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Basic Function Spaces and Related Inequalities

Incipe parve puer risu cognoscere matrem.

VERGILIUS, Bucolica IV, v.60

Introduction

In this chapter we shall introduce some function spaces and enucleate certain
properties of fundamental importance for further developments. Particular
emphasis will be given to what are called homogeneous Sobolev spaces, which
will play a fundamental role in the study of flow in exterior domains. We shall
not attempt, however, to give an exhaustive treatment of the subject, since
this is beyond the scope of the book. Therefore, the reader who wants more
details is referred to the specialized literature quoted throughout. As a rule,
we give proofs where they are elementary or relevant to the development of
the subject, or also when the result is new or does not seem to be widely
known.

II.1 Preliminaries

In this section we collect a number of preparatory results. After introducing
some basic notation, we shall recall the relevant properties of Banach spaces
and of certain classical spaces of smooth functions as well. We shall finally
define and analyze the properties of special subsets of the Euclidean space.
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II.1.1 Basic Notation1

The symbols N and N+ denote the set of all non-negative and of all positive
natural numbers, respectively.

ForX a set, we denote by Xm, m ∈ N+, the Cartesian product of m copies
of X. Thus, denoting by R the real line, Rn is the n-dimensional Euclidean
space. Points in Rn will be denoted by x = (x1, . . . , xn) ≡ (xi) and corre-
sponding vectors by u = (u1, . . . , un) ≡ (ui). Sometimes, the ith component
ui of the vector u will be denoted by (u)i. More generally, for T a tensor of
order m ≥ 2, its generic component Tij...kl will be also denoted by (T )ij...kl.
The components of the identity tensor I , are denoted by δij (Kronecker delta).

The distance between two points x and y of Rn is indicated by |x− y|, and
we have

|x− y| =

[
n∑

i=1

(xi − yi)
2

]1/2

.

More generally, the distance between two subsets A and B of Rn is indicated
by dist (A,B), where

dist (A,B) = inf
x∈A,y∈B

|x− y| .

The modulus of a vector u is indicated by |u| (or by u) and it is

|u| =

(
n∑

i=1

u2
i

)1/2

.

Given two vectors u, v, the second-order tensor having components uivj

(dyadic product of u, v) will be denoted by u⊗ v.
The canonical basis in Rn is indicated by

{ei} ≡ {e1, . . . , en}
with

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

We also set

Rn
+ = {x ∈ Rn : xn > 0}

Rn
− = {x ∈ Rn : xn < 0} .

1 For other notation, we refer the reader to footnotes 8, 9, and 10 of Section I.1
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For r > 0 and x ∈ Rn we denote by Br(x) the (n-dimensional) open ball
of radius r centered at x, i.e.,

Br(x) = {y ∈ Rn : |x− y| < r} .

For r = 1, we shall put
B1(x) ≡ B(x),

and for x = 0,
Br(0) ≡ Br .

Unless the contrary is explicitly stated, the Greek letter Ω shall always
mean a domain, i.e., an open connected set of Rn.

Let A be an arbitrary set of Rn. We denote by A its closure, by Ac = Rn−A
its complementary set (in Rn), by

◦
A its interior, and by ∂A its boundary. For

n ≥ 2, the boundary of the n-dimensional unit ball centered at the origin (i.e.,
the n-dimensional unit sphere) is denoted by Sn−1:

Sn−1 = ∂B1 .

Moreover, δ(A) is the diameter of A, that is,

δ(A) = sup
x,y∈A

|x− y|.

If Ωc ⊂ Bρ for some ρ ∈ (0,∞) and with the origin of coordinates in Ωc,
we set

Ωr = Ω ∩Br , r > ρ,

Ωr = Ω −Ωr , r > ρ,

Ωr,R = ΩR −Ωr, ρ < r < R.

If A is Lebesgue measurable and µL is the (Lebesgue) measure in Rn, we
put

|A| = µL(A).

The measure of the n-dimensional unit ball is denoted by ωn; therefore,

ωn =
2πn/2

nΓ (n/2)
,

where Γ is the Euler gamma function

By c, ci, C, Ci, i = 1, 2, . . ., we denote generic positive constants, whose
possible dependence on parameters ξ1, . . . , ξm will be specified whenever it is
needed. In such a case, we write c = c(ξ1, . . . , ξm), C = C(ξ1, . . . , ξm), or,
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especially in formulas, cξ1,...,ξm , Cξ1,...,ξm , etc. Sometimes, we shall use the
symbol c to denote a positive constant whose numerical value or dependence
on parameters is not essential to our aims. In such a case, c may have several
different values in a single computation. For example, we may have, in the
same line, 2c ≤ c.

For a real function u in Ω, we denote by supp (u) the support of u, that is,

supp (u) = {x ∈ Ω : u(x) 6= 0}.

For a real smooth function u in Ω we set

Dju =
∂u

∂xj
, Diju =

∂2u

∂xi∂xj
;

likewise,
∇u = (D1u, . . . , Dnu)

denotes the gradient of u,
D2u = {Diju}

is the matrix of the second derivatives. Occasionally, the gradient of u will be
indicated by D1u or, more simply, by Du. We also set2

∆u = Diiu

is the Laplacean of u.

For a vector function u = (u1, . . . , un), the divergence of u, ∇·u, is defined
by

∇ ·u = Diui ,

and, if n = 3,

∇× u = (D2u3 −D3u2, D3u1 −D1u3, D1u2 −D2u1)

denotes the curl of u. Similarly, if n = 2, ∇ × u has only one component,
orthogonal to u, given by (D1u2 −D2u1).

If α is an n-tuple of non-negative integers αi, we set

|α| =
n∑

i=1

αi

and

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαn

n
.

2 According to Einstein’s summation convention, unless otherwise explicitly stated,
pairs of identical indices imply summation from 1 to n.
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The n-tuple α is called a multi-index.
If D is a domain with |D| <∞, and u : D → Rn, n ≥ 1, we denote by uD

the mean value of the function u over the domain D, namely,

uD =
1

|D|

∫

D
u ,

whenever the integral is meaningful.
We shall also use the following standard notation, for functions f and g

defined in a neighborhood of infinity:

f(x) = O(g(x)) means |f(x)| ≤M1|g(x)| for all |x| ≥M2,

f(x) = o(g(x)) means lim
|x|→∞

|f(x)|/|g(x)| = 0

where M1, M2 denote positive constants.
Finally, the symbols � and � will indicate the end of a proof and of a

remark, respectively.

II.1.2 Banach Spaces and their Relevant Properties

For the reader’s convenience, in this subsection we shall collect all relevant
properties of Banach spaces that will be frequently use throughout this book.

Let X be a vector (or linear) space on the field of real numbers, with
corresponding operations of sum of two elements, x + y, and multiplication
of an element x by a real number α, αx. Then, X is a normed space if there
exists a map, called norm,

‖ · ‖X : x ∈ X → ‖x‖X ∈ R

satisfying the following conditions, for all α ∈ R and all x, y ∈ X:

(1) ‖x‖X ≥ 0, and ‖x‖X = 0 implies x = 0 ;
(2) ‖αx‖X = |α| ‖x‖X;
(3) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X .

In what follows, X denotes a normed space.
Two norms ‖·‖X and ‖·‖∗X onX are equivalent if c1‖·‖X ≤ ‖·‖∗X ≤ c2‖·‖X,

for some constants c1 ≤ c2.
A sequence {xk} in X is convergent to x ∈ X if

lim
k→∞

‖xk − x‖X = 0 , (II.1.1)

or, in equivalent notation, xk → x.
A subset S of X is a subspace if αx+ β y is in S, for all x, y ∈ S and all

α, β ∈ R.
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A subset B of X is bounded if there exists a number M > 0 such that
sup
x∈B

‖x‖X ≤M .

A subset C of X is closed if for every sequence {xk} ⊂ C such that xk → x
for some x ∈ X, implies x ∈ C.

The closure of a subset S of X consists of those points of x ∈ X such that
xk → x for some {xk} ⊂ S.

A subset K of X is compact if from every sequence {xk} ⊂ K we can find
a subsequence {xk′} and a point x ∈ K such that xk′ → x.

A subset of X is precompact if its closure is compact.
A subset S of X is dense inX if for any x ∈ X there is a sequence {xk} ⊂ S

such that xk → x.
A subset of X is separable if it contains a countable dense set. We have

the following result (see, e.g. Smirnov 1964, Theorem in §94).

Theorem II.1.1 Let X be a separable normed space. Then every subset of
X is separable.

A space X is (continuously) embedded in a space Y if X is a linear subspace
of Y and the identity map i : X → Y maps bounded sets into bounded sets,
that is, ‖x‖Y ≤ c ‖x‖X , for some constant c and all x ∈ X. In this case, we
shall write

X ↪→ Y .

X is compactly embedded in Y if X ↪→ Y and, in addition, i maps bounded
sets of X into precompact sets of Y . In such a case we write

X ↪→↪→ Y.

Two linear subspaces X1, Y1 of normed spaces X and Y , respectively, are
isomorphic [respectively, homeomorphic] if there is a map L from X1 onto
Y1, called isomorphism [respectively, homeomorphism], such that (i) L is lin-
ear; (ii) L is a bijection, and, moreover, (iii) ‖L(x)‖X = ‖x‖Y [respectively,
c1‖x‖X ≤ ‖L(x)‖Y ≤ c2‖x‖X, for some c1 ≤ c2], for all x ∈ X1, where ‖ · ‖X ,
and ‖ · ‖Y denote the norms in X and Y .

A sequence {xk} ⊂ X is called Cauchy if

given ε > 0 there is n = n(ε) ∈ N: ‖xk − xk′‖X < ε for all k, k′ ≥ n .

If every Cauchy sequence in X is convergent to an element of X, then X
is called complete.

A Banach space is a normed space where every Cauchy sequence is there
convergent or, equivalently, a Banach space is a complete normed space.

If X is not complete, namely, there is at least one Cauchy sequence in X
that is not convergent to an element of X, we can nevertheless find a uniquely
determined3 Banach space X̂ , with the property that X is isomorphic to a

3 Up to an isomorphism.
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dense subset of X̂. The space X̂ is called (Cantor) completion of X, and
its elements are classes of equivalence of Cauchy sequences, where two such
sequences, {xk}, {x′m}, are called equivalent if lim

l→∞
‖xl − x′l‖X = 0; see, e.g.,

Smirnov (1964, §85).
Suppose, now, that on the vector space X we can introduce a real-valued

function (·, ·)X defined in X × X, satisfying the following properties for all
x, y, z ∈ X and all α, β ∈ R

(i) (x, y)X = (y, x)X ,
(ii) (αx+ β y, z)X = α (x, z)X + β (y, z)X ,
(iii) (x, x)X ≥ 0, and (x, x)X = 0 implies x = 0 .

Then X becomes a normed space with norm

‖x‖X ≡
√

(x, x)X . (II.1.2)

The bilinear form (·, ·)X is called scalar product, and if X, endowed with the
norm (II.1.2), is complete, then X is called Hilbert space.

A countable set B ≡ {xk} in a Hilbert space X is called a basis if (i)

(xj, xk) = δjk, for all xj, xk ∈ B, and limN→∞ ‖∑N
k=1(x, xk)xk − x‖X = 0,

for all x ∈ X.
A linear map ` : X → R on a normed space X, such that

s` ≡ sup
x∈X;‖x‖X =1

|`(x)| <∞ (II.1.3)

is called bounded linear functional or, in short, linear functional onX. The set,
X′, of all linear functionals in X can be naturally provided with the structure
of vector space, by defining the sum of two functionals `1 and `2 as that ` ∈ X′

such that `(x) = `1(x)+`2(x) for all x ∈ X, and the product of a real number
α with a functional ` as that functional that maps every x ∈ X into α`(x).
Moreover, it is readily seen that the map ` ∈ X′ → ‖`‖X′ = s` ∈ R, with
s` defined in (II.1.3), defines a norm in X′. It can be proved that if X is a
Banach space, then also X′, endowed with the norm ‖·‖X′ , is a Banach space,
sometime referred to as strong dual; see, e.g. Smirnov (1964, §99).

A Banach space X is naturally embedded into its second dual (X′)′ ≡ X′′

via the map M : x ∈ X → Jx ∈ X′′, where the functional Jx on X′ is defined
as follows: Jx(`) = `(x), ` ∈ X′. One can show that the range, R(M), of M is
closed in X′′ and that M is an isomorphism of X onto R(M); see e.g. Smirnov
(1964, Theorem in §99). If R(M) = X′′, then X is reflexive.

We have the following result (see, e.g. Schechter 1971, Chapter VII, The-
orem 1.1, Theorem 3.1 and Corollary 3.2; Chapter VIII, Theorem 1.2).

Theorem II.1.2 Let X be a Banach space. Then X is reflexive if and only
if X′ is. Moreover if X′ is separable, so is X. Therefore, if X is reflexive and
separable, then so is X′. Finally, if X is reflexive, then so is every closed
subspace of X.
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A sequence {xk} in a Banach space X is weakly convergent to x ∈ X if

lim
k→∞

`(xk) = x , for all ` ∈ X′, (II.1.4)

or, in equivalent notation, xk
w→ x. In contrast to this latter, convergence in

the sense of (II.1.1) will be also referred to as strong convergence. It is imme-
diately seen that a strongly convergent sequence is also weakly convergent,
while the converse is not generally true, unless X is isomorphic to Rn; see
e.g. Schechter (1971, Chapter VIII, Theorem 4.3). The topological definitions
given previously (closedness, compactness, etc.) for subsets of X in terms of
strong convergence, can be extended to the more general case of weak conver-
gence in an obvious way. We shall then speak of weakly closed sets, or weakly
compact sets, etc. Moreover, we shall say that a sequence {xk} is weak Cauchy
if the following property holds, for all ` ∈ X′:

given ε > 0 there is n = n(ε, `) ∈ N: |`(xk − xk′)| < ε for all k, k′ ≥ n .

