) we prove the result. O

In the sequel, we shall deal with vector functions, namely, with functions
with values in R™, whose components belong to the same Banach space X. We
shall, therefore, recall some basic properties of Cartesian products, XV, of N
copies of X. It is readily checked that X can be endowed with the structure
of vector space by defining the sum of two generic elements @ = (x1,...,2n)
and y = (y1,...,yn), and the product of a real number o with  in the
following way

z+y=(@i+y,....,en+yn), oz = (az1,...,0TN).

Furthermore, we may introduce in XV either one of the following (equivalent)
norms (or any other norm equivalent to them)

N 1/q
2l g = (Z ||l’i||§¢> g€ (l,00), [[#l) = max lallx, ze XN,
i=1

ie{1,...N}
(I1.1.9)
in such a way that (as the reader will prove with no pain) XV becomes a
Banach space.

We have the following.
Theorem II1.1.5 If X is separable, so is X~. Moreover, XV is reflexive if so
is X,

Proof. The proof of the first property is obvious, while that of the second one
is a consequence of Theorem IT.1.3(ii). O
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The next result establishes the relation between (XV)" and (X').

Theorem I1.1.6 Every £ € (XV) can be written as follows

N
L= Z€i7 (I1.1.10)
k=1
where £; € X', i =1,..., N are uniquely determined. Moreover, the map

T:Le (XN)/ — (ly,...,0N) € (X/)N

is a homeomorphism of (X~)" onto (X')N. If, in particular, we endow X
and (XN)" with the following norms

2l x~ = ll2lay, 1£lx)y = 1£lso) -
then T is an isomorphism.

Proof. The generic element £ € XV can be represented as in (I1.1.10) where
l(x) = L(x1,0,...,0), lo(x) = L(0,22,...,0), etc. Obviously, each func-
tional ¢;, i = 1,...N, can be viewed as an element of X’. We then consider
the map T in the way defined above. It is clear that T is surjective and injec-
tive and linear. From (II.1.10), it readily follows that

1Ll xvy = sup [L(2)] < T(L)]l o0) -

TeXN|T] xn=1
Moreover, by definition of supremum, we must have
[l xr < 1Ll (xny s

so that we conclude ||£|(x~y > [|T(£)|[(c0), Which shows that 7" is an isomor-
phism. If, instead, we use any other norm of the type (I1.1.9), we can show by
a simple calculation that uses (I1.3.2) that T is, in general, a homeomorphism.
The proof of the lemma is thus completed. a

We next recall the Hahn-Banach theorem and one of its consequences.
A proof of these results can be found, e.g., in Schechter (1971, Chapter II
Theorem 2.2 and Theorem 3.3).

Theorem 11.1.7 Let M be a subspace of a normed space X. The following
properties hold.

(a) Let £ be a bounded linear functional defined on M, and let

[l = sup  |e(z)].

zeM;||z||x=1

Then, there exists a bounded linear functional, ¢, defined on the whole
of X, such that (i) {(x) = {(zx), for all x € M, and (ii) ||¢||x = ||¢]|.
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(b) Let z9 € X be such that

d= inf ||lxg —z|x >0.
zeEM

Then, there is ¢ € X' such that ||{||x = 1/d, {(zo) = 1, and {(z) = 0,
for allx € M.

We conclude this section by reporting the classical contraction mapping
theorem (see, e.g., Kantorovich & Akilov 1964, p. 625), that we shall often
use throughout this book in the following form.

Theorem I1.1.8 Let M be a closed subset of the Banach space X, and let
T be a map of M into itself. Suppose there exists « € (0,1) such that

IT(x) =TW)lx < alle—ylx, forallz,ye M.

Then, there is a unique xo € M such that T'(z¢) = xo.

A map satisfying the assumptions of Theorem I1.1.8 is called contraction.

I1.1.3 Spaces of Smooth Functions

We next define some classical spaces of smooth functions and, for some of
them, we recall their completeness properties.

Given a non-negative integer k, we let C*(£2) denote the linear space of
all real functions u defined in {2 which together with all their derivatives D%u
of order || < k are continuous in (2. To shorten notations, we set

We also set

C>(N) = ﬁ cr ().
k=0

Moreover, by the symbols CE(£2) and C§°(§2) we indicate the (linear) sub-
spaces of C*(£2) and C>(2), respectively, of all those functions having com-
pact support in £2. Furthermore, C§(£2), 0 < k < oo, denotes the class of
restrictions to 2 of functions in CF(R™). As before, we put

Co(92) = Co(92), C(£2) = Co(92).

We next define C*(£2) (C(£2) for k = 0) as the space of all functions u for
which D®u is bounded and uniformly continuous in {2, for all 0 < |o| < k.
We recall (Miranda 1978, §54) that for k < oo, C*(£2) is a Banach space with

respect to the norm

= D%ul. I1.1.11
lullex = max sup |D%| ( )
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Finally, for A € (0,1] and k € N, by C**(£2) we denote the closed subspace

of Ck(£2) consisting of all functions u whose derivatives up to the kth order

inclusive are Holder continuous (Lipschitz continuous if A = 1) in 2, that is,
|D%u(x) — Du(y)|

[u]lga = max sup \ < 00.
0§|0‘|§k1,y€!2,176y |$ - y|

CFA(02) is a Banach space with respect to the norm

lullcea = [|ullor + [w]k,as (I1.1.12)

(Miranda 1978, §54).

Exercise I1.1.1 Assuming {2 bounded, use the Ascoli-Arzela theorem (see, e.g.,
Rudin 1987, p. 245) to show that from every sequence of functions uniformly
bounded in C*T*(£2) it is always possible to select a subsequence converging in
the space C**(02).

I1.1.4 Classes of Domains and their Properties

We begin with a simple but useful result holding for arbitrary domains of R™.

Lemma I1.1.1 Let {2 be an arbitrary domain of R"™. Then there exists an
open covering, O, of {2 satisfying the following properties

(i) O is constituted by an at most countable number of open balls {8},
k € I CN, such that

B, C 2, forallke I, UgerBr=12;

(ii) For any family § = {B;}, 1 € I' with I' C I, there is B € (O — §) such
that [Uier B NB £ 0;

(iii) For any B,%B’ € O, there exists a finite number of open balls B, € O,
1 =1,...,N, such that

BNBL#A0, BNV #£0, B,NB; 1 #0, j=1,...N—1.

Proof. Since {2 is open, for each z € 2 we may find an open ball B, (z) C
2. Clearly, the collection € = {B,_ (z)}, x € {2, satisfies U,cB,, () =
(2. However, since {2 is separable, we may determine an at most countable
subcovering, O, of € satisfying condition (i) in the lemma. Next, assume (ii)
is not true. Then, there would be at least one family §' = {8}, k' € I’, with
I’ C I such that
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[U %kllﬂ%@, for all B € (O —§').

k'el’

Consequently, the sets

Alzu‘Bk/, AQE U %k
)

k'el’ ke(I-1'

are open, disjoint and satisfy A; U As = (2, contradicting the assumption that
2 is connected. Finally, let 8,98’ € O and denote their centers by z and 2/,
respectively. Since (2 is open and connected, it is, in particular, arc-connected.
Therefore, we may find a curve, 7, joining z and x’, that is homeomorphic
to the interval [0, 1]. Let ' C O be a covering of 7. Since ~ is compact, we
can extract from O’ a finite covering that satisfies the property stated in the
lemma. O

We next present certain classes of domains of R™, along with their relevant
properties. We begin with the following.

Definition II.1.1. Let {2 be a domain with a bounded boundary, namely, {2
is either a bounded domain or it is a domain complement in R™ of a compact
(not necessarily connected) set, namely, {2 is an exterior domain.* Assume
that for each x¢ € 012 there is a ball B = B, (x) and a real function ¢ defined
on a domain D C R™"~! such that in a system of coordinates {z1, ..., z,} with
the origin at xq:

(i) The set 92 N B can be represented by an equation of the type z, =

<(x17"'7‘rn*1);
(ii) Each z € 2N B satisfies z, < {(21,...,Tp_1).

Then (2 is said to be of class C* (or C*-smooth) [respectively, of class C*
(or C*A_smooth), 0 < A < 1] if ¢ € C¥(D) [respectively, ¢ € CkA(D)]. If, in
particular, ¢ € C%Y(D), we say that §2 is locally Lipschitz. Likewise, we shall
say that o C 942 is a boundary portion of class C* [respectively, of class C*]
if o = 92N B,.(x0), for some r > 0,29 € 92 and o admits a representation
of the form described in (i), (ii) with ¢ of class C* [respectively of class C*:].
If, in particular, ¢ € C%1(D), we say that o is a locally Lipschitz boundary
portion.

If 2 is sufficiently smooth, of class C!, for example, then the unit outer
normal, n, to 92 is well defined and continuous. However, in several inter-
esting cases, we need less regularity on (2, but still would like to have n
well-defined. In this regard, we have the following result, for whose proof we
refer to Necas (1967, Chapitre II, Lemme 4.2).

Lemma I1.1.2 Let 2 be locally Lipschitz. Then the unit outer normal n
exists almost everywhere on 0f2 .

4 Hereafter, the whole space R™ will be considered a particular exterior domain.
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We shall now consider a special class of bounded domains 2 called star-
shaped (or star-like) with respect to a point. For such domains, there exist
x € §2 (which we may, occasionally, assume to be the origin of coordinates)
and a continuous, positive function A on the unit sphere such that

Q={zeR":jz—a|<h( ")\, (I1.1.13)
|z — x|
Some elementary properties of star-shaped domains are collected in the fol-
lowing exercises.

Exercise II.1.2 Show that {2 is star-shaped with respect to x if and only if every
ray starting from x intersects 02 at one and only one point.

Exercise I1.1.3 Assume {2 star-shaped with respect to the origin and set
Q) = {z € R": z = py, for some y € 2}. (I1.1.14)

Show that 2”) € 2 if p € (0,1) and 2 D Q2if p> 1.

The following useful result holds.

Lemma I1.1.3 Let 2 be locally Lipschitz. Then, there exist m locally Lip-
schitz bounded domains G, ..., G, such that
(i) 0 C U™, Gy;
(ii) The domains §2; = 2N G;, i = 1,...,m, are (locally Lipschitz and)
star-shaped with respect to every point of a ball B; with B; C (2.

Proof. Let xg € 0f2. By assumption, there is B, (z¢) and a function ¢ = {(z’),
' = (x1,...,0,_1) € D C R" ! such that

€)= ¢l < wlg" —n'|, &0 €D,
for some k > 0 and, moreover, points = (z', x,,) € 92 N B,.(x() satisfy
x, = ((2'), 2’ €D,
while points x € 2N B,(x¢) satisfy
z, < ((2'), 2’ e D.

We may (and will) take xo to be the origin of coordinates. Denote next, by
yo = (0,...,0,y,) the point of (2 intersection of the w,-axis with B, (xg)
and consider the cone I'(yp, o) with vertex at yo, axis x,, and semiaperture
a < /2. It is easy to see that, taking « sufficiently small, every ray p starting
from yo and lying in I'(yo, ) intersects 02 N B,(xo) at (one and) only one
point. In fact, assume p cuts 92 N B,.(z) at two points 2 and 2(® and
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denote by o’ < « the angle formed by p with the x,-axis. Possibly rotating
the coordinate system around the x,-axis we may assume without loss °

Z(l) = (251)707' . '7O7<(Z£1)707' : '70))7 Zgl) >0
2(2) = (252)707' . '7O7<(Z£2)707' ' '70))7 252) >0

and so, at the same time,

(1)

tana’ = @ 1
<(Zl 707---70)*%
(2)
tana’ = @ A1
<(Zl 707---70)*%
implying
<000,..,00=¢zP)0,...,0] 1 J 1
|z§1) _ z£2)| " tana’ T tana’

Thus, if (say)

tana <

)

p will cut 92 N B, (xo) at only one point. Next, denote by ¢ = o(z) the
intersection of I'(yo, «/2) with a plane orthogonal to x,-axis at a point z =
(0,...,2,) with 2z, > y,, and set

R = R(z) = dist (9o, 2).

Clearly, taking z sufficiently close to yo (2 = z, say), o(z) will be entirely
contained in {2 and, further, every ray starting from a point of o(z) and lying
within I'(yo, a/2) will form with the x,-axis an angle less than « and so, by
what we have shown, it will cut 942 N B,.(z¢) at only one point. Let C be a
cylinder with axis coincident with the x,-axis and such that

C'NoR = I(yo,a/2) N ON.

Then, setting
G=CnN Br (%0)7

we have that G is locally Lipschitz and that GN {2 is star-shaped with respect
to all points of the ball Br(.)(z). Since xo € 02 is arbitrary, we may form an
open covering G of 92 constituted by domains of the type G. However, 02
is compact and, therefore, we may select from G a finite subset {G1, ..., Gy}
satisfying all conditions in the lemma, which is thus completely proved. a

® Clearly, the Lipschitz constant r is invariant by this transformation.
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Other relevant properties related to star-shaped domains are described in
the following exercises.

Exercise I1.1.4 Assume that the function h in (II.1.13) is Lipschitz continuous,
so that, by Lemma II.1.2, the outer unit normal n = n(x) on 9{2 exists for a.a. .
Then, setting F'(z) = n(z) - (x — x), show that essai(rzlfF(x) > 0.

(S

Exercise II.1.5 Assume {2 bounded and locally Lipschitz. Prove that

where each 2; is a locally Lipschitz and star-shaped domain with respect to every
point of a ball B; with B; C §2;. Hint: Use Lemma I1.1.3.

We end this section by recalling the following classical result, whose proof
can be found, e.g., in Necas (1967, Chapitre 1, Proposition 2.3).

Lemma II.1.4 Let K be a compact subset of R, and let O = {Oy,--- ,On}
be an open covering of K. Then, there exist functions v;, i = 1,..., N satis-
fying the following properties

(11) lZJiEC[?O(Oi),i:l,...,N;
(iii) SN, hi(z) =1, forallz € K .

The family {«;} is referred to as partition of unity in K subordinate to the
covering O.

I1.2 The Lebesgue Spaces L1

For ¢ € [1,00), let LY = L%(f2) denote the linear space of all (equivalence
classes of) real Lebesgue-measurable functions u defined in {2 such that

ullq = (/ﬂ |u|q> v < . (I1.2.1)

The functional (I1.2.1) defines a norm in L9, with respect to which L¢ becomes
a Banach space. Likewise, denoting by L> = L°°({2) the linear space of all
(equivalence classes of) Lebesgue-measurable real-valued functions u defined
in {2 with
| w]|oe = esssup |u| < co (I1.2.2)
Q

one shows that (I1.2.2) is a norm and that L>° endowed with this norm is a
Banach space. For a proof of the above properties see, e.g., Miranda (1978,
847). For ¢ = 2, LY is a Hilbert space under the scalar product
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(u,v)z/ uv, u,v € L?.
Q

Whenever confusion of domains might occur, we shall use the notation

I a2, I lloo,e, and (--),

Given a sequence {un,} C L1(§2) and v € LI(£2), 1 < g < oo, we thus have
that u,, — u, namely, {u,,} converges (strongly) to u, if and only if

lim |Jur —ullg =0.
k—oco

The following two basic properties, collected in as many lemmas, will be
frequently used throughout. The first one is the classical Lebesgue dominated
convergence theorem (Jones 2001, Chapter 6 §C), while the other one relates
convergence in L9 with pointwise convergence; see Jones (2001, Corollary at
p. 234)

Lemma II.2.1 Let {u,,} be a sequence of measurable functions on {2, and
assume that
u(z) = lim w,,(z) exists for a.a. x € §2,
m—0o0

and that there is U € L' (2) such that

[um(x)] < |U(x)| fora.axz e (2.

lim Uy, = u.

Lemma I1.2.2 Let {u,,} C L9(2) andu € L1(2),1 < q < oo, with uy, — u.
Then, there exists {t,, } C {u.,,} such that

Then u € L'(£2) and

lm () =u(z), foraa xze€2.

m’— 00

We want now to collect some inequalities in L? spaces that will be fre-
quently used throughout. For 1 < ¢ < oo, we set

¢ =q/(q—1);
one then shows the Hélder inequality

/ﬂ o] < Ilull ol (11.2.3)

for all u € LI(2), v € LY () (Miranda 1978, Teorema 47.1). The number
q' is called the Hélder conjugate of q. In particular, (I1.2.3) shows that the
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bilinear form (u,v) is meaningful whenever v € L4(£2) and v € LY (£2). In
case ¢ = 2, inequality (I1.2.3) is referred to as the Schwarz inequality. More
generally, one has the generalized Holder inequality

%Qmw.nwﬂgnmmmwmf~~nwm%7 (I1.2.4)
where
m
u; € L%(2), 1< ¢ <oo, i=1,....,m, » ¢ '=1.
=1

Both inequalities (I1.2.3) and (II.2.4) are an easy consequence of the Young
imequality:
q L
ab< " +e /47 (a,b,e>0) (11.2.5)
q q
holding for all ¢ € (1,00). When ¢ = 2, relation (I[.2.5) is known as the
Cauchy inequality.
Two noteworthy consequences of inequality (I1.2.3) are the Minkowski in-
equality:
ut vlly < ully + ollgs w0 € L2(2), (11.2.6)

and the interpolation (or convezity) inequality:
ullg < [l lullr—° (IL.2.7)
valid for all w € L*(£2) N L7 (§2) with 1 < s < ¢ <r < o0, and
¢ lt=0st+ 1 -0t 6ec]o,1].

Another important inequality is the generalized Minkowski inequality re-
ported in the following lemma, and for whose proof we refer to Jones (2001,
Chapter 11, §E).6

Lemma I1.2.3 Let (21, and {25 be domains of R™ and R™, respectively, with
m,n > 1. Suppose that u : £21 x {23 — R is a Lebesgue measurable function
such that, for some q € [1, 0],

1/q
/ (/ |u(x,y)|qu> dy < c0.
2 (o2
q 1/q
(/ / u(z,y)dy dx> < 00,
(o2 2

and the following inequality holds

Then,

6 Actually, it can be proved that (I1.2.6) is just a particular case of (I1.2.8), hence
the adjective “generalized”; see Jones (2001, p. 272).
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([ 1] wewaf @) < [ ([ o) ap. o

Exercise I1.2.1 Assume {2 bounded. Show that if uw € L°°(£2), then

m Jlullg = [[ulloc
g—o0

Exercise I1.2.2 Prove inequality (I1.2.5). Hint: Minimize the function

t9)g—t+1/q.

Exercise I1.2.3 Prove inequalities (I1.2.6) and (I1.2.7).

We shall now list some of the basic properties of the spaces LY. We begin
with the following (see, e.g. Miranda 1978, §51).

Theorem I1.2.1 For 1 < ¢ < oo, LY is separable, C({2) being, in particular,
a dense subset

Note that the above property is not true if ¢ = oo, since C({2) is a closed
subspace of L>(£2)); see Miranda, loc. cit..

Concerning the density of smooth functions in L?, one can prove something
more than what stated in Theorem I1.2.1, namely, that every function in L9,
1 < ¢ < 00, can be approximated by functions from C§°(£2). This fact follows
as a particular case of a general smoothing procedure that we are going to
describe. To this end, given a real (measurable) function u in {2, we shall
write

ue L (92)

loc

to mean
we L), for any bounded domain 2" with ' C 2.

Likewise, we write
uwe Ll ()
to mean
ue L"), for any bounded domain 2’ C (2.

Clearly, for £2 bounded we have L] (£2) = L(£2). Now, let j € C§°(£2) be a
non-negative function such that

(i) j(z) =0, for || > 1,

(ii) /njzl.



44 II Basic Function Spaces and Related Inequalities

A typical example is

(@) cexp[—1/(1 — |z]?)] if |z| < 1
0 if |z > 1,

with ¢ chosen in such a way that property (ii) is satisfied. The regularizer (or
mollifier) in the sense of Friedrichs u. of u € L},.(£2) is then defined by the
integral

u(z) =" /nj (m ; y) u(y)dy, e < dist (z, 99).

This function has several interesting properties, some of which will be recalled
now here. First of all, we observe that u. is infinitely differentiable at each
x € 2 with dist (z,902) > e. Moreover, if u € L] (£2) we may extend it by
zero outside (2, so that u. becomes defined for all ¢ > 0 and all z € R™. Thus,
in particular, if u € L9(£2), 1 < ¢ < oo, one can show (Miranda 1978, §51; see

also Exercise I1.2.10 for a generalization)

luellg < |lully foralle >0,

11.2.9
lim |lue —ullq = 0. ( )
e—0t

Exercise I1.2.4 Show that for u € Co(12),
lim+ us(z) = u(x) holds uniformly in z € £2.
e—0

Exercise I1.2.5 For u € L(2), 1 < g < oo, show the inequality

sup [D%ue(x)] < e TN D | s g ulla2, ol > 0.
R’IL

We next observe that, by writing u.(z) as follows:

uee) = /|§|<aj (&) e+ e,

it becomes apparent that, if u is of compact support in {2 and ¢ is chosen less
than the distance of the support of w from 92, then u. € C§°(£2). The latter,
together with (I1.2.9), and the density of Cy in L9, yields that C§°(£2) is a
dense subspace of LI(£2), 1 < ¢ < oo. The proof of this property, along with
some of its consequences, is left to the reader in the following exercises.

Exercise I1.2.6 Prove that C§5°({2) is dense in L7(£2), 1 < ¢ < oco. Hint. Use the
density of Co(£2) in L9(£2) (Miranda 1978, §51) along with the properties of the
mollifier.
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Exercise I1.2.7 Prove the existence of a basis in L?(§2) constituted by functions
from C§°(£2). Hint: Use the separability of L? along with the density of C§° into L?.

Exercise I1.2.8 Let u € L(2), 1 < ¢ < oo. Extend u to zero in R" — 2 and
continue to denote by u the extension. Show the following continuity in the mean
property: Given £ > 0 there is 6 > 0 such that for every h € R™ with |h| < § the
following inequality holds

/ |u(z + h) —u(z)|?dr < &7.
Q

Hint: Show the property for u € C§°(£2), then use the density of C§° in L.

Exercise I1.2.9 Assume u € L},.(£2). Prove that
/ uy =0, for all ¥ € C§°(£2), implies u = 0, a.e. in (2.
o)

Hint: Consider the function
lifu>0
signu =
“1ifu<0.
For a fixed bounded 2" with £/ C 2,
signu € L'(2')
and so signu can be approximated by functions from Cg°(§2).
Exercise I1.2.10 Let u € LY(R"™), 1 < g < oo, and for z € R™ and k < n set
2y = (21, 2), 2% = (2rga, . 2)

Moreover, define
_ o T(k) T Yk
Uy (z) =€ k/kJ ( ® - ( )> w(yeey, y™) dy) -
R

Show the following properties, for each y““) e R"*:
||u(k)7€||q,]Rk S ||u(5y<k))|lq,Rk for all €> 05
i (k) _
Egrél+||u(k),a - U(,y )”q,Rk =0.
Hint: Use the generalized Minkowski inequality, the result in Exercise 11.2.8 and
Lebesgue dominated convergence theorem (Lemma I1.2.1).

Let v € Lq/(Q)7 with ¢’ the Holder conjugate of g. Then, by (I1.2.3), the
integral

£(u) :/ vu, u € LI(12) (I1.2.10)
Q
defines a linear functional on L?. However, for ¢ € [1,00), every linear func-

tional must be of the form (I1.2.10). Actually, we have the following Riesz
representation theorem for whose proof we refer to Miranda (1978, §48).
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Theorem I1.2.2 Let ¢ be a linear functional on L(2), ¢ € [1,00). Then,
there exists a uniquely determined v € L9 (£2) such that representation
(I1.2.10) holds. Furthermore

le()llzay = sup 6w)] = Jolly - (IL2.11)

llullq=1

From Theorem II.2.2 we thus obtain the following.

Theorem I11.2.3 The (normed) dual of L? is isomorphic to LY for 1 < q <
00, so that, for these values of q, L9 is a reflexive space.

Exercise I1.2.11 Show the validity of (II.2.11) when ¢ € (1,00). Hint: Use the
representation (11.2.10) .

Exercise I1.2.12 Let u € L}, (£2), and assume that there exists a constant C' > 0
such that

[(u, )| < C||¢|lqg, for some g € [1,00) and all ¢ € C§°(12).

Show that u € Lq/(()) and that ||ull; < C. Hint: ¢ — (u,v) defines a bounded
linear functional on a dense set of L9(f2). Then use Hahn-Banach Theorem II1.1.7
and the Riesz representation Theorem I1.2.2.

Riesz theorem also allows us to give a characterization of weak convergence
of a sequence {uy} C LI(£2) to u € L1({2), 1 < ¢ < co. In fact, we have that
up — u if and only if

klim (v,up —u) =0, forallve LI (2), ¢ =q/(qg—1).
In view of Theorem II.1.3(iii) and Theorem I1.2.3, we find that L? is weakly

complete, for g € (1,00). In fact, this property continues to hold in the case
q = 1; see Miranda (1978, Teorema 48.VII).

We wish now to recall the following results related to weak convergence.

Theorem I1.2.4 Let {u,,} C Li(f2), 1 < q < co. The following properties
hold.

(i) If up, — u, for some , u € L1(S2), then there is C independent of m such
that ||um|lq < C. Moreover,

Jully < liminf [, .
In addition, if 1 < ¢ < oo, and
[ullg = lim sup [|lum 4,
m—0o0

then u,, — u.
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(ii) If1 < ¢ < o0 and |Juml||q < C, for some C independent of m, then there
exists a subsequence {u,, } and u € L({2) such that w, — u.

Proof. The statement in (ii) follows from Theorem II.1.3(ii), while the first
statement in (i) is a consequence of the general result given in Theorem
I1.1.3(i). A proof of the second statement in (i) can be found, for example,
in Brezis (1983, Proposition III.5(iii) and Proposition II1.30). However, for
q = 2 the proof of (i) becomes very simple and it will be reproduced here. By
hypothesis and Riesz theorem we have that for all v € L? and £ > 0 there
exists m’ € N such that

[(tUp, —u,v)| < e, forall m>m.
If we choose v = u,,,, with the help of the Schwarz inequality we find
lumll3 < llull2llwmll2 + €.