A Banach space X is weakly complete if every weak Cauchy sequence is weakly
convergent to some x ∈ X.

Some significant properties related to weak convergence are collected in
the following.

Theorem II.1.3 Let X be a Banach space. The following properties hold.

(i) If {xk} ⊂ X with xk
w→ x, then there is C independent of k such that

‖xk‖X ≤ C. Moreover,

‖x‖X ≤ lim inf
k→∞

‖xk‖X ;

see, e.g., Smirnov (1964, §101, Theorem 1 and Theorem 5).
(ii) The closed unit ball {x ∈ X : ‖x‖X ≤ 1}, is weakly compact if and only

if X is reflexive; see, e.g., Miranda (1978, §§28, 30).

(iii) If X is reflexive, thenX is also weakly complete; see, e.g., Smirnov (1964,
§101 Theorem 7).

Property (ii) will be sometime referred to as weak compactness property.

This property has, in turn, the following interesting consequence.

Theorem II.1.4 Let X be a reflexive Banach space, and let ` ∈ X′. Then,
there exists x ∈ X such that

‖`‖X′ = |`(x)| , ‖x‖X = 1 . (II.1.5)

Proof. If ` = 0, then (II.1.5) is obviously satisfied. So, we assume ` 6= 0. By
definition, we have
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‖`‖X′ = sup
x∈X;‖x‖X=1

|`(x)| .

Therefore, there exists a sequence {xk} ⊂ X such that

‖`‖X′ = lim
k→∞

|`(xk)| , ‖xk‖X = 1, for all k ∈ N. (II.1.6)

In view of Theorem II.1.3(ii), there exist a subsequence {xk′} and x ∈ X such
that

xk′
w→ x (II.1.7)

Evaluating (II.1.6) along this subsequence , with the help of Theorem II.1.3(i),
we obtain that x satisfies the following conditions

‖`‖X′ = |`(x)| , ‖x‖X ≤ 1. (II.1.8)

If x = 0, it follows ‖`‖X′ = 0 which was excluded, so that x 6= 0. Thus, since

‖`‖X′ ≥ |`(x)|
‖x‖X

,

from this relation and (II.1.8) we prove the result. ut

In the sequel, we shall deal with vector functions, namely, with functions
with values in Rn, whose components belong to the same Banach space X. We
shall, therefore, recall some basic properties of Cartesian products, XN , of N
copies of X. It is readily checked that XN can be endowed with the structure
of vector space by defining the sum of two generic elements x = (x1, . . . , xN)
and y = (y1, . . . , yN), and the product of a real number α with x in the
following way

x+ y = (x1 + y1, . . . , xN + yN ) , αx = (αx1, . . . , αxN) .

Furthermore, we may introduce in XN either one of the following (equivalent)
norms (or any other norm equivalent to them)

‖x‖(q) ≡
(

N∑

i=1

‖xi‖q
X

)1/q

, q ∈ [1,∞) , ‖x‖(∞) ≡ max
i∈{1,...N}

‖xi‖X , x ∈ XN ,

(II.1.9)
in such a way that (as the reader will prove with no pain) XN becomes a
Banach space.

We have the following.

Theorem II.1.5 If X is separable, so is XN . Moreover, XN is reflexive if so
is X,

Proof. The proof of the first property is obvious, while that of the second one
is a consequence of Theorem II.1.3(ii). ut
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The next result establishes the relation between (XN )′ and (X′)N .

Theorem II.1.6 Every L ∈ (XN )′ can be written as follows

L =
N∑

k=1

`i , (II.1.10)

where `i ∈ X′, i = 1, . . . , N are uniquely determined. Moreover, the map

T : L ∈ (XN )′ → (`1, . . . , `N) ∈ (X′)N

is a homeomorphism of (XN )′ onto (X′)N . If, in particular, we endow XN

and (XN )′ with the following norms

‖x‖XN ≡ ‖x‖(1) , ‖L‖(X′)N = ‖L‖(∞) .

then T is an isomorphism.

Proof. The generic element L ∈ XN can be represented as in (II.1.10) where
`1(x) ≡ L(x1, 0, . . . , 0), `2(x) ≡ L(0, x2, . . . , 0), etc. Obviously, each func-
tional `i, i = 1, . . .N , can be viewed as an element of X′. We then consider
the map T in the way defined above. It is clear that T is surjective and injec-
tive and linear. From (II.1.10), it readily follows that

‖L‖(XN )′ ≡ sup
x∈XN ;‖x‖XN =1

|L(x)| ≤ ‖T (L)‖(∞) .

Moreover, by definition of supremum, we must have

‖`i‖X′ ≤ ‖L‖(XN )′ ,

so that we conclude ‖L‖(XN)′ ≥ ‖T (L)‖(∞), which shows that T is an isomor-
phism. If, instead, we use any other norm of the type (II.1.9), we can show by
a simple calculation that uses (II.3.2) that T is, in general, a homeomorphism.
The proof of the lemma is thus completed. ut

We next recall the Hahn–Banach theorem and one of its consequences.
A proof of these results can be found, e.g., in Schechter (1971, Chapter II
Theorem 2.2 and Theorem 3.3).

Theorem II.1.7 Let M be a subspace of a normed space X. The following
properties hold.

(a) Let ` be a bounded linear functional defined on M , and let

‖`‖ = sup
x∈M ;‖x‖X=1

|`(x)| .

Then, there exists a bounded linear functional, `, defined on the whole
of X, such that (i) `(x) = `(x), for all x ∈ M , and (ii) ‖`‖X′ = ‖`‖.
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(b) Let x0 ∈ X be such that

d ≡ inf
x∈M

‖x0 − x‖X > 0 .

Then, there is ` ∈ X′ such that ‖`‖X′ = 1/d, `(x0) = 1, and `(x) = 0,
for all x ∈M .

We conclude this section by reporting the classical contraction mapping
theorem (see, e.g., Kantorovich & Akilov 1964, p. 625), that we shall often
use throughout this book in the following form.

Theorem II.1.8 Let M be a closed subset of the Banach space X, and let
T be a map of M into itself. Suppose there exists α ∈ (0, 1) such that

‖T (x) − T (y)‖X ≤ α‖x− y‖X , for all x, y ∈M .

Then, there is a unique x0 ∈M such that T (x0) = x0.

A map satisfying the assumptions of Theorem II.1.8 is called contraction.

II.1.3 Spaces of Smooth Functions

We next define some classical spaces of smooth functions and, for some of
them, we recall their completeness properties.

Given a non-negative integer k, we let Ck(Ω) denote the linear space of
all real functions u defined in Ω which together with all their derivatives Dαu
of order |α| ≤ k are continuous in Ω. To shorten notations, we set

C0(Ω) ≡ C(Ω).

We also set

C∞(Ω) =

∞⋂

k=0

Ck(Ω).

Moreover, by the symbols Ck
0 (Ω) and C∞

0 (Ω) we indicate the (linear) sub-
spaces of Ck(Ω) and C∞(Ω), respectively, of all those functions having com-
pact support in Ω. Furthermore, Ck

0 (Ω), 0 ≤ k ≤ ∞, denotes the class of
restrictions to Ω of functions in Ck

0 (Rn). As before, we put

C0
0 (Ω) ≡ C0(Ω), C0

0(Ω) ≡ C0(Ω).

We next define Ck(Ω) (C(Ω) for k = 0) as the space of all functions u for
which Dαu is bounded and uniformly continuous in Ω, for all 0 ≤ |α| ≤ k.
We recall (Miranda 1978, §54) that for k <∞, Ck(Ω) is a Banach space with
respect to the norm

‖u‖Ck ≡ max
0≤|α|≤k

sup
Ω

|Dαu|. (II.1.11)



36 II Basic Function Spaces and Related Inequalities

Finally, for λ ∈ (0, 1] and k ∈ N, by Ck,λ(Ω) we denote the closed subspace
of Ck(Ω) consisting of all functions u whose derivatives up to the kth order
inclusive are Hölder continuous (Lipschitz continuous if λ = 1) in Ω, that is,

[u]k,λ ≡ max
0≤|α|≤k

sup
x,y∈Ω,x6=y

|Dαu(x) −Dαu(y)|
|x− y|λ <∞.

Ck,λ(Ω) is a Banach space with respect to the norm

‖u‖Ck,λ ≡ ‖u‖Ck + [u]k,λ, (II.1.12)

(Miranda 1978, §54).

Exercise II.1.1 Assuming Ω bounded, use the Ascoli-Arzelà theorem (see, e.g.,

Rudin 1987, p. 245) to show that from every sequence of functions uniformly

bounded in Ck+1,λ(Ω) it is always possible to select a subsequence converging in

the space Ck,λ(Ω).

II.1.4 Classes of Domains and their Properties

We begin with a simple but useful result holding for arbitrary domains of Rn.

Lemma II.1.1 Let Ω be an arbitrary domain of Rn. Then there exists an
open covering, O, of Ω satisfying the following properties

(i) O is constituted by an at most countable number of open balls {Bk},
k ∈ I ⊆ N, such that

Bk ⊂ Ω , for all k ∈ I , ∪k∈IBk = Ω ;

(ii) For any family F = {Bl}, l ∈ I′ with I′ ( I, there is B ∈ (O − F) such
that [∪l∈I′Bl] ∩ B 6= ∅ ;

(iii) For any B,B′ ∈ O, there exists a finite number of open balls Bi ∈ O,
i = 1, . . . , N , such that

B ∩ B1 6= ∅ , BN ∩ B′ 6= ∅ , Bj ∩ Bj+1 6= ∅ , j = 1, . . .N − 1 .

Proof. Since Ω is open, for each x ∈ Ω we may find an open ball Brx(x) ⊂
Ω. Clearly, the collection C ≡ {Brx(x)}, x ∈ Ω, satisfies ∪x∈ΩBrx(x) =
Ω. However, since Ω is separable, we may determine an at most countable
subcovering, O, of C satisfying condition (i) in the lemma. Next, assume (ii)
is not true. Then, there would be at least one family F′ = {Bk′}, k′ ∈ I′, with
I′ ( I such that
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[ ⋃

k′∈I′

Bk′

]⋂
B = ∅ , for all B ∈ (O− F′) .

Consequently, the sets

A1 ≡
⋃

k′∈I′

Bk′ , A2 ≡
⋃

k∈(I−I′)

Bk

are open, disjoint and satisfy A1∪A2 = Ω, contradicting the assumption that
Ω is connected. Finally, let B,B′ ∈ O and denote their centers by x and x′,
respectively. Since Ω is open and connected, it is, in particular, arc-connected.
Therefore, we may find a curve, γ, joining x and x′, that is homeomorphic
to the interval [0, 1]. Let O′ ⊂ O be a covering of γ. Since γ is compact, we
can extract from O′ a finite covering that satisfies the property stated in the
lemma. ut

We next present certain classes of domains of Rn, along with their relevant
properties. We begin with the following.

Definition II.1.1. Let Ω be a domain with a bounded boundary, namely, Ω
is either a bounded domain or it is a domain complement in Rn of a compact
(not necessarily connected) set, namely, Ω is an exterior domain.4 Assume
that for each x0 ∈ ∂Ω there is a ball B = Br(x0) and a real function ζ defined
on a domainD ⊂ Rn−1 such that in a system of coordinates {x1, . . . , xn} with
the origin at x0:

(i) The set ∂Ω ∩ B can be represented by an equation of the type xn =
ζ(x1, . . . , xn−1);

(ii) Each x ∈ Ω ∩B satisfies xn < ζ(x1, . . . , xn−1).

Then Ω is said to be of class Ck (or Ck-smooth) [respectively, of class Ck,λ

(or Ck,λ-smooth), 0 < λ ≤ 1] if ζ ∈ Ck(D) [respectively, ζ ∈ Ck,λ(D)]. If, in
particular, ζ ∈ C0,1(D), we say that Ω is locally Lipschitz. Likewise, we shall
say that σ ⊂ ∂Ω is a boundary portion of class Ck [respectively, of class Ck,λ]
if σ = ∂Ω ∩ Br(x0), for some r > 0, x0 ∈ ∂Ω and σ admits a representation
of the form described in (i), (ii) with ζ of class Ck [respectively of class Ck,λ].
If, in particular, ζ ∈ C0,1(D), we say that σ is a locally Lipschitz boundary
portion.

If Ω is sufficiently smooth, of class C1, for example, then the unit outer
normal, n, to ∂Ω is well defined and continuous. However, in several inter-
esting cases, we need less regularity on Ω, but still would like to have n
well-defined. In this regard, we have the following result, for whose proof we
refer to Nečas (1967, Chapitre II, Lemme 4.2).

Lemma II.1.2 Let Ω be locally Lipschitz. Then the unit outer normal n
exists almost everywhere on ∂Ω .

4 Hereafter, the whole space R
n will be considered a particular exterior domain.
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We shall now consider a special class of bounded domains Ω called star-
shaped (or star-like) with respect to a point. For such domains, there exist
x ∈ Ω (which we may, occasionally, assume to be the origin of coordinates)
and a continuous, positive function h on the unit sphere such that

Ω =

{
x ∈ Rn : |x− x| < h

(
x− x

|x− x|

)}
. (II.1.13)

Some elementary properties of star-shaped domains are collected in the fol-
lowing exercises.

Exercise II.1.2 Show that Ω is star-shaped with respect to x if and only if every

ray starting from x intersects ∂Ω at one and only one point.

Exercise II.1.3 Assume Ω star-shaped with respect to the origin and set

Ω(ρ) = {x ∈ R
n : x = ρy, for some y ∈ Ω} . (II.1.14)

Show that Ω(ρ) ⊂ Ω if ρ ∈ (0, 1) and Ω(ρ) ⊃ Ω if ρ > 1.