Using Cauchy inequality on the right-hand side of this latter relation we con-
clude
lumll3 < llull3 +2¢,

which proves the boundedness of the sequence. We next choose
v=u, €=nlulz, n>0,
to obtain, again with the aid of Schwarz inequality,

[ull2 < [lumllz + 7,
which completes the proof of the first part of the statement in (i). The second
part is a consequence of the assumption and the identity
[t — ully = w3 + lumll3 = 2(wm, ).
O

We conclude this section with some observations concerning L9-spaces of
vector-valued functions. Let [L9(£2)]"N be the direct product of N copies of
L4(£2). Then, as we know from Subsection 1.1.2, [L?(£2)]" is a Banach space
with respect to any of the following equivalent norms:

N 1/r
[lellg,ry = (Z ||Uz'||2> ; re[l,00) ullge) = max luillg,
=1

i€{1,...,N}
where u = (uq,...,uy). Moreover, in view of Theorem II.2.1, Theorem I11.2.3,
and Theorem II.1.5, we have.

Theorem I1.2.5 [L4(02)]" is separable for q € [1,00), and reflexive for q €
(1,00) .
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Also, the Riesz representation theorem can be suitably extended to this more
general case. In fact, let

N
(o)=Y (uivi), we LU, ve L' (D))V,1/q+1/¢d = 1.

i=1

In view of Theorem I1.1.6 and of Theorem II.2.2 , we then have that for every
Le ([Lq((l)]N)/7 there exist uniquely determined v € [L? (£2)]"V, such that

L(u) = (v,u),

and that the map M : £ — v is a homeomorphism. Actually, if we endow
[L9(2)]N with the norm |||y ) = [[ullq, the map M is an isomorphism, as
stated in the second part of the following lemma, whose proof can be found
in Simader (1972, Lemma 4.2).7

Theorem I1.2.6 Let {2 be a domain of R"™, and let ¢ € (1,00). Then, for
every L € ([Lq(Q)]N)/, there exists uniquely determined v € [L? ()], such
that

L(u) = (v,u), ue[LI)N.

Moreover,

1Ll ((Laqyry = sup |L(u)| = [|v]lg-
ue[L1 ()N, [[ull,=1

I1.3 The Sobolev Spaces W™9 and Embedding
Inequalities

Let u € L}, .(£2). Given a multi-index o, we shall say that a function u(®) €
L .(92) is the ath generalized (or weak) derivative of u if and only if the

following relation holds:

/ uD%p = (—1)le! / u @y, for all p € C§°(£2).
Q Q

It is easy to show that u(® is uniquely determined (use Exercise 11.2.9) and
that, if u € C!l(£2), u(® is the ath derivative of u in the ordinary sense, and
the previous integral relation is an obvious consequence of the well-known
Gauss formula. Hereafter, the function u(®), whenever it exists, will be indi-
cated by the symbol D%u.

7 The assumption made in Simader loc. cit., that 2 is bounded, is completely
superfluous, since it is never used in the proof, as it was also independently
communicated to me by Professor Simader.
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Generalized derivatives have several properties in common with ordinary
derivatives. For instance, given two functions wu, v possessing generalized
derivatives Dju, D;v we have that Su + vyv (8,7 € R) has a generalized
derivative and D;(fu + yv) = SDju + vD;v. In addition, if

uv, uDjv+vDu € L},.(2),
then uv has a generalized derivative and the familiar Leibniz rule holds:
Dj;(w) = uDjv+ vDju.
The proof of these properties is left to the reader as an exercise.

Exercise I1.3.1 Generalized differentiation and differentiation almost everywhere
are two distinct concepts. Show that a function ¢ that is continuous in [0,1] but not
absolutely continuous admits no generalized derivative. Hint: Assume, per absurdum,
that ¢ has a generalized derivative @. Then, it would follow

w(z) = /OI d(t)dt 4+ ¢(0), z € (0,1),

which gives a contradiction. On the other hand, one can give examples of real,
continuous functions f on [0,1] that are differentiable a.e. in [0,1] and with f’ €
L*(0,1) which are not absolutely continuous (Rudin 1987, pp. 144-145). In this
connection, it is worth noticing the following general result (Smirnov 1964, §110): a
function u € L}, (2) (2 C R"™) is weakly differentiable if u = U a.e. in 2, with T
absolutely continuous on almost all line segments parallel to the coordinate axes and
having partial derivatives locally integrable.

Exercise I1.3.2 Let u € Lj,.(2) and assume that Du exists. Show

D (uc(z)) = (D%u)e(x), dist(z,08) > e.

Exercise I1.3.3 Let 2 C R", and let ¢ € C*(2) map 2 onto 2; C R", with

™1 € C1(21). Assume u possesses generalized derivatives Dju, j = 1,...,n, and
set v = uot)~!. Show that also v possesses generalized derivatives Djv,5=1,...,n,
and that the usual change of variable formula applies:
o;
Diu(x) = 83:]' Djv(y), y=1(x),

for a.a. ¢ € 2 and y € (.

For g € [1,00] and m € N, we let
Wt =WwWm(2) ={ue L) : Du e LI(2), 0 < |a] <m}.

In the linear space W 4({2) we introduce the following norm:
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1/q
”u”m,q = Z ||Dau||g if 1 <g<oo
0<laf<m (11.3.1)
[wllm,co = max [[D%lo if ¢ = o0.

0<|al<m

If confusion of domains arises, we shall write ||u||m ¢, 2 and ||¢|/m,co, in place
of ||tlm,q and ||©]|m,0c. Owing to the completeness of the spaces L? and taking
into account the definition of generalized derivative, it is not hard to show
that W™9 endowed with the norm (II.3.1) becomes a Banach space, called
Sobolev space (of order (m,q)). Along with this space, we shall consider its
closed subspace W% = W;"9(£2), defined as the completion of C§°(£2) in
the norm (I.3.1). Clearly, we have (see Exercise 11.2.6)

WO = W = L4,

In the special case ¢ = 2, W™ (and thus W;"?) is a Hilbert space with
respect to the scalar product

(u,v),, = Z (D%u, D).

0<lal<m

Exercise I1.3.4 Prove that, for any 2, W;9(2) is a closed subspace of W7 (£2).
Prove also W)™ (R") = W™ (R"), 1 < ¢ < co. Hint: To show the second assertion,
take a function ¢ € C*°(R"™) with ¢(z) =1 if |z| < 1, ¢(z) = 0 if |x| > 2 (“cut-off”
function) and set

Um () = o(z/m)u(z), vwe W™ (R™), meN.
Then, u is approximated in W™ (R™) by {(um):} C C5°(R™).

Remark I1.3.1 Sobolev spaces share several important properties with Le-
besgue spaces L9. Thus, for example, since a closed subspace of a Banach space
X is reflexive and separable if X is (see Theorem II.1.1 and Theorem I1.1.2),
and since W4(£2) can be naturally embedded in [L?(£2)]VV, for a suitable
N = N(m), one can readily show, by using Theorem I1.2.5 and the fact that
W™4((2) is complete, that W™ 9(2) is separable if 1 < ¢ < oo and reflexive
if 1 < g < oo; for details, see, e.g., Adams (1975, §3.4). As a consequence, by
Theorem I1.1.3(ii), we find, in particular, that for ¢ € (1,00), W"™? has the
weak compactness property. |

Exercise 11.3.5 Let u € Li,.(£2) and suppose ||[uc|m.q,5 < C, m >0, 1 < ¢ < oo,
where B is an arbitrary open ball with B C (2, and C is independent of €. Show
that u € W;79(82) and that ||u|lm,q, < C.
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Another interesting question is whether elements from W™%(§2) can be
approximated by smooth functions. This question is important, for instance,
when one wants to establish in W7 inequalities involving norms (II.3.1).
Actually, if such an approximation holds, it then suffices to prove these in-
equalities for smooth functions only. In the case where (2 is either the whole
of R™ or it is star-shaped with respect to a point, the question is affirma-
tively answered; cf. Exercise 11.3.4 and Exercise I1.3.7. In more general cases,
we have a fundamental result, given in Theorem II.3.1, which in its second
part involves domains having a mild property of regularity, i.e., the segment
property, which states that, for every x € 0(2 there exists a neighborhood U
of z and a vector y such that if z € 2NU, then z+ty € 2, for all ¢t € (0,1).

Exercise I1.3.6 Show that a domain having the segment property cannot lie si-
multaneously on both sides of its boundary.

Theorem I1.3.1 For any domain {2, every function from W™1((2), 1 <
q < 00, can be approximated in the norm (I1.3.1); by functions in C™(£2) N
Wm™4((2). Moreover, if {2 has the segment property, it can be approximated
in the same norm by elements of C5°(2).

The first part of this theorem is due to Meyers and Serrin (1964), while
the second one is given by Adams (1975, Theorem 3.18).

Exercise I1.3.7 (Smirnov 1964, §111). Assume {2 star-shaped with respect to the
origin. Prove that every function w in W™9(£2), 1 < ¢ < oo, m > 0, can be
approximated by functions from C§°(§2). (Compare this result with Theorem I1.3.1.)
Hint: Consider the sequence

w((1 = 1/k)x) if z € Q*/(k=1)
ug(x) = k=2,3,...,
0 if z ¢ (k/(k=1))

with 2P defined in (I1.1.14). Then, regularize ux and use (I1.2.9) and Exercise
I1.3.2.

We wish now to prove some basic inequalities involving the norms (I1.3.1).
Such results are known as Sobolev embedding theorems (see Theorem I1.3.2
and Theorem I1.3.4). To this end, we propose an elementary inequality due
to Nirenberg (1959).

Lemma I1.3.1 For all u € C§°(R"™),

1
lulln(n-1) < [Vl (I1.3.2)
2/n

Proof. Just to be specific, we shall prove (I1.3.2) for n = 3, the general case
being treated analogously. We have
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1 oo
|U(IE)| S / |D1u|dx1 = F1($27IE3)
2/ .

and similar estimates for o and x3. With the obvious meaning of the symbols
we then deduce

2u(2) P2 < [Fi (22, 23) Fa(a1, 23) Fa (21, 22)] /7.

Integrating over z;, and using the Schwarz inequality,

/OO |2u(z)|*/2dzy <[Fi(z2,23)]'/2 (/“FQ(xth)d%)l/g

— 00 — 00

0o 1/2
X (/ Fg(xl,xg)dx1> .

Integrating this relation successively over xo and x3 and applying the same
procedure, we find

1/3 3
2||u||3/2s(/ Dyl [ 1Dz [ |D3u|> </ [ Ipal
R3 R3 R3 = JR3

which, in turn, after employing the inequality !
(a1 +ag+ ...+ an)? <miaf +al+...+al), a; >0, ¢>1 (I1.3.3)
with m = 3,¢ = 2, gives (I.3.2). O

For ¢ > 1, replacing u with |u|? in (I1.3.2) and using the Holder inequality,
we obtain at once

1/q
q -
[ellgn /(1) < (2@) | =29 | 12, (I1.3.4)

Inequalities (I1.3.2), (II.3.4), and (I1.2.7) allow us to deduce more general
relations, which are contained in the following lemma.

Lemma I1.3.2 Let

r € [q,nq/(n—q)], ifqe[l,n),

and
r € [qg,00), ifqg>n.

Then, for all u € C§°(R™) we have

L See Hardy, Littlewood, & Polya 1934, Theorem 16, p. 26.
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A
(& _
full < (57, ) Tl vl (113.5)

where
¢1 = max(q,r(n—1)/n), A=n(r—q)/rq.

Proof. We shall distinguish the two cases:
(i) ¢ <r<qn/(n-1),

(ii) r > gqn/(n —1).

In case (i) we have by (I1.2.7) and (I1.3.4)

(176)/‘1 0—1 1 1-6
Jull < ety < (55, ) Tl et u-ove

with
r(1—n)+ng

. .
Substituting the value of 6 in the preceding relation furnishes (I1.3.5). In case
(ii), we replace v in (IL.3.2) with |u|"(®=D/" and apply the Holder inequality
to obtain

0 —

rin—1)/n < T =1) lr(n—1)=n]/n _qr(n—1)-n
[l S onvn [ull [Vulg, 8 (g 1) -

Notice that ¢ < 3. Moreover, it is
G<r forr<ng/(n—gq), ifg<n

and
B <r forallr < oo, ifg>n.
In either case we may use (I1.2.7) to obtain
(g —n)+ng

(r=qlr(n—1)—n]

Substituting this inequality in the preceding one gives (I1.3.5), and the proof
of the lemma is complete. a

0 —0
lulls < llulighull:=", 6=

Lemma II1.3.2 can be extended to include L?-norms of derivatives of order
higher than one. A general multiplicative inequality is given in Nirenberg
(1959, p.125). We reproduce here this result, referring the reader to the paper
of Nirenberg for a proof. Set

1/p

ulp= | / D%l

[e]=k

We have the following.
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Lemma I1.3.3 Let v € LY(R"™), with D*u € L™(R"), o] = m > 0, 1 <
q,r < 00. Then, D*u € L*(R"), |a| = j, and the following inequality holds
for 0 < 7 < m and some ¢ = ¢(n,m, j,q,r,a):

luljs < clulfy,Jullg™ (11.3.6)
where . _ . ,
m

= +a( - >+<1a) ,

s n ron q
for all a in the interval )

J <a<l,

m

with the following exceptional cases

1. If =0, rm < n, ¢ = co then we make the additional assumption that
either u(z) — 0 as || — oo, or u € LY(R™) for some q € (0,00).

2. if1 < r < oo, and m — j —n/r is a nonnegative integer then (x) holds
only for a satisfying j/m < a < 1.

From Lemma I1.3.2 we wish to single out some special inequalities that
will be used frequently in the theory of the Navier—Stokes equations. First of
all, we have the Sobolev inequality

q(n —1)
(n—q)v

derived for the first time by Sobolev (1938) by a complete different method
and for ¢ € (1,n).2 Inequality (I1.3.7), holding a priori only for functions
u € C§°(R"), can be clearly extended, by density, to every u € Wol’q((l),
1 < g < n. We then deduce, in particular, that every such function is in
L7(£2) with r given in (I1.3.7).

lullr < IVl 1< q<n, r=ng/(n—q) (IL3.7)

Exercise I1.3.8 Let 2 = B; or 2 =R", n > 2. Show, by means of a counterex-
ample, that the Sobolev inequality does not hold if ¢ = n, that is, a (positive, finite)
constant v independent of u such that

[ulle <AVulln, we C5®(2), n 22,
does not exist. (In this respect, see also Section I1.9 and Section 11.11.)*

Remark II.3.2 In connection with (II.3.7) we would like to make some com-
ments. When (2 is an unbounded domain (in particular, exterior to the closure
of a bounded domain) the investigation of the asymptotic properties of a so-
lution u to a system of partial differential equations is strictly related to the

2 In this regard, see Theorem I11.11.3 and Exercise 11.11.4.
3 A sharp version of the Sobolev inequality when ¢ = n and 2 is bounded, is due
to Trudinger (1967).
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Lebesgue space L*({2) to which u belongs and, roughly speaking, the behavior
of u at large distances will be better known when the exponent s is lower.*
Now, as we shall see in subsequent chapters, the inherent information we derive
from the Navier—Stokes equations in such domains is that « (a generic compo-
nent of the velocity field) has first derivatives D;u summable with exponents
q; which, however, may vary with x;, i = 1,...,n. Therefore, we may wonder
if (I1.3.7) can be replaced by another inequality which takes into account this
different behavior in different directions and leads to an exponent s of summa-
bility for u strictly less than the exponent r given in (I1.3.7). This question
finds its answer within the context of anisotropic Sobolev spaces (Nikol’skﬁ
1958). Here, we shall limit ourselves to quote, without proof, an inequality
due to Troisi (1969, Teorema 1.2) representing the natural generalization of
(I1.3.7) to the anisotropic case. Let

1<g <o0, 1=1,...,n.
Then, for all v € C§°(R") the following Troisi inequality holds:

n
?:1‘1;1*1)'

If ¢ = q, for alli =1,...,n, (IL.3.8) reduces to (I[.3.7). On the other hand,
if for some i (=1, say), (1 < ¢=¢q2 = ...= ¢y, from (I1.3.8) we deduce

lulls < c[TIDsuly™ > a7t >1, s= 5 (IL3.8)
=1 =1

S=1r-+ nq((hi(I) <.

(¢ —q1) +q1(n—q)
[ |

Other special cases of (I1.3.5) are now considered. We choose in Lemma
11.3.2 n = ¢ = 2 and r = 4 to deduce the Ladyzhenskaya inequality

— 1/2 1/2
lulls < 27 Y4 [ully?(|Vully?, (11.3.9)

shown for the first time by Ladyzhenskaya (1958, 1959a, eq. (6)). It should
be emphasized that (I1.3.9) does not hold in three space dimensions with the
same exponents (see Exercise 11.3.9). Rather, for n = 3, ¢ = 2, and r = 4,
inequality (I1.3.5) delivers

4\ 1/4 3/4
folle< (40, ) " Tl 17l (13,10

Furthermore, for n = 3, ¢ = 2, r = 6 the Sobolev inequality (I1.3.7) specializes
to

4 1t is needless to say that the possibility of lowering the exponent s depends on
the particular problem.
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lulls < 5 Vel (1L3.11)
Ulle > uf|2- L.
V3

In two space dimensions there is no analogue of (I1.3.11), and so, in particular,
for n = 2, a function having all derivatives in L?(R?) need not be in L"(R?),
whatever r € [1,00]. °

Exercise I1.3.9 Let ¢ be the C* “cut-off” function introduced in Exercise I11.3.4
and set um () = p(z) exp(—mlz|), m € N. Obviously, {um} C C5°(R™). Show that
for n = 3 the following inequality holds

4 m -y 2d
R(m) _ ||um||4 > fo € y-ay

= >cm
l[um (I3[ Vm |3 Jo e yrdy’

with ¢ a positive number independent of m. Since R(m) — oo as m — 00, a constant
v € (0, 00) such that

1/2 1/2 oo 3
Julla < Allully*[IVully®, ue C3°(R?),

does not exist.

The case ¢ > n of Lemma I1.3.2 can be further strengthened, as shown by
the following lemma.

Lemma 11.3.4 Let g > n. Then, for allu € C'(B(x)) we have

1-1/q
_ - qg—1
lu(z)] < w, 1||u||1’B(z) +w, /4 (q B n> Vullg,B(a) » (I1.3.12)

and so, in particular, for all u € C§°(R"™),

sup |u(z)| < cawy/ull1 g0 (I1.3.13)
rER™

{ <q1>(q1)/q}
co = maxq 1, .
q—n

Proof. Tt is enough to prove (I11.3.12), since (11.3.13) follows by using the
Holder inequality in the first term of (I1.3.12). From the identity

with

=4 gu(z + re) y—x
u(z) —u(y) = /0 o dr, e= y— a|’ (I1.3.14)

® For example, for a € (0,1/2), take u(z) = In®|z|, if || > 1 and u(z) = 0 if
|| < 1. The problem of the behavior at large spatial distances of functions with
gradients in L7({2), {2 an exterior domain, will be fully analyzed in Section I1.7
and Section II.9.
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we easily show

wnlu(@)] < lullize + / VU)o = o'y (IL3.15)

(z

Applying the Holder inequality in the integral in (II.3.15) and dividing the
resulting relation by w,, we prove (I1.3.12). O

We want now to draw some consequences from Lemma I1.3.2 and Lemma
I1.3.4. Employing the Young inequality (I1.2.5) and the density of C§°({2) in
W, %(£2), from (11.3.3), (I1.3.5), and (I1.3.13) we find, in particular, that a
function u € Wy %(£2) is also in L"(£2), for all r € [g,nq/(n — ¢)], if 1 <
q < n, and for all » > ¢, if ¢ = n. Moreover, if ¢ > n, u coincides a.e. in {2
with a (uniquely determined) function of C(£2). Finally, u obeys the following
inequalities:

ng

lull- < Cullullg 1<g<n g<r< "7

lull, < Collullig ¢=n, q<r<oo (IL.3.16)

ulle < Csllulliy ¢>n

with C; = Ci(n,q,r), i = 1,2,3. Now, using (I1.3.16) and an iterative argu-
ment we may generalize (I1.3.16) to functions from W;"(£2), to obtain the
following embedding theorem whose proof is left to the reader as an exercise.

Theorem I1.3.2 Let u € Wy"9(£2), ¢ > 1, m > 0. If mqg < n we have
Wo"4(£2) — L"(£2)

for allr € [q, nffnq] if mq < n, and for all r € [q,c0) if mq = n. In particular,

there are constants c;, i = 1,2, depending only on m, q,r and n such that

lully < exllullmg for all » € [g, ™. ], ifmg <n,
(11.3.17)
llullr <collwllm,g for allr € [g,00), if mg=n,

Finally, if mq > n, each u € Wi"(£2) is equal a.e. in £2 to a unique function
in C*(§2), 0 < k < m —n/q, and the following inequality holds

Juller < ealltllm.g, (11.3.18)

with c3 = cs(m, q,r,n).

We wish now to generalize Theorem I1.3.2 to the spaces W™1((2), {2 # R™.
One of the most usual ways of doing this is to construct an (m, q)-extension

map for {2. By this we mean that there exists a linear operator E' : W"4({2) —
Wm™(R™) such that
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(i) u(z) = [E(u)](x), for all x € 2
(i) [Ew)lm.qrn < Cllufm.g.0,

for some constant C' independent of u. It is then not hard to show that in-
equalities (I1.3.17) and (I1.3.18) continue to hold in W"™4(§2). For instance,
to prove (I1.3.17) from (i) and (ii), we notice that

ullr.o < |E@)]lrrn < c|E()]lmgrn < cClluflm.g0-

Results on the existence of an extension map can be proved in a more
or less complicated way, depending on the smoothness of the domain. In this
regard, we shall now state a very general result due to Stein (1970, Chapter VI,
Theorem 5; see also Triebel 1978, §84.2.2, 4.2.3) on the existence of suitable
extension maps called universal or total in that they do not depend on the
order of differentiability and summability involved. Specifically, we have the
following theorem whose rather deep proof will be omitted.

Theorem I1.3.3 Let 2 be locally Lipschitz.® Then, there exists an (m,q)-
extension map for 2, for all q € [1,00] and m > 0.

On the other hand, results similar to those of Theorem II.3.3 can be proved
in an elementary way, provided the domain is of class C™ (see, e.g., Lions 1962,
Théoreme 4.1, and Friedman 1969, Lemma 5.2). This is because, for such a
domain, the boundary can be locally straightened by means of the smooth
transformation:

yi=x; 1 <i<n—-1, yp,=x,—(x1,...,Zn-1).

The extension problem is then reduced to the same problem in R}, for which
a simple solution is available, as shown by the following exercise.

Exercise I1.3.10 For x € R", we put 2’ = (z1,...,Zn_1). Let u € C&(Ri) and

set
u(x) ifex, >0

Eu(z) = { =t
(=) Z)\pu(x’, —pxn) if x, <0
p=1

where
m—+1

Z )‘p(*P)Z =1, ¢£=0,1,...,m.
p=1
Show that Eu € C§*(R™) and that, moreover, for all g € [1,00] and all |3| € [0, m]
ID?Eullgrn < CID ullgzy -

Therefore, £ can be extended to an operator E : W™ (R%}) — W™ (R"), which is
an (m, g)-extension map for R .

6 Actually, Stein’s theorem applies to much more general domains (with bounded
or unbounded boundary) and precisely to those which are “minimally smooth,”
see Stein (1970, Chapter VI, §3.3).
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Exercise I1.3.11 Let u € W;"(£2) and set

u(z) if x € 2
u(z) =
0 ifzene.

Show that w € W™ (R"™).

On the strength of Theorem I1.3.3 we thus have

Theorem I1.3.4 Suppose {2 locally Lipschitz. Then all conclusions in The-
orem I1.3.2 remain valid if we replace W™ (£2) with W™4(2) for some con-
stants ¢; = ¢;(m,q,r,n,2),i=1,2,3.

We wish to remark that, by using alternative methods due to Gagliardo
(1958, 1959), one can show the results in Theorem II.3.4 under more general
assumptions on {2 (see also Miranda 1978, §58).

Exercise I1.3.12 Assume {2 locally Lipschitz. Use Theorem I1.3.3 to show that,
under the assumptions on r, ¢, and n stated in Lemma I1.3.2 the following inequality
holds for u € W7(£2):

ulle < ¢ llullg™ullt,q; (I1.3.19)

where c is independent of u and A = n(r — q)/rq.

Exercise I1.3.13 Let u : 2 — R™ and let e be a given unit vector. For h # 0 the
quantity
u(x + he) — u(x)

h
is called the difference quotient of u along e. (a) Show that, if 2’ is any domain
with £/ C £2, the following properties hold for all u € W4 (£2):

(i) AMu(z) € LI(Q), for all h < dist(2',2) ;
(ii) [|A"u(@)llq,0 < [IVullg,03
(iii) If 2 = R7 and e is orthogonal to e,:

Alu(z) =

h
A% u(@)]lgrn < [[Vullqrr -

Hint: For a smooth function u and e parallel to e; (say) it holds
1 [t
Ahu(x) =, / Diu(zi, ...,z +m, ..., Tn)dn.
0

(b) Conversely, assume u € L9({2) and that for all £2’ with £/ C §2 and for all
h < dist(£2', 2) it holds ||A"ul|,.o < C, with a constant C' independent of £’ and
h. Then if e is parallel to e;, show that

(iv) Dj;u exists;
(v) [[Diullg.e <C.



60 II Basic Function Spaces and Related Inequalities

We wish to end this section by recalling a useful characterization of the
normed dual space (W7"(£2))" of the space Wy ?(£2). An analogous result
can be given for W"4(£2). A functional £ on Wj"%(£2) belongs to (W3 ?(£2))’
if and only if

4]l = sup |l(u)] < oco.

llellm,q=1

(we™* ()’

Let us consider in (W;™9(£2))" the subspace constituted by functionals F of

the form )
F(u)=(f,u), feL (). (11.3.20)

Clearly, F € (WJ"%(£2))". Setting

1fll=m,q = sup | (u)], (I1.3.21)
WEWE™ (2)i]|wlm,g =1

we easily recognize that (I1.3.21) is a norm in L7 (£2), and that the following
inequalities hold:

1 ll=m.ar < 11 fllg
| F (@) < [1fll—m.q [2ellm.q-

Let us denote by ng’q/(ﬂ) the negative Sobolev space of order (—m, '),
obtained by completing L7 (£2) in the norm (I1.3.21). The following result

due to Lax (1955, §2) ensures that for ¢ € (1,00) the two spaces ng’q/(ﬂ)
and (WJ"%(£2))" can be identified (see also Miranda 1978, §57).

(11.3.22)

Theorem I1.3.5 The spaces ng’q/(ﬂ) and (WJ™(2)), 1 < q < oo, are
isomorphic.

Throughout this book the value of a functional F € ng’q/(ﬂ) at u €
Wy"9($2) will be denoted by

(F,u) (duality pairing).

If, in particular, F € LY (£2), we have (F,u) = (F,u).

Remark I1.3.3 A characterization completely similar to that of Theorem
I1.3.5 can be given also for the space (W"™4((2))". Precisely, denoting by
W4 (2) the completion of L9 (£2) in the norm

[/ —— sup [ F ()l
weW ™ (Q)illullm,g=1

with F(u) defined in (I1.3.20), one shows that W4 (£2) and (W™4(£2))’,
1 < ¢ < o0, are isomorphic; see Miranda loc. cit. Notice that, obviously,

1 ll=m.ar < I mq -
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I1.4 Boundary Inequalities and the Trace of Functions of
Wm7q

As a next problem, we wish to investigate if, analogously to what happens
for smooth functions, it is possible to ascribe a value at the boundary (the
trace) to functions in W"4(£2). If £2 is sufficiently regular, the considerations
developed in the preceding section assure that this is certainly true if mq > n,
since, in such a case, every function from W™4({2) can be redefined on a
set of zero measure in such a way that it becomes (at least) continuous up to
the boundary. However, if mqg < n we can nevertheless prove some inequalities
relating W 9-norms of a smooth function with L"-norms of the same function
at the boundary, which will allow us to define, in a suitable sense, the trace
of a function belonging to any Sobolev space of order (m,q), m > 1. To this
end, given a sufficiently smooth domain with a bounded boundary (locally
Lipschitz, say) we denote by L7(9f2), 1 < ¢ < oo the space of (equivalence
classes of) real functions u defined on 0f2 and such that

1/q
ul|g.00 = ulldo <oo, 1<g< o0,
a,
o0

|t co.002 = esssup |u| < oo, ¢ = oo,
20

where o denotes the Lebesgue (n — 1)-dimensional measure.! It can be proved
that the space L?(0f2) enjoys all the relevant functional properties of the
spaces L1({2). In particular, it is a Banach space with respect to the norm
Il llg.00, 1 < ¢ < oo, which is separable for 1 < ¢ < oo and reflexive for
1 < ¢ < oo (see Miranda 1978, §60).

In order to accomplish our objective, we need some preliminary consider-
ations and results that we shall next describe.

We shall often use the classical Gauss divergence theorem for smooth vec-
tor functions. It is well known that this theorem certainly holds if the domain
is (piecewise) of class C'. However, we need to consider more general sit-
uations and, in this respect, we quote the following result of Necas (1967,
Chapitre 2, Lemme 4.2 and Chapitre 3, Théoréme 1.1).

Lemma I1.4.1 Let {2 be a bounded, locally Lipschitz domain in R"™. Then
the unit outer normal n exists almost everywhere on 0f2 (see Lemma 11.1.2)
and the following identity holds

/V-u:/ u-n,
Q on

for all vector fields u with components in C*(£2).

1 As usual, if no confusion arises, the infinitesimal surface element do in the integral
will be omitted.



62 II Basic Function Spaces and Related Inequalities

A generalization of this result to functions from W4(£2) will be considered
in Exercise 11.4.3.

We are now in a position to perform a study on the traces of functions
from W™, Let {2’ be alocally Lipschitz, star-shaped domain (with respect to
the origin) and let u be an arbitrary function from C§°(£2"). From the identity

|u|"Djz; = Dj(xjlul") — z;Djlul", 7€ [1,00)

and Lemma I1.4.1 we easily deduce
/ z-njul” <nlulll o + ré((l’)/ lu|" " V). (I1.4.1)
a0 ’ a0

Using the Holder inequality in the last integral in (I1.4.1) and noting that

gzsabnlf(:c ‘n(x)=c>0

(see Exercise 11.1.4), we obtain
lullion < (fe)lullor + (8@ Ol oIVl (114.2)

We now choose r € [¢, (n—1)g/(n—q)],if ¢ < n, and arbitrary r > ¢, if ¢ > n.
Observing that r» < ¢'(r — 1), in the light of Exercise I11.3.12 (see (I1.3.19)),
inequality (IT.4.2) then furnishes for all v € C§°(£2")

1/r
(1—=X 1)(1—X 14+A(r—1
lullroer < € (Il Vel o0 + Tl il 6™

(11.4.3)

A=)
<2970 (Il Bl g 00 + Il i 738 )

where A =n(r —q)/q(r — 1), C = C(n,r,q, §2'), and where we used (I1.3.3).

Employing Lemma II.1.3 and Lemma II.1.4, we can now establish (I1.4.3)
for an arbitrary locally Lipschitz domain (2. In fact, let G = {G1,...,Gn}
be the open covering of 9f2 constructed in Lemma I1.1.3 and let {¢;} be a
partition of unity in 942 subordinate to G. Setting {2, = 2NG;, for u € C§°(£2),
we have

N N N
lullroe =1 viullroe < lullrocne, < llulron, -

i=1 i=1 i=1

and therefore, using in this inequality (I1.4.3) with ' = £2;, we deduce

r A 17 (1—=X +A(1-1
lullroe < 2/"NC (JulllgV il .0 + el i ™ ullg 37 -

(I1.4.4)
Let now 2 be locally Lipschitz, and denote by ~ the linear map which to
every function f € C§°(£2) associates its value at the boundary v(f) = flan,
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and let uw € W14(£2). By Theorem I1.3.1, there is a sequence {fi} C C5°(2)
converging to u in W14(£2). On the other hand, by (I1.4.4) this sequence will
also converge in L" (942), for suitable r, to a function u € L"(942). Since, as can
be easily shown, u does not depend on the particular sequence, the map v can
be uniquely extended, by continuity, to a map from W14(§2) into L"(942) that
ascribes, in a well-defined sense, to every function from W4(§2) a function
on the boundary which, for smooth functions u, reduces to the usual trace
ut|ag- This result can be fairly generalized to spaces W4 with m > 1. In fact,
from Theorem I1.3.4 and an iterative argument based on (I1.4.4), we obtain
the following result whose proof is left to the reader as an exercise.

Theorem I1.4.1 Let {2 be locally Lipschitz. Assume
r € [g,00),ifmg > n.

Then there exists a unique, continuous linear map v from W"™4($2), 1 < ¢ <
oo, m > 1, into L"(0S2) such that for all u € C5°(£2) it is y(u) = u|sq -
Furthermore, for m = 1 the following inequality holds

1=2 (1-Ha-x
Iy@lloe < € (Julllg Yl g0+ lullfg "~ u

FEA(L—
), (nas)

where C = C(n,r,q,2) and A =n(r —q)/q(r — 1).

Exercise I1.4.1 Let {2 be locally Lipschitz. Starting from (I1.4.5), show that for
any € > 0, there exists C' = C(n,r, g, £2,¢) > 0 such that

v (W)lro0 < Cllullg,e + llVullg,e,

with the exponents ¢ and r subject to the restrictions stated in Theorem II.4.1.
Hint: Use (I1.2.5).

Theorem I1.4.1 allows us to define, in a natural way, higher-order traces.
Actually, since for u € W™9(£2) we have D%u € W™=44(2) for 0 < |a| <
¢ < m, the trace of D%u is well defined and, moreover, it belongs to L"(942)
for suitable exponents r > 1. In particular, if {2 is sufficiently regular, we can
give a precise meaning to the th normal derivative on 052:

du
= n*D%, n%=nMn3?...no"
anz ) 1 2 n
|ev|=£

of every function u € W™4(£2), m > £ > 0. Thus, noticing that n® € L*>°(912),
we can construct a linear map

Ty s W™1(02) — [L7(00)]™ (I1.4.6)

with
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on " Onmt

Ly (u) = (u = o(u), Ou =y (u),... amiiu = fyml(u)> . (I1.4.7)

Obviously, if uw € W"($2), Iy, (u) = 0 a.e. on 9f2. The converse result also
holds and we have (see Necas 1967, Chapitre 2, Théoreme 4.10, 4.12, 4.13).

Theorem I1.4.2 Let {2 be locally Lipschitz if m = 1,2 and of class C™" if
m > 3. Assume
weWm™(2), 1<g<oco, m2>1,

with I, (u) = 0 a.e on 9f2. Then u € W™"(£2).

A more complicated study, which is nonetheless fundamental for solving
nonhomogeneous boundary-value problems, is that of determining to which
Banach space B C [L"(8£2)]™ a function w = (wq, w1, . . ., Wy,_1) must belong
in order to be considered the trace, via the mapping I{,,), of a function in
Wm™4((2), i.e., ve(u) = wy, for some u € W™4(£2), forall £ =0,1,...,m— 1.
A counterexample due to J. Hadamard shows that B is, in general, strictly
contained in [L"(9£2)]™, whatever r > 1 (Sobolev 1963a, Chapter 2, §5; De
Vito 1958). Here we shall only briefly describe the answer to the problem,
referring the reader to Gagliardo (1957) and Necas (1967, Chapitre 2, §§4,5)
for a fully detailed description of it. Let us first consider the case m = 1.
Denote by W'=1/%49(9£2) the subspace of LI(AS2) constituted by functions u
for which the following functional is finite:

[ulli-1/g.902) = lullgo0 + ({u))1-1/4.4) (I1.4.8)

)l i
(U 1-1/gq = ([99[99 y—y |n 21 do ydoy/> . (1I1.4.9)

It can be proved (Miranda 1978, §61) that W' ~1/99(92) is a dense subset
of L9(042) and that it is complete in the norm ||u|[;_1/4,4(5¢). Furthermore,
it is separable for ¢ € [1,00) and reflexive for ¢ € (1, 00), and, for {2 smooth
enough, the class of smooth functions on 9f2 is dense in W'~1/94(542). We
have the following theorem of Gagliardo (1957), which characterizes the trace
operator 7.

Theorem I1.4.3 Let (2 be locally Lipschitz and let ¢ € (1,00). If u €
Wh4(0), then v(u) € W'=1/249(902) and

where

V(W)lli-1/4.9000) < erllulli,q,0- (I1.4.10)

Conversely, given w € W=1/99(92), there exists u € W4(§2) with y(u) =
such that

[ull1.q.2 < collV(w)ll1-1/4.9002)- (I1.4.11)
The constants c¢;,i = 1,2, depend only on n, q, and 2.
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Since, by Theorem I1.4.2, we have, for (2 locally Lipschitz, ui,us €
Wha(02) with y(u1) = y(uz) then u; — us € Wy %($2), Gagliardo’s theorem
can be equivalently stated by saying: The trace operator -y is a linear bounded

bijective operator from the quotient space W19(2) /Wolq((l) onto the space
Wi=1/a4(92).

Remark I1.4.1 Gagliardo proved this result by making a clever use of two
elementary inequalities due to G. H. Hardy and C. B. Morrey, respectively.
Though the proof of Theorem I1.4.3 is well beyond the scope of this mono-
graph, we may wish nevertheless to sketch a demonstration of (I11.4.10) in the
case when (2 is the square

S={(z,y) eR*:0<z<1,0<y<1}.2

We begin to notice that, in view of Theorem I1.4.1, it suffices to show that
the double surface integral in (I1.4.7) is bounded above by the norm of « in
wha(s), ie.,

u(0,y) —u(0,¢)'[* Hully) —u )|,
y— dy dy'+ _y dy dy
/
u/x, dxdx+ x,l) dr dx
xfx xfx
< Cllullf, s
(11.4.12)

with a constant C' independent of u. By Theorem II1.3.1, we can assume u €
C§°(S). Consider the first integral on the left-hand side of (II.4.11) and denote
it by Z. Making the change of variables

€:$+y7 n=y—

(a rotation of an angle m/4) we may write

U(n,n) U/(nn) dndif.
-1
where
U(€777)U<€2777€;77>-
Setting
¢(n) =U(n,n)

2 In fact, following Gagliardo, it is not difficult to prove that the case of a general
locally Lipschitz domain can be reduced to the present one.
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for 0 <7’ <n <1 we have

lp(n) — o(n')| 1 /" o . 1 /" oU ‘
< )| d\ + u)ld
n—n - )y gy A1) s oy 11| i
and thus, by (IL.3.3),
o(n) — o) |" _ .- {[ 1 /" U ]q
') = <2971 )| dX
Fa ) ‘ n—1 - =1l Ly or M)

, (11.4.13)
L[] ae] 3

We now recall the following inequalities due to G.H. Hardy (Hardy, Littlewood
and Polya 1934, p. 240):
b 1 x q q q b
/ dx / f)de| < ( > / [f@©)|edt, ©>a, ¢g>1
a T—=aj, q— 1 a
a g \7 [
g( 1) [ o <b g1
q— a

[w| ! [ 0w

Integrating (I1.4.13) first inn € (1, 1] and then in n’ € [0, 1] and using (I1.4.14)
we obtain

(I1.4.14)

1 1 q 1 1 q
/ (/ f(nyn’)dn>dn’§2q1< q1> U dn’/ gz(kn’) dA
o \Jy q- 0 W
1 7 aU q
+/ dn/ UNT du]
0 0 3u( )
< d|Vull§ s,
(I1.4.15)

with ¢ a suitable constant. Interchanging the roles of  and 7’ in (I1.4.15) and
noticing that f(n,n") = f(n’,n) one also has

1 1
/0 (/ f(mn’)dn’) dn < ¢|Vul? s (I1.4.16)
n

Adding (I1.4.15) and (I1.4.16) we find
Z < 2¢||Vul[} s

Since the other integrals on the left-hand side of (I1.4.12) can be analogously
increased, the proof of (I1.4.12) is accomplished. [ |

Exercise I1.4.2 According to the method just described, the case ¢ = 1 of Theorem
I1.4.3 is excluded because Hardy’s inequalities (11.4.14) hold if ¢ > 1. Show, by means
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of a counterexample, that (II.4.14) does not hold when ¢ = 1. Hint (Gagliardo 1957):
Take f(t) = (t — a)""(log(t — a))~2. (For the characterization of the trace when
m = q = 1, see Gagliardo (1957, Teorema 1.IT)).

The extension of Theorem I1.4.3 to the space W™4(£2), m > 2, is for-
mally analogous, provided we introduce a suitable generalization of the space
W1-1/24(962). To this end, assume 2 of class C™ ! and let {By} and
{¢k}, k = 1,2,...,s, be a family of open balls centered at z; € 02 with
082 C By, and of functions of class C™ 1'1(Dy), respectively, defining the
O™~ b1 _regularity of 012 in the sense of Definition II.1.1. Assuming that

() = (k(xgk), cel x(k)l), (xgk), ceey xikzl) € Dy

n—

is the representation of 02 N By, for a function u on 02 we set

U = u(xgk)7 sy ‘T'ELI?D k(xgk)7 sy 13512)1))
and define .
ullm=1/q.9002) = Y _ ltrllm—1/q.0.0 (I1.4.17)
k=1
where
luklm—1/q.000 = Y, 1D%kllg.0y + (ur))m—1/g.0
0<|a|<m—1
@ fe% /q
|D%u(y) = Du(y) )\
(k) m—1/q.q = (/ / e dydy .
fad |a|_zn;1 Dy, J Dy, |y - y/| >ta

(I1.4.18)
We next denote by W™=1/%4(9) the linear space of functions u for which
the functional defined by (II.4.17)—(II.4.18) is finite. It can be shown that
the definition of W™~1/99(9£2) does not depend on the particular choice
of the local representation {Bj}, {(x} of the boundary. In fact, if {Bj.},
{¢}./} is another such a representation and ”“”inq/q,q(an) is the corresponding
functional associated to u, there exist constants c¢1, co > 0 such that

[ullm—1/q.9002) < cillully_1/q.q00) < c2llullm-1/q.q02)

(Necas 1967, Chapitre 3, Lemme 1.1). As in the case of W!=1/99(9£2), one
shows that the space W™~1/94(912) is a dense subset of L9(AS2), which is
complete in the norm (I1.4.17)—(11.4.17), separable for ¢ € [1, 00) and reflexive
for ¢ € (1,00) (Necas 1967, Chapitre 2, Proposition 3.1).

Set

Wing(002) = W= 29(90) x Wm—I=V99(90) x ... x WiT/29(50).

We then have the following characterization of the trace operator I7,,) defined
in (I1.4.6)—(11.4.7) (Necas 1967, Chapitre 2, Théoreme 5.5, 5.8).
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Theorem I1.4.4 Let £2 be of class C™ 11, m > 2. If
we Wm™(2), 1<q< oo,
then
Ly (1) € Win q(092)
and for all ¢ = 0,1,....m —1 it is
|ve(Wlm—e-1/q,902) < crlltllm,q,0- (11.4.19)
Conversely, if {2 is of class C™!, given
w € Wi, ¢(002)
there exists u € W"™9({2) with

Ly (u) = w
and the following inequality holds
m—1
[ullmg.0 < 2 Y 176 llm—r—1/q.q002)- (I.4.20)
£=0

The constants ¢;, i = 1,2, depend only on n,m, q, and 2.

As in the case of the operator ~, the operator IT,,) can also be charac-
terized, in view of Theorem I1.4.2 and Theorem I1.4.4, as a bounded linear
bijection of W™4(£2) /W™ (£2) onto Wy, 4(992) (topologized in the obvious
way).

Remark I1.4.2 If (2 is not globally smooth but has a smooth boundary
portion o, we can still define the trace on o of functions from W™ %(2) and
the space Wi, 4(0). In particular, inequality (I1.4.19) continues to hold with
o in place of 012 (see Necas, loc. cit.). [ |

Remark II.4.3 Problems of trace on the plane {x, = 0} for functions de-
fined in R™~! will be considered in Section II.10. [ |

Exercise I1.4.3 (Necas 1967, Chapitre 3, Théoréme 1.1). Let 2 be bounded and
locally Lipschitz. Show the following Gauss identity:

/@V»u:/ @u»nf/u»v¢ (I1.4.21)
Q oYe) Q

for all vectors w with components in W7(£2) and scalars ¢ from W' (£2) where ¢
and r satisfy
() ¢'+r ' <(n+1)/n if 1<g<n, 1<r<mn
(i) r>1 if g>n;
(iii) ¢>1 if r>mn;
Hint: Use Lemma I1.4.1 and Theorem II.3.3 and Theorem II.4.1.

Remark I1.4.4 An extension of (I1.4.21) to functions w with less regular-
ity than that required in Exercise 11.4.3 will be given in Section III.2, see
(I11.2.14). [ |
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I1.5 Further Inequalities and Compactness Criteria in
Wm7q

We begin to prove some inequalities relating the L9-norm of a function with
that of its first derivatives (Poincaré 1894, §III, and Friedrichs 1933). Through-
out this section we shall denote by Ly a layer of width d > 0, namely

Li={zeR": —d/2 <z, <d/2}.

Theorem I1.5.1 Assume {2 C Ly, for somed > 0. Then, for allu € Wol’q((l),
1 <q<oo,
lullg < (d/2)[|Vullg- (IL5.1)

Proof. Tt is enough to show the theorem for u € C§°(£2). For such functions
one has

lu(z1,. .. 2| = ‘/;2 3u(x1€;§,__7§) "

dg

)

/‘“2 ulwr, ..., €)
. o

which implies
/2

lu(z)| < (1/2)/ [Vul|da,, . (I1.5.2)
—dy/2
From this relation we at once recover (II.5.1) for ¢ = co. If ¢ € [1,0), em-
ploying the Hélder inequality in the right-hand side of (IL.5.2) yields

/2

() < (@20 [ v,
—dy2

which, after integrating over Ly, proves (I1.5.1). O

Exercise I1.5.1 Inequality (II.5.1) fails, in general, if {2 is not contained in some
layer Lq. Suppose, for instance, {2 = R" and consider the sequence

U = expl—z|/(m+ 1)), m € N.
Show that
lwally _ m+1
Vum|lq q

Modify this example to prove the invalidity of (IL.5.1) for {2 an arbitrary exterior
domain or a half-space.

The special case ¢ = 2 in (I1.5.1) plays an important role in several applica-
tions. In particular, it is of great interest in uniqueness and stability questions
to determine the smallest constant p such that
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[ull3 < pl|Vull3. (IL5.3)

The constant p (sometimes called the Poincaré constant) depends on the
domain {2, and when {2 is bounded one easily shows that u = 1/A1, where A\
is the smallest eigenvalue of the problem

—Au=2Xu in 2, wu=0 atdf; (I1.5.4)

see Sobolev 1963a, Chapter II, §16. An estimate of A; comes from (IL.5.1) and
one has
A > 4/[6(2))%.

However, a better estimate can be obtained as a consequence of the following
simple argument due to E. Picard (Picone 1946, §160).! In fact, assume as
before {2 C Ly for some d > 0 and consider the function

_ u(z) -
U = Gnlr(en +dj2)/q) € 0 €

Since U(x) is bounded in L, and vanishes at —d/2, d/2, integrating by parts
we find

W92 (u 7w m(xn +d/2)1)° 420 gu\?
< _ —
0< /d/2 {3xn du(x) cot [ d ] } dz, /d/2 <3xn> dx,

D [

/2 /2 2
[ s < @mp [ () dn
—d/2 —d/2 Oy,

[ull2 < (d/m)[|Vull2.

Hence

which implies

Therefore, one deduces

p < d?/n?
and, if {2 is bounded,
< [65(2) /)
Notice that these estimates are sharp in the sense that when n = 1 and

2 = Lq we have from (I1.5.4) p=t = \; = [7/5(2)]? = (7/d)?.
Generalizations of (II.5.1) and (II.5.3) are considered in the following ex-
ercises.

! This proof was brought to my attention by Professor Luigi Pepe.
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Exercise I1.5.2 Let 2 C {z € R" : —=d/2 < z; < d/2, i=1,...,n}. Use Picard’s
argument to show the following estimate for the Poincaré constant u:

p < d? oz’

Exercise 11.5.3 Let {2 C Lg, for some d > 0. Show that

[Vullz < (d/m)|| Aull2

for all u € Wy?(£2) N W?2(§2). Thus, in particular,
lull2 < (d/m)*|| Aul2.
Hint: Consider the identity: (u, Au) = —||Vull2.

Exercise I1.5.4 Let £2 be of finite measure and let u € W39 (£2), 1 < ¢ < co. Show
the inequality
lulla < Bl Vullq (IL.5.5)

where ( D
q(n — .
2n—gq)/n 1"

9 q >
2\/"74 "
Hlnt USG (1135) and ‘he lnequahly

lully <1219~ D)y, 7> .

Exercise I1.5.5 Let 2 be bounded and let u € W39 (£2), ¢ > n. Show that, for all
q1 € (n,q), the following inequality holds

lulle < elluly™ ™ [Fully™,
with ¢ = ¢(n, ¢, q1, §2). Hint: From (I1.3.18) and (I1.5.1) we find ||ullc < ¢||Vullq-

Exercise I1.5.6 Let £2 be bounded and C'-smooth, and let u be a vector function
with components in W9(£2),1 < g < co, and u - n = 0 at 912 (n being the outer
normal). Show the inequality

lullq < Cl[Vullq, C<6(02)(lg—2]+n+1).

Hint (due to L.H. Payne): Integrate the identity:
> (Diluwsasuslul ™) = (Daws)susul™™ = ful” = wi; Difuy ul*?]) = 0.

3,j=1

An inequality of the type (II.5.1) continues to hold even though u is not
zero at the boundary, provided one replaces u with u — ug. We shall begin to
prove the following result which traces back to Poincaré (1894).
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Lemma II1.5.1 Fora > 0 let

C={zeR":0<x; <a}. (I1.5.6)
Then, for allu € WH4(C), 1 < g < o0,

lu —uclly < nal|Vullq. (I1.5.7)

Proof. For simplicity, we shall give the proof in the case n = 3. Clearly, in
view of Theorem I1.3.1, it is enough to show (I1.5.6) for u € C'*(£2). Consider
the identity

1 T2

0
i €7$27$3)d€+/ a:;(y17777‘r3)d77

U($17$27$3) - u(y17y27y3) = / ag(
Y2

1

3 0u
[ o ac

Integrating over the y-variables and raising to the gth power, we deduce

s, 22, 23) — uo|? < |C]7 [ [ 1vute en ol
0

a a q
vt [ [ 19t anlandr +a [ (vujac)
0 0 C

Employing in this relation the inequality (II.3.3) along with the Holder in-
equality and integrating over the x-variables we obtain

/ |u —uc|? §3qaq/ [Vuld,
C C

which completes the proof. a

Remark I1.5.1 An extension of (II.5.7) to arbitrary locally Lipschitz do-
mains will be given in Theorem II.5.4. Here, however, we wish to observe
that, unlike Theorem II.5.1, some regularity assumptions on {2 are strictly
necessary for inequalities of type (I1.5.7) to hold, as shown by means of coun-
terexample in Courant & Hilbert (1937, Kapitel VII, §8.2); see also Fraenkel
(1979, and §2 in particular). [ |

Let us now analyze some consequences of Lemma II.5.1. Suppose (2 is a
cube of side a and subdivide it into N equal cubes C;, each having sides of
length a/N'/™. Applying (I1.5.7) to each cube C; and using the Minkowski
inequality and (I1.3.3) one recovers
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N . a n(l—gq)
ull? , < 2q< > /udCi
LED D P .

Therefore, introducing the N independent functions

n(l—q)/q
_ a
w&>2wnm( ) @),

7 (2na)?

+ o IVl 0

Nl/n

with x; characteristic function of the cube C};, from the previous inequality
one has the following result due to Friedrichs (1933).

Lemma I1.5.2 Let C be the cube (I1.5.6) and let
ue WH(C), 1<q< .