The following useful result holds.

Lemma II.1.3 Let Ω be locally Lipschitz. Then, there exist m locally Lip-
schitz bounded domains G1, . . . , Gm such that

(i) ∂Ω ⊂ ∪m
i=1Gi;

(ii) The domains Ωi = Ω ∩ Gi, i = 1, . . . , m, are (locally Lipschitz and)
star-shaped with respect to every point of a ball Bi with Bi ⊂ Ωi.

Proof. Let x0 ∈ ∂Ω. By assumption, there is Br(x0) and a function ζ = ζ(x′),
x′ = (x1, . . . , xn−1) ∈ D ⊂ Rn−1 such that

|ζ(ξ′) − ζ(η′)| < κ|ξ′ − η′|, ξ′, η′ ∈ D,

for some κ > 0 and, moreover, points x = (x′, xn) ∈ ∂Ω ∩Br(x0) satisfy

xn = ζ(x′), x′ ∈ D,

while points x ∈ Ω ∩Br(x0) satisfy

xn < ζ(x′), x′ ∈ D.

We may (and will) take x0 to be the origin of coordinates. Denote next, by
y0 ≡ (0, . . . , 0, yn) the point of Ω intersection of the xn-axis with Br(x0)
and consider the cone Γ (y0, α) with vertex at y0, axis xn, and semiaperture
α < π/2. It is easy to see that, taking α sufficiently small, every ray ρ starting
from y0 and lying in Γ (y0, α) intersects ∂Ω ∩ Br(x0) at (one and) only one
point. In fact, assume ρ cuts ∂Ω ∩ Br(x0) at two points z(1) and z(2) and
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denote by α′ < α the angle formed by ρ with the xn-axis. Possibly rotating
the coordinate system around the xn-axis we may assume without loss 5

z(1) = (z
(1)
1 , 0, . . . , 0, ζ(z

(1)
1 , 0, . . . , 0)), z

(1)
1 > 0

z(2) = (z
(2)
1 , 0, . . . , 0, ζ(z

(2)
1 , 0, . . . , 0)), z

(2)
1 > 0

and so, at the same time,

tanα′ =
z
(1)
1

ζ(z
(1)
1 , 0, . . . , 0)− yn

tanα′ =
z
(2)
1

ζ(z
(2)
1 , 0, . . . , 0)− yn

implying

|ζ(z(1)
1 , 0, . . . , 0)− ζ(z

(2)
1 , 0, . . . , 0)|

|z(1)
1 − z

(2)
1 |

=
1

tanα′ ≥
1

tanα
.

Thus, if (say)

tanα ≤ 1

2κ
,

ρ will cut ∂Ω ∩ Br(x0) at only one point. Next, denote by σ = σ(z) the
intersection of Γ (y0, α/2) with a plane orthogonal to xn-axis at a point z =
(0, . . . , zn) with zn > yn, and set

R = R(z) ≡ dist (∂σ, z).

Clearly, taking z sufficiently close to y0 (z = z, say), σ(z) will be entirely
contained in Ω and, further, every ray starting from a point of σ(z) and lying
within Γ (y0, α/2) will form with the xn-axis an angle less than α and so, by
what we have shown, it will cut ∂Ω ∩ Br(x0) at only one point. Let C be a
cylinder with axis coincident with the xn-axis and such that

C ∩ ∂Ω = Γ (y0, α/2)∩ ∂Ω.

Then, setting
G = C ∩Br(x0),

we have that G is locally Lipschitz and that G∩Ω is star-shaped with respect
to all points of the ball BR(z)(z). Since x0 ∈ ∂Ω is arbitrary, we may form an
open covering G of ∂Ω constituted by domains of the type G. However, ∂Ω
is compact and, therefore, we may select from G a finite subset {G1, . . . , Gm}
satisfying all conditions in the lemma, which is thus completely proved. ut
5 Clearly, the Lipschitz constant κ is invariant by this transformation.
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Other relevant properties related to star-shaped domains are described in
the following exercises.

Exercise II.1.4 Assume that the function h in (II.1.13) is Lipschitz continuous,

so that, by Lemma II.1.2, the outer unit normal n = n(x) on ∂Ω exists for a.a. x.

Then, setting F (x) ≡ n(x) · (x− x), show that ess inf
x∈∂Ω

F (x) > 0.

Exercise II.1.5 Assume Ω bounded and locally Lipschitz. Prove that

Ω =

m[

i=1

Ωi ,

where each Ωi is a locally Lipschitz and star-shaped domain with respect to every

point of a ball Bi with Bi ⊂ Ωi. Hint: Use Lemma II.1.3.

We end this section by recalling the following classical result, whose proof
can be found, e.g., in Nečas (1967, Chapitre 1, Proposition 2.3).

Lemma II.1.4 Let K be a compact subset of Rn, and let O = {O1, · · · ,ON}
be an open covering of K. Then, there exist functions ψi, i = 1, . . . , N satis-
fying the following properties

(i) 0 ≤ ψi ≤ 1 , i = 1, . . . , N ;
(ii) ψi ∈ C∞

0 (Oi) , i = 1, . . . , N ;

(iii)
∑N

i=1 ψi(x) = 1 , for all x ∈ K .

The family {ψi} is referred to as partition of unity in K subordinate to the
covering O.

II.2 The Lebesgue Spaces Lq

For q ∈ [1,∞), let Lq = Lq(Ω) denote the linear space of all (equivalence
classes of) real Lebesgue-measurable functions u defined in Ω such that

‖u‖q ≡
(∫

Ω

|u|q
)1/q

<∞. (II.2.1)

The functional (II.2.1) defines a norm in Lq , with respect to which Lq becomes
a Banach space. Likewise, denoting by L∞ = L∞(Ω) the linear space of all
(equivalence classes of) Lebesgue-measurable real-valued functions u defined
in Ω with

‖u‖∞ ≡ ess sup
Ω

|u| <∞ (II.2.2)

one shows that (II.2.2) is a norm and that L∞ endowed with this norm is a
Banach space. For a proof of the above properties see, e.g., Miranda (1978,
§47). For q = 2, Lq is a Hilbert space under the scalar product
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(u, v) ≡
∫

Ω

uv, u, v ∈ L2.

Whenever confusion of domains might occur, we shall use the notation

‖ · ‖q,Ω, ‖ · ‖∞,Ω, and (·, ·)Ω.

Given a sequence {um} ⊂ Lq(Ω) and u ∈ Lq(Ω), 1 ≤ q ≤ ∞, we thus have
that um → u, namely, {um} converges (strongly) to u, if and only if

lim
k→∞

‖uk − u‖q = 0 .

The following two basic properties, collected in as many lemmas, will be
frequently used throughout. The first one is the classical Lebesgue dominated
convergence theorem (Jones 2001, Chapter 6 §C), while the other one relates
convergence in Lq with pointwise convergence; see Jones (2001, Corollary at
p. 234)

Lemma II.2.1 Let {um} be a sequence of measurable functions on Ω, and
assume that

u(x) ≡ lim
m→∞

um(x) exists for a.a. x ∈ Ω ,

and that there is U ∈ L1(Ω) such that

|um(x)| ≤ |U(x)| for a.a x ∈ Ω .

Then u ∈ L1(Ω) and

lim
m→∞

∫

Ω

um =

∫

Ω

u .

Lemma II.2.2 Let {um} ⊂ Lq(Ω) and u ∈ Lq(Ω), 1 ≤ q ≤ ∞, with um → u.
Then, there exists {um′} ⊆ {um} such that

lim
m′→∞

um′(x) = u(x) , for a.a. x ∈ Ω .

We want now to collect some inequalities in Lq spaces that will be fre-
quently used throughout. For 1 ≤ q ≤ ∞, we set

q′ = q/(q − 1);

one then shows the Hölder inequality
∫

Ω

|uv| ≤ ‖u‖q‖v‖q′ (II.2.3)

for all u ∈ Lq(Ω), v ∈ Lq′
(Ω) (Miranda 1978, Teorema 47.I). The number

q′ is called the Hölder conjugate of q. In particular, (II.2.3) shows that the
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bilinear form (u, v) is meaningful whenever u ∈ Lq(Ω) and v ∈ Lq′
(Ω). In

case q = 2, inequality (II.2.3) is referred to as the Schwarz inequality. More
generally, one has the generalized Hölder inequality

∫

Ω

|u1u2 . . . um| ≤ ‖u1‖q1‖u2‖q2 · . . . · ‖um‖qm , (II.2.4)

where

ui ∈ Lqi (Ω) , 1 ≤ qi ≤ ∞, i = 1, . . . , m ,

m∑

i=1

q−1
i = 1 .

Both inequalities (II.2.3) and (II.2.4) are an easy consequence of the Young
inequality:

ab ≤ εaq

q
+ ε−q′/q b

q′

q′
(a, b, ε > 0) (II.2.5)

holding for all q ∈ (1,∞). When q = 2, relation (II.2.5) is known as the
Cauchy inequality.

Two noteworthy consequences of inequality (II.2.3) are the Minkowski in-
equality:

‖u+ v‖q ≤ ‖u‖q + ‖v‖q , u, v ∈ Lq(Ω), (II.2.6)

and the interpolation (or convexity) inequality:

‖u‖q ≤ ‖u‖θ
s‖u‖1−θ

r (II.2.7)

valid for all u ∈ Ls(Ω) ∩ Lr(Ω) with 1 ≤ s ≤ q ≤ r ≤ ∞, and

q−1 = θs−1 + (1 − θ)r−1, θ ∈ [0, 1].

Another important inequality is the generalized Minkowski inequality re-
ported in the following lemma, and for whose proof we refer to Jones (2001,
Chapter 11, §E).6

Lemma II.2.3 Let Ω1, and Ω2 be domains of Rn and Rm, respectively, with
m, n ≥ 1. Suppose that u : Ω1 × Ω2 → R is a Lebesgue measurable function
such that, for some q ∈ [1,∞],

∫

Ω2

(∫

Ω1

|u(x, y)|qdx
)1/q

dy <∞ .

Then, (∫

Ω1

∣∣∣∣
∫

Ω2

u(x, y) dy

∣∣∣∣
q

dx

)1/q

<∞ ,

and the following inequality holds

6 Actually, it can be proved that (II.2.6) is just a particular case of (II.2.8), hence
the adjective “generalized”; see Jones (2001, p. 272).
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(∫

Ω1

∣∣∣∣
∫

Ω2

u(x, y) dy

∣∣∣∣
q

dx

)1/q

≤
∫

Ω2

(∫

Ω1

|u(x, y)|qdx
)1/q

dy . (II.2.8)

Exercise II.2.1 Assume Ω bounded. Show that if u ∈ L∞(Ω), then

lim
q→∞

‖u‖q = ‖u‖∞.

Exercise II.2.2 Prove inequality (II.2.5). Hint: Minimize the function

tq/q − t+ 1/q′.

Exercise II.2.3 Prove inequalities (II.2.6) and (II.2.7).

We shall now list some of the basic properties of the spaces Lq . We begin
with the following (see, e.g. Miranda 1978, §51).

Theorem II.2.1 For 1 ≤ q <∞, Lq is separable, C0(Ω) being, in particular,
a dense subset

Note that the above property is not true if q = ∞, since C(Ω) is a closed
subspace of L∞(Ω)); see Miranda, loc. cit..

Concerning the density of smooth functions in Lq , one can prove something
more than what stated in Theorem II.2.1, namely, that every function in Lq ,
1 ≤ q <∞, can be approximated by functions from C∞

0 (Ω). This fact follows
as a particular case of a general smoothing procedure that we are going to
describe. To this end, given a real (measurable) function u in Ω, we shall
write

u ∈ Lq
loc(Ω)

to mean

u ∈ Lq(Ω′), for any bounded domain Ω′ with Ω′ ⊂ Ω.

Likewise, we write
u ∈ Lq

loc(Ω)

to mean
u ∈ Lq(Ω′), for any bounded domain Ω′ ⊂ Ω.

Clearly, for Ω bounded we have Lq
loc(Ω) = Lq(Ω). Now, let j ∈ C∞

0 (Ω) be a
non-negative function such that

(i) j(x) = 0, for |x| ≥ 1,

(ii)

∫

Rn

j = 1.
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A typical example is

j(x) =

{
c exp[−1/(1 − |x|2)] if |x| < 1

0 if |x| ≥ 1,

with c chosen in such a way that property (ii) is satisfied. The regularizer (or
mollifier) in the sense of Friedrichs uε of u ∈ L1

loc(Ω) is then defined by the
integral

uε(x) = ε−n

∫

Rn

j

(
x− y

ε

)
u(y)dy, ε < dist (x, ∂Ω).

This function has several interesting properties, some of which will be recalled
now here. First of all, we observe that uε is infinitely differentiable at each
x ∈ Ω with dist (x, ∂Ω) > ε. Moreover, if u ∈ Lq

loc(Ω) we may extend it by
zero outside Ω, so that uε becomes defined for all ε > 0 and all x ∈ Rn. Thus,
in particular, if u ∈ Lq(Ω), 1 ≤ q <∞, one can show (Miranda 1978, §51; see
also Exercise II.2.10 for a generalization)

‖uε‖q ≤ ‖u‖q for all ε > 0 ,

lim
ε→0+

‖uε − u‖q = 0.
(II.2.9)

Exercise II.2.4 Show that for u ∈ C0(Ω),

lim
ε→0+

uε(x) = u(x) holds uniformly in x ∈ Ω.

Exercise II.2.5 For u ∈ Lq(Ω), 1 ≤ q < ∞, show the inequality

sup
Rn

|Dαuε(x)| ≤ ε−n/q−|α|‖Dαj‖q′,Rn‖u‖q,Ω , |α| ≥ 0.