Then, given an arbitrary positive integer N, there exist N independent func-
tions v; € L>°(C) depending only on C' and N such that

N q
M%SZ/wu
i=1 1/C

Inequality (IL.5.8) is very useful in proving compactness results, as we are
about to show. In fact, let 2 be bounded and let {u,,} C Wy'*(£2), 1 < ¢ < oo,
be uniformly bounded in the norm ||-||1 4. Extending w,, by zero outside {2 and
denoting again by u,, such an extension, we thus have that {u,,} is uniformly
bounded in W4(C'), for some cube C' (see Exercise 11.3.11), and therefore,
by Lemma I1.5.2, Theorem I1.2.4(ii) and Theorem I1.3.2, it is not difficult to
show the existence of a subsequence {u,,} that is Cauchy in L?(C) and, as
a consequence, converges strongly in L?({2). On the other hand, by Lemma
11.3.2 and by Exercise I1.5.5, it follows that {u,, } converges also in L"({2), for
allr € [1,ng/(n—q)), if ¢ < n, for all r € [1, 00) if ¢ = n, while it converges in
C(02) if ¢ > n. We have proved the following compact embedding result (see
Rellich 1930).

Theorem I1.5.2 Assume (2 bounded, and let q € [1,00). Then
Wad(£2) —— L"(£2),

. (2na)”

a1Vl (IL5.8)

with arbitrary r € [1,nq/(n —q)), if ¢ < n, and arbitrary r € [1,00), if ¢ = n.
Finally, if ¢ > n, then W, () << C(£2)

In Theorem I1.5.2, when ¢ < n, the exponent ¢* = ng/(n — q) is excluded.
Actually one proves by means of counterexamples that the strong convergence
is, in general, ruled out in this case. For, in the ball By consider the sequence
of functions

m=D/9(1 — m|z|) if |z| < 1/m
() = m=12 ...
0 if || > 1/m
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with ¢ < n. One has

Vumllqg = C1; umllgs = Co,
with C'7 and Cs independent of m. Since

lim up,(x) =0 a.e. in By

m—00
it follows that no subsequence can converge strongly in L9*(By).

Theorem I1.5.2 admits the following counterpart in negative Sobolev
spaces.

Theorem I1.5.3 Let 2 be bounded. Then L4(£2) << Wy “%(£2), for any
1 < ¢ < 0. Precisely, if {u;,} C Li({2) is uniformly bounded, there exists a
subsequence {un,} and v € L9({2) such that

lm ||u—tp|-1,4=0.
m/— o0

Proof. In view of inequality (IL.5.1), we may endow Wol’q((l) with the equiv-
alent norm ||V (-)||q. We observe next that, by assumption and by Theorem
11.2.4(iii), there are v € L9(£2) and a subsequence {u,, } such that u,, — w.
Set Uy = 4 — Upy. By Theorem 11.3.5 and Theorem I1.1.4, for each m’ € N|

we can find wy, € Wol’q/((l) such that
U | -1, = [(Unmr, wnr)|, - [[Vom |l = 1. (11.5.9)

Then, by Theorem II.5.2 and Theorem I1.1.3(ii), there exist a subsequence

{wy} and w € Wol’q/((l) such that Wy — w in LY (£2), and so (I1.5.9)
delivers

U || -1,q < | (Uners W)+ | U || gl wmer —wllqr < [(Unerr, w)|[+C Jwmer —wllg

which, in turn, gives the desired result since Up,» — 0 in L4(2) and w,» — w
in L7 (02). O

Some generalizations of Theorem I1.5.2 are proposed to the reader in the
following exercises.
Exercise I1.5.7 Assume {2 bounded and let g € [1,00), m > 1. Show that

Wy (@) e ()

with arbitrary r € [1,ng/(n — mq)) if mg < n and all r € [1,00) if mqg = n.
Finally, show that if mq > n, then Wj%(£2) << C*(2), for all k € N such that
0<k<1l-—mg/n.
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Exercise I1.5.8 Prove that, when (2 is bounded and locally Lipschitz, Theorem
I1.5.2 and Exercise I1.5.7 continue to hold if WJ™?(§2) is replaced by W™ ().
Hint: Use Theorem 11.3.3 and (11.3.19).

We want now to obtain further inequalities as a consequence of the com-
pactness results just derived. The following theorem extends the Poincaré
inequality (II.5.7) to more general domains.

Theorem 11.5.4 Let {2 be bounded and locally Lipschitz. Then, for all u €
Wha(02), 1 < q < oo, we have

= gl < el Vull,, (I15.10)
where ¢ = ¢(n, q, 2).

Proof. To simplify notation, we omit the subscript 2. If (II.5.10) were not
true, a sequence {um,} C Wh9(£2) would exist such that for all m € N

U = 0, Jtmllg =1, [[Vtumllq < 1/m. (IL5.11)

Therefore, from (I1.5.11)2 3 and Exercise I1.5.8 there is a subsequence con-
verging in the norm of W4(£2) to some v € W14(£2) which, by (IL.5.11),
should have Vu = 0, u = 0, namely, u = 0 a.e. in {2 and |lu||q = 1. This gives
a contradiction that proves the theorem:. a

Theorem I1.5.4 admits several interesting consequences, some of which are
left to the reader in the following exercises.

Exercise I1.5.9 Let £ be an arbitrary domain and let u € W' (£2). Show that, if
Du = 0, then there is ugp € R such that u = up a.e. in 2. Using this result, show
that, more generally, if v € W™ (2) with D®u =0, |a| = m, then u = P a.e in £,

loc
where P is a polynomial of degree < m — 1. Hint: Use Lemma II.1.1.

Exercise I1.5.10 Assume (2 bounded and locally Lipschitz and let « € W"7(£2).
If ¢ € [1,n), prove the following Poincaré-Sobolev inequality :

llu = ugll, < [ Vull,, (IL5.12)

where r = ng/(n—q) and ¢ = ¢(n, g, £2). Moreover, show that, if ¢ > n, the following
inequality holds
lu —uellc < cal|Vullq- (I1.5.13)

Hint: Use Theorem 11.5.4 and (11.3.16)1 3.

Exercise I1.5.11 Let u € W9(B,(x0)), ¢ > n. Show that the following inequality
holds

. < criTn/a vy
zerfgl?();o) lu(z) — u(zo)| < cr IVullg, B, (z0) »

with ¢ = ¢(n, q). Hint: Use (I1.5.13) on the unit ball and then rescale the result for
a ball of radius 7.
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Another consequence of Theorem I1.5.4 furnishes an interesting generaliza-
tion of the Wirtinger inequality (Hardy, Littlewood, and Polya 1934, p. 185),
which we are going to show. Denote by V*u the projection of Vu on the unit
sphere S”~! in R™, n > 2. We have

ou

|V*ul? =2 |‘|Vu|2 - ‘37‘

2
] L v = (I1.5.14)

For a function f defined on S"~! we may write

2™n
1f = flg.s0r < g I = FllG0n (I1.5.15)

where

f= |S"*1|*1/ fdsm! (I1.5.16)
Sn—l

and (2 is the spherical shell of radii 1/2 and 1. Noting that

f= IQI”/Qﬁ

we may employ Theorem I1.5.4 to obtain
1f = FI2.0 < VAL g = el VA1 g

Thus, combining (I1.5.15) with the latter inequality, we deduce the desired
Wirtinger inequality:

If = fllgsn—1r < 2l V¥ fllgsn-1, 1< g <oo, (IL.5.17)

with f defined in (I1.5.16), and ¢z = c2(n, q).

Exercise I1.5.12 (Finn and Gilbarg 1957). Show that, for ¢ = 2, the smallest
constant co for which (I1.5.17) holds is co = (n—1)"*/2. Hint: Consider the associated
eigenvalue problem A*u + Au = 0, where A* denotes the Laplace operator on the
unit sphere.

In the exercises that follow, we propose to the reader the proof of some
useful inequalities, easily obtainable by using the same compactness argument
adopted in the proof of Theorem I1.5.4.

Exercise I1.5.13 Let {2 be bounded and locally Lipschitz and let X' be an arbitrary
portion of 92 of positive ((n — 1)-dimensional) measure. Show that for all u €
Whi(£2), 1 < ¢ < oo, the following inequality holds

fuly < e (nwnq + ] IE

) (11.5.18)

with ¢ = ¢(n, q, 2, X).
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Exercise I1.5.14 Let {2 be bounded and locally Lipschitz, and let u € W™4(£2).
Then, there exists ¢ = ¢(n, g, 2,w) such that

fallmg < | 3 IDuly + / J (IL.5.19)

w
|a|=m

where w is an arbitrary subdomain of {2 of positive (n-dimensional) measure. Hint:
Use Exercise 11.5.9.

Exercise I1.5.15 Let {2 be bounded and locally Lipschitz and let w be a vector
function in 2 with components from W%(£2), 1 < ¢ < co. Assuming u -n = 0 at
912, show that there exists a constant ¢ = ¢(n, g, £2) such that

ully < cllVaull,.

Hint: Use Exercise 11.5.8.

Exercise I1.5.16 (Ehrling inequality) Let {2 be bounded and locally Lipschitz.
Show that for any ¢ > 0 there is ¢ = ¢(g,n, g, £2) > 0 such that

IVullg < ellullg + el D*ullg, (11.5.20)

for all u € W24(£2), 1 < q < co. The regularity assumption on {2 can be removed if
u € W(2). Hint: Use Exercise I1.5.8 and Theorem I1.5.2.

Remark I1.5.2 Inequalities of the type given in Exercise I1.5.13 and Exercise
I1.5.14 are relevant in the context of the equivalence of norms in the spaces
W4, A general theorem, that contains these inequalities as a particular case,
can be found in Smirnov (1964, §114, Theorem 3). [ |

We end this section by giving another significant application of the
contradiction-compactness argument used in the proof of Theorem I1.5.4, that
generalizes the result given in Galdi (2007, Lemma 5.4). To this end, we set

W) = {fue WH(2) : uls =0}, (I15.21)

where Y is an arbitrarily fixed locally Lipschitz boundary portion of 0f2. It

is easily shown that V([)/'l’q((l) is a closed subspace of W4 (Exercise I11.5.17).
Moreover, in view of Exercise I1.5.13, we find that a norm equivalent to ||(+)||1,q

is given by ||V (-)|lq, and we shall endow V?/l’q((l) with this latter.
We recall that a sequence of of linear functionals, {¢;}, on a Banach space
X, is called complete if

li(u) =0, for all i € N, implies u =0 in X .

We have the following result.
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Lemma I1.5.3 Let 2 be locally Lipschitz, and let {l;} be a complete se-
quence of linear functionals on V[[)/l’q((l), 1 < g < co. Then, given € > 0 there
exist N € N and a positive constant C' such that

N
lull < el Vaully +C Y 1li(w)
i=1
where ||u|| = ||ul|, with r € [1,nq/(n —q)), if ¢ <n, and r € [1,0), if ¢ =n,
while ||u|| = ||ull¢ if ¢ > n. The numbers N and C' depend on {2, €, ¢, and
also on r if ¢ < n.

Proof. We give a proof in the case ¢ < n, the other two cases being treated in
a completely analogous way, with the help of Theorem II.5.2. Thus, assume,
by contradiction, that there is ¢ > 0 such that, for all C' > 0 and all N € N

we can find at least one u = u(C, N) GV?/L‘?(Q) such that

N
lull > el Vullg+C Y lli(w)].

i=1

We then fix N = N; and find a sequence {u,,}, possibly depending on Nq,

such that
N

lmllr 2 €llVaumllg +m Y |Li(um)]

i=1
Setting wy, = U /|| Vimllg,? from the preceding inequality we find

N
lwmlle > e +m S [l(wn)], [Vomly =1, meN. (I.5.22)

i=1
From (II.5.22) we then deduce that
[wmll1,q < C1 (I1.5.23)

with C1 = C1(£2,%,q) > 0. So, by Theorem II.5.2 and by the weak com-
pactness property of the unit closed ball (see Remark I1.3.1), there exist a

subsequence, again denoted by {w,,}, and w(®) GV[[)/L‘Z(Q) such that

Wy, — w in L7(£2)
) (1L.5.24)
Wy, = w® in W),

Using these latter properties along with (I1.5.22) we infer, on the one hand,

2 Of course, we may assume, without loss of generality, that ||Vuml|q # 0, for all
m € N.
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N
>l =0,
=1

and, on the other hand,
o™l > e
Moreover, from (I1.5.22),, (I1.5.23), and (I1.5.24) we obtain
o™l + w1 < Co

with Cy = Co(D, S,1,q). We next fix N = Ny > N; and, by the same pro-

o
cedure, we can find another w(® eWh9(£2) satisfying the same properties as
wM). By iteration, we can thus construct two sequences, { N} and {w®},
with {Ng} increasing and unbounded, such that

Ny
> (™) =0,
=1

(11.5.25)
lw ™l + [[w®]1,4 < Co
lw ™l > e,

for all k£ € N. By (I1.5.25)2 and again by Theorem I1.5.2, it follows that there
are a subsequence of {w®}, which we continue to denote by {w®)}, and a

function w(®) GV?/L‘?(Q) such that

w® — w© in LI(2)

. (I1.5.26)

w® 2 w© in ha(0).

In view of (I1.5.25)3 and of (I1.5.26);, we must have
lw @y > . (I1.5.27)

We now claim that w(®) = 0, contradicting (IL.5.27). In fact, if w(®) # 0, by
the completeness of the family of functionals {l;}, we must have, for at least
one member of the family, /,, that

L(w®) £0. (I1.5.28)

7

By (I1.5.26)a, it is
lim I, (w®) =1, (w®), (11.5.29)

k—o00
while from (I1.5.25); evaluated at all N > i, we find
li(w(k)) =0, for all sufficiently large k.

However, in view of (I1.5.29), this condition contradicts (I1.5.28). Thus, w(®) =
0 and the lemma is proved. a
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Exercise I1.5.17 Show that the space defined in (I1.5.21) is a closed subspace of
wWha(02).

Exercise I1.5.18 Prove the following abstract formulation of Lemma II.5.3. Let
X,Y be Banach spaces with norm || - ||x and || - ||y, respectively. Suppose that X is
reflexive and compactly embedded in Y. Moreover, let {¢;} be a complete sequence
of functionals in X . Show that, given ¢ > 0 there exist N = N(¢) € N and a constant
C = C(e) such that

N
llully <ellullx + CZ [¢i(u)|, forallue X.

i=1

I1.6 The Homogeneous Sobolev Spaces D™? and
Embedding Inequalities

In dealing with boundary-value problems in unbounded domains it can happen
that, even for very smooth and rapidly decaying data, the associated solution
u does not belong to any space of the type W4, This is because the behavior
at large distances can be different for each derivative of u of a given order and,
as a consequence, the corresponding summability properties can be different.
As a simple example, consider the Dirichlet problem

Au=0 nN2=R3>—B;, wu=1 at 00,

| llim u(z) =0.

The solution is u(z) = 1/|z| and we have

D*ue L"(2), 1<r <,

Vu e L5(02), 3/2<s< o0,

we LY(2), 3<1t<oo.
Thus, to formulate boundary-value problems of the above type, one finds it
more convenient to introduce spaces more “natural” than the Sobolev spaces
W4 and which, unlike the latter, involve only the derivatives of order m.
These classes of functions will be called homogeneous Sobolev spaces, and we

shall devote this and the next few sections to the study of their relevant
properties.

For m € N and 1 < ¢ < oo we define the following linear space (without
topology)

D™ = D™9(Q) = {u € Li,o(2) : D'ue LUQ), || =m}.

In order to investigate some preliminary properties of D™ 9, we introduce
the following notation. If u satisfies
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Du e L), 0< |6 <m, for all bounded 2 with ' C £,

we shall write
u e Whi(9).

loc

Likewise, if
Du e L), 0< |¢| <m, for all bounded 2' C 2

we shall write
ue W9(80).

loc

We have the following.

Lemma I1.6.1 Let {2 be an arbitrary domain of R™, n > 2, and let u €
D™9(2), m >0, q € (1,00). Then u € W,2(§2) and the following inequality
holds

lellmgw < e | D 11D ullgw + ulliw (I1.6.1)

|[e]=m

where w is an arbitrary bounded locally Lipschitz domain with w C §2. If, in
addition, §2 is locally Lipschitz, then u € W)29(82), and (11.6.1) holds for all
bounded and locally Lipschitz domains w C 2.

Proof. Clearly, proving that v € W™?%(w), for any w satisfying the prop-
erties stated in the first part of the lemma, implies v € W, %(£2). Let
d = dist (Ow, 062) (> 0), and extend u by zero outside (2. For d > 1/k > 0,
k € N, we denote by wy, the regularizer of u corresponding to e = 1/k. Obvi-

ously, ux € W4 (w); moreover, by Exercise 11.3.2, we have
(D*u)(z) = (D'uz)(z), for all £ with |¢| = m, and all z € w.

We may thus use (I1.5.19) to find, for any k, k' € N,

luk = uprllmgw < C | D 1Dk = (D w)i) g + lur = unlliw |

[£]=m

for some C' = C(N, ¢, w). Observing that, by (I1.2.9)s, (D*u), |¢| = m, and uy
converge (strongly) in L9(w) and L'(w) to D*u and u, respectively, as k — oo,
from the previous inequality we deduce that {uy} is Cauchy in W™1(w), as
well as the validity of (I1.6.1) . The first part of the lemma is thus proved. In
order to show the second part, we begin to observe that, by Exercise 11.1.5,
we can find a finite number of locally Lipschitz and star-shaped domains 2;,
1=1,...,r, satisfying the following condition

i=1
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If we thus show that u € W™4((2;) for each i = 1,...,r, the stated property
follows with the help of Exercise I1.5.14. For a fixed i, we extend u|p, to
zero outside §2;, and continue to denote by u this extension. By means of
a translation in R™, we may take the point z;, with respect to which (2; is
star-shaped, to be the origin of the coordinates. Then, the domains

0P —{zeR": 1-1/k)ze 2}, keN={meN: m>2},
satisfy Q;k) D §2;, for all k € IM; see Exercise I1.1.3. Setting
wp = up(z) = u((1—1/k)z), zen®,

and hy = max,eaq, |z|, we find that the mollifier, (ug)e, of ux belongs to
Wma((2;), if we choose (for example) € = ho/(2k—2). With the aid of (I1.2.9),,
we deduce

lu—(ur)ellr, 0 < llu—uelli, 0 +lue = (ur)ell1,0; < llu—uello, +lu—ukll,0,
which, in turn, by (I1.2.9) and by Exercise 11.2.8, implies
klingo llu — (ug)ell1,0, = 0. (11.6.2)

We next set x(z) = Du(z), |[¢| = m. Observing that, by Exercise I1.3.2 and
Exercise 11.3.3, it is

Df(ug)e = (1 = 1/B)"[x((1 = 1/K)x)]e = € i,
we may repeat an argument similar to that leading to (11.6.2) to show

Jim | D*u — D*(ug)ellg.2: = 0. (11.6.3)

Now, with the help of (I1.6.2) and (I1.6.3), we can use the same procedure used
in the proof of the first part of the lemma with w = §2;, to show the statement
contained in the second part. The lemma is thus completely proved. a

Remark I1.6.1 From Lemma I1.6.1 it follows, in particular, that if {2 is
bounded and locally Lipschitz, then w € D™49({2) implies u € W™4((2),
so that D"™1(2) = W"™4((2) algebraically, and, in fact, also topologically,
if we endow the space D™({2) with the norm 7, _,, | D%ullq + |lull1. On
the other hand, if 2 is unbounded in all directions, these latter properties
no longer hold, since a priori one loses information on global summability of
derivatives of order less than m, and one can only state local properties in the
sense specified in Lemma I1.6.1. |

Exercise I1.6.1 Let u € D™%(R"), n > 2, m > 0, ¢ € (1,00). Show that u €
W™4(Bg), for all R > 0, and there exists a constant C' = C(R) such that

4
lullm,q,5, <C (Z 1D ullqn + IIUIILBl) :

l=m

Hint: Adapt the arguments used in the proof of the first part of Lemma I1.6.1
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In D™ we introduce the seminorm

1/q

o — Z/|Dfu|q . (11.6.4)
2

|[e]=m

Let P, be the class of all polynomials of degree < m — 1 and, for u € D™1,
set
[u]m ={w e D™ :w =u+P, for some P € Py}

Denoting by D™? = D™(£2) the space of all (equivalence classes) [u]m,
u € D™9, we see at once that (I1.6.4) induces the following norm in D™9:

[t]m|m,q = [Ulm,q, © € [u]m. (I1.6.5)

We shall now show that D™ equipped with the norm (I1.6.5) is a Banach
space.

Lemma I1.6.2 Let 2 be an arbitrary domain of R", n > 2. Then D"™%(£2)
is a Banach space. In particular, if ¢ = 2, it is a Hilbert space with the scalar
product

(alons [olden = 3 /ﬂ DfuDbv, we [l v € [ol.

|[e]=m

Proof. 1t is enough to show the first part of the lemma, the second follows
easily. We shall consider the case m = 1, leaving the more general case as an
exercise. We also set [u]; = [u]. Let {[us]} be a Cauchy sequence in D9(2);
we have to show the following statements:

(i) For any {vs} with vs € [us], s € N, there exists u € D19(§2) such that

lim ||D;vs — Diullq =0, i=1,...,n;

S§—00

(ii) For any {vs}, {v.}, with vs, v € [us], s € N, and with u, v’ corresponding
limits, we have u’ € [u].

It is seen that (ii) easily follows from (i). In fact, since vs, v/, € [us], from (i)

we have

(Dju, p) = (D', ), forall ¢ € C§°(£2),
which, in view of Exercise I1.5.9, implies (ii). Let us show (i). By the com-
pleteness of L7, we find V; € LI(£2), i =1,...,n, with
Djvs — V; in L4(92). (11.6.6)

Let O be the open covering of {2 indicated in Lemma II.1.1 and let By € O. By
the Poincaré inequality and (I1.6.6) we deduce the existence of u(®) € L9(B)
such that
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v — Vs, — u® in LI(By).

Since for all ¢ € C§°(By) it is

/ Vip = lim Divsp = lim (vs — Vs, ) Dip = 7/ u(O)Diga,
%o %0

S§—00 %0 S§—00 %0
by definition of the weak derivative, it follows
Vi = Diu'® a.e. in By. (I1.6.7)

By the property (ii) of O, we can find B, € (O — By) with B1NBy =By o #
(). As before, we show the existence of u!) € L9(%B) such that

Vi = DiuV ae. in B,. (11.6.8)

Thus, uY) = u(®) + ¢ a.e. in B o, for some ¢ € R. Therefore, we may modify
1™ by the addition of a constant in such a way that u(*) and u(?) agree a.c.
in B, 2. Continue to denote by u® the modified function and define a new
function u(*-1) that is equal to u(?) in B and is equal to u") in B;. By (I1.6.6)—
(I1.6.8) we deduce that u(®V, D;u®1) € LI(BoUB,), with V; = D;u®V) ae.
in By U By. In view of the property (iii) of the covering O, we can repeat
this procedure to show, by a simple inductive argument, the existence of
u € L} (£2) satisfying the statement (i) of the lemma, which is thus completely

loc

proved. a

Notation. Sometime, and unless confusion arises, the elements of D"™9(£2) will
be denoted simply by w, instead of [u],, with u a representative of the class
[U]m.

The functional (I1.6.4) defines a norm in the space C5°(£2). We then in-
troduce the Banach space D("? = D;"?(£2) as the (Cantor) completion of the
normed space {C5°(£2),] - [m.q}-

Remark I1.6.2 Since C§°(£2) can be viewed as a subspace of D"™(£2) via
the natural map

itue CP(R) — i(u) = [u], € D™(12),

it follows that, for any domain 2, Dg"?(£2) is isomorphic to a closed subspace
of D™4(£2). More specifically, [u],, € D"™9(£2) belongs to D{»?(£2) if and only
if there is u € [u],, and corresponding {ux} C C§°(§2) such that limy_, o0 |ug —
U|pm,q = 0. Other characterizations of the spaces D("? will be given in Section
I1.7. We finally observe that (see Exercise 11.2.6)

Dy(£2) = D*(2) = L), q=1.
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Remark I1.6.3 If (2 is contained in a layer, then by means of inequality
(IL.5.1) and Lemma II.6.1 one can easily show that || - ||, is equivalent to
| “|m,q+ |- lg and to |- |m,q. Therefore, if we endow Wy™?(£2) with this latter
norm, we find that Dj"?(£2) and W;"(£2) are isomorphic. [ ]

Exercise I1.6.2 Show that D™9 and Dg*? are separable for 1 < ¢ < oo and
reflexive for 1 < ¢ < oo. Thus, for g € (1,00) these spaces are weakly complete and
the unit closed ball is weakly compact (see Theorem II.1.3(ii)). Hint (for m = 1):

Let
ou ou

— qqn . — H1q
W—{wG[L} : w—(axl,...,axn>, for some u € D }

W is isomorphic to D9, and, since D9 is complete, W is a closed subspace of
[L9]™. Therefore, W is separable for 1 < ¢ < oo and reflexive for 1 < ¢ < oo (see
Theorem 11.2.5, Theorem II.1.1 and Theorem 11.1.2), which, in turn, gives the stated
properties for D™, Since Dé’q is isomorphic to a closed subspace of D9, the same
properties are true for Dé’q; see also Simader and Sohr (1997, Theorem 1.2.2).

Our next goal will be to investigate global properties of functions from
D™4(£2), including their behavior at large distances, when (2 is either an
exterior domain or a half-space.

Remark I1.6.4 It will be clear from the context that, in fact, most of the
results we shall prove continue to hold for a much larger class of domains. This
class certainly includes domains §2 for which any function from D1:9(§2) can
be extended to one from D'¢(R™) with preservation of the seminorm | - |1 4.
For the existence of such extensions, we refer the reader to the classical paper
of Besov (1967); see also Burenkov (1976). [ |

Our following objective is to prove some embedding inequalities that en-
sure that derivatives of u of order less than m belong to suitable Lebesgue or
weighted-Lebesgue spaces. Such estimates, unlike the bounded-domain case,
where they give information on the “regularity” of u, furnish information on
the behavior of u at large distances. We begin to derive these inequalities for
the case m = 1 (see Theorem I1.6.1, Theorem I1.6.3), the general case m > 1
being treated by a simple iterative argument (see Theorem I11.6.4).

We recall that, if ¢ € [1,n) every u € C§°(§2), satisfies the Sobolev in-
equality (I1.3.7), that we rewrite below for reader’s convenience:

q(n —1)
(n—q)V
We shall next consider certain weighted inequalities that (in a less general

form) were first considered by Leray (1933, p. 47; 1934, §6) and Hardy (Hardy,
Littlewood, and Polya 1934, §7.3). Specifically, if v € C§°({2), we have

lulls < ) n|u|1,q7 forall g € [1,n), s =nqg/(n — q). (1I1.6.9)

|ulz — zo| 714 < |u|1,4, forall g € [1,n). (I1.6.10)

q
(n—q)



86 II Basic Function Spaces and Related Inequalities

In fact, consider the identity
V- (glul?) = [ul'V - g +g- Vl]ul* (I1.6.11)
with
g = (z— o) /|z — z0|". (I1.6.12)
Since
Vg =(n-gq)/lx— o,
integrating (I1.6.11) and using the Holder inequality proves (I1.6.10). Notice

that if ¢ > n and
2° D By(xp), some a >0,

then by the same token one shows the validity of the following inequality:

|ulz — zo| 714 < |u|1,q, forall g >n; (I1.6.13)

q
(¢ —n)
see also Exercise I1.6.7. In case ¢ = n (# 1) and if
2° D By(xo), some a > 0,
we have instead

lu [l = ol In(|z — zo| /)] " || < (11.6.14)

"l
U1 -
an—1)""
To show this latter, we use again identity (I1.6.11) with

L (x — )
777 o — ol |z — wo| /)"
Since
V.og= a(n—1)

[l = zo| In(lz — zol/a)]™’
substituting into (II.6.11), integrating over {2, and applying the Holder in-
equality to the last term on the right-hand side of (I1.6.11) proves (I1.6.14).

We shall next analyze if and to what extent inequalities similar to (11.6.9),
(11.6.10), (I1.6.13), and (11.6.14) continue to hold for functions from D':4(2),
where the domain {2 can be either an exterior domain or a half-space.! In
order to perform this study, we need to know more about the behavior at
large distances of functions of D9(£2). In this respect we have

Lemma I1.6.3 Let 2 CR™, n > 2, be an exterior domain and let
ue DY), 1<qg<n.
Then, there exists a unique ug € R such that, for all R > §(§2°),

/ mmwrwmmz%m%/ IVl
S’nfl QR

where vo = [(¢—1)/(n —q)]* Y ifg>1and v =1ifq=1.
! See Remark 11.6.4.
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Proof. Let 7 > R > §(§2¢), and consider first the case ¢ > 1. For a smooth u,
by the Holder inequality we have

r q T q
/ / gu pn—ldpdsnfl :/ |:/ gu pnldp:| dsnfl
R Jsn—t |Op sn—1 LJR |OP
T q
[ i
o P B ) IR G Rt
s (/ p<1n>/<q1>dp> s
R

while, by the Wirtinger inequality (I1.5.17), it follows that

/ pra—t (/ |V*u|qu"1> dp
R Sn—1
> [ ([ Juusas ) o,
R Sn—1
f=tw) [
S’nfl
D.r)= [ vt
ORr,r

and taking into account that, by (I1.5.14), |0u/dr|?, (|V*u|/r)? < |Vul?, we
find

where

Therefore, setting

Do(R) = 55 B0 [ Jutr) — ()

D, (R) > ch/R </S 71|u7 u|qu"1> P9t dp.

In view of Lemma I1.6.1, and with the help of Theorem II.3.1, one shows that
(I1.6.16) continues to hold for all functions merely satisfying the assumption
of the lemma. Letting R, — oo, into (I11.6.16)1, we deduce that u converges
(strongly) in L9(S™~1) to some function u*. Set

(11.6.16)

ug = u*, wW=u—ug.

Obviously,
lim w(z) = 0. (I1.6.17)

|z| =00 Jgn-1

Rewriting (I1.6.16) with w instead of u, we recover the existence of a sequence
{rm} C Ry, with lim,,_,c 7, = 00 such that
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lim [w(rm) —w(rm)|? =0,
m—oo [on_1

which, because of (I1.6.17), furnishes

lim [w(rm)|? = 0.
m—oo [en_1

Inserting this information into (I1.6.16); written with w in place of u and
letting 7 — oo completes the proof of the lemma when ¢ > 1. If ¢ = 1, we
easily show that

Jodeo.

Therefore, replacing (I1.6.15) with this latter relation and arguing exactly as
before, we show the result also when ¢ = 1 a

p" " rdpdS" T > R"fl/ lu(r) — u(R)].

ou
8p Sn—1

Exercise 11.6.3 The previous lemma describes the precise way in which a function
u, having first derivatives in L(£2), 1 < ¢ < n, {2 an exterior domain, must tend
to a (finite) limit at large spatial distances. Show by a counterexample that the
condition ¢ < n is indeed necessary for the validity of the result. Moreover, prove
that if ¢ > n the following estimate holds, for all r > r¢ > max{1, §(£2°)}:

/S . lu(r,w)|%dw < 2771 (/S 3 [u(ro, w)|*dw + h(r)‘“‘(lz,q,ﬂro,r> ,  (11.6.18)

where
(log 7)™~ 1 ifg=n

[(a=1)/(q=m)*" " " if g > .
Finally, using (I1.6.18), show

h(r) =

lim (h(r))~" /an |u(r,w)|?dw = 0.

r—00

(For pointwise estimates, see Section I1.9.) Hint: To show (I1.6.18), start with the
identity

u(r,w) = u(ro,) + [ (0u/9p)dp,

T0

and apply the Hélder inequality.

This preliminary result allows us to prove the following, which answers
the question raised previously; see also Finn (1965a), Galdi and Maremonti
(1986).

Theorem I1.6.1 Let 2 C R", n > 2, be an exterior domain, and let
we DY), 1<qg<oo.

The following properties hold.
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(i)

(if)

If g € [1,n), set
w=u— ug

with uy defined in Lemma I1.6.3. Then, for any o € R™, we have
wl|z — o]t € LI(2% (x0)),

where

N%z0) = 2 — Ba(z0), Bal(wo) D 02

and the following inequality holds:

</m<zo>

If |zo| = aR, for some o« > o > 1 and some R > §(§2°), we have

(o

where ¢ = ¢(n, q, ). Furthermore, if (2 is locally Lipschitz, then

w(z)

q 1/q .
d < . 11.6.1
T — 0 $> = (Tl B q) |w|1,q,QR(zo) ( 6 9)

q 1/q
w(z) dm) < clwly g.0m, (I1.6.20)

xr — X

w e L*(£2), s=nq/(n—q), (I1.6.21)
and for some vy, independent of u
lwlls < 7lwl,q. (11.6.22)

If ¢ € [n,0), assume (2 locally Lipschitz with 2¢° D B,(xg), for some
a > 0, and set

|x — x|t ifg>n
W= (I1.6.23)
(|z — zo|In(|Jz — 20| /a)) "t ifg=n.

Then, if u has zero trace at 92, we have vou € L4({2), and the following
inequality holds, for all R > §(£2¢),

”m u”q,QR(Io) < Cq |u|1,q,QR(iEO) ) (11624)

where 2r(xzo) = 2 N Br(zo), and Cy = q/(¢ — n), if ¢ > n, while
Cqy=n/la(n—-1)], if ¢ =n.

Proof. As in the proof of Lemma I1.6.3, it will be enough to consider smooth
functions only. We begin to prove part (i). Let us integrate identity (II.6.11),
with w in place of w and g given by (I1.6.12), over the spherical shell:

QR (z0) = 2N (B, (z0) — Br(z0)), r> R.
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We have

(n—q) /
QR,T»(EO)

w(x)

q
dr< [ genfurere [ qup
BBR(I()) BBT'(EO)

tq / gl [V,
QR,T’(EO)

where n is the unit normal to dBg(x¢) pointing toward xg. This yields that
the first term on the right-hand side of this latter equation is non-positive.
Thus, estimating the integral over 9B, (x¢) with the help of Lemma I1.6.3, we
deduce

(n—q) /
QR,T'(EO)

where ¢; = ¢1(n,q). Now, if ¢ = 1 the result follows by letting r — oo
into this relation; otherwise, employing Young’s inequality (I1.2.5) with ¢ =
[(g—1)/A(n—q)]971, 0 < XA < 1, in the last integral at the right-hand side we
obtain

/QR,T»(IO)

xr — X

w(z) |*

iz < o / Vel + g / lgllw|"! V],
T — xo .QT'(E()) QR’T'(:E())

w(x)

q
C1
dx < / [Vw|?
(n—=a)1 =) Jor(ay

RV B 7
(1 — )\))\qfl(n - q)q QR.7(z0)
We now let » — oo into this relation and minimize over A, thus completing the

proof of the first part of the lemma. To show the second part, for r > (a«+2)R
we set

Tr — Xo

+

QR = 00 (B, (20) — Br),

and so, operating as before, we derive

q
<n—q>/ dm/ g-n|w|q+r1*q/ ol
R, OBRr BBT.(E())

tq / lgllw] V).
QR,T’(EO)

w(zx)
Tr — Xo

If ¢ > 1, we use Young’s inequality in the last integral, then Lemma I1.6.3
to estimate the surface integral over 9B, (z¢). Letting r — oo we may then
conclude, as in the proof of the first part of the lemma, the validity of the
following inequality:

[

q

w(x) de <

g-nlul’

1
(n—q)(1 =2 /BBR

(g— 17t .
T (- q)q/m'v“"

Tr — Xo
(11.6.25)
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for all A € (0,1). Now, if z € OBg it is
|z — ol = |zo| — |2| = (a0 — DR,

and so
lg(x)] < |& —xo'"? < [(ag — 1)R]'"%, x € IBg.

From this inequality and Lemma I1.6.3 we obtain the following:

R Y0
g-nlwl? < 4,/ ol < ,(/ IV,
/agR (Oéo — l)q 1 Sn—1 (Oéo — l)q 1 OR

which, once replaced into (11.6.25), proves (I1.6.20) for ¢ > 1. The proof for
q = 1 is similar and therefore is left to the reader. To complete the proof of
part (i), it remains to show the last statement. To this end, let ¢ € C(R) be
a nondecreasing function such that ¢(§) = 0if [{] < 1 and p(§) = 1 if || > 2.
We set for r > 2R > 6(£2°)

(@) = ||/ R),
xol2) = 1 - pr(a),
w# (@) = pre)x(2)w().

Notice that
IVxr(z)] <c/r, c=c(p).

Evidently, w# € Wol’q((l), and we may apply Sobolev inequality (I1.3.7) to
deduce
lw#[|s < Aw#|1,4, s=mng/(n—q),

which, by the properties of ¢pr and y,, in turn implies
lw™ls < e1 (Jwhg + [wllg. 22 + w2l g0, 2)

with ¢1 = ¢1(R, ¢, n,q). We now let » — oo into this relation. By inequality
(I1.6.19) the last term on the right-hand side must tend to zero. Using this
fact along with the monotone convergence theorem, we recover

lwlls,02n < e1 (Iwlg + [[wlg.2n.20) (I1.6.26)

We next apply the inequality (I1.5.18) to the integral over 2p 2r to deduce

1/q
|mmmR§@|wm+(/ |MQ .
OBRUOB2Rr

Using Lemma I1.6.3 in this inequality, we finally obtain

[wlls,02r < czlwli,q. (I1.6.27)
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We now want to estimate w “near” 0f2. We set

Cr(z) =1 —¢(|z|/2R)

and notice that
Crw € WHI(02).

Employing the embedding Theorem II.3.4, we obtain

”w”S,QQR < (|w|1,q + ||w||q1~QQR,4R) .

We may now bound the last term on the right-hand side of this relation by
|w|1,4, in the same way as we did for the analogous term in (II.6.26), thus
deducing
”w”S,QQR < C5|w|1,q'

The last claim in part (i) of the lemma then follows from this latter inequality
and from (II1.6.27). We shall prove the claim in part (ii) when ¢ > n, the
case ¢ = n being treated in exactly the same way. We integrate (I1.6.11) over
2r(z0), with arbitrary R > 0(£2°). Recalling that « has zero trace at 012, we
find

m q
- [ e[ genlur— [ gVl
Qr(x0) |z — o dBR(z0) 2r(zo)

The surface integral in this relation is non positive, so that, proceeding as in
the proof of (I1.6.13) we obtain

q
/ ol o a / V|7, (I1.6.28)
.QR(I()) |x - x0| (q - n) .QR(I())

which, in turn, by the arbitrarity of R proves the claim. g

Exercise I1.6.4 Let L (£2), ¢ > n > 2, be the class of (measurable) functions v
such that rov € L(£2), with w defined in (I1.6.24). Show that L (£2) endowed with
the norm |[ro(-)|| is a Banach space.

Exercise I1.6.5 Let u € D"%(B"), ¢ € [1,n). Show that u satisfies (I1.6.21), with
2 = BE, with a constant v; independent of R.

Exercise 11.6.6 Let u € D“%(Br(z0)), n > 2, ¢ > n, R > 0. Show that the
following inequality holds

[(w = u(zo0))/|z — 2olllg,Bp(zo) < a/(q —n)|tl1,q,B5 (z0) -

Hint: Integrate (I1.6.11) over Bgr(xzo) — B:(z0), ¢ < R. Then, use the results of
Exercise 11.5.11 and let ¢ — 0. (Notice that u(zo) is well defined, because, for ¢ > n,
DY9(2) ¢ WH9(Br(x0)) C C(Br(x0)); see Lemma 11.6.1 and Theorem 11.3.4.)
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Exercise I1.6.7 Let {2 be an exterior, locally Lipschitz domain, and assume that
u € DY(R2), ¢ > n, with zero trace at 9. Show that, for all R > §(2°) and all
o € 2r,

q
[w(u—u(@o))lla.cr < |~ lulian,

q
where 1o is defined in (11.6.23);. Hint: Integrate (I11.6.11) over 2r — B.(zo), for
sufficiently small €. Then use the results of Exercise I1.5.11 and let € — 0.

Exercise I1.6.8 Let 2 be an exterior domain of R”, n > 2, and let u € D"9(£2),
q € [1,00), satisfy the following generalized version of “vanishing of the trace” at
0s2:
Yue W), forall ¢ € C(R™). (11.6.29)
(a) Assume ¢ > n and that 2° D B.(zo), for some zop € R™ and a > 0. Show
that u satisfy (I1.6.24)
(b) Assume ¢ € [1,n), and that the constant ug associated to u by Lemma 11.6.3
is zero. Show that u € L™ ("~9 () and that there exists C' = C(n, ¢, £2) such that

”anq/(nfq) < Cluli,g-

Theorem I1.6.1 ensures, in particular, that, for {2 an exterior locally Lip-
schitz domain and for ¢ € [1,n), every function from D9(£2), possibly mod-
ified by the addition of a uniquely determined constant, obeys the Sobolev
inequality (I1.6.22), even though its trace at the boundary need not be zero.
Our next goal is to perform a similar analysis, more generally, for Troisi in-
equality (I1.3.8). Specifically, assuming that the seminorms of u appearing on
the right-hand side of (I1.3.8) are finite, we wish to investigate if v € L"({2)
and if (I1.3.8) holds. To this end, we will use a special “anisotropic cut-off”
function whose existence is proved in the next lemma; see Galdi & Silvestre
(2007a) and Galdi (2007). The lemma will also include properties of this func-
tion which are not immediately needed, but that will be very useful for future
purposes; see, e.g., Chapter VIII.

Lemma I1.6.4 For any o, R > 0, there exists a function o rp € C§°(R™)
such that 0 < 4 r(z) < 1, for all x € R™ and satisfying the following
properties

Rlim o r(x) =1 uniformly pointwise, for all a > 0,

o) < g |Tetw] < G im2n,
’ (11.6.30)
C!
[Ada,r() < 5,

(e1 x x) - Vipo,r(x) =0 forallz € R3,

where C, Cy are independent of z and R. Moreover, the support of OYa r/0z;,
j=1,...,n, is contained in the cylindrical shell Sp = 81(?/1) N Sj(f) where
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SI(??){xGR": r <r <V2R, },

<|$1|<\/2RQ}U{$ERnS <z < s
V2 V2
(1L.6.31)
and where r = (23 + - --22)'/2. In addition, the following properties hold for

all o >0

aq;boz,R
3x1

aq;boz,R

<
3x1 - 037

€ LY(R®), forallg>""+1, H
a

|(w—uo) |V, r ||s < Culul ws , forallue DY ¥(R"),1<s<n,
1,5,02V?2

(11.6.32)
where ug is the constant associated to w by Lemma I1.6.3, § = min{1, o}, and
C5, Cy are independent of R.

Proof. Let ¥ = 4(t) be a C*, non-increasing real function, such that ¥ (t) = 1,
t€10,1] and 9(t) =0, t > 2. We set

x3 r2 "
qzzjoz,R(x) - d) RQO‘ + R2 , T € R )

so that we find

2 2
1 ifg;a+;2§1
Ya,r(T) = ) ! (11.6.33)
. X7 r
0 1fR2a+R2 >4,

The first property in (I1.6.30) then follows at once. Moreover, since

Ma,r _ T ’ \/m% r2
O, (=)= Re\/x3 + R2a-272 v ( R R )

a,lzszé R xi / \/ x% T2 .
() = + , 1=2,...n,
Ox; (=) R\/RQ*Q%U% + 172 v ( R?>  R?

the uniform bounds for the first derivatives hold with C' := max;>¢ [¢)'()].
The estimate for the Laplacean of ¢, r is easily obtained with Cs depending
on C and max;>o [¢"(t)|. Moreover, the orthogonality relation (I1.6.30)4 is
immediate if we take account the above components of Vi, r and the fact
that e; X x = —x3es + x2e3. Denote next by X the support of Vi), r. From
(I1.6.33) we deduce that

R
EC{xER": 1<R21Q+R2<4}21.
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Consider the following sets

2 2
0 T3 1 r 1
Sl{xER.R2a<2andR2<2},

2 r2
Sg{xeR": R21a>2and 2 >2}.

Clearly, X1¢ D 81 U Sa. Therefore, by de Morgan’s law, we get Xy C S N SS
and we conclude, from (I1.6.31), that X C S, since S§ N S§ = S. It remains
to prove (I1.6.32). The first property follows at once from the estimate for
0V, r/0x1 given in (I1.6.30) and the fact that the measure of the support of
Obo.r/Ox1 is bounded by a constant times R*™~ 1. Furthermore, we observe
that, for all 2 € Sg, it is |z| < C'\/(R2® + R?), with C a positive constant
independent of R. Thus, from (11.6.30) we find, with w = u — uy,

[0 |Vipa,rllls.2 = [wVa,rlllssn < Callw/|a]l[s,s55 < Collw/|a]] R
S,

with C5 a positive constant independent of R and w. The second property in
(I1.6.32) then follows from this latter inequality and from (I1.6.19). The proof
of the lemma is complete. a

We are now in a position to prove the following result.

Theorem I1.6.2 Let {2 C R™, n > 3, be an exterior locally Lipschitz domain.
Assume u € DV2(02) and

ou

e L), 1<q <2
O, (£2) a1

Then, denoting by ug the uniquely determined constant associated to u by
Lemma I1.6.3, we have

2nq1

- L7(Q). r=
w=u—uy€ L"), r 24 (n -3

)

and

IDWWM+MH>7 (IL6.34)

q1 =2

ou
n<L
nmn_cﬂbm

with C = C(q1,n, 2).

Proof. Let ¢, = ¢,(x) be a smooth “cut-off” function that is 1 for z € £2,, it is
0 for x € 227, and that satisfies max,e |V¢,(z)| < M, with M independent
of . We thus have w = ¢,w + (1 — ¢,)w = w1 + wo. We begin to show the
following property: Diws and D;ws, i@ = 2,...,n, can be approximated, in
L1 L% and L?, respectively, by a sequence of functions from C§°(R™). To this
end, we set W = Yo, g, W2, Where 1), r the function constructed in Lemma
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11.6.4 with a choice of a that we specify later in the proof, and where { Ry} is an
unbounded sequence of positive numbers with Ry sufficiently large. We thus
have that the support of wsyj is compact in R™. Therefore, its regularizer,
(Wa,k)e is in CG°(R™). Observing that D;(wa k) = (DjWak)e, j =1,...,n
(see Exercise 11.3.2), in view of (I1.2.9) we may choose a vanishing sequence
{ex} such that

klinolo ||Dj{52,k — Dij’k”sj = O7 (11635)

where wa ; = (W2,k)e,, 51 € {q1,2}, and s; = 2 for j = 2,...,n. By the
Minkowski inequality, we also obtain

| Djwz — Djwa klls; < [ Djwz — Djwa kls; + [[Djwa,r — Djwa klls; , (11.6.36)

so that, in view of (I11.6.35), to show the stated property we have to show that
the first term on the right-hand side of (I1.6.36) tends to 0 as k — oco. We
now observe that

|Djwe — Djwz kls; < (1= %Ya,r,)Djwzlls; + | Djtoa,rowalls; ,  (11.6.37)

and so, in view of (I1.6.30)1, the property follows if we prove that the second
term on the right-hand side of (I1.6.37) vanishes as k — oo. Take 7 = 1 and
s; = qp first. Since

[ D1%a, rewallgy < |1D1%a,ry |l 2na  (wall 2n grisve s
2n—(n—2)q1 n—2°

and, by Theorem I1.6.1, wy € L?>"/("=2)(0), we take a > (n — 1)[2n — (n —
2)q1]/[3nq1 — 2(n + q1)] to deduce, from the properties of ¢4 r,

klingo | Diw2 — Diwa kllq, =0. (11.6.38)
We next choose s; =2, j =1,...,n, and obtain, with the help of (I1.6.32),
1Dj¢a, w2l < Cllwa/[z[lly orve
which, by (I1.6.19) and (I1.6.37) implies
klingo |Djws — Djwa kll2 =0. (11.6.39)
From (I1.6.35), (I1.6.36), (I1.6.38), and (I1.6.39) it then follows

khm ||Djw2 — Dij’k”sj = O7 ] = 17 ey, (11640)

which proves the desired property. Notice that, by Theorem I1.6.1, (11.6.40)
yields
leH;O ||w2 - wQ’kHQn/(n,Q) =0. (II.6.41)

We next observe that each function ws j, obeys, in particular, Troisi inequality
(I1.3.8) with s = r, g1 = ¢1 and ¢ = -+ = @, = 2. In fact, this inequality
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shows also that {ws } is Cauchy in L"(£2) and thus it converges there to some
w. In view of (I1.6.40) and (I1.6.41), it is simple to show that w = ws, a.e. in
{2, and that the inequality continues to hold also for the function ws:

n

[T1Diw2]. (I1.6.42)

q1 4=2

3w2

3x1

[wall7 <c

Furthermore, by the fact that w € L**/(=2)(§2), it follows w; € L"(£2), and
since w = wq + w2, we deduce w € L"(£2). It thus remains to prove the validity
of (I1.6.34) when (2 # R". Recalling that ws = ¢,w, we readily obtain

[T1Dwwl:

a1 =2 (11.6.43)

Jwz|l} < e

ow
3x1
+ez [([wllgro + [wh2)[wlls 5 + l[wllg o lw]i51]

where ¢ is the (bounded) support of V¢,. We now suitably apply the Hélder
inequality in the o-terms in square brackets and then use (I1.6.22) with ¢ = 2.
Consequently, (I1.6.43) furnishes

ow
3x 1

Jwal} < e

[T 1Diwll2 + cs|wly . (11.6.44)

q1 =2

Finally, from Exercise 11.3.12, we readily find that

[willr < ea(llwlle,or + [wli2) 5

with ¢’ the (bounded) support of ¢,. Then, inequality (I1.6.34) follows from
this latter inequality, from (I1.6.22) with ¢ = 2 and (I1.6.44). O

Exercise I1.6.9 Show that if 2 = R", the last term on the right-hand side of
(I1.6.34) can be omitted.

We would like now to extend the results of Theorem I1.6.1 to the case
when (2 is a half-space (see Remark 11.6.4).2 We begin to observe that, given
u € DM(R™), 1 < ¢ < oo, we may extend it to a function v’ € D"9(R")
satisfying (see Exercise 11.3.10)

u(z) =u'(xz), xeR%,
(IL.6.45)
[u'[1,qrn < cluf1,grr < c|u[1,qrn

If 1 < ¢ < n, by Lemma I1.6.3, there is a uniquely determined uy € R such
that (v’ — ug) € L*(R™), s = ng/(n — ¢), and, moreover,

2 As a matter of fact, also Theorem I1.6.2 can be extended to £2 = R’. However,
for our purposes, this extension would be irrelevant.
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lu" = wolls.er < 71|u'l1,q.8n.

This relation, together with (I1.6.45), then delivers

lu—uolls,rr < yslul1,qrn,

which is what we wanted to show. It is interesting to observe that if u has
zero trace at the boundary ,, = 0 then ug = 0.3 Actually, denoting by % the
function obtained by setting v = 0 outside R}, one easily shows

@ e DY(R™)
|Ul1,qrn < |ul1,q,r7

(see Exercise I1.6.10). Setting S" ' = S"~'NR™, by Lemma I1.6.3 we deduce
ol | < [ A w) = ol € 20ROl

for all R > 0, which furnishes vy = 0. By the same token, we can show
weighted inequalities of the type (I1.6.19) and (I1.6.20). Next, if ¢ > n, we
notice that, if v has zero trace at the plane z,, = 0, we may apply the results
of part (ii) in Theorem II.6.1 to the extension u, to show that the same results
continue to hold for {2 = R’ , and with an arbitrary o € R". Actually, we can
prove a somewhat stronger weighted inequality, holding for any u € Dl’q(]Ri)7
q € (1,00), that vanishes at xz, = 0. We start with the identity (valid for
smooth u)

9 |ul? 1 Olul? |ul?
1| = g1 +(1—-9q) g
0rn [(1+ ) (1+z,) Oy, (1+z,)
Integrating this inequality over the parallelepiped P,;, = {z € R} : |2/| <
b, x, € (0,a)}, 2’ = (z1, -+ ,2n—1), and using the fact that u vanishes at

z, = 0 along with the Holder inequality, we deduce
q
lu/(1+xn)llg.p,, < i1 ul1,g.P -

Since DV(R%) C Wh4(P,4), by a density argument we can extend this
latter inequality to functions merely belonging to Dl’q(Ri) having zero trace
at x,, = 0. Thus, in particular, letting b — oo, we find, for all a > 0,

I/t za)lzn < 2 lubg (IL6.46)
where
Ly={zeR}: z,€(0,a)}. (11.6.47)
We may summarize the above considerations in the following.