We next observe that, by writing uε(x) as follows:

uε(x) = ε−n

∫

|ξ|<ε

j

(
ξ

ε

)
u(x+ ξ)dξ,

it becomes apparent that, if u is of compact support in Ω and ε is chosen less
than the distance of the support of u from ∂Ω, then uε ∈ C∞

0 (Ω). The latter,
together with (II.2.9)2 and the density of C0 in Lq , yields that C∞

0 (Ω) is a
dense subspace of Lq(Ω), 1 ≤ q < ∞. The proof of this property, along with
some of its consequences, is left to the reader in the following exercises.

Exercise II.2.6 Prove that C∞
0 (Ω) is dense in Lq(Ω), 1 ≤ q < ∞. Hint. Use the

density of C0(Ω) in Lq(Ω) (Miranda 1978, §51) along with the properties of the

mollifier.
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Exercise II.2.7 Prove the existence of a basis in L2(Ω) constituted by functions

from C∞
0 (Ω). Hint: Use the separability of L2 along with the density of C∞

0 into L2.

Exercise II.2.8 Let u ∈ Lq(Ω), 1 ≤ q < ∞. Extend u to zero in R
n − Ω and

continue to denote by u the extension. Show the following continuity in the mean
property: Given ε > 0 there is δ > 0 such that for every h ∈ R

n with |h| < δ the
following inequality holds

Z

Ω

|u(x+ h) − u(x)|q dx < εq .

Hint: Show the property for u ∈ C∞
0 (Ω), then use the density of C∞

0 in Lq.

Exercise II.2.9 Assume u ∈ L1
loc(Ω). Prove that

Z

Ω

uψ = 0, for all ψ ∈ C∞
0 (Ω), implies u ≡ 0, a.e. in Ω.

Hint: Consider the function

sign u =

8
<
:

1 if u > 0

−1 if u ≤ 0.

For a fixed bounded Ω′ with Ω′ ⊂ Ω,

sign u ∈ L1(Ω′)

and so sign u can be approximated by functions from C∞
0 (Ω′).

Exercise II.2.10 Let u ∈ Lq(Rn), 1 ≤ q < ∞, and for z ∈ R
n and k ≤ n set

z(k) = (z1, . . . , zk) , z(k) = (zk+1, . . . , zn) .

Moreover, define

u(k),ε(x) = ε−k

Z

Rk

j

„
x(k) − y(k)

ε

«
u(y(k), y

(k)) dy(k) .

Show the following properties, for each y(k) ∈ R
n−k:

‖u(k),ε‖q,Rk ≤ ‖u(·, y(k))‖q,Rk for all ε > 0 ,

lim
ε→0+

‖u(k),ε − u(·, y(k))‖q,Rk = 0.

Hint: Use the generalized Minkowski inequality, the result in Exercise II.2.8 and

Lebesgue dominated convergence theorem (Lemma II.2.1).

Let v ∈ Lq′
(Ω), with q′ the Hölder conjugate of q. Then, by (II.2.3), the

integral

`(u) =

∫

Ω

vu, u ∈ Lq(Ω) (II.2.10)

defines a linear functional on Lq. However, for q ∈ [1,∞), every linear func-
tional must be of the form (II.2.10). Actually, we have the following Riesz
representation theorem for whose proof we refer to Miranda (1978, §48).
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Theorem II.2.2 Let ` be a linear functional on Lq(Ω), q ∈ [1,∞). Then,
there exists a uniquely determined v ∈ Lq′

(Ω) such that representation
(II.2.10) holds. Furthermore

‖`(u)‖[Lq(Ω)]′ ≡ sup
‖u‖q=1

|`(u)| = ‖v‖q′ . (II.2.11)

From Theorem II.2.2 we thus obtain the following.

Theorem II.2.3 The (normed) dual of Lq is isomorphic to Lq′
for 1 < q <

∞, so that, for these values of q, Lq is a reflexive space.

Exercise II.2.11 Show the validity of (II.2.11) when q ∈ (1,∞). Hint: Use the

representation (II.2.10) .

Exercise II.2.12 Let u ∈ L1
loc(Ω), and assume that there exists a constant C > 0

such that

|(u,ψ)| ≤ C‖ψ‖q , for some q ∈ [1,∞) and all ψ ∈ C∞
0 (Ω).

Show that u ∈ Lq′(Ω) and that ‖u‖q ≤ C. Hint: ψ → (u, ψ) defines a bounded

linear functional on a dense set of Lq(Ω). Then use Hahn–Banach Theorem II.1.7

and the Riesz representation Theorem II.2.2.

Riesz theorem also allows us to give a characterization of weak convergence
of a sequence {uk} ⊂ Lq(Ω) to u ∈ Lq(Ω), 1 < q < ∞. In fact, we have that
uk

w→ u if and only if

lim
k→∞

(v, uk − u) = 0 , for all v ∈ Lq′
(Ω), q′ = q/(q − 1).

In view of Theorem II.1.3(iii) and Theorem II.2.3, we find that Lq is weakly
complete, for q ∈ (1,∞). In fact, this property continues to hold in the case
q = 1; see Miranda (1978, Teorema 48.VII).

We wish now to recall the following results related to weak convergence.

Theorem II.2.4 Let {um} ⊂ Lq(Ω), 1 ≤ q ≤ ∞. The following properties
hold.

(i) If um
w→ u, for some , u ∈ Lq(Ω), then there is C independent of m such

that ‖um‖q ≤ C. Moreover,

‖u‖q ≤ lim inf
m→∞

‖um‖q.

In addition, if 1 < q <∞, and

‖u‖q ≥ lim sup
m→∞

‖um‖q,

then um → u .
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(ii) If 1 < q <∞ and ‖um‖q ≤ C, for some C independent of m, then there
exists a subsequence {um′} and u ∈ Lq(Ω) such that um′

w→ u.

Proof. The statement in (ii) follows from Theorem II.1.3(ii), while the first
statement in (i) is a consequence of the general result given in Theorem
II.1.3(i). A proof of the second statement in (i) can be found, for example,
in Brezis (1983, Proposition III.5(iii) and Proposition III.30). However, for
q = 2 the proof of (i) becomes very simple and it will be reproduced here. By
hypothesis and Riesz theorem we have that for all v ∈ L2 and ε > 0 there
exists m′ ∈ N such that

|(um − u, v)| < ε, for all m ≥ m′.

If we choose v = um, with the help of the Schwarz inequality we find

‖um‖2
2 ≤ ‖u‖2‖um‖2 + ε .

Using Cauchy inequality on the right-hand side of this latter relation we con-
clude

‖um‖2
2 ≤ ‖u‖2

2 + 2ε ,

which proves the boundedness of the sequence. We next choose

v = u, ε = η‖u‖2, η > 0,

to obtain, again with the aid of Schwarz inequality,

‖u‖2 ≤ ‖um‖2 + η,

which completes the proof of the first part of the statement in (i). The second
part is a consequence of the assumption and the identity

‖um − u‖2
2 = ‖u‖2

2 + ‖um‖2
2 − 2(um, u).

ut

We conclude this section with some observations concerning Lq-spaces of
vector-valued functions. Let [Lq(Ω)]N be the direct product of N copies of
Lq(Ω). Then, as we know from Subsection I.1.2, [Lq(Ω)]N is a Banach space
with respect to any of the following equivalent norms:

‖u‖q,(r) ≡
(

N∑

i=1

‖ui‖r
q

)1/r

, r ∈ [1,∞) ‖u‖q,(∞) ≡ max
i∈{1,...,N}

‖ui‖q ,

where u = (u1, . . . , uN). Moreover, in view of Theorem II.2.1, Theorem II.2.3,
and Theorem II.1.5, we have.

Theorem II.2.5 [Lq(Ω)]N is separable for q ∈ [1,∞), and reflexive for q ∈
(1,∞) .
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Also, the Riesz representation theorem can be suitably extended to this more
general case. In fact, let

(v,u) ≡
N∑

i=1

(ui, vi) , u ∈ [Lq(Ω)]N , v ∈ [Lq′
(Ω)]N , 1/q+ 1/q′ = 1.

In view of Theorem II.1.6 and of Theorem II.2.2 , we then have that for every
L ∈

(
[Lq(Ω)]N

)′
, there exist uniquely determined v ∈ [Lq′

(Ω)]N , such that

L(u) = (v,u) ,

and that the map M : L → v is a homeomorphism. Actually, if we endow
[Lq(Ω)]N with the norm ‖u‖q,(q) ≡ ‖u‖q, the map M is an isomorphism, as
stated in the second part of the following lemma, whose proof can be found
in Simader (1972, Lemma 4.2).7

Theorem II.2.6 Let Ω be a domain of Rn, and let q ∈ (1,∞). Then, for

every L ∈
(
[Lq(Ω)]N

)′
, there exists uniquely determined v ∈ [Lq′

(Ω)]N , such
that

L(u) = (v,u) , u ∈ [Lq(Ω)]N .

Moreover,

‖L‖([Lq(Ω)]N )′ ≡ sup
u∈[Lq(Ω)]N , ‖u‖q=1

|L(u)| = ‖v‖q .

II.3 The Sobolev Spaces Wm,q and Embedding
Inequalities

Let u ∈ L1
loc(Ω). Given a multi-index α, we shall say that a function u(α) ∈

L1
loc(Ω) is the αth generalized (or weak) derivative of u if and only if the

following relation holds:

∫

Ω

uDαϕ = (−1)|α|
∫

Ω

u(α)ϕ, for all ϕ ∈ C∞
0 (Ω).

It is easy to show that u(α) is uniquely determined (use Exercise II.2.9) and
that, if u ∈ C |α|(Ω), u(α) is the αth derivative of u in the ordinary sense, and
the previous integral relation is an obvious consequence of the well-known
Gauss formula. Hereafter, the function u(α), whenever it exists, will be indi-
cated by the symbol Dαu.

7 The assumption made in Simader loc. cit., that Ω is bounded, is completely
superfluous, since it is never used in the proof, as it was also independently
communicated to me by Professor Simader.
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Generalized derivatives have several properties in common with ordinary
derivatives. For instance, given two functions u, v possessing generalized
derivatives Dju, Div we have that βu + γv (β, γ ∈ R) has a generalized
derivative and Dj(βu + γv) = βDju+ γDjv. In addition, if

uv, uDjv + vDju ∈ L1
loc(Ω),

then uv has a generalized derivative and the familiar Leibniz rule holds:

Dj(uv) = uDjv + vDju.

The proof of these properties is left to the reader as an exercise.

Exercise II.3.1 Generalized differentiation and differentiation almost everywhere
are two distinct concepts. Show that a function ϕ that is continuous in [0,1] but not
absolutely continuous admits no generalized derivative. Hint: Assume, per absurdum,
that ϕ has a generalized derivative Φ. Then, it would follow

ϕ(x) =

Z x

0

Φ(t)dt+ ϕ(0), x ∈ (0, 1),

which gives a contradiction. On the other hand, one can give examples of real,

continuous functions f on [0, 1] that are differentiable a.e. in [0, 1] and with f ′ ∈
L1(0, 1) which are not absolutely continuous (Rudin 1987, pp. 144-145). In this

connection, it is worth noticing the following general result (Smirnov 1964, §110): a

function u ∈ L1
loc(Ω) (Ω ⊂ R

n) is weakly differentiable if u = eu a.e. in Ω, with eu
absolutely continuous on almost all line segments parallel to the coordinate axes and

having partial derivatives locally integrable.

Exercise II.3.2 Let u ∈ L1
loc(Ω) and assume that Dαu exists. Show

Dα(uε(x)) = (Dαu)ε(x) , dist (x, ∂Ω) > ε.

Exercise II.3.3 Let Ω ⊂ R
n, and let ψ ∈ C1(Ω) map Ω onto Ω1 ⊂ R

n, with
ψ−1 ∈ C1(Ω1). Assume u possesses generalized derivatives Dju, j = 1, . . . , n, and
set v = u◦ψ−1. Show that also v possesses generalized derivatives Djv, j = 1, . . . , n,
and that the usual change of variable formula applies:

Diu(x) =
∂ψj

∂xi
Djv(y) , y = ψ(x) ,

for a.a. x ∈ Ω and y ∈ Ω1.

For q ∈ [1,∞] and m ∈ N, we let

Wm,q = Wm,q(Ω) = {u ∈ Lq(Ω) : Dαu ∈ Lq(Ω), 0 ≤ |α| ≤ m} .

In the linear space Wm,q(Ω) we introduce the following norm:
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‖u‖m,q =


 ∑

0≤|α|≤m

‖Dαu‖q
q




1/q

if 1 ≤ q <∞

‖u‖m,∞ = max
0≤|α|≤m

‖Dαu‖∞ if q = ∞.

(II.3.1)

If confusion of domains arises, we shall write ‖u‖m,q,Ω and ‖u‖m,∞,Ω in place
of ‖u‖m,q and ‖u‖m,∞. Owing to the completeness of the spaces Lq and taking
into account the definition of generalized derivative, it is not hard to show
that Wm,q endowed with the norm (II.3.1) becomes a Banach space, called
Sobolev space (of order (m, q)). Along with this space, we shall consider its
closed subspace Wm,q

0 = Wm,q
0 (Ω), defined as the completion of C∞

0 (Ω) in
the norm (II.3.1). Clearly, we have (see Exercise II.2.6)

W 0,q = W 0,q
0 = Lq.

In the special case q = 2, Wm,q (and thus Wm,q
0 ) is a Hilbert space with

respect to the scalar product

(u, v)m =
∑

0≤|α|≤m

(Dαu,Dαv) .

Exercise II.3.4 Prove that, for any Ω, Wm,q
0 (Ω) is a closed subspace of Wm,q(Ω).