3 Notice that since u € W9 (C) for every cube C of RT with a side at x, = 0, the
trace of u at x, = 0 is well defined. A more general result for uo to be zero is
furnished in Exercise 11.7.5 and Section I1.10.
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Theorem I1.6.3 Let n > 2 and assume
ue DVI(RY), 1<g<oo.

(i) If ¢ € [1,n), there exists a uniquely determined ug € R such that the
function
w=1u— ug

enjoys the following properties. For any xg € R", it is
wlz — x|t € LN (20)),

where

2% (z) =R} — Br(o)
and the following inequality holds:

</m<zo>

Furthermore, if zog € R, |z9| = aR, for some o > o9 > 1 and some

R > 0, we have
(.

with 27 = R? — Bg and ¢ = ¢(n, q, o). In addition,

w(z) | 1/q
dx) S q/(n — q)|’LU|1’q’_QR(IO). (11648)

Tr — Xo

q 1/q
w(w) dx> < clwly g 0r

Tr — Xo

we L*(RY), s=ng/(n—q) (11.6.49)
and for some vy, independent of u

lwlls < y2lwlq-

If the trace of u is zero at x,, = 0, then ug = 0.

(ii) Ifq > n, and u has zero trace at x,, = 0 thenvou € LY(R’ ) and inequality
(I1.6.24) holds with any o € R™ .4

(iii) Ifq € (1,00) and u has zero trace at x, =0, then u/(1 + x,) € LI(R"})
and inequality (I1.6.46) holds for all a > 0.

By means of a simple procedure based on the iterative use of (I1.6.22) and
(I1.6.49) one can show the following general embedding theorem for functions
in D™14((2), whose proof is left to the reader as an exercise.

Theorem I1.6.4 Let 2 C R", n > 2, be either a locally Lipschitz exterior
domain or 2 =R", and let w € D"™9(£2), m > 1,1 < g < o0.

* So that (I1.6.24) holds with 2r(z0) = R
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(a) If ¢ € [1,n), let £ € {1,...,m} be the largest integer such that lq < n.
Then there are ¢ uniquely determined homogeneous polynomials M, ..,
r=1,...,¢, of degree < m — r such that, setting

k
umfk:ZMmfr7 kE{L...,E},

r=1

we have

(i) (uzf U ) € DRk ()

(ii) Z|u — Um—k|m—kg. < C|ttfmg
k=1
where q = nq/(n — kq) .

(b) If ¢ > n, 2 # R", and the trace of D*u, || = m —1, is zero at 92, then
w D% € LI(2r (o)), with vo and 2r(xo) given in part (ii) of Theorem
I1.6.1 and Theorem I1.6.3, and (11.6.24) holds with u = D“u.

(c) Ifu e D™(R%), q € (1,00), and the trace of D*u, |a| =m — 1, is zero
at x, = 0, then D*u/(1 + x,) € LY(R"}) and inequality (11.6.46), with
u = D%u, holds for all a > 0.

Our final objective is to establish embedding inequalities for functions from
D™1((2) that vanish at 9f2. We wish to prove these results without assuming
any regularity on 0(2, and so we introduce the following generalized version
of “vanishing of traces at the boundary” for u € D™%({2) (see Simader and
Sohr 1997, Chapter I)

u € WII(02), for all ¢ € C(R™). (11.6.50)

Remark I1.6.5 In view of Theorem I1.4.2, we find at once that, if {2 has the
regularity specified in that theorem, condition (II.6.50) is equivalent to the
condition I, (u) = 0 at 9€2. [ |

Theorem 11.6.5 Let 2 be an exterior domain of R", n > 2, and let u €
D™1(§2), m > 1, q € [1,00), satisfy (I11.6.50).

(i) Assume 2¢O B,, for some a > 0. Then, the following inequality holds
for all R > §(£2°)

”u”m*l,q,QR <mC |u|m1Q1~QR )
where C' = n~ /4R T(n=1)/a5(1-n)/q,

(ii) Assume g € [1,n) and let ¢ € {1,...,m} be the largest integer such
that £qg < n. Then, if the homogeneous polynomials M., ., r = 1,...,¢,
defined in Theorem I1.6.4(a) are all zero, the properties (i) and (ii) of that
theorem hold.

Proof. For any given R > 6(£2°), let ¥ € C{°(R™) to be 1 in {25 and 0 in
23R, By (11.6.50), we know that there is {us} C W;"?(£2) converging to 1u.
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Thus, it is enough to show the statement in (i) for u € C§°(§2) and for m = 1.
If we extend u to 0 in £2°, we find

|

u(z) = gZ(rx/|x|)dr.

a

By using the Hélder inequality in this identity, we derive

R
|u(z)]|? < qulalfn/ |Vul9r™tdr.
a
Therefore, by multiplying both sides of this inequality by »»~!, and by inte-
grating the resulting relations over r € [a, R] and again over the unit sphere,

we obtain the desired inequality. Under the stated assumptions in part (ii),
from Theorem I1.6.4(a) we find

14

Z |u|mfk,nq/(n7kq),.QR < c |u|m,q ) (11651)
k=1

while, by a repeated use of (I1.6.9), it follows that

¢
Z |us|mfk,nq/(n7kq),.QR < C |u5|m,q .
k=1

Passing to the limit s — oo in this relation, and recalling the properties of 1,
we deduce

4 4 m
Z |u|m7k‘,nf?€q,.QR <C (Z |u|m*k,q792R,3R + Z |u|m*k-,q-,92R,3R + |u|m-,¢I> .
k=1 k=1 k=t+1
Combining this inequality with (I1.6.51), we find
14
Z |u|m*k,nQ/("*kQ) <C (”u”m*Z*l,q,QQR,SR + |u|m,q) ’ (11652)
k=1
and the result follows from (I1.6.52) and part (i). O

Exercise 11.6.10 Let u € D*(2), 1 < ¢ < co. Assume 2 N B, (z0) locally Lip-
schitz for every xo € 92 and some r > 0. Show that if u has zero trace at 02,
then its extension 4 to R™, obtained by setting u = 0 in £2¢, is in DV (R™). Hint:
Take ¢ arbitrary from C§°(R™). and let B be an open ball with B D supp (¢). Then
ou € W)%(£2N B), and one can argue as in Exercise 11.3.11.
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I1.7 Approximation of Functions from D™ by Smooth
Functions and Characterization of the Space Dg"?

In the preceding section, we have defined the space D("?(£2) as the (Cantor)
completion of the normed space {C5°(£2) , |*|m,q}- As such, the generic element
of Dy"?(£2) is an equivalence class of Cauchy sequences. Our main objective
in this section is to furnish a “concrete” representation of Dj"?(£2), up to an
isomorphism, when (2 is either an exterior domain or a half-space.

In order to reach this objective, it is of the utmost importance to inves-
tigate the conditions under which an element from D™%({2) can be approx-
imated by functions from C§°(2) in the seminorm (II.6.4) (see Galdi and
Simader 1990, and Remark I1.6.4). As a by-product, we shall also find condi-
tions ensuring the validity of this approximation by functions from C§°(f2).
Like we did previously in analogous circumstances, we shall consider the case
m = 1, leaving the case m > 1 to the reader (see Theorem II1.7.3 through
Theorem I1.7.8).

Theorem I1.7.1 Let 2 C R", n > 2, be an exterior domain, and let u €
D%1(2), 1 < g < co. Then, u can be approximated in the seminorm |- |1 4 by
functions from C§°(§2) under the following assumptions.

(i) If g € [1,n), u satisfies (11.6.50) with m = 1, and ug = 0, where ug is the
constant of Lemma 11.6.3;
(ii) If q € [n, 00), u satisfies (I11.6.50) with m =1, .

Proof. We shall follow the ideas of Sobolev (1963b), combined with the argu-
ments used in the proof of Theorem I1.6.2. Let ¢ € C§°(R) be nonincreasing
with ¢(§) = 1if |£] < 1/2 and ¥(§) = 0 if || > 1 and set, for R large enough,

Inln |z|

= . 11.7.1
Vr(z) 77ZJ(InlnR) (IL7.1)

Notice that, for a suitable constant ¢ > 0 independent of R,
ID*Yr(z)] < ! ol =m > 1 (11.7.2)

BYT= i R 2™ In |2’ T o
and D*Yr(z) Z0, |a] > 1, only if z € fZR, where

Qp = {x € 2:expVInR < |z| < R}. (I1.7.3)

Next, let u € DY9(£2), q € [1,00), satisfying (I1.6.50) with m = 1, and with
uo = 01if ¢ € [1,n). We write u = (1 —¢g)u+ ru. By (I1.6.50) we then have

Yru € Wy (R2) (IL7.4)

for all R > §(£2¢). So, given € > 0 we may find a sufficiently large R and a
function ug . € C§°(£2) such that
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|ur,e — YrU|1,4 <&,
and
[u—ure|rg<I(1 = ¢r)Vully + IVYrUllg + [ure = YrUl1LE< 26 + [V RU] 4.

The lemma will then follow from this inequality, provided we show that the
last term on its right-hand side tends to zero as R — oo. Setting

UR) = [VYrullg, (IL.7.5)

in view of (I1.7.2) and (II.7.3) we can find a constant ¢; > 0 such that

|u(r, w) .
UR Py,
(R)" < lnlnR /eanR/Sn . (Inr)e war

Now, by Lemma I1.6.3 and Exercise 11.6.3, recalling that ug = 0 if ¢ € [1,n),
we have

[ lutr)lr < caglo),
S’nfl
where, in particular,
(Inr)n—1 ifg=n
g(r) =4 ri " ifg#n,q#1
= uly g o if ¢ = 1.

Therefore, if ¢ = n we obtain

R
YR < (lnlffR)"/ ) R(rlnr)*ldr < ¢o(Inln R) (IL.7.6)
expVvIinR

and if ¢ #n, ¢ # 1,

R (1-q)/2
C2 C2 (IHR)
L(R)! < 1 —1d
B iyt [ ™ e -1
(I1.7.7)
Finally, if ¢ = 1, we have
C9 R 1
“UR) < (InlnR) Joy, \/lnR(lnr) el erdr < < |u|1 LgexpVin -
(I1.7.8)
So, for all ¢ € [1, ), we recover
Jm () =0

which completes the proof of the theorem. a
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Remark I1.7.1 If the trace of u does not vanish at the boundary, that is,
if u does not satisfy (I1.6.50), Theorem I1.7.1 should be suitably modified. In
fact, on the one hand, the function ¢ gu does not satisfy the condition (I1.7.4)
but, rather, it verifies the following one:

Yru € WH(0), for all R > §(£2°).

So, from Theorem I1.3.1 it follows that, if {2 is locally Lipschitz, given € > 0,
we may find a sufficiently large R and a function ur . € C§°(§2) such that

|uR,5 - ¢Ru|1,q <e

and, as in the proof of Theorem I1.7.1, we can prove that any u € D%9({2)
can be approximated in the seminorm | - |; 4, by functions from C§°({2) for
q > n. However, the same result continues to hold also when 1 < ¢ < n. In
fact, it suffices to notice that, for any u € DV:9(£2) with ug # 0, the function
Yr(u — ug), with ug defined in Lemma I1.6.3, is of bounded support in {2,
belongs to W14(§2) and approaches u in the seminorm | - |1 ,. We thus have
the following.

Theorem I1.7.2 Let 2 be locally Lipschitz, and let u € D%9({2). Then, u
can be approximated in the norm |- |1 4 by functions from C§°({2).

Exercise I1.7.1 Let (2 be locally Lipschitz. Show that C§°(£2) is dense in D™9(£2).

The technique employed in the proof of Theorem II.7.1 and Theorem I1.7.2,
along with the results of Theorem I1.6.4, allow us to generalize the previous
results to the space D™%({2), m > 1, in the following theorems, whose proofs
we leave to the reader as an exercise.

Theorem 11.7.3 Let 2 C R™, n > 2, be an exterior domain and let u €
D™4(2),1 <qg<oo,m>1.Thenu € D™%((2) can be approximated in the
norm | - |;m,q by functions from C§°(§2) under the following assumptions.

(i) If g € [1,n), u satisfies (I11.6.50) and the following conditions hold:
Um—¢ =0, (I1.7.9)

where ¢ € {1,...,m} is the largest integers such that ¢q < n and the
polynomials u,,—, are defined in Theorem 11.6.4.
(ii) If q € [n, 00), u satisfies (I1.6.50)

Theorem 11.7.4 Let {2 be a locally Lipschitz, exterior domain of R™, n > 2.
Then, every uw € D"™%(§2) can be approximated in the seminorm | - |m.q by
functions from C§°(12).
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We are now in the position to prove a characterization of the space
Dy"?(£2). For the sake of argument, we shall first consider the case m = 1.

Set
{u e D"1(0): ||u||nrfzq < o0, u satisfies (I1.6.50) with m = 1},
DY) = if g € [1,n)

{u € DH9(2) : wu satisfies (I1.6.50) with m = 1}, if ¢ € [n, 00)
(I1.7.10)
where, if ¢ > n, we assume 2¢ D B,, for some a > 0. B
With the help of Exercise 11.6.8, it is not difficult to show that Dé’q((l),
1 < ¢ < o0, endowed with the norm | - |1 4 is a Banach space, and that this
norm is equivalent to the following one

| l1g + || - [lng/(n—q) ifq € [L,n)
(I1.7.11)
| |1q + I0(C)llg if g € [n,00).

where w is defined in (I1.6.23).

Theorem IL.7.5 Let 2 be an exterior domain of R*, n > 2. Then Dy9(£2),
q € [1,00), is isomorphic to Dé’q(Q), where 2 # R", if ¢ > n. If ¢ > n and
Q2 =R™, then Dy*(R") is isomorphic to DV(R"™).

Proof. We first consider the two cases: either (i) g € [1,n), or (ii) g € [n, 00)
and 2 # R", and begin to construct a suitable map T : Dy(£2) — Dy(£2).
Let uw be a generic element in Dé’q((l), that is, an equivalence class of Cauchy
sequences, and let {uy} € w. Then {Djui}, j = 1,..., n, are Cauchy sequences
in L(2) and, therefore, there exist corresponding V; € L7({2), such that

Jim | Djux = Villy =0, j=1,....n. (I1.7.12)

Moreover, in view of Exercise I1.6.4, {uy} is a Cauchy sequence also in
Lm/(n=9(0), if ¢ € [1,n), and in LL(2), if ¢ > n and 2 # R™. Thus,
there is u € L™/ ("=9 (), if g € [1,n), or u € LL(12), if ¢ > n and 2 # R",
such that

leH;O||uk — u”nq/(n,q) = 07 if qE< [l,n)
(I1.7.13)
klim lw(ur —u)|lq =0, ifg>n, 2#R".

From the definition of weak derivative and from (I1.7.12)—(I1.7.13), it imme-
diately follows that V; = Dju. Next, let ¢ € C§°(R"). We have to show that
Yu can be approximated, in W4(£2)-norm, by a sequence {vi} C C§°(£2).
Take vy = Yug. From (I1.7.13) it is clear that |[Yu — villq — 0 as k — oo.
Moreover,

[u —vkl1,q < C (Ju—ukli,qg + lu — ukllgx)
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with K the support of ¢, so that, from this inequality and (I1.7.12), (I1.7.13),
we find |[¢u — vgl1,4 — 0 as k — oo, which concludes the proof of the desired
property. We may thus infer u € Eéq(ﬂ) Since, as it is readily checked, the
function u does not depend on the particular sequence {ux} € @, we may
define a map, T, that to each & € Dy(2) assigns the function u € D{%(£2)
determined in the way described above. Of course, ¥ is linear and it is also
an isometry, and, in addition,

|tly,q = Jim lug|1,qg = |ul1,qg = [T(@)|1,4-

It remains to show that the range of ¥ coincides with Eéq(ﬂ) This amounts
to say that, for each u € Dy9(2) we can find {ux} C C§°(§2) such that
|up —ul1, — 0 as k — oo. However, the validity of this property is assured by
Theorem I1.7.1. Finally, the case {2 = R" and ¢ > n. In view of Remark I1.6.2,
we only have to show that the natural map 7 is surjective, namely, that for any
[u] = [u]; € DyY(R™), we can find {ux} C C§°(£2) such that |uj, —v|y,4 — 0,
as k — 0o, v € [u]. This property follows from Theorem I1.7.1, and the proof
of the theorem is complete. a

We may thus summarize the above theorem with the following represen-
tation of the spaces Dy?(£2) (up to an isomorphism).

If g € [1,n):

DyU(2) = {u € D(2): |[ullng/(n—q) < 0, u satisfies (I1.6.50) with m = 1},
(I1.7.14)
with equivalent norm given in (I1.7.11); .

If ¢ > n, and 2° D B,, for some a > O:
Dy(2) = {u € DY) : u satisfies (I1.6.50) with m =1},  (IL7.15)

with equivalent norm given in (I1.7.11)5.
If ¢ > nand 2 =R™

Dy '(R") = {[u] : uw € DVI(R™)}, (I1.7.16)
where
[u] = {v € DY9(R™) such that v =u+c, c € R}.

By combining Theorem I1.7.3 with the arguments used in showing Theo-
rem I1.7.5, one is now able to furnish the following representation (up to an
isomorphism) of the space D{"?(£2), for arbitrary m > 1.

Theorem I1.7.6 Let {2 be an exterior domain of R", n > 2. The following
representations hold.
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(i) If ¢ < n, let £ € {1,...,m} be the largest integer such that lq < n. If
{ < m, we assume {2° D B, for some a > 0. Then:

¢
DI™(0) = {u € D™I(0) : Z|u|m*k1nfiq < 00, u satisfies (I1.6.50) p,
k=1

(I1.7.17)
with equivalent norm
¢
||u||m71,q,!?Ro + Z |tulm—kng/(n—kq) + [tlm.q,
k=1
where Ry is a fixed number strictly greater than §(§2°).
(ii) If ¢ > n, assume 2° D B, for some a > 0. Then:
Dy (2) = {u € D™(£2) : u satisfies (11.6.50)} , (I1.7.18)

with equivalent norm

[ellm—1.9,2r, + [lm.q;

where Ry is a fixed number strictly greater than §(§2°).
(iii) If ¢ <m, mq > n, and 2 = R":

Dy @)

4
{[u]mg,ue D)+ > Nulyp, g, < oo} (IL.7.19)
k=1

where ¢ (< m) is the largest integer such that ¢q < n, and where, we
recall,
(Ul = {0 € D™I(R") : 0= u+ Pp__1}

with P,,_¢—1 polynomial of degree < m — ¢ — 1.
(iv) Ifg>mn and 2 =R":

DR = {[u)m ,u € D™9(02)} (I1.7.20)

The proof of the above theorem is quite straightforward. In fact, it is
obtained by combining the procedure used in Theorem I1.7.5, with the results
of Theorem I1.7.3 and Theorem I1.6.5. We leave the details to the reader.

Exercise I1.7.2 Show that the space defined on the right-hand side of (I1.7.19) is
a Banach space with respect to the norm |[u]|m,q = |tu|m,q, ¥ € [U]m—e¢. Hint. Follow
the arguments of the proof of Theorem II1.7.1.

Remark I1.7.2 From Theorem I1.7.6 we deduce that, unless mg < n, the
space Dj"?(R™) is a Banach space whose elements are equivalence classes of
functions that differ by polynomials of suitable degree. In particular, if ¢ > n,
then Dj"9(R"™) = D"™¢(R™). In this respect, see also the following exercise.

[ |
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Exercise I1.7.3 Let {ux} be a Cauchy sequence in DJ"?(R™), where mq > n, and
let [u]m € D™(R™) be such that [ug — u|m,q — 0 as k — 0o, u € [u]m. Show, by
means of an example, that even though u € L°(Bgr), for all s € [1,¢| and all R > 0,
we may have ||ux||1,B, — o0 as k — oo, for all sufficiently large R. Hint (Deny &
Lions 1954, §4): Take m = 1, ¢ = n = 2 and choose

uk(x) = f/ (tInt) tax(t)dt,
Ed

where ar = ax(t), k € N, is a smooth, non-negative function of C§°(R) which is 0

for t <2 and for ¢t > k+4, and it is 1 for t € [5/2,3 + k]. Then |ur — ul12 — 0

as k — oo, where u(x) = (\/|z|Inz) 'a(z), with a(z) = 0 for |z| < 2 and = 1 for

|z| > 5/2, while

lim |ug(z)] = oo, forall R>5/2.

k—o0 Bg

Exercise I1.7.4 Let 2 be an exterior domain and let u € D?(£2). Show that
|D*ul22 = || Aullz .

Hint: Tt is enough to show the identity for u € C§°(£2).

Results similar to those of Theorem I1.7.3 and Theorem II.7.4 can be
proved in the case when {2 = R't. In fact, as we already noticed, every function
u € D"™9(R" ) can be extended to the whole of R™ to a function v’ satisfying
(I1.6.45). In particular, if the trace Iy, (u) on every (bounded) portion of the
plane x,, = 0 is identically zero, we may take u’ as the function obtained by
setting u = 0 outside R’'. With this and Theorem I1.6.4(c) in mind, one can
show the following theorems, whose proofs are left to the reader.

Theorem 11.7.7 The following representation holds, for all m > 0, q €
[1,00).
Dy ?(RY) ={ue D™IRY) : I(u)=0o0nS},

with S arbitrary bounded domain in the plane x,, = 0, with equivalent norm
ulm.q + ullm—1,4,La, -
where L, is defined in (I1.6.47) and ayg is a fixed positive number.

Theorem II.7.8 Let u € D™9(R"}), m > 0, ¢ € [1,00). Then, u can be

approximated in the seminorm | - |, 4 by functions from C§° (Ri)

Remark I1.7.3 Unlike the case {2 exterior, Theorem I1.7.7 does not explicitly
impose any restriction at large distances on the behavior of u when 1 < ¢ < n,
such as the vanishing condition (I1.7.9) on the polynomials u,, . Actually by
means of an argument completely analogous to that preceding Theorem I1.6.3,
one can show that the polynomials u,,_, are identically zero as a consequence
of the vanishing of the trace I, (u). [ |
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Exercise I1.7.5 (Coscia and Patria 1992, Lemma 5) Let u € D" (R%), 1 < ¢ < n.
By Theorem 11.6.3 there is up € R such that u —uo € L°(RY}), s = ng/(n — q).
Show that if the trace y(u) at ¥ = {z € R" : 2, = 0} belongs to L"(X), for
some 7 € [1,00), then up = 0. This fact, together with Theorem II.7.8, implies that
every such function can be approximated in the seminorm |- |1,4 by functions from
C§°(RY).

I1.8 The Normed Dual of Dj"?(£2). The Spaces D, "™

We begin to furnish a characterization of the normed dual space (Dg"?(2))’
of Dy"(£2), when (2 is either an exterior domain or 2 = R" or 2 = R},
analogous to the one we described at the end of Section II.3 for the space
Wy"(82). A (bounded) linear functional F belongs to (Dg"?(£2))" if and only
if
17N (pga(ayy = sup |7 (u)] < o0
uweDG(2), [ulm,q=1

Let us first take {2 exterior, 2 # R™ and satisfying the assumptions of Theo-
rem I1.7.6, or §2 = R’ Consider the functional

F(u) = (f,u), feC(R2), allue Dy"(£2). (I1.8.1)
Applying the Holder inequality in (I1.8.1) we obtain
|F ()| < [ Fllglullq.20, (11.8.2)

where 2y = supp (f). Then, by Theorem I1.7.6 and Theorem I11.6.5(i), if {2 is
exterior, and by Theorem IL1.7.7, if £2 = R"}, we find that inequality (II.8.2)
implies

|F ()] < cllfllglulm.q
with ¢ = ¢(£2). We now set

floma = sup |F(u)]. (I1.8.3)
WEDF (), |ulm q=1

Evidently, (I1.8.3) is a norm in C§°(£2). Denote by ng’q/ (§2) the completion
of C§°(£2) in this norm. The following result holds.

Lemma II.8.1 Let {2 be an exterior domain (# R™) satisfying the assump-
tions of Theorem I1.7.6, or {2 = R"t. Then, for any q € (1, 00), functionals of

the form (I1.8.1) are dense in (D{"?(£2))’, and (D" (£2))" and Dam’q/(ﬂ) are
isomorphic.

Proof. Let

S ={F e (Dy"1(£2)) : F(u) = (f,u) for some f € C5°(2)}.
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Clearly, S is a subspace of (D("?(£2))". Let us prove that S is dense in
(D" (£2))'. In fact, assuming by contradiction that S # (Dg"?(£2))’, by the
Hahn-Banach theorem (see Theorem II1.1.7(b)) there exists a nonzero element
Z € (Dg"?(£2))" such that

Z(F)=0, forall F € S.

Since Dy"?(£2) is reflexive for ¢ € (1,00) (cf. Exercise I1.6.2), the preceding
condition implies that there exists a nonzero z € D" (§2) such that

F(z) =0, forall F €S,

that is

(f,2) =0, for all f € C5°(£2),
that is, z = 0, which leads to a contradiction. Following Lax (1955, §2), it is
now readily seen that (D{"?(£2))" and D, ™7 (£2), 1 < ¢ < oo, are isomorphic.
To this end, let £ € (D{"%(£2))" and let {fx} C C§°(£2) be such that the

sequence Fi, = (fi,u), k € N, u € D{"%(£2), converges to £ in the norm
|- [(pra(eyy of (Dg*4(£2))". Since

|Fkl (D gy = | frl-mq's (I1.8.4)

{fx} is a Cauchy sequence in ng’q/ (£2) converging to some F € ng’q/ (92).
Clearly, F depends only on £ and not on the particular sequence {fx} and,
in addition, it is uniquely determined. Likewise, to each F € Dy"™? (£2) we
may uniquely associate an £ € (Dg"?(£2))’, thus establishing the existence
of a linear bijection, £, between (Dg"?(£2))" and D, "™ (£2). However, from
(I1.8.4), it follows that % is an isomorphism, and the proof of the lemma is
complete. a

Let us now consider the case {2 = R"™. For mq < n, we employ, in (I.8.1),
the Holder inequality and make use m times of the Sobolev inequality (II.3.7)
to deduce

|.7:(u)| < ||f||nq’/(n+q’)”u”nq/("*mq) < C||f||nq’/(n+q’)|u|m,q' (11'8'5)

If mg > n, by Theorem I1.7.6 we know that elements from D" (R™) are equiv-
alence classes [u]s determined by functions that may differ by polynomials P
of degree < s — 1, where

{sm7 if ¢ > n,

s=m—{, if ¢ <nand ¥ (< m) is the largest integersuch that fg < n.
(11.8.6)
Thus, if mq > n, functionals of the type (I1.8.1) must satisfy F(u1) = F(uz2)
whenever uq, us belong to the same class [u]s. This is equivalent to the fol-
lowing condition on f:
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fPs =0, (I1.8.7)
R’n
where Py is an arbitrary polynomial of degree < s—1, with s satisfying (I1.8.6).
As a consequence, from (I1.8.7), for u € [u]s we have (with Br D supp (f))

o

We may choose Ps in such a way that, setting

| F(u)| = = < AWl rellv + Psllgpr- - (11.8.8)

flu+Py)
Br

us =u — Ps,
it follows )
D%y =0, 0< o] <s.
|Br| /B,

In view of these latter conditions, by a repeated use of the Poincaré inequality
(I1.5.10) in the last term on the right-hand side of (II.8.8), we obtain

[F)l < cillfllgmn luls+1,6,Br-

Now, if ¢ > n, from (I1.8.6) it is s = m — 1 and so

|u|s+1,q,BR < |u|m,q,R"'

If ¢ < n, again from (I1.8.6), the Holder inequality and (IL.7.17) of Remark
11.7.2, we deduce

|u|s+1,q,BR - |u|mff,q,BR < |u|mff,nq/(nffq),R" < C|u|m,q,R"-

Thus, in all cases, we deduce

|F(u)| < c2ll Fllgr mn |tlm, g rn (I1.8.9)

Once (I1.8.9) has been established, we may again use the arguments of Lemma

I1.8.1 to show that the spaces (Dy"?(R™))" and ng’q/ (R™), 1 < g < oo, are
isomorphic.

Thus, for ¢ € (1,00), let us define Fq.,(f2) as the class of functionals
(I1.8.1), which, if 2 = R™ and n < mgq < oo, verify, in addition, (II.8.7) for an
arbitrary polynomial Py of degree < s—1, with s satisfying (I1.8.6). The results
just discussed along with those of Lemma I1.8.1 can be then summarized in
the following.

Theorem I1.8.1 Let {2 C R"™ be either an exterior, locally Lipschitz domain,
or 2 =R’} or 2 =R". The completion, Dy (£2), of Fq,m(§2) in the norm
(I1.8.3) is isomorphic to (Dg"(£2))".
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Remark II.8.1 If m = 1, a restriction of the type (I1.8.7) occurs if and only
if ¢ > n. In such a case, P, reduces to an arbitrary constant so that condition
(I1.8.7) becomes
f=0. (11.8.10)
R
|

Hereafter, the value of F € Dal’q/(ﬂ) at u € Dy?($2) (duality pairing)
will be denoted by

[F ul.
Notice that if, in particular, F € C§°(£2), we have
[F,u] = (F,uw).

By an obvious continuity argument, the same relation holds, more generally,
for all 7 € L*(2) N Dy 7 (2), s € [1,00) .

Our next goal is to provide a useful representation of functionals on
Dé’q(ﬂ), valid for an arbitrary domain (2, as well as another characterization
of the space (Dy?(§2))’. Taking into account that D{?(£2) is a closed subspace
of D™9(£2) (see Remark I1.6.2), this representation becomes a particular case
of the following important general result.

Theorem I1.8.2 Let (2 be a domain in R™. Then, for any given F €
(DY9(2)), q € (1,00), there exists f € [LY (2)]" such that, for all u €
Dh1(02),
F(u) = (f,Vu). (I1.8.11)
Moreover,
1Fll pracay = 1 Fllq - (I1.8.12)

Proof. We recall that, for any ¢ € (1, c0), Dl’q((l) can be viewed as a subspace
of [L4(£2)]™, via the map

M :ue DY(0Q) — h=Vue[LI(2)". (I1.8.13)
Therefore, given F € (D“%(£2))’, by the Hahn-Banach theorem (see Theorem

I1.1.7) there exists a (not necessarily unique) functional £ € [[L%(£2)]™]’, such
that

L(h) = F(u), ueD"(12), (I1.8.14)
and that, moreover, satisfies
1€l gzac@ymy = 1F o)y - (I1.8.15)

However, by Theorem I1.2.6, we have that, corresponding to the functional L,
there exists a uniquely determined f € [L? (£2)]™ such that £(w) = (£, w) for
all w e [L9(£2)]", with || f|l¢ = |£|[iza(2)n) - Therefore, the theorem follows
from this latter consideration, and from (I1.8.14) and (I1.8.15). O
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We would like to analyze some significant consequences of this result for
the space Dy ?(£2). We begin to observe that, since Dy?(£2) € D4(82), by
Theorem II.8.2 the generic linear functional on Dé’q((l) can be represented
as in (IL8.11), for all u € Dy?(§2), where the function f € [L(2)]" is
determined up to a function f such that

(fo, Vu) =0, for allu € Dy9(82). (I1.8.16)

Let L7 (£2) be the subspace of [L7 (£2)]" constituted by all those functions
satisfying (I1.8.16). It is immediately verified that L9 (£2) is closed. Moreover,
setting Go o (£2) = M(Dé’q/((l))7 with M defined in (I1.8.13), we can readily
show that G ,(£2) is also a closed subspace of [L9 (£2)]"; see Exercise I1.8.1.
Now, let f € [LY (£2)]" and consider the problem:

Find w € D' (2) such that (Vw — f,Vu) =0, for all u € DL(£2).
(I1.8.17)
If 2 and f are sufficiently smooth, we can show that this problem is equivalent
to the following classical Dirichlet problem

Aw=V-fin 2, w=0atdR, we DL (Q).

Lemma I1.8.2 Assume that, for any given f € [L9 (£2)]", problem (I1.8.17)
has one and only one solution w € Dé’q/(ﬂ). Then, the following decomposi-
tion holds B

(LY ()] = LY (2) & Go.5 (2) . (I1.8.18)

Conversely, if (I1.8.18) holds, then, for any f € [Lq/((l)]", problem (11.8.17)
is uniquely solvable. Finally, the linear operator Il : f € [L? (£2)]" — f, €
Go,q(£2) is a projection (that is, Hg, = I1,) and is continuous.

Proof. The last statement in the lemma is a consequence of (I1.8.18); see
Rudin (1973, Theorem 5.16(b)). Since both L9 (£2) and Gy (£2) are closed,
in order to prove (I[.8.18), under the given assumption, we have to show
that (a) L9 () N Goe(2) = {0}, and that (b) f = fo + f1, fo € L7 (1),
f1 € Go,g(£2). Suppose there are I € L9 () and g = Vg € Go,q (£2), for
some g € Dé’q/((l)7 such that I = g. This means, by definition of Zq/((l)
that (Vg,Vu) = 0 for all u € Dé’q(ﬂ), which, in turn, by the uniqueness
assumption on problem (II.8.17), implies Vg = I = 0. Thus, (a) is proved.
Next, for the given f, let w € Dé’q(ﬂ) be the corresponding solution to
(I1.8.17) and set f, = f — Vw (€ L7(2)), and f, = Vw (€ Go,q). Then,
f = fo+ f, which proves (b). The converse claim, namely, that (I1.8.18)
implies the unique solvability of (I1.8.17), is almost obvious and, therefore, it
is left to the reader as an exercise O
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With the help of Theorem I1.8.2 and Lemma I1.8.2, we can now show the
following result.

Theorem I1.8.3 Assume the hypothesis of Lemma I1.8.2 is satisfied and ¢’ €
(1,00). Then Dé’q/(ﬂ) and (Dy%(£2)) are homeomorphic. Specifically, the
linear map

M:we DET(2) — M(w) € (DL1(R)), (11.8.19)

where

[(M(w), u] = (Vw, Vu), forallu e DyY(82), (11.8.20)

is a bijection and, moreover, for some ¢ = ¢(q,n, §2) > 0,

clwli g < ||9T((w)||(D[1),q(m), < Jwly,qg - (I1.8.21)

Proof. By assumption, we find that 91 is injective, and, by Theorem II.8.2
((I1.8.11), in particular) and Lemma I1.8.2, that 91 is surjective, so that 9t
is a bijection. Furthermore, the inequality on the right-hand side of (II.8.21)
is an obvious consequence of the Holder inequality, while the one on the left-
hand side follows from the continuity of the projection operator I1,, and from
(I1.8.12). O

In view of the results of Theorem I1.8.3, it is of great interest to investigate
under what conditions problem (IL8.17) has, for a given f € [LY (£2)]", a
unique corresponding solution w. As a matter of fact, such unique solvability
depends, in general, on the domain {2 and on the exponent ¢’. In particular,
we have the following.

Theorem I1.8.4 Let (2 be either R", or RY, or a bounded domain with

a boundary of class C?. Then, for all ¢ € (1,00), the spaces Dé’q/(ﬂ) and
(Dy*(£2))" are homeomorphic, in the sense specified in Theorem 11.8.3. If 2
is an exterior domain of class C? (with 812 # () the same conclusion holds if
and only if ¢ € (n/(n—1),n), if n >3, and ¢’ =2, if n = 2.

We shall not give a proof of this theorem, mainly, because a completely
analogous analysis of unique solvability will be carried out in Chapters IV and
V, in the more complicated context of the Stokes problem. Here we shall limit
ourselves to observe that the restriction on the exponent ¢’, in the case of the
exterior domain, comes from the fact that the Dirichlet problem (I1.8.17) for
n > 3 looses existence if 1 < ¢’ < n/(n—1) (¢ € (1,2) if n = 2), while it
lacks of uniqueness if ¢/ > n, n > 3 (¢’ > 2, if n = 2). For further details, we
refer the interested reader to the Notes at the end of this chapter.

Exercise I1.8.1 Show that Goq(£2), ¢ € [1,00), is a closed subspace of L7(£2).

Exercise 11.8.2 Show that the subspace S of (DV(£2))’, ¢ € (1,00), defined as
follows
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S={ueCy(2): u=V-1, for some ¢p € C5°(2)}

is dense in (DV?(£2))’. This result generalizes the one proved by Kozono & Sohr
(1991, Corollary 2.3). Hint: Use Theorem 11.8.2.

I1.9 Pointwise behavior at Large Distances of Functions
from D14

We begin to give two classical results of potential theory, in a form suitable
to our purposes.

Lemma I1.9.1 Let A be a bounded, locally Lipschitz domain of R™, n > 2,
and let w € C?(A). The following identity holds for all z € A:

1 i — Yi 1 i —Yi
w(z) = Ow(y) (z yn)d B / wip yn) Niy)do,
nwy Ja Oy |z —y| nWn JoA lz =yl
where N = (N;) is the outer unit normal to JA.

Proof. Denote by £(x — y) the fundamental solution of Laplace’s equation:

(27) " Llog |z — ) ifn=2
E(x—y) = (11.9.1)
(2 — n)w,] |z —y|2 " ifn > 3.

Employing the (second) Green’s identity'

ou v
/Ag(vAuuAv) = /{Ma(vaN fuaN)

with v(y) = w(y), u(y) = E(x —y), Ac = A — B.(x) and integrating by parts
we deduce

0&(x —y) dw(y) _ (@ —y) \
/As y; dyi /{;Baw(y) dy; Ni(y)doy

OE(x =) \r v
+/8Aw(y) s Ni(y)doy

which, in turn, by the properties of £ and a standard procedure, proves the
result in the limit e — 0. g

Lemma I1.9.2 Let

! As is well known, this identity is obtained by means of the Gauss divergence
theorem which, by Lemma I1.4.1, holds for locally Lipschitz domains and smooth
functions u, v.
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dy
le:/ , A<n, p<n.
R SRS

Then, if X + u > n, there exists a constant ¢ = ¢(\, pu,n) such that
Ta(@)] < cfa]~ ),
Moreover, let
L) - | SO
A(z)—By () 17— y|" log |y]
with
Alx) ={y e R" : k1]z| < |y| < ra2lz|}, K1 € (0,1), ko € (1,00)
and x satisfying
|z| > 2/K, & =min{l — Ky, K2 — 1, K7}

Then, there exist positive constants ci,cs depending only on ki, ke, and n
such that
Ty(z) < e1 + co(logz])~ "

Proof. Setting

it follows that

d /
Ti(@)] < ela] O Y

= —(Atpu—n)T
= C|x .
' |2’ — My P =

To estimate Z, we rotate the coordinates in such a way that 2’ goes into

o = (1,0,...0) so that
d/
I:/ %’)\ e
re |70 — ¥'|*y/|

Thus, Z is convergent, since A < n, p < n and A+ p > n, and it is independent
of x. The first estimate is therefore proved. To show the second one, we put
|| = R and perform into Z, the same change of coordinates operated before
to obtain

dy
Io(x :/ n ’
)= ] b e 10 — M og(RIy )

where
A" ={y eR" : k1 < || < ka}.

Being R'Y/2|y| > w1 /k'/? > 1, we have log(R|y'|) > (log R)/2 and so
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To(z) < 2(log|z|) {11 + L},

with
I = / w0 —y'|"dy’
1/R<|zo—y’|<3k/4
dy
L- |
A'*B3n/4(z0) |$0 -y |
Clearly,
ILb=b
and, since k < 1,
Il S alOg |IE|7

where a and b are independent of x. The lemma is thus completely proved.
O

The result just shown will be used in the proof of the following one; see
also Padula (1990, Lemma 2.6).

Theorem 11.9.1 Let 2 CR™, n > 2, be an exterior domain and let
u € DV (2) N DY(2), for some r € [1,00) and some q € (n,00). (11.9.2)
Then, if r < n, there exists ug € R such that

lim |u(z) — ug| =0 uniformly. (1I1.9.3)

|z|— o0

The same conclusion holds if (I1.9.2) is replaced by the following one: there
exists ug € R such that

(u—up) € L¥(2) N D(£2), for some s € [1,00) and some q € (n, o0).

(1I1.9.4)
Moreover, under the assumption (11.9.2), with r = n, we find that
lllim lu(z)|/(log|z])™~Y/™ =0, uniformly. (11.9.5)
Finally, if
u € DH(£2), for some q € (n,0) ,
we have that
lim |u(z)|/|z|9"™/9 =0, uniformly. (11.9.6)

|| — o0
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Proof. We begin to observe that, by density, (I1.3.12) continues to hold for
all u € WH4(B(x)), ¢ > n, and consequently, by Lemma I1.6.1, for all u €
DY4(0), ¢ > n. Thus, we find

lo(@)] < c(|vll,Bi @) + [V1,q,B1() » forallve D4(82), ¢ >n, (119.7)

for some ¢ independent of z. Now, under the assumption (I1.9.2), by Theorem
I1.6.1 there exists ug € R such that

||u — u0||nr/(n,r) < 00. (H.9.8)

Relation (I1.9.3) then follows with the help of (I1.9.8), by setting v = u—wug in
(I1.9.7), and then by letting |x| — co. Under the assumption (I1.9.4), we again
use (I1.9.7) with v = u — g, and let |x| — oo in the resulting inequality. Let
us next prove relation (I1.9.6). We take R so large that exp vIn R > 25(£2°)
and set

ul? = (1 =),

where g is given in (I1.7.1). Putting
2 =0—-B, p=expVnR,

by the properties of the function g (see (I1I.7.5), (I1.7.7)), it follows for suf-
ficiently large R that

[uM|1 400 < |ul1.q.00 +c(InIn R)~1. (11.9.9)

Moreover, u(!) € D4(£2¢) and, since u(") vanishes at 9£2°, by Theorem I1.7.1
there exists a sequence {us}sen C C§°(£2°) converging to u(®) in the norm
| - |1,q- For fixed s, s’ € N, we apply Lemma II.9.1 to the function w(z) =
h(x)|z|~7, where h(z) = us(z) — us (z) and A D supp (w). We thus have

()|~ < /ﬂ VAl )z — o' dy

T /ﬂ h@)llgl ™ — 'y,

Employing the Holder inequality and (I1.6.13) with 2o = 0, there follows

1/q'
(@)l < bl ( [l = g dy> 7
R’IL

where ¢’ = ¢/(¢— 1) and ¢ = ¢(n, ¢). Taking v € (1 —n/q,n —n/q) and since
q > n, we may estimate the integral over R"™ by means of Lemma I1.9.2 to

deduce
()|~ < c|hly g, 00la| 7O/,
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Recalling the definition of the function h and letting s, s’ — oo, from this
latter inequality we obtain

luM ()] < c|luM|1 4.00]x| ™79, for all 2 € 27
and so, by the properties of ¥ i and by (I1.9.9), it follows that
lu(z)| < 1 (Jul1,q,00 + (InIn R) ™) ||/ for all z € 27,

which proves (I1.9.6). It remains to show (I1.9.5). To this end, let x € {2 with
|| = R, R > 2§(£2°) and sufficiently large. Since

u € Wh(2ps22r) "W (2r/2.2R),

we may use the density Theorem II1.3.1 together with Theorem I1.3.4 and
Theorem I1.4.1 to prove the validity of the identity in the statement of Lemma
I11.9.1 with A = g9 25 and w(y) = u(y)/(log|y|)" /™. We thus obtain for
all z € 2 with |z| = R

lu(@)|/(log|z)"=V/" < o(Iy + I + Iy + Iy + Is + Ig), (11.9.10)

where ¢ = ¢(n) and

n- | V(o) (g 1)/} — 11" dy,
Np/2,2r—B1(x)

b= [ [uwliosly) e - il "dy,
Bl(z)

- | [u(w)llyl (g |y /"2l — ' d,
Ngr/2,2r—Bi(z

fo= [ Juts)lol Qoglul) /"o — ol "
Bl(z)

= [ sl e~y o,
OBRr/2

o= [ ful)logly) e =yl o,
OB2r

Set

(n=1)/n
() = / dy
a Np/2,2r—B1(z) |$ - y|n log |y| '

The following estimates are a simple consequence of the Hélder inequality:
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I Sz(x)|u|11n1~QR/2,2R7

Ir < ¢1(log R)A =/ uly 4 g, (2),

)
ul\y
( @ yaan (Y1108 ]Y])

e\
Iy < co(log R)—2m)/n / by yq dy .

| > {R/2 for y € OBR/2
=Yyl =
R fory € 0Bsp

Moreover, since

)

it follows that

1/n
I5 + I@ S Cg(lOg R)(lin)/n { (/ |U(R/27w)|ndw>
Sn—1

+ </5"1|u(2R7w)|ndw>1/" } |

Z(z) < ca + cs(log |a]) 7! (I1.9.11)

By Lemma I1.9.2, we have

while, by Exercise 11.6.3, given € > 0 there is a sufficiently large R such that
for all R > R it holds that

/ |[u(R/2,w)|"dw + / |u(2R, w)|"dw < cge (log R)"*,  (11.9.12)
S’nfl S’nfl

and
n 2R
/ [u(y)] ndy < 075/ (rlogr) tdr < cge. (I1.9.13)
Qpyaan (Y1108 1Y) R/2
In addition, from (I1.9.6), we find
q
/ |“(yz| dy < coR™™. (I1.9.14)
Since, clearly, as R — oo,
|u|1,n,QR/2,2R7 |u|1,q,B1 = 0(1)7 (11915)

in view of (I11.9.11)—(11.9.15) we deduce in the limit R — oo
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ZIZ- = o(1) (11.9.16)

and (I1.9.5) follows from (I1.9.10) and (I1.9.16). The theorem is therefore com-
pletely proved. a

Remark I1.9.1 The result just shown applies, with no change to domains
{2 that possess an extension property of the type specified in Remark 11.6.4,
such as a half-space. |

I1.10 Boundary Trace of Functions from D™4(R")

Our next objective is to investigate the trace space at the boundary of a
function u € D™4(£2), for 2 = R’}. Actually, if {2 is an exterior domain,
there is nothing to add to what was said in Section II.4, since, as shown in
Lemma I1.6.1, if {2 is locally Lipschitz then u € W™9({2g). On the other hand,
if u e D™(R%) then u € W™4(C), for any cube C' C R, and therefore,
by the results of Section I1.4, u possesses a well-defined trace I7,,)(u) at the
plane X' = {x € R" : z,, = 0} that belongs to the trace space Wy, ((X"), for
every bounded portion X’ of X. However, from those results we cannot draw
any conclusion concerning the finiteness of the norms of I, (u) on the whole
of Y. Nevertheless, such global information is of primary importance in the
resolution of nonhomogeneous boundary-value problems.

A detailed investigation of the properties of the traces on X of functions
belonging to the spaces D™ 9(R"} ) has been performed by Kudrjavecev (1966a,
1966b). Here we shall describe some of his results in the case where m =
1, since this is the only case we need to consider in the applications. The
interested reader is referred to Remark I1.10.2 and to the work of Kudrjavcev
(1966b, Theorems 2.4" and 2.7) for generalizations to the case where m > 1.

For a function u € D™4(R" ), we shall denote throughout by w its trace at
Y. From Theorem I1.4.1 we derive, in particular, for any bounded (measur-
able) X' C X,

el < ¢ (Julvazy + lulloz) (I110.1)
where ¢ = ¢(X’,n,q, B) and B any bounded, locally Lipschitz domain of R’}
with B D X'. Let o be a non-negative, measurable function in Y. By the

symbol
LY(¥,0), 1<q< 00,

we denote the space of (equivalence classes of) real functions w on X' that are
Li-summable in with the “weight” o, namely,

low|lq < oc.

We have
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Theorem I1.10.1 Let ¥ = {z €R":2, =0} and 2’ = (v1,...,2n_1).
Then, for any u € DV9(R".) the trace u of u at X satisfies

u € Lq(27 01)7 01 = (1 + |x/|)(1fn)/q7517
where £ is an arbitrary positive number, and the following inequality holds:
lovullg.s < 1 (Julvazy + lullos. )
with ¢ = ¢1(n, q,e1) and By = By NR’. Moreover, if 1 < ¢ < n, we have
U —ug € Lq(27 0—2)7 02 = (1 + |x/|)(1iq)/q7627

where ug is the constant associated to u by Theorem 11.6.3 and ¢4 is an
arbitrary positive number, and the following inequality holds:

lo2(u —uo)llq,2 < coluly,qry,
with co = co(n, q,€2).

Proof. The proof of the first part of the theorem is found in Kudrjavcev
(1966b, Theorem 2.3") and it will be omitted here. The second part can be
obtained by coupling Kudrjavcev’s technique with the results of Theorem
11.6.3, as we are going to show. For simplicity, we shall consider the case
where n = 2, leaving to the reader the simple task of establishing the result
for n > 3. Setting

w=u— ug,

we have to prove the following inequality:

/ og(xl)q|w(x1)|qu1 < cg|u|‘11’q’R2+7 Uz(xl) = (1 + |x1|)(1*q)/‘Z*52'

- (11.10.2)
Since, by Theorem I1.6.3,

(=) € LRORL), (I1.10.3)
lu — uo|l2q/2—q) < ’72|U|1,q,R17
from (I1.10.1) we find
1
[ outan)utan)itdn < e
and so to show (I1.10.2) it suffices to show

0o —1
/ 02(%1)q|w($1)|qd$17 / og(xl)q|w(x1)|qu1 S 03|u|‘11’q’R2+. (11104)
1 _

oo
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Let us consider the first integral in (I1.10.4). In R% we introduce a polar
coordinate system p € (0,00), 8 € [0, 7] with 6 the angle formed by p with
the positive x;-axis. Since

x1 = pcosb,

To = psinb,

we have
| natewnde = [ o) lop, 0l . (I1.10.5)
1 1
Setting
w=u— U,
for x1 > 1,

w(zn) = w(p,0) = wlp,0 / O (o

Taking the modulus of both sides of this identity, raising them to the g¢th
power, using (I1.3.3) and the Holder inequality, we find

0
i, 0)]7 < ex <|w<p, 6))7 + / Ou
0

or (p,7)

' d7> . (11.10.6)

Observing that

ou
<
o a)\ < oIVl

from (I1.10.6) we derive, for all o > 0,

> |w(p, 0)|* |
/1 o dp < ca aq+1 dpd0

(I1.10.7)
[Vu(
/ / (o 1)+1 dp de ) .
Taking
a>1-1/q, (I1.10.8)
we have for p > 1
plle b+l > (I1.10.9)

Further, from (I1.10.3) and (I1.10.8)

|w * atearniag,)”
aq+1 pdpd0§ m : p dp
(2—a)/q
" / |20/ (I1.10.10)
]

< s |u|1qR2.