Prove also Wm,q
0 (Rn) = Wm,q(Rn), 1 ≤ q < ∞. Hint: To show the second assertion,

take a function ϕ ∈ C∞(Rn) with ϕ(x) = 1 if |x| ≤ 1, ϕ(x) = 0 if |x| ≥ 2 (“cut-off”
function) and set

um(x) = ϕ(x/m)u(x), u ∈Wm,q (Rn), m ∈ N.

Then, u is approximated in Wm,q (Rn) by {(um)ε} ⊂ C∞
0 (Rn).

Remark II.3.1 Sobolev spaces share several important properties with Le-
besgue spaces Lq. Thus, for example, since a closed subspace of a Banach space
X is reflexive and separable if X is (see Theorem II.1.1 and Theorem II.1.2),
and since Wm,q(Ω) can be naturally embedded in [Lq(Ω)]N , for a suitable
N = N(m), one can readily show, by using Theorem II.2.5 and the fact that
Wm,q(Ω) is complete, that Wm,q(Ω) is separable if 1 ≤ q < ∞ and reflexive
if 1 < q <∞; for details, see, e.g., Adams (1975, §3.4). As a consequence, by
Theorem II.1.3(ii), we find, in particular, that for q ∈ (1,∞), Wm,q has the
weak compactness property. �

Exercise II.3.5 Let u ∈ L1
loc(Ω) and suppose ‖uε‖m,q,B ≤ C, m ≥ 0, 1 < q < ∞,

where B is an arbitrary open ball with B ⊂ Ω, and C is independent of ε. Show

that u ∈ Wm,q
loc (Ω) and that ‖u‖m,q,B ≤ C.
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Another interesting question is whether elements from Wm,q(Ω) can be
approximated by smooth functions. This question is important, for instance,
when one wants to establish in Wm,q inequalities involving norms (II.3.1).
Actually, if such an approximation holds, it then suffices to prove these in-
equalities for smooth functions only. In the case where Ω is either the whole
of Rn or it is star-shaped with respect to a point, the question is affirma-
tively answered; cf. Exercise II.3.4 and Exercise II.3.7. In more general cases,
we have a fundamental result, given in Theorem II.3.1, which in its second
part involves domains having a mild property of regularity, i.e., the segment
property, which states that, for every x ∈ ∂Ω there exists a neighborhood U
of x and a vector y such that if z ∈ Ω ∩U , then z+ ty ∈ Ω, for all t ∈ (0, 1).

Exercise II.3.6 Show that a domain having the segment property cannot lie si-

multaneously on both sides of its boundary.

Theorem II.3.1 For any domain Ω, every function from Wm,q(Ω), 1 ≤
q < ∞, can be approximated in the norm (II.3.1)1 by functions in Cm(Ω) ∩
Wm,q(Ω). Moreover, if Ω has the segment property, it can be approximated
in the same norm by elements of C∞

0 (Ω).

The first part of this theorem is due to Meyers and Serrin (1964), while
the second one is given by Adams (1975, Theorem 3.18).

Exercise II.3.7 (Smirnov 1964, §111). Assume Ω star-shaped with respect to the
origin. Prove that every function u in Wm,q (Ω), 1 ≤ q < ∞, m ≥ 0, can be
approximated by functions from C∞

0 (Ω). (Compare this result with Theorem II.3.1.)
Hint: Consider the sequence

uk(x) =

8
<
:
u ((1− 1/k)x) if x ∈ Ω(k/(k−1))

0 if x 6∈ Ω(k/(k−1))
k = 2, 3, . . . ,

with Ω(ρ) defined in (II.1.14). Then, regularize uk and use (II.2.9) and Exercise

II.3.2.

We wish now to prove some basic inequalities involving the norms (II.3.1).
Such results are known as Sobolev embedding theorems (see Theorem II.3.2
and Theorem II.3.4). To this end, we propose an elementary inequality due
to Nirenberg (1959).

Lemma II.3.1 For all u ∈ C∞
0 (Rn),

‖u‖n/(n−1) ≤
1

2
√
n
‖∇u‖1. (II.3.2)

Proof. Just to be specific, we shall prove (II.3.2) for n = 3, the general case
being treated analogously. We have
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|u(x)| ≤ 1

2

∫ ∞

−∞
|D1u|dx1 ≡ F1(x2, x3)

and similar estimates for x2 and x3. With the obvious meaning of the symbols
we then deduce

|2u(x)|3/2 ≤ [F1(x2, x3)F2(x1, x3)F3(x1, x2)]
1/2

.

Integrating over x1, and using the Schwarz inequality,

∫ ∞

−∞
|2u(x)|3/2dx1 ≤ [F1(x2, x3)]

1/2

(∫ ∞

−∞
F2(x1, x3)dx1

)1/2

×
(∫ ∞

−∞
F3(x1, x2)dx1

)1/2

.

Integrating this relation successively over x2 and x3 and applying the same
procedure, we find

2‖u‖3/2 ≤
(∫

R3

|D1u|
∫

R3

|D2u|
∫

R3

|D3u|
)1/3

≤ (1/3)

3∑

i=1

∫

R3

|Diu|,

which, in turn, after employing the inequality 1

(a1 + a2 + . . .+ am)q ≤mq−1(aq
1 + aq

2 + . . .+ aq
m), ai > 0 , q ≥ 1 (II.3.3)

with m = 3, q = 2, gives (II.3.2). ut

For q ≥ 1, replacing u with |u|q in (II.3.2) and using the Hölder inequality,
we obtain at once

‖u‖qn/(n−1) ≤
(

q

2
√
n

)1/q

‖u‖1−1/q
q ‖∇u‖1/q

q . (II.3.4)

Inequalities (II.3.2), (II.3.4), and (II.2.7) allow us to deduce more general
relations, which are contained in the following lemma.

Lemma II.3.2 Let

r ∈ [q, nq/(n− q)], if q ∈ [1, n),

and
r ∈ [q,∞), if q ≥ n.

Then, for all u ∈ C∞
0 (Rn) we have

1 See Hardy, Littlewood, & Polya 1934, Theorem 16, p. 26.
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‖u‖r ≤
(

c1
2
√
n

)λ

‖u‖1−λ
q ‖∇u‖λ

q , (II.3.5)

where
c1 = max(q, r(n− 1)/n), λ = n(r − q)/rq.

Proof. We shall distinguish the two cases:

(i) q ≤ r ≤ qn/(n− 1),
(ii) r ≥ qn/(n− 1).

In case (i) we have by (II.2.7) and (II.3.4)

‖u‖r ≤ ‖u‖θ
q‖u‖1−θ

qn/(n−1)
≤
(

q

2
√
n

)(1−θ)/q

‖u‖(θ−1)/q+1
q ‖∇u‖(1−θ)/q

q

with

θ =
r(1 − n) + nq

r
.

Substituting the value of θ in the preceding relation furnishes (II.3.5). In case
(ii), we replace u in (II.3.2) with |u|r(n−1)/n and apply the Hölder inequality
to obtain

‖u‖r(n−1)/n
r ≤ r(n − 1)

2n
√
n

‖u‖[r(n−1)−n]/n
β ‖∇u‖q, β =

qr(n− 1) − n

n(q − 1)
.

Notice that q ≤ β. Moreover, it is

β ≤ r for r ≤ nq/(n− q), if q < n

and
β ≤ r for all r <∞, if q ≥ n.

In either case we may use (II.2.7) to obtain

‖u‖β ≤ ‖u‖θ
q‖u‖1−θ

r , θ =
r(q − n) + nq

(r − q)[r(n− 1) − n]
.

Substituting this inequality in the preceding one gives (II.3.5), and the proof
of the lemma is complete. ut

Lemma II.3.2 can be extended to include Lq-norms of derivatives of order
higher than one. A general multiplicative inequality is given in Nirenberg
(1959, p.125). We reproduce here this result, referring the reader to the paper
of Nirenberg for a proof. Set

|u|k,p ≡


∑

|`|=k

∫

Ω

|D`u|p



1/p

.

We have the following.
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Lemma II.3.3 Let u ∈ Lq(Rn), with Dαu ∈ Lr(Rn), |α| = m > 0, 1 ≤
q, r ≤ ∞. Then, Dαu ∈ Ls(Rn), |α| = j, and the following inequality holds
for 0 ≤ j < m and some c = c(n,m, j, q, r, a):

|u|j,s ≤ c |u|am,r‖u‖1−a
q , (II.3.6)

where
1

s
=
j

n
+ a

(
1

r
− m

n

)
+ (1 − a)

1

q
,

for all a in the interval
j

m
≤ a ≤ 1,

with the following exceptional cases

1. If j = 0, rm < n, q = ∞ then we make the additional assumption that
either u(x) → 0 as |x| → ∞, or u ∈ Lq(Rn) for some q ∈ (0,∞).

2. if 1 < r < ∞, and m− j − n/r is a nonnegative integer then (∗) holds
only for a satisfying j/m ≤ a < 1.

From Lemma II.3.2 we wish to single out some special inequalities that
will be used frequently in the theory of the Navier–Stokes equations. First of
all, we have the Sobolev inequality

‖u‖r ≤ q(n − 1)

2(n− q)
√
n
‖∇u‖q, 1 ≤ q < n, r = nq/(n− q), (II.3.7)

derived for the first time by Sobolev (1938) by a complete different method
and for q ∈ (1, n).2 Inequality (II.3.7), holding a priori only for functions
u ∈ C∞

0 (Rn), can be clearly extended, by density, to every u ∈ W 1,q
0 (Ω),

1 ≤ q < n. We then deduce, in particular, that every such function is in
Lr(Ω) with r given in (II.3.7).

Exercise II.3.8 Let Ω = B1 or Ω = R
n, n ≥ 2. Show, by means of a counterex-

ample, that the Sobolev inequality does not hold if q = n, that is, a (positive, finite)
constant γ independent of u such that

‖u‖∞ ≤ γ‖∇u‖n, u ∈ C∞
0 (Ω), n ≥ 2,

does not exist. (In this respect, see also Section II.9 and Section II.11.)3

Remark II.3.2 In connection with (II.3.7) we would like to make some com-
ments. When Ω is an unbounded domain (in particular, exterior to the closure
of a bounded domain) the investigation of the asymptotic properties of a so-
lution u to a system of partial differential equations is strictly related to the

2 In this regard, see Theorem II.11.3 and Exercise II.11.4.
3 A sharp version of the Sobolev inequality when q = n and Ω is bounded, is due

to Trudinger (1967).
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Lebesgue space Ls(Ω) to which u belongs and, roughly speaking, the behavior
of u at large distances will be better known when the exponent s is lower.4

Now, as we shall see in subsequent chapters, the inherent information we derive
from the Navier–Stokes equations in such domains is that u (a generic compo-
nent of the velocity field) has first derivatives Diu summable with exponents
qi which, however, may vary with xi, i = 1, . . . , n. Therefore, we may wonder
if (II.3.7) can be replaced by another inequality which takes into account this
different behavior in different directions and leads to an exponent s of summa-
bility for u strictly less than the exponent r given in (II.3.7). This question
finds its answer within the context of anisotropic Sobolev spaces (Nikol’skĭi
1958). Here, we shall limit ourselves to quote, without proof, an inequality
due to Troisi (1969, Teorema 1.2) representing the natural generalization of
(II.3.7) to the anisotropic case. Let

1 ≤ qi <∞, i = 1, . . . , n.

Then, for all u ∈ C∞
0 (Rn) the following Troisi inequality holds:

‖u‖s ≤ c

n∏

i=1

‖Diu‖1/n
qi

,

n∑

i=1

q−1
i > 1, s =

n(∑n
i=1 q

−1
i − 1

) . (II.3.8)

If qi = q, for all i = 1, . . . , n, (II.3.8) reduces to (II.3.7). On the other hand,
if for some i (=1, say), q1 < q ≡ q2 = . . . = qn, from (II.3.8) we deduce

s = r +
nq(q1 − q)

(q − q1) + q1(n − q)
< r.

�

Other special cases of (II.3.5) are now considered. We choose in Lemma
II.3.2 n = q = 2 and r = 4 to deduce the Ladyzhenskaya inequality

‖u‖4 ≤ 2−1/4‖u‖1/2
2 ‖∇u‖1/2

2 , (II.3.9)

shown for the first time by Ladyzhenskaya (1958, 1959a, eq. (6)). It should
be emphasized that (II.3.9) does not hold in three space dimensions with the
same exponents (see Exercise II.3.9). Rather, for n = 3, q = 2, and r = 4,
inequality (II.3.5) delivers

‖u‖4 ≤
(

4

3
√

3

)3/4

‖u‖1/4
2 ‖∇u‖3/4

2 . (II.3.10)

Furthermore, for n = 3, q = 2, r = 6 the Sobolev inequality (II.3.7) specializes
to

4 It is needless to say that the possibility of lowering the exponent s depends on
the particular problem.
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‖u‖6 ≤ 2√
3
‖∇u‖2. (II.3.11)

In two space dimensions there is no analogue of (II.3.11), and so, in particular,
for n = 2, a function having all derivatives in L2(R2) need not be in Lr(R2),
whatever r ∈ [1,∞]. 5

Exercise II.3.9 Let ϕ be the C∞ “cut-off” function introduced in Exercise II.3.4
and set um(x) = ϕ(x) exp(−m|x|), m ∈ N. Obviously, {um} ⊂ C∞

0 (Rn). Show that
for n = 3 the following inequality holds

R(m) ≡ ‖um‖4
4

‖um‖2
2‖∇um‖2

2

≥ cm

Rm

0
e−yy2dyRm

0
e−2yy2dy

,

with c a positive number independent of m. Since R(m) → ∞ as m → ∞, a constant
γ ∈ (0,∞) such that

‖u‖4 ≤ γ‖u‖1/2
2 ‖∇u‖1/2

2 , u ∈ C∞
0 (R3),

does not exist.

The case q > n of Lemma II.3.2 can be further strengthened, as shown by
the following lemma.

Lemma II.3.4 Let q > n. Then, for all u ∈ C1(B(x)) we have

|u(x)| ≤ ω−1
n ‖u‖1,B(x) + ω−1/q

n

(
q − 1

q − n

)1−1/q

‖∇u‖q,B(x) , (II.3.12)

and so, in particular, for all u ∈ C∞
0 (Rn),

sup
x∈Rn

|u(x)| ≤ c2ω
−1/q
n ‖u‖1,q,Rn (II.3.13)

with

c2 = max

{
1,

(
q − 1

q − n

)(q−1)/q
}
.

Proof. It is enough to prove (II.3.12), since (II.3.13) follows by using the
Hölder inequality in the first term of (II.3.12). From the identity

u(x) − u(y) = −
∫ |x−y|

0

∂u(x + re)

∂r
dr, e =

y − x
|y− x| , (II.3.14)

5 For example, for α ∈ (0, 1/2), take u(x) = lnα |x|, if |x| > 1 and u(x) = 0 if
|x| ≤ 1 . The problem of the behavior at large spatial distances of functions with
gradients in Lq(Ω), Ω an exterior domain, will be fully analyzed in Section II.7
and Section II.9.
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we easily show

ωn|u(x)| ≤ ‖u‖1,B(x) +

∫

B(x)

|∇u(y)| |x− y|1−ndy. (II.3.15)

Applying the Hölder inequality in the integral in (II.3.15) and dividing the
resulting relation by ωn we prove (II.3.12). ut

We want now to draw some consequences from Lemma II.3.2 and Lemma
II.3.4. Employing the Young inequality (II.2.5) and the density of C∞

0 (Ω) in
W 1,q

0 (Ω), from (II.3.3), (II.3.5), and (II.3.13) we find, in particular, that a
function u ∈ W 1,q

0 (Ω) is also in Lr(Ω), for all r ∈ [q, nq/(n − q)], if 1 ≤
q < n, and for all r ≥ q, if q = n. Moreover, if q > n, u coincides a.e. in Ω
with a (uniquely determined) function of C(Ω). Finally, u obeys the following
inequalities:

‖u‖r ≤ C1‖u‖1,q 1 ≤ q < n, q ≤ r ≤ nq

n− q

‖u‖r ≤ C2‖u‖1,q q = n, q ≤ r <∞

‖u‖C ≤ C3‖u‖1,q q > n

(II.3.16)

with Ci = Ci(n, q, r), i = 1, 2, 3. Now, using (II.3.16) and an iterative argu-
ment we may generalize (II.3.16) to functions from Wm,q

0 (Ω), to obtain the
following embedding theorem whose proof is left to the reader as an exercise.

Theorem II.3.2 Let u ∈ Wm,q
0 (Ω), q ≥ 1, m ≥ 0. If mq ≤ n we have

Wm,q
0 (Ω) ↪→ Lr(Ω)

for all r ∈ [q, nq
n−mq ] if mq < n, and for all r ∈ [q,∞) if mq = n. In particular,

there are constants ci, i = 1, 2, depending only on m, q, r and n such that

‖u‖r ≤ c1‖u‖m,q for all r ∈ [q, nq
n−mq ], if mq < n,

‖u‖r ≤c2‖u‖m,q for all r ∈ [q,∞), if mq = n,
(II.3.17)

Finally, if mq > n, each u ∈ Wm,q
0 (Ω) is equal a.e. in Ω to a unique function

in Ck(Ω), 0 ≤ k < m− n/q, and the following inequality holds

‖u‖Ck ≤ c3‖u‖m,q, (II.3.18)

with c3 = c3(m, q, r, n).

We wish now to generalize Theorem II.3.2 to the spaces Wm,q(Ω), Ω 6= Rn.
One of the most usual ways of doing this is to construct an (m, q)-extension
map forΩ. By this we mean that there exists a linear operator E : Wm,q(Ω) →
Wm,q(Rn) such that
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(i) u(x) = [E(u)](x), for all x ∈ Ω
(ii) ‖E(u)‖m,q,Rn ≤ C‖u‖m,q,Ω,

for some constant C independent of u. It is then not hard to show that in-
equalities (II.3.17) and (II.3.18) continue to hold in Wm,q(Ω). For instance,
to prove (II.3.17) from (i) and (ii), we notice that

‖u‖r,Ω ≤ ‖E(u)‖r,Rn ≤ c ‖E(u)‖m,q,Rn ≤ cC‖u‖m,q,Ω.

Results on the existence of an extension map can be proved in a more
or less complicated way, depending on the smoothness of the domain. In this
regard, we shall now state a very general result due to Stein (1970, Chapter VI,
Theorem 5; see also Triebel 1978, §§4.2.2, 4.2.3) on the existence of suitable
extension maps called universal or total in that they do not depend on the
order of differentiability and summability involved. Specifically, we have the
following theorem whose rather deep proof will be omitted.

Theorem II.3.3 Let Ω be locally Lipschitz.6 Then, there exists an (m, q)-
extension map for Ω, for all q ∈ [1,∞] and m ≥ 0.

On the other hand, results similar to those of Theorem II.3.3 can be proved
in an elementary way, provided the domain is of class Cm (see, e.g., Lions 1962,
Théorème 4.1, and Friedman 1969, Lemma 5.2). This is because, for such a
domain, the boundary can be locally straightened by means of the smooth
transformation:

yi = xi if 1 ≤ i ≤ n− 1, yn = xn − ζ(x1, . . . , xn−1).

The extension problem is then reduced to the same problem in Rn
+, for which

a simple solution is available, as shown by the following exercise.

Exercise II.3.10 For x ∈ R
n, we put x′ = (x1, . . . , xn−1). Let u ∈ C∞

0 (R
n
+) and

set

Eu(x) =

8
>><
>>:

u(x) if xn ≥ 0

m+1X

p=1

λpu(x
′,−pxn) if xn < 0

where
m+1X

p=1

λp(−p)` = 1, ` = 0, 1, . . . ,m.

Show that Eu ∈ Cm
0 (Rn) and that, moreover, for all q ∈ [1,∞] and all |β| ∈ [0,m]

‖DβEu‖q,Rn ≤ C‖Dβu‖q,Rn
+
.

Therefore, E can be extended to an operator E : Wm,q (Rn
+) → Wm,q(Rn), which is

an (m, q)-extension map for R
n
+.

6 Actually, Stein’s theorem applies to much more general domains (with bounded
or unbounded boundary) and precisely to those which are “minimally smooth,”
see Stein (1970, Chapter VI, §3.3).
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Exercise II.3.11 Let u ∈Wm,q
0 (Ω) and set

eu(x) =

8
<
:
u(x) if x ∈ Ω

0 if x ∈ Ωc.

Show that eu ∈Wm,q (Rn).

On the strength of Theorem II.3.3 we thus have

Theorem II.3.4 Suppose Ω locally Lipschitz. Then all conclusions in The-
orem II.3.2 remain valid if we replace Wm,q

0 (Ω) with Wm,q(Ω) for some con-
stants ci = ci(m, q, r, n, Ω), i = 1, 2, 3.

We wish to remark that, by using alternative methods due to Gagliardo
(1958, 1959), one can show the results in Theorem II.3.4 under more general
assumptions on Ω (see also Miranda 1978, §58).

Exercise II.3.12 Assume Ω locally Lipschitz. Use Theorem II.3.3 to show that,
under the assumptions on r, q, and n stated in Lemma II.3.2 the following inequality
holds for u ∈W 1,q(Ω):

‖u‖r ≤ c ‖u‖1−λ
q ‖u‖λ

1,q , (II.3.19)

where c is independent of u and λ = n(r − q)/rq.

Exercise II.3.13 Let u : Ω → R
n and let e be a given unit vector. For h 6= 0 the

quantity

∆hu(x) ≡ u(x+ he) − u(x)

h

is called the difference quotient of u along e. (a) Show that, if Ω′ is any domain
with Ω′ ⊂ Ω, the following properties hold for all u ∈W 1,q (Ω):

(i) ∆hu(x) ∈ Lq(Ω′), for all h < dist(Ω′, Ω) ;
(ii) ‖∆hu(x)‖q,Ω′ ≤ ‖∇u‖q,Ω ;
(iii) If Ω ≡ R

n
+ and e is orthogonal to en:

‖∆hu(x)‖q,Rn
+
≤ ‖∇u‖q,Rn

+
.

Hint: For a smooth function u and e parallel to ei (say) it holds

∆hu(x) =
1

h

Z h

0

Diu(x1, . . . , xi + η, . . . , xn)dη.

(b) Conversely, assume u ∈ Lq(Ω) and that for all Ω′ with Ω′ ⊂ Ω and for all
h < dist(Ω′, Ω) it holds ‖∆hu‖q,Ω′ ≤ C, with a constant C independent of Ω′ and
h. Then if e is parallel to ei, show that

(iv) Diu exists;
(v) ‖Diu‖q,Ω ≤ C.
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We wish to end this section by recalling a useful characterization of the
normed dual space (Wm,q

0 (Ω))
′

of the space Wm,q
0 (Ω). An analogous result

can be given for Wm,q(Ω). A functional ` on Wm,q
0 (Ω) belongs to (Wm,q

0 (Ω))
′

if and only if
‖`‖(Wm,q

0 (Ω))
′ ≡ sup

‖u‖m,q=1

|`(u)| <∞.

Let us consider in (Wm,q
0 (Ω))

′
the subspace constituted by functionals F of

the form
F(u) = (f, u) , f ∈ Lq′

(Ω). (II.3.20)

Clearly, F ∈ (Wm,q
0 (Ω))

′
. Setting

‖f‖−m,q′ = sup
u∈Wm,q

0 (Ω);‖u‖m,q=1

|F(u)|, (II.3.21)

we easily recognize that (II.3.21) is a norm in Lq′
(Ω), and that the following

inequalities hold:
‖f‖−m,q′ ≤ ‖f‖q′

|F(u)| ≤ ‖f‖−m,q′‖u‖m,q.
(II.3.22)

Let us denote by W−m,q′

0 (Ω) the negative Sobolev space of order (−m, q′),
obtained by completing Lq′

(Ω) in the norm (II.3.21). The following result

due to Lax (1955, §2) ensures that for q ∈ (1,∞) the two spaces W−m,q′

0 (Ω)
and (Wm,q

0 (Ω))
′
can be identified (see also Miranda 1978, §57).

Theorem II.3.5 The spaces W−m,q′

0 (Ω) and (Wm,q
0 (Ω))

′
, 1 < q < ∞, are

isomorphic.

Throughout this book the value of a functional F ∈ W−m,q′

0 (Ω) at u ∈
Wm,q

0 (Ω) will be denoted by

〈F , u〉 (duality pairing).

If, in particular, F ∈ Lq′
(Ω), we have 〈F , u〉 = (F , u).

Remark II.3.3 A characterization completely similar to that of Theorem
II.3.5 can be given also for the space (Wm,q(Ω))′. Precisely, denoting by
W−m,q′

(Ω) the completion of Lq′
(Ω) in the norm

‖f‖∗−m,q′ = sup
u∈Wm,q(Ω);‖u‖m,q=1

|F(u)| ,

with F(u) defined in (II.3.20), one shows that W−m,q′
(Ω) and (Wm,q(Ω))

′
,

1 < q <∞, are isomorphic; see Miranda loc. cit. Notice that, obviously,

‖f‖−m,q′ ≤ ‖f‖∗−m,q′ .

�
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II.4 Boundary Inequalities and the Trace of Functions of
Wm,q

As a next problem, we wish to investigate if, analogously to what happens
for smooth functions, it is possible to ascribe a value at the boundary (the
trace) to functions in Wm,q(Ω). If Ω is sufficiently regular, the considerations
developed in the preceding section assure that this is certainly true if mq > n,
since, in such a case, every function from Wm,q(Ω) can be redefined on a
set of zero measure in such a way that it becomes (at least) continuous up to
the boundary. However, if mq ≤ n we can nevertheless prove some inequalities
relatingWm,q-norms of a smooth function with Lr-norms of the same function
at the boundary, which will allow us to define, in a suitable sense, the trace
of a function belonging to any Sobolev space of order (m, q), m ≥ 1. To this
end, given a sufficiently smooth domain with a bounded boundary (locally
Lipschitz, say) we denote by Lq(∂Ω), 1 ≤ q ≤ ∞ the space of (equivalence
classes of) real functions u defined on ∂Ω and such that

‖u‖q,∂Ω ≡
(∫

∂Ω

|u|qdσ
)1/q

<∞, 1 ≤ q <∞,

‖u‖∞,∂Ω ≡ ess sup
∂Ω

|u| <∞, q = ∞,

where σ denotes the Lebesgue (n−1)-dimensional measure.1 It can be proved
that the space Lq(∂Ω) enjoys all the relevant functional properties of the
spaces Lq(Ω). In particular, it is a Banach space with respect to the norm
‖ · ‖q,∂Ω, 1 ≤ q ≤ ∞, which is separable for 1 ≤ q < ∞ and reflexive for
1 < q <∞ (see Miranda 1978, §60).

In order to accomplish our objective, we need some preliminary consider-
ations and results that we shall next describe.

We shall often use the classical Gauss divergence theorem for smooth vec-
tor functions. It is well known that this theorem certainly holds if the domain
is (piecewise) of class C1. However, we need to consider more general sit-
uations and, in this respect, we quote the following result of Nečas (1967,
Chapitre 2, Lemme 4.2 and Chapitre 3, Théorème 1.1).

Lemma II.4.1 Let Ω be a bounded, locally Lipschitz domain in Rn. Then
the unit outer normal n exists almost everywhere on ∂Ω (see Lemma II.1.2)
and the following identity holds

∫

Ω

∇ · u =

∫

∂Ω

u ·n,

for all vector fields u with components in C1(Ω).

1 As usual, if no confusion arises, the infinitesimal surface element dσ in the integral
will be omitted.
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A generalization of this result to functions from W 1,q(Ω) will be considered
in Exercise II.4.3.

We are now in a position to perform a study on the traces of functions
from Wm,q. Let Ω′ be a locally Lipschitz, star-shaped domain (with respect to
the origin) and let u be an arbitrary function from C∞

0 (Ω′). From the identity

|u|rDjxj = Dj(xj |u|r) − xjDj |u|r, r ∈ [1,∞)

and Lemma II.4.1 we easily deduce

∫

∂Ω′
x ·n|u|r ≤ n‖u‖r

r,Ω′ + rδ(Ω′)

∫

∂Ω′
|u|r−1|∇u|. (II.4.1)

Using the Hölder inequality in the last integral in (II.4.1) and noting that

ess inf
x∈∂Ω′

(x · n(x)) ≡ c > 0

(see Exercise II.1.4), we obtain

‖u‖r
r,∂Ω′ ≤ (n/c)‖u‖r

r,Ω′ + (rδ(Ω′)/c)‖u‖r−1
q′(r−1),Ω′‖∇u‖q,Ω′. (II.4.2)

We now choose r ∈ [q, (n−1)q/(n−q)], if q < n, and arbitrary r ≥ q, if q ≥ n.
Observing that r ≤ q′(r − 1), in the light of Exercise II.3.12 (see (II.3.19)),
inequality (II.4.2) then furnishes for all u ∈ C∞

0 (Ω′)

‖u‖r,∂Ω′ ≤ C
(
‖u‖r(1−λ)

q,Ω′ ‖u‖rλ
1,q,Ω′ + ‖u‖(r−1)(1−λ)

q,Ω′ ‖u‖1+λ(r−1)
1,q,Ω′

)1/r

≤ 21/rC
(
‖u‖1−λ

q,Ω′‖u‖λ
1,q,Ω′ + ‖u‖(1−1

r )(1−λ)
q,Ω′ ‖u‖

1
r +λ(1− 1

r )
1,q,Ω′

) (II.4.3)

where λ = n(r − q)/q(r − 1), C = C(n, r, q, Ω′), and where we used (II.3.3).
Employing Lemma II.1.3 and Lemma II.1.4, we can now establish (II.4.3)

for an arbitrary locally Lipschitz domain Ω. In fact, let G = {G1, . . . , GN}
be the open covering of ∂Ω constructed in Lemma II.1.3 and let {ψi} be a
partition of unity in ∂Ω subordinate to G. SettingΩi = Ω∩Gi, for u ∈ C∞

0 (Ω),
we have

‖u‖r,∂Ω = ‖
N∑

i=1

ψiu‖r,∂Ω ≤
N∑

i=1

‖u‖r,∂Ω∩Gi ≤
N∑

i=1

‖u‖r,∂Ωi ,

and therefore, using in this inequality (II.4.3) with Ω′ ≡ Ωi, we deduce

‖u‖r,∂Ω ≤ 21/rNC
(
‖u‖(1−λ)

q,Ω ‖u‖λ
1,q,Ω + ‖u‖(1−1

r )(1−λ)

q,Ω ‖u‖
1
r +λ(1− 1

r )

1,q,Ω

)
.

(II.4.4)
Let now Ω be locally Lipschitz, and denote by γ the linear map which to

every function f ∈ C∞
0 (Ω) associates its value at the boundary γ(f) = f |∂Ω,
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and let u ∈ W 1,q(Ω). By Theorem II.3.1, there is a sequence {fk} ⊂ C∞
0 (Ω)

converging to u in W 1,q(Ω). On the other hand, by (II.4.4) this sequence will
also converge in Lr(∂Ω), for suitable r, to a function ũ ∈ Lr(∂Ω). Since, as can
be easily shown, ũ does not depend on the particular sequence, the map γ can
be uniquely extended, by continuity, to a map fromW 1,q(Ω) into Lr(∂Ω) that
ascribes, in a well-defined sense, to every function from W 1,q(Ω) a function
on the boundary which, for smooth functions u, reduces to the usual trace
u|∂Ω. This result can be fairly generalized to spaces Wm,q with m > 1. In fact,
from Theorem II.3.4 and an iterative argument based on (II.4.4), we obtain
the following result whose proof is left to the reader as an exercise.

Theorem II.4.1 Let Ω be locally Lipschitz. Assume

r ∈ [q, q(n− 1)/(n−mq)] , if mq < n,

r ∈ [q,∞) , if mq ≥ n.

Then there exists a unique, continuous linear map γ from Wm,q(Ω), 1 ≤ q <
∞ , m ≥ 1, into Lr(∂Ω) such that for all u ∈ C∞

0 (Ω) it is γ(u) = u |∂Ω .
Furthermore, for m = 1 the following inequality holds

‖γ(u)‖r,∂Ω ≤ C
(
‖u‖(1−λ)

q,Ω ‖u‖λ
1,q,Ω + ‖u‖(1−1

r )(1−λ)

q,Ω ‖u‖
1
r +λ(1− 1

r )

1,q,Ω

)
, (II.4.5)

where C = C(n, r, q, Ω) and λ = n(r − q)/q(r − 1).

Exercise II.4.1 Let Ω be locally Lipschitz. Starting from (II.4.5), show that for
any ε > 0, there exists C = C(n, r, q,Ω, ε) > 0 such that

‖γ(u)‖r,∂Ω ≤ C‖u‖q,Ω + ε‖∇u‖q,Ω ,

with the exponents q and r subject to the restrictions stated in Theorem II.4.1.

Hint: Use (II.2.5).

Theorem II.4.1 allows us to define, in a natural way, higher-order traces.
Actually, since for u ∈ Wm,q(Ω) we have Dαu ∈ Wm−`,q(Ω) for 0 ≤ |α| ≤
` < m, the trace of Dαu is well defined and, moreover, it belongs to Lr(∂Ω)
for suitable exponents r ≥ 1. In particular, if Ω is sufficiently regular, we can
give a precise meaning to the `th normal derivative on ∂Ω:

∂`u

∂n`
≡
∑

|α|=`

nαDαu, nα = nα1
1 nα2

2 . . . nαn
n ,

of every function u ∈Wm,q(Ω),m > ` ≥ 0. Thus, noticing that nα ∈ L∞(∂Ω),
we can construct a linear map

Γ(m) : Wm,q(Ω) → [Lr(∂Ω)]
m

(II.4.6)

with
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Γ(m)(u) =

(
u ≡ γ0(u),

∂u

∂n
≡ γ1(u), . . . ,

∂m−1u

∂nm−1
≡ γm−1(u)

)
. (II.4.7)

Obviously, if u ∈ Wm,q
0 (Ω), Γm(u) ≡ 0 a.e. on ∂Ω. The converse result also

holds and we have (see Nečas 1967, Chapitre 2, Théorème 4.10, 4.12, 4.13).

Theorem II.4.2 Let Ω be locally Lipschitz if m = 1, 2 and of class Cm,1 if
m ≥ 3. Assume

u ∈Wm,q(Ω), 1 ≤ q <∞, m ≥ 1,

with Γm(u) ≡ 0 a.e on ∂Ω. Then u ∈Wm,q
0 (Ω).

A more complicated study, which is nonetheless fundamental for solving
nonhomogeneous boundary-value problems, is that of determining to which
Banach space B ⊆ [Lr(∂Ω)]

m
a function w ≡ (w0, w1, . . . , wm−1) must belong

in order to be considered the trace, via the mapping Γ(m), of a function in
Wm,q(Ω), i.e., γ`(u) = w`, for some u ∈Wm,q(Ω), for all ` = 0, 1, . . . , m− 1.
A counterexample due to J. Hadamard shows that B is, in general, strictly
contained in [Lr(∂Ω)]

m
, whatever r ≥ 1 (Sobolev 1963a, Chapter 2, §5; De

Vito 1958). Here we shall only briefly describe the answer to the problem,
referring the reader to Gagliardo (1957) and Nečas (1967, Chapitre 2, §§4,5)
for a fully detailed description of it. Let us first consider the case m = 1.
Denote by W 1−1/q,q(∂Ω) the subspace of Lq(∂Ω) constituted by functions u
for which the following functional is finite:

‖u‖1−1/q,q(∂Ω) ≡ ‖u‖q,∂Ω + 〈〈u〉〉1−1/q,q, (II.4.8)

where

〈〈u〉〉1−1/q,q ≡
(∫

∂Ω

∫

∂Ω

|u(y) − u(y′)|q
|y− y′|n−2+q

dσydσy′

)1/q

. (II.4.9)

It can be proved (Miranda 1978, §61) that W 1−1/q,q(∂Ω) is a dense subset
of Lq(∂Ω) and that it is complete in the norm ‖u‖1−1/q,q(∂Ω). Furthermore,
it is separable for q ∈ [1,∞) and reflexive for q ∈ (1,∞), and, for Ω smooth
enough, the class of smooth functions on ∂Ω is dense in W 1−1/q,q(∂Ω). We
have the following theorem of Gagliardo (1957), which characterizes the trace
operator γ.

Theorem II.4.3 Let Ω be locally Lipschitz and let q ∈ (1,∞). If u ∈
W 1,q(Ω), then γ(u) ∈W 1−1/q,q(∂Ω) and

‖γ(u)‖1−1/q,q(∂Ω) ≤ c1‖u‖1,q,Ω. (II.4.10)

Conversely, given w ∈W 1−1/q,q(∂Ω), there exists u ∈W 1,q(Ω) with γ(u) = w
such that

‖u‖1,q,Ω ≤ c2‖γ(u)‖1−1/q,q(∂Ω). (II.4.11)

The constants ci, i = 1, 2, depend only on n, q, and Ω.
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Since, by Theorem II.4.2, we have, for Ω locally Lipschitz, u1, u2 ∈
W 1,q(Ω) with γ(u1) = γ(u2) then u1 − u2 ∈ W 1,q

0 (Ω), Gagliardo’s theorem
can be equivalently stated by saying: The trace operator γ is a linear bounded

bijective operator from the quotient space W 1,q(Ω)
/
W 1,q

0 (Ω) onto the space

W 1−1/q,q(∂Ω).

Remark II.4.1 Gagliardo proved this result by making a clever use of two
elementary inequalities due to G. H. Hardy and C. B. Morrey, respectively.
Though the proof of Theorem II.4.3 is well beyond the scope of this mono-
graph, we may wish nevertheless to sketch a demonstration of (II.4.10) in the
case when Ω is the square

S =
{
(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1

}
.2

We begin to notice that, in view of Theorem II.4.1, it suffices to show that
the double surface integral in (II.4.7) is bounded above by the norm of u in
W 1,q(S), i.e.,

∫ 1

0

∫ 1

0

∣∣∣∣
u(0, y) − u(0, y′)

y − y

′∣∣∣∣
q

dy dy′+

∫ 1

0

∫ 1

0

∣∣∣∣
u(1, y) − u(1, y′)

y − y′

∣∣∣∣
q

dy dy′

+

∫ 1

0

∫ 1

0

∣∣∣∣
u(x, 0)− u(x′, 0)

x− x′

∣∣∣∣
q

dxdx′+

∫ 1

0

∫ 1

0

∣∣∣∣
u(x, 1)− u(x′, 1)

x− x′

∣∣∣∣
q

dx dx′

≤ C ‖u‖q
1,q,S

(II.4.12)
with a constant C independent of u. By Theorem II.3.1, we can assume u ∈
C∞

0 (S). Consider the first integral on the left-hand side of (II.4.11) and denote
it by I. Making the change of variables

ξ = x+ y, η = y − x,

(a rotation of an angle π/4) we may write

I =

∫ 1

0

∫ 1

0

∣∣∣∣
U(η, η) − U(η, η′)

η − η′

∣∣∣∣
q

dηdη′,

where

U(ξ, η) ≡ u

(
ξ − η

2
,
ξ + η

2

)
.

Setting
φ(η) = U(η, η)

2 In fact, following Gagliardo, it is not difficult to prove that the case of a general
locally Lipschitz domain can be reduced to the present one.
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for 0 ≤ η′ < η ≤ 1 we have

|φ(η) − φ(η′)|
η − η′

≤ 1

η − η′

∫ η

η′

∣∣∣∣
∂U

∂λ
(λ, η′)

∣∣∣∣ dλ+
1

η − η′

∫ η

η′

∣∣∣∣
∂U

∂µ
(η, µ)

∣∣∣∣ dµ

and thus, by (II.3.3),

f(η, η′) ≡
∣∣∣∣
φ(η) − φ(η′)

η − η′

∣∣∣∣
q

≤ 2q−1

{[
1

|η − η′|

∫ η

η′

∣∣∣∣
∂U

∂λ
(λ, η′)

∣∣∣∣ dλ
]q

+

[
1

|η − η′|

∫ η

η′

∣∣∣∣
∂U

∂µ
(η, µ)

∣∣∣∣ dµ
]q}

.

(II.4.13)

We now recall the following inequalities due to G.H. Hardy (Hardy, Littlewood
and Polya 1934, p. 240):

∫ b

a

dx

∣∣∣∣
1

x− a

∫ x

a

f(t)dt

∣∣∣∣
q

≤
(

q

q − 1

)q ∫ b

a

|f(t)|qdt, x > a, q > 1

∫ b

a

dx

∣∣∣∣∣
1

b− x

∫ b

x

f(t)dt

∣∣∣∣∣

q

≤
(

q

q − 1

)q ∫ b

a

|f(t)|qdt, x < b, q > 1.

(II.4.14)

Integrating (II.4.13) first in η ∈ (η′, 1] and then in η′ ∈ [0, 1] and using (II.4.14)
we obtain

∫ 1

0

(∫ 1

η′
f(η, η′)dη

)
dη′ ≤ 2q−1

(
q

q − 1

)q [∫ 1

0

dη′
∫ 1

η′

∣∣∣∣
∂U

∂λ
(λ, η′)

∣∣∣∣
q

dλ

+

∫ 1

0

dη

∫ η

0

∣∣∣∣
∂U

∂µ
(η, µ)

∣∣∣∣
q

dµ

]

≤ c‖∇u‖q
q,S,

(II.4.15)
with c a suitable constant. Interchanging the roles of η and η′ in (II.4.15) and
noticing that f(η, η′) = f(η′, η) one also has

∫ 1

0

(∫ 1

η

f(η, η′)dη′
)
dη ≤ c‖∇u‖q

q,S. (II.4.16)

Adding (II.4.15) and (II.4.16) we find

I ≤ 2c‖∇u‖q
q,S.

Since the other integrals on the left-hand side of (II.4.12) can be analogously
increased, the proof of (II.4.12) is accomplished. �

Exercise II.4.2 According to the method just described, the case q = 1 of Theorem

II.4.3 is excluded because Hardy’s inequalities (II.4.14) hold if q > 1. Show, by means
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of a counterexample, that (II.4.14) does not hold when q = 1. Hint (Gagliardo 1957):

Take f(t) = (t − a)−1(log(t − a))−2. (For the characterization of the trace when

m = q = 1, see Gagliardo (1957, Teorema 1.II)).

The extension of Theorem II.4.3 to the space Wm,q(Ω), m ≥ 2, is for-
mally analogous, provided we introduce a suitable generalization of the space
W 1−1/q,q(∂Ω). To this end, assume Ω of class Cm−1,1 and let {Bk} and
{ζk}, k = 1, 2, . . . , s, be a family of open balls centered at xk ∈ ∂Ω with
∂Ω ⊂ Bk, and of functions of class Cm−1,1(Dk), respectively, defining the
Cm−1,1 − regularity of ∂Ω in the sense of Definition II.1.1. Assuming that

x(k)
n = ζk(x

(k)
1 , . . . , x

(k)
n−1), (x

(k)
1 , . . . , x

(k)
n−1) ∈ Dk

is the representation of ∂Ω ∩Bk, for a function u on ∂Ω we set

uk = u(x
(k)
1 , . . . , x

(k)
n−1, ζk(x

(k)
1 , . . . , x

(k)
n−1))

and define

‖u‖m−1/q,q(∂Ω) ≡
s∑

k=1

‖uk‖m−1/q,q,Dk
(II.4.17)

where

‖uk‖m−1/q,q,Dk
≡

∑

0≤|α|≤m−1

‖Dαuk‖q,Dk + 〈〈uk〉〉m−1/q,q

〈〈uk〉〉m−1/q,q ≡
∑

|α|=m−1

(∫

Dk

∫

Dk

|Dαu(y) −Dαu(y′)|q
|y − y′|n−2+q dydy′

)1/q

.

(II.4.18)
We next denote by Wm−1/q,q(∂Ω) the linear space of functions u for which
the functional defined by (II.4.17)–(II.4.18) is finite. It can be shown that
the definition of Wm−1/q,q(∂Ω) does not depend on the particular choice
of the local representation {Bk}, {ζk} of the boundary. In fact, if {B′

k′},
{ζ′k′} is another such a representation and ‖u‖′m−1/q,q(∂Ω) is the corresponding
functional associated to u, there exist constants c1, c2 > 0 such that

‖u‖m−1/q,q(∂Ω) ≤ c1‖u‖′m−1/q,q(∂Ω) ≤ c2‖u‖m−1/q,q(∂Ω)

(Nečas 1967, Chapitre 3, Lemme 1.1). As in the case of W 1−1/q,q(∂Ω), one
shows that the space Wm−1/q,q(∂Ω) is a dense subset of Lq(∂Ω), which is
complete in the norm (II.4.17)–(II.4.17), separable for q ∈ [1,∞) and reflexive
for q ∈ (1,∞) (Nečas 1967, Chapitre 2, Proposition 3.1).

Set

Wm,q(∂Ω) ≡Wm−1/q,q(∂Ω) ×Wm−1−1/q,q(∂Ω) × . . .×W 1−1/q,q(∂Ω).

We then have the following characterization of the trace operator Γ(m) defined
in (II.4.6)–(II.4.7) (Nečas 1967, Chapitre 2, Théorème 5.5, 5.8).
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Theorem II.4.4 Let Ω be of class Cm−1,1, m ≥ 2. If

u ∈Wm,q(Ω), 1 < q <∞,

then
Γ(m)(u) ∈ Wm,q(∂Ω)

and for all ` = 0, 1, . . . , m− 1 it is

‖γ`(u)‖m−`−1/q,q(∂Ω) ≤ c1‖u‖m,q,Ω. (II.4.19)

Conversely, if Ω is of class Cm,1, given

w ∈ Wm,q(∂Ω)

there exists u ∈Wm,q(Ω) with

Γ(m)(u) = w

and the following inequality holds

‖u‖m,q,Ω ≤ c2

m−1∑

`=0

‖γ`(u)‖m−`−1/q,q(∂Ω). (II.4.20)

The constants ci, i = 1, 2, depend only on n,m, q, and Ω.

As in the case of the operator γ, the operator Γ(m) can also be charac-
terized, in view of Theorem II.4.2 and Theorem II.4.4, as a bounded linear
bijection of Wm,q(Ω) /Wm,q

0 (Ω) onto Wm,q(∂Ω) (topologized in the obvious
way).

Remark II.4.2 If Ω is not globally smooth but has a smooth boundary
portion σ, we can still define the trace on σ of functions from Wm,q(Ω) and
the space Wm,q(σ). In particular, inequality (II.4.19) continues to hold with
σ in place of ∂Ω (see Nečas, loc. cit.). �

Remark II.4.3 Problems of trace on the plane {xn = 0} for functions de-
fined in Rn−1 will be considered in Section II.10. �

Exercise II.4.3 (Nečas 1967, Chapitre 3, Théorème 1.1). Let Ω be bounded and
locally Lipschitz. Show the following Gauss identity:

Z

Ω

Φ∇ · u =

Z

∂Ω

Φu · n −
Z

Ω

u · ∇Φ (II.4.21)

for all vectors u with components in W 1,q (Ω) and scalars Φ from W 1,r(Ω) where q
and r satisfy

(i) q−1 + r−1 ≤ (n+ 1)/n if 1 ≤ q < n, 1 ≤ r < n;
(ii) r > 1 if q ≥ n;
(iii) q > 1 if r ≥ n;

Hint: Use Lemma II.4.1 and Theorem II.3.3 and Theorem II.4.1.

Remark II.4.4 An extension of (II.4.21) to functions u with less regular-
ity than that required in Exercise II.4.3 will be given in Section III.2, see
(III.2.14). �
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II.5 Further Inequalities and Compactness Criteria in
Wm,q

We begin to prove some inequalities relating the Lq-norm of a function with
that of its first derivatives (Poincaré 1894, §III, and Friedrichs 1933). Through-
out this section we shall denote by Ld a layer of width d > 0, namely

Ld = {x ∈ Rn : −d/2 < xn < d/2} .

Theorem II.5.1 Assume Ω ⊂ Ld, for some d > 0. Then, for all u ∈ W 1,q
0 (Ω),

1 ≤ q ≤ ∞,
‖u‖q ≤ (d/2)‖∇u‖q. (II.5.1)

Proof. It is enough to show the theorem for u ∈ C∞
0 (Ω). For such functions

one has

|u(x1, . . . , xn)| =

∣∣∣∣∣

∫ xn

−d/2

∂u(x1, . . . , ξ)

∂ξ
dξ

∣∣∣∣∣ =

∣∣∣∣∣

∫ d/2

xn

∂u(x1, . . . , ξ)

∂ξ
dξ

∣∣∣∣∣ ,

which implies

|u(x)| ≤ (1/2)

∫ d/2

−d/2

|∇u| dxn . (II.5.2)

From this relation we at once recover (II.5.1) for q = ∞. If q ∈ [1,∞), em-
ploying the Hölder inequality in the right-hand side of (II.5.2) yields

|u(x)|q ≤ (dq−1/2q)

∫ d/2

−d/2

|∇u|qdxn

which, after integrating over Ld, proves (II.5.1). ut

Exercise II.5.1 Inequality (II.5.1) fails, in general, if Ω is not contained in some
layer Ld. Suppose, for instance, Ω ≡ R

n and consider the sequence

um = exp[−|x|/(m+ 1)], m ∈ N.

Show that
‖um‖q

‖∇um‖q
=
m+ 1

q
.

Modify this example to prove the invalidity of (II.5.1) for Ω an arbitrary exterior

domain or a half-space.

The special case q = 2 in (II.5.1) plays an important role in several applica-
tions. In particular, it is of great interest in uniqueness and stability questions
to determine the smallest constant µ such that
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‖u‖2
2 ≤ µ‖∇u‖2

2. (II.5.3)

The constant µ (sometimes called the Poincaré constant) depends on the
domain Ω, and when Ω is bounded one easily shows that µ = 1/λ1, where λ1

is the smallest eigenvalue of the problem

−∆u = λu in Ω , u = 0 at ∂Ω ; (II.5.4)

see Sobolev 1963a, Chapter II, §16. An estimate of λ1 comes from (II.5.1) and
one has

λ1 ≥ 4/[δ(Ω)]2.

However, a better estimate can be obtained as a consequence of the following
simple argument due to E. Picard (Picone 1946, §160).1 In fact, assume as
before Ω ⊂ Ld for some d > 0 and consider the function

U(x) =
u(x)

sin[π(xn + d/2)/d]
, u ∈ C∞

0 (Ω).

Since U(x) is bounded in Ld and vanishes at −d/2, d/2, integrating by parts
we find

0 ≤
∫ d/2

−d/2

{
∂u

∂xn
− π

d
u(x) cot

[
π(xn + d/2)

d

]}2

dxn =

∫ d/2

−d/2

(
∂u

∂xn

)2

dxn

−π
2

d2

∫ d/2

−d/2

u2

{
sin−2

[
π(xn + d/2)

d

]
− cot2

[
π(xn + d/2)

d

]}
dxn .

Hence ∫ d/2

−d/2

u2dxn ≤ (d/π)2
∫ d/2

−d/2

(
∂u

∂xn

)2

dxn,

which implies
‖u‖2 ≤ (d/π)‖∇u‖2.

Therefore, one deduces
µ ≤ d2/π2

and, if Ω is bounded,
µ ≤ [δ(Ω)/π]2.

Notice that these estimates are sharp in the sense that when n = 1 and
Ω = Ld we have from (II.5.4) µ−1 = λ1 = [π/δ(Ω)]2 = (π/d)2.

Generalizations of (II.5.1) and (II.5.3) are considered in the following ex-
ercises.

1 This proof was brought to my attention by Professor Luigi Pepe.
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Exercise II.5.2 Let Ω ⊂ {x ∈ R
n : −d/2 < xi < d/2, i = 1, . . . , n}. Use Picard’s

argument to show the following estimate for the Poincaré constant µ:

µ ≤ d2/nπ2.

Exercise II.5.3 Let Ω ⊂ Ld, for some d > 0. Show that

‖∇u‖2 ≤ (d/π)‖∆u‖2

for all u ∈ W 1,2
0 (Ω) ∩W 2,2(Ω). Thus, in particular,

‖u‖2 ≤ (d/π)2‖∆u‖2.

Hint: Consider the identity: (u,∆u) = −‖∇u‖2.

Exercise II.5.4 Let Ω be of finite measure and let u ∈W 1,q
0 (Ω), 1 ≤ q < ∞. Show

the inequality
‖u‖q ≤ β|Ω|1/n‖∇u‖q (II.5.5)

where

β =

8
>><
>>:

q(n− 1)
2(n− q)

√
n

if q < n

q
2
√
n

if q ≥ n .

Hint: Use (II.3.5) and the inequality

‖u‖q ≤ |Ω|(1/q)−(1/r)‖u‖r , r > q.

Exercise II.5.5 Let Ω be bounded and let u ∈W 1,q
0 (Ω), q > n. Show that, for all

q1 ∈ (n, q), the following inequality holds

‖u‖C ≤ c ‖u‖1−q/q1
q ‖∇u‖q/q1

q ,

with c = c(n, q, q1, Ω). Hint: From (II.3.18) and (II.5.1) we find ‖u‖C ≤ c ‖∇u‖q .

Exercise II.5.6 Let Ω be bounded and C1-smooth, and let u be a vector function
with components in W 1,q (Ω), 1 ≤ q < ∞, and u · n = 0 at ∂Ω (n being the outer
normal). Show the inequality

‖u‖q ≤ C ‖∇u‖q, C ≤ δ(Ω)(|q − 2| + n+ 1).

Hint (due to L.H. Payne): Integrate the identity:

nX

i,j=1

`
Di[uixjuj |u|q−2] − (Diui)xjuj |u|q−2 − |u|q − uixjDi[uj |u|q−2]

´
= 0.

An inequality of the type (II.5.1) continues to hold even though u is not
zero at the boundary, provided one replaces u with u− uΩ. We shall begin to
prove the following result which traces back to Poincaré (1894).
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Lemma II.5.1 For a > 0 let

C = {x ∈ Rn : 0 < xi < a} . (II.5.6)

Then, for all u ∈W 1,q(C), 1 ≤ q <∞,

‖u− uC‖q ≤ na‖∇u‖q. (II.5.7)

Proof. For simplicity, we shall give the proof in the case n = 3. Clearly, in
view of Theorem II.3.1, it is enough to show (II.5.6) for u ∈ C1(Ω). Consider
the identity

u(x1, x2, x3) − u(y1, y2, y3) =

∫ x1

y1

∂u

∂ξ
(ξ, x2, x