2
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Therefore, the first relation in (I1.10.4) follows from (I1.10.5), (II.10.7),
(I1.10.9), and (I1.10.10). To recover the second one, it is enough to observe
that, for z; < —1,

T ou(p, T
wler) = wlom) = wip.0)+ [ ar,
0 37
and to proceed as in the previous case. The theorem is thus completely proved.
O

Remark I1.10.1 Theorem II.10.1 tells us, in particular, that if 1 < ¢ <n, u
must tend to the constant ug at large distances on X, in the sense that for at
least a sequence of radii {R,,},

lim |u(Rpm, w) — ug|ldw = 0,
R,,—o0 gn—2
where (R,w) denotes a system of polar coordinate on X. On the other hand,
if ¢ > n, u may even grow at large distance on . |

Remark I1.10.2 We notice, in passing, that Theorem I1.10.1 admits of an
obvious extension to the case where m > 1, in the sense that it selects the
weighted L?-space to which the trace u, = D%u at X, |a] = m — 1, of
u € D"™9(R") must belong. In particular, if mq < n, in the light of Theorem
11.6.4, u can be modified by the addition of a suitable polynomial P in such
a way that u = u — P and all derivatives of u up to the order m — 1 included
tend to zero on Y in the way specified in Remark I1.10.1. |

A weighted space of the type L(X, o), however, does not coincide with
the “trace space” of functions from Dl’q(Ri). This latter is, in fact, more
restricted. To characterize such a space we set, as in the case of a bounded
domain,

B Ju(z) — u(y)|? e
((u))1-1/q.q = (/E ey dxdy) (I1.10.11)

and denote by D'~1/9:9( %) the space of (equivalence classes of) real functions
for which the functional (I1.10.11) is finite. As in Section II.4, one can show
that, provided we identify two functions if they differ by a constant, (I1.10.11)
defines a norm in D'~/94( %) and that D'~1/94(X) is complete in this norm.

Exercise I1.10.1 (Miranda 1978, Teorema 59.II). Show that

uwe Wh(X), implies ue D'7V9(x).

The following theorem holds, (Kudrjavcev 1966b, Theorems 2.4 and 2.7
and Corollary 1).
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Theorem I1.10.2 Let ¥ be as in Theorem I11.10.1 and let uw € DV4(R"),
1 < q < co. Then the trace u of u at X belongs to D'~/44(%) and, further,

{u))1-1/4.4 < e1lulig

with ¢; = ¢1(n,q). Conversely, given u € D'=%/44(%), 1 < q < oo, there
exists u € DV9(R") such that u is the trace of u at X and, further,

[ul1,q4 < ca ((W))1-1/q,95

with co = co(n, q).

I1.11 Some Integral Transforms and Related Inequalities

By integral transform with kernel K of a function f, we mean the function ¥
defined by

() = /ﬂ K(z,y)f(y)dy. (IL11.1)

Our objective in this section is to present some basic inequalities relating ¥
and f, under different assumptions on the kernel. We shall first consider the
situation in which

K(z,y) = K(z —y),

where K (£) is defined in the whole of R™. In this case, the transform (I1.11.1)
with 2 = R” is called a convolution, and it is also denoted by K * f. An
example of convolution is the regularizer of f, which we already introduced
in Section II.2. For these transforms we have the following classical result due
to Young (see, e.g., Miranda 1978, Teorema 10.I).

Theorem I1.11.1 Let
K e L*(R"), 1<s< 0.

If
feLR), 1<g<oo, 1/g=1-1/s,

then
KxfeL (R"), 1/r=1/s+1/q—1,

and the following inequality holds:

[ fllr < s (I1.11.2)

Exercise I1.11.1 Prove inequality (I1.11.2) for the case ¢ = 1. Hint: Use the gen-
eralized Minkowski inequality (I.2.8).
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Another class of transforms that will be frequently considered is that de-
fined by kernels K of the form

k
K(z,y) = T;’f’), A>0, yen, (I1.11.3)

where k(z,y) is a given regular function. If 0 < A < n and k(z,y) = 1, the
kernel (I1.11.3) is referred to as weakly singular and the corresponding trans-
form (IL.11.1) is called the Riesz potential. If X = n and k(z,y) is suitable
(see (II.11.15)—(I1.11.17)), the kernel and the associated transform are called
singular. The study in Lebesgue spaces L® of Riesz potentials finds a funda-
mental contribution in the celebrated paper of Sobolev (1938) (see Theorem
I1.11.3), while that related to (multidimensional) singular kernels traces back
to the work of Calderén and Zygmund (1956) (see Theorem I1.11.4).

When (2 is bounded and K is weakly singular one can easily show elemen-
tary estimates for ¥ = K x f in terms of f. For example, if

A<n(l—-1/q)
one has the inequality
sup [(z)] < el (IL11.4)
e
with e
q
c= ! w4 5y d A (I1.11.5)
n— A\ "

To show this, it suffices to observe that for all » > 0 and \r < n,

1/r 1 1/r
/ 2 —y|Mdy | < ( > wl/TRM/TA, (I.11.6)
lz—y|<R n—Ar

Thus, (II.11.4) and (II.11.5) follow from (II.11.1), (II.11.3), (II.11.6), and
the Holder inequality. Actually, one can prove an estimate stronger than
(I1.11.4) under the same assumption on A, n, and ¢. In fact, from (I1.11.3)
with k(z,y) = 1, by the mean value theorem it follows that

|K(z —y) — K(z —y)| < Nz —z|d(y)~ Y,

where d(y) is the distance of y from the segment s with endpoints = and z.
Setting o = |z —z| and employing this last inequality, from (II.11.1) we deduce

() —W(2)| < /

|lz—y|<20

FW)lle — g dy + / F@)llz -yl dy

|z—y|<20

Iy / F@)ldy) -+ dy
Qn{|zo—y|>0c}
(IL.11.7)
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with ¢ the midpoint of s. Since d > ¢ /2, by Carnot’s theorem it easily follows
that 2d > |z — x¢|. Therefore, assuming A < n(1 — 1/¢) and employing the
Holder inequality, the last term in (II.11.7) can be increased by

o (0 + 0"(171/‘1)7)‘) 1£1lq (IL11.8)

where C; = C1(6(£2),n,q, A). On the other hand, by an easy calculation that
makes use of (II.11.6) and the Holder inequality, we show that the first two
integrals in (I1.11.7) can be dominated by

Co "D £l

where Cy = Ca(n,\). Thus, this latter relation along with (I1.11.7) and
(I1.11.8) furnishes

W(2) = 9(2)| < C (o4 0O 1D2) | 1,

where C' = 2max(C1, C2). Still retaining the assumption that (2 is bounded,
we shall now discuss the case where A = n(1 —1/q). We set

~ |"E*y|7)\lf$7y€.g
K(r—y) =
0 ife,yd 2.

Clearly,

via) = [ o=al >y = [ Ra=nrwdy

and so, by noticing that
K e L*(R™), forall s < n/A, (I1.11.9)
from Young’s Theorem I1.11.1 it follows that if f € L9({2) then
vel (), 1/r=1/s+1/q—1 (I1.11.10)
and that the following inequality holds:

1@l < cllfllq-

Taking into account (II.11.9) and that A = n(1 — 1/¢), from (I1.11.10) we
conclude that
U e L), forallre[l,00).

The results established so far are collected in

Theorem I1.11.2 Assume {2 bounded, K weakly singular, and f € Li({2),
1 < g < oo. Then if A\ < n(1 — 1/q), the integral transform ¥ defined by
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(I1.11.1) belongs to C%*(§2) where p = min{1,n(1—1/q)—A} and the following
estimate holds:
1Z]co.n < Chllfllg (I1.11.11)

with C; = C1(6(£2),n,q, \). Moreover, if \ =n(1 —1/q), then ¥ € L"({2) for
allr € [1,00), and the following estimate holds:

1@ < Col[ fllgs (I1.11.12)

with Cy = 02(5(9)7 n,q, )‘)

The complementary situation A > n(1 —1/q) is considered in Sobolev’s theo-
rem which, in addition, does not require the boundedness of {2. Precisely, we
have (Sobolev 1938; for a simpler proof see Stein 1970, Chapter V)

Theorem I1.11.3 Assume f € LI(R™), 1 < g < o0, and K weakly singular.
Then, if X > n(1 — 1/q), the integral transform ¥ defined by (I1.11.1) with
2 =R" belongs to L*(R™), where 1/s = \/n+ 1/q — 1. Moreover, we have

1Z]s < Cllfllq (I1.11.13)
with C' = C(q,n, \).

Remark I1.11.1 By means of simple counterexamples one shows that the
Sobolev theorem fails either when ¢ = 1 or when s = oo (see Stein 1970,
p.119).

Some interesting observations and consequences related to Theorem I1.5.1-
Theorem I1.5.4 are left to the reader in the following exercises. |

Exercise I1.11.2 Show that if (I1.11.13) holds, necessarily 1/s = A\/n+ 1/q — 1.
Hint: Use the homogeneity of the Riesz potential.

Exercise I1.11.3 For [ € C§°(R"), set u(x) = (£ * f)(x) where £ is the funda-
mental solution of Laplace’s equation (see (I1.9.1)). Verify that u is a C°° solution
of the Poisson equation Au = f in R". Moreover, use the Sobolev theorem to show

Vullng/(n—gq) <cllflle, 1<g<n.

Exercise I1.11.4 Assume u € Wy %(R"), 1 < ¢ < co. Starting from the represen-
tation given in Lemma I1.9.1, prove the following assertions:

(i) If ¢ < n, then u € L™= D(R"™) and ||ullng/(n—q) < ¥[|Vullg;

Hint: Use Theorem I1.11.3. Notice that, without using the Sobolev theorem, (i) is
obtained directly from Lemma I1.3.2 in a much more elementary way (see (2.6))
and with the following advantages: (a) the case ¢ = 1 is included; (b) an explicit
estimate of the constant « can be given.

(ii) If ¢ = n, then u € L"(§2), for all r € [n,00) and for any compact domain (2.
Hint: Use Theorem I1.11.2.
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(iii) If ¢ > n, then u € C¥*(2), u = 1 — n/q, for any compact domain 2. Hint:
Use Theorem I1.11.2.

Exercise I1.11.5 Let 2 be bounded. Show that every function from W, (£2), ¢ >
n, satisfies the inequality

lulle < e[8(2)]' ™™V ullq, (IL.11.14)

with ¢ = ¢(n, q). Hint: Use the representation formula of Lemma I1.9.1 together with
relations (I1.11.4) and (I1.11.5).

We shall now consider the case of singular kernels. We say that a kernel
of the form (I1.11.3) with z € 2, y € R” — {0} and A = n is singular if and
only if

(i) For any admissible z,y and every a > 0
k(z,y) = k(z, oay); (I1.11.15)

(ii) For every x € 2, k(x,y) is integrable on the sphere |y| =1 and
/ k(x,y)dy = 0; (I1.11.16)
ly|=1

(iii) There exists C' > 0, such that!

ess sup |k(z,y)| < C. (I1.11.17)
w8 |y|=1

Exercise I1.11.6 Show that (II1.11.16) is equivalent to the following:
/ K(z,y)dy =0, (I1.11.18)
ri<lyl<rs

for every x and ro > r1 > 0.

Condition (II.11.18) allows us to recognize a noteworthy class of singular
kernels. Precisely, we have the following simple but useful result, due to L.
Bers and M. Schechter, which we state in the form of a lemma (see Bers, John,
& Schechter 1964, p. 223).

Lemma II.11.1 Let M (z,y) be a function on {2 x (R™ — {0}), differentiable
in y and homogeneous of order 1 — n with respect to y, that is,

M(z,ay) =o' ™"M(z,y), o> 0.

! This assumption can be weakened; see Calderén & Zygmund (1956, Theorem
2(ii)). However, a weaker assumption would be irrelevant to our purposes.
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Assume further that M;(x,y) = OM (x,y)/dy; satisfies, with some C' > 0,
independent of z,

ess sup | Mi(x, y)| < C.
ly|=1

Then M;(x,y) is a singular kernel.

Proof. For all x € {2 we have

/ Mi(w, gy =  M(z,n)(mi/ra)do,
r1<|y|<re [n|=m2

- M (z,n)(ni/r1)doy,

[n|=r1
so that (II.11.18) follows by homogeneity. Therefore, setting

by assumption and Exercise I1.11.6 we conclude that M;(x,y) = k(x,y)|y| ™™
is a singular kernel. a

Exercise I1.11.7 Let £ be the fundamental solution to Laplace’s equation. Show
that D;;E(x) is a singular kernel.

For integral transforms defined by singular kernels we have the following
fundamental result due to Calderén & Zygmund (1956, Theorem 2).

Theorem I1.11.4 Assume K(z,y) is a singular kernel and let
N(z,y) = K(z,2 —y).

Then, if
feLiR™), 1<q< oo,

the P.V. convolution integral

U(z) = lim N(z,y)f(y)dy (I1.11.19)

=0 Jjz—y|>e
exists for almost all x € 2. Moreover,
v e LYR")
and the following inequality holds:

1Z1lq < ell fllq- (I1.11.20)
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Exercise I1.11.8 Assume K given by (I1.11.3), with k(z,y) bounded and A = n.
Show that, if f € C§(R™), the limit (I1.11.19) exists if and only if k(z,y) satisfies
condition (I1.11.16). Hint: Use the identity (a > ¢ > 0)

/ Nz, 9)f (w)dy = / N(z,9)f ()
|[z—y[>e

lz—y[>a

tf L U@ T@ING

Jrf(:v)/<| e N(z,y)dy.

Remark I1.11.2 Sometimes it is useful to know more about the constant c
in (I1.11.19) and, particularly, about the way in which it depends on ¢ and k.
Here we recall some estimate due to Stein (1970, Chapter II) and to Calderén
and Zygmund (1957, §5). Specifically, as far as the dependence on ¢, one can

show:
e1/(q—1)if1 <g<2
c< {
c19q lfq Z 27

with ¢; = ¢1 (k). Likewise, if A > 0 is a constant such that

sup  [k(z,y)| < A,
€82, |y|=1

then one has
c< oA, co=coq).

Two important consequences of the Calderén-Zygmund theorem will be
considered. The first one is due to Stein (1957) and is contained in the follow-
ing.

Theorem 11.11.5 Let the assumptions of Theorem I1.11.4 be satisfied, and
suppose, in addition

f@)a” € LYR™), B € (-n/g,n(1-1/q)),
and that |k(x,y)| < C, for some C independent of x and y. Then,
W (z)|z|” € LY(R")
and the following inequality holds
1 (2) |27y < 1Ol f(2)]2]?lg, (IL.11.21)

where ¢1 = c1(n, q, 3).
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The second consequence is a well-known result of Agmon, Douglis, &
Nirenberg (1959, Theorem 3.3), which we are now going to state.
Theorem I1.11.6 Let

w(x' /x|, xn/|x
K2, z,) = ( /||x||"1/| ) = (1, .., Tp_1)-

Assume that D;K,i=1,...,n, and D2 K are continuous in R" and bounded
in R} N S™"~1 by a positive constant k. Assume further

/ &(2',0)da’ = 0. (11.11.22)
|/ =1

Then, setting X = {x € R" : z,, = 0}, given
¢ € L1(Y), with ((¢))1-1/4,¢ finite,

the integral transform
w(z!, x,) = / K@@' =y, zn)o(y)dy (I1.11.23)
=

belongs to L4(R"}) and the following inequality holds:

[ul1,q < ck{{PN)1-1/4,0- (I1.11.24)
with ¢ = ¢(n, q).

Theorem II.11.4 and Theorem I1.11.6 play a fundamental role in the L9-
theory of elliptic partial differential equations, mainly in deriving a priori
estimates for solutions (see, e.g., Agmon, Douglis, & Nirenberg 1959). In the
following exercises, we shall propose very simple applications of them to the
Poisson equation in R™ and to the Dirichlet problem for the Poisson equation
in R’ . Other more relevant applications will be derived, along the same lines
as those that follow, in Chapter IV, in the context of steady slow motions of
a viscous incompressible fluid (Stokes problem).

Exercise I1.11.9 For the problem Au = f in R" show that there is a solution
such that

(1) If f € W™I(R™), m > 0,1 < g < oo, then u € N, D*"*(R™) and the
following inequality holds:

[ulk+2,9 < ctll fllk,g, k=0,1,...,m, ci(n,q,k);

(i) If f € Dy (R™), m >0, 1 < ¢ < oo, then u € Dy*(R™) and the following
inequality holds:
lul1,q < c2|fl-1.4, c2(n,q, k).
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Hint: Take f € C5°(R™). Then a solution is given by u = £ * f (see Exercise 11.11.3).
To show (i), use Theorem I11.11.4 and Exercise 11.11.7. To show (ii), observe that,

for any ¢ € Lq/(Br) and i =1,...,n,
(Diu, ) = [ f(W)o(y)dy, ¢ = (Di€) x o,
R’IL
and that, by Theorem I1.11.4,
1911, < cllelly B,

with ¢ independent of r. Employ, finally, the results of Exercise 11.3.4 and Theorem
I1.8.1.

Exercise I1.11.10 It is well known that the function (Poisson integral)
o0&
u(x) =2 / o(y dy,
@=2[ o),

with X' = {& € R" : &, = 0}, € given in (7.1) and ¢ € C™(X), m > 0, is a smooth
solution to the Dirichlet problem in the half-space:

Au=0 inR%Y, n>2
(I1.11.25)
u=q¢ at X

(see, e.g., Sobolev 1964, Lecture 13). Use Theorem I1.11.6 to show that if

peW™!(X) and Y ((D*¢))1-1/qq <00, 1<q< 00,

|k|=m

then
|u|s4+1,g < ¢ Z ((Dk¢>)1,1/q7q, forall s =0,1,...,m,

|k|=s

with ¢ = ¢(n,q, s).

Uniqueness of solutions determined in the preceding exercises can be easily
studied by means of the following result, which the reader is invited to prove.

Exercise I1.11.11 Let H be harmonic in the whole of R™. Assume either

N .
- | Hi()|"
(i) H = H;, N >1, Where/ - < o0, for some ¢; € (1,00), p > 0,
; B (14 |2[)™
and A; € [0,n);
or
(ii) I llirn H(z)=0.

Show H = 0. Hint: By the mean value theorem, we have, for each x € R",

n—1

H(x)| < (nwn)*l/ [H(R,w)ldw, R=lz—1y|
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Remark I1.11.3 In virtue of this latter result it follows that solutions de-
termined in Exercise 11.11.9(i) are unique in D%9(R™), while those in (ii) are
unique in Dé’q(R"). As far as solutions considered in Exercise I1.11.10, their
uniqueness is likewise discussed, since if u solves (I1.11.25) with ¢ = 0, then
the function

w(zy,. .., xp) if z, >0
u(z) =
—u(x1,...,—xy) if z, <0

is harmonic (and hence smooth; Weyl 1940, Simader 1992) throughout R™,
including x,, = 0; see, for instance, Sobolev (1964, Lecture 13). [ |

I1.12 Notes for the Chapter

Section II.1. A similar (but different in details) proof of Lemma II.1.3 can
be found in Erig (1982, Lemma 5.3).

Section II.3. Inequality (I1.3.9) was derived by Ladyzhenskaya (1959a) with
a larger value of the constant. In this respect, see also Serrin (1963).

Extensions of Lemma II.3.3 to domains with a (sufficiently smooth)
bounded boundary can be found in Friedman (1969, Theorem 10.1) for
bounded domains, and in Crispo & Maremonti (2004) for exterior domains.

Sequence of functions like that employed in Exercise 11.3.9 can also be
used to find the best exponents (for fixed dimension) in certain inequalities
relating surface and volume integrals, of the type described in Section II1.4
(Galdi, Payne, Proctor, & Straughan 1987).

Section I1.4. The way of introducing trace inequalities through star-shaped
domains is an intrinsic treatment that does not make a direct use of the
definition of surface integral by means of local representation of the boundary.
For this latter approach see, e.g., Necas (1967, Chapitre 2 Théoreme 4.2) and
Adams (1975, Chapter 5 Theorem 5.22).

The constant C' in Theorem I1.4.1 can be simply estimated if the shape of
2 is particular; in this regard see Galdi, Payne, Proctor, & Straughan (1987).

Section II.5. As already remarked, inequality (II.5.1) fails if {2 is not con-
tained in some layer L4; see Exercise I11.5.1. However, in this latter case, (I1.5.1)
can be replaced by “weighted” inequalities such as (I1.6.10), (II.6.13), and
(I1.6.14). Furthermore, the choice of the “weight” can be suitably related to
the “geometry” of (2 at infinity. For instance, if

Qc{zeR":|2| < g(zn)},

where g satisfies
g(t) > go, for some gy > 0,



I1.12 Notes for the Chapter 135

then one has
[u/g(zn)llq < cluli,g, u € C5°(£2).

For this and similar inequalities, we refer, among others, to Elcrat and
MacLean (1980), Hurri (1990), and Edmunds & Opic (1993).

The Friedrichs inequality (I1.5.8) can be a fundamental tool for treating
the convergence of approximating solutions of nonlinear partial differential
equations. A nontrivial generalization of (II.5.8) is found in Padula (1986,
Lemma 3). Extension of the Friedrichs inequality to unbounded domains are
considered in Birman & Solomjak (1974).

From Theorem II.5.2 and Theorem II.4.1 it is not hard to prove com-
pactness results involving convergence in boundary norms. For example, we
have: if {ux} C WH%(2) (£2 bounded and locally Lipschitz) is uniformly
bounded, there is a subsequence {u,,} such that wu,, — u in L7(92) with
g=2(n—-1)/(n—2)ifn>2andall g € [1,00) if n = 2.

The counterexample to compactness after Theorem I1.5.2 is due to Benedek
& Panzone (see Serrin 1962).

The Poincaré-Sobolev inequality can be proved for a general class of do-
mains, including those with internal cusps. Such a generalization, which is of
interest in the context of capillarity theory of fluids, can be found in Pepe
(1978). However, in general, embedding inequalities no longer hold if the do-
main does not possess a certain degree of regularity. For this type of questions
we refer to Adams & Fournier (2003, §4.47).

Section II.6. After the pioneering work of Deny & Lions (1954) on the sub-
ject (“Beppo Levi Spaces”), a detailed study of homogeneous Sobolev spaces
D™4() and Dy"%(£2) along with the study of their relevant properties was
performed by the Russian school (Uspenskﬁ 1961, Sobolev 1963b, Sedov 1966,
Besov 1967). These authors are essentially concerned with the case where
2 = R". For other detailed analysis of the homogeneous Sobolev spaces we
refer the reader also to the work of Kozono & Sohr (1991) and Simader &
Sohr (1997), and to Chapter I of the book of Maz’ja (1985).

A central role in the study of properties of functions from D™?((2) is
played by the fundamental Lemma I1.6.3 which, for ¢ = 2 and n > 3, was
first proved by Payne & Weinberger (1957). A slightly weaker version of it
was independently provided by Uspenskﬁ (1961, Lemma 1). The proof given
in this book is based on a generalization of the ideas of Payne & Weinberger
and is due to me. Another proof has been given by Miyakawa & Sohr (1988,
Lemma 3.3), which, however, does not furnish the explicit form of the constant
ug. Concerning this issue, from Lemma I1.6.3 it follows that

up = lim u(|z], w)dw,
|z|—o00,)gn—1

or also, as kindly pointed out to me by Professor Christian Simader,

ug = lim u.
0 RHOO|;QR| 2r
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Results contained in Exercise I1.6.3 generalize part of those established by
Uspenskii (1961, Lemma 1), and for ¢ = n = 2 they coincide with those of
Gilbarg & Weinberger (1978, Lemma 2.1).

Inequality (I1.6.20) with ¢ = 2 and n = 3 is due to Finn (1965a, Corollary
2.2a); see also Birman & Solomjak (1974, Lemma 2.19) and Padula (1984,
Lemma 1), while (I1.6.22) for n = 3 and ¢ € (1,3) is proved by Galdi &
Maremonti (1986, Lemma 1.3). Theorem I1.6.1, in its generality, is due to me.

The inequality in Theorem I1.6.5 is due to Simader and Sohr (1997, Lemma
1.2).

Section I1.7. The problem of approximation of functions from D™%(2) when
2 = R™ with functions of bounded support was first considered by Sobolev
(1963b). In this section we closely follow Sobolev’s ideas to generalize his
results to more general domains 2. In this connection, we refer the reader
also to the papers of Besov (1967, 1969) and Burenkov (1976).

The elementary proof of the Hardy-type inequality (II.6.10), (I1.6.13) and
(I1.6.14) presented here and based on the use of the “auxiliary” function g
was presented for the first time in Galdi (1994a, §2.5). The same approach
was successively rediscovered by Mitidieri (2000).

Section II.8. A slightly weaker version of Theorem I1.8.2, with a different
proof, can be found in Kozono & Sohr (1991, Lemma 2.2).

The proof of the unique solvability of the Dirichlet problem (I1.8.17) in the

case {2 = R™,R" is a simple consequence of Exercise I1.11.9(ii) and Remark
I1.11.3. In the case {2 bounded and of class C*°, a proof was given for the
first time by Schechter (1963a, Corollary 5.2). A different proof that requires
domains only of class C? was later provided by Simader (1972). If 2 is an
exterior domain of class C?, a thorough analysis of the problem can be found
in Simader & Sohr (1997, Chapter I). In particular, for n > 3, the analysis of
these authors shows that the problem (I1.8.17) has a nonzero one-dimensional
null set, if ¢" > n. In other words, there exists one and only one non-zero har-
monic function h € Dé’q/ (£2), satisfying a normalization condition fQR h? =1,
for some fixed R > §(£2)°. For instance, if {2 is the exterior of the unit ball
in R™, we have h(z) = c¢(Jz|*~™ — 1), for a suitable choice of the constant ¢
depending on R. Consequently, the map 9t defined in (I1.8.19)—(11.8.20) is not
surjective if ¢’ € (1,n/(n — 1)] and not injective if ¢’ € [n, 00).
Section II.9. Results similar to those derived in Theorem I1.9.1, in the gen-
eral context of spaces D™%, m > 1, have been shown by Mizuta (1989).
Estimate (I1.9.5) is of a particular interest since, as we shall see in Chapter X,
it permits us to derive at once an important asymptotic estimate for solutions
to the steady, two-dimensional Navier-Stokes equations in exterior domains
having velocity fields with bounded Dirichlet integrals.

Section I1.10. The case 1 < ¢ < n in Theorem II.10.1 is due to me.

Section I1.11. If in the Sobolev Theorem I1.11.3 one considers the function
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va) = [ g~ ol M,
lz—y|<R

for fixed R > 0, the proof of (II.11.13) becomes elementary; however, only
for 1/s > A/n+ 1/q — 1 (see Sobolev 1938; 1963a, Chapter 1 §6). For a
generalization of the Sobolev theorem in weighted Lebesgue spaces, along the
same lines of Theorem II.11.5, we refer to Stein & Weiss (1958).
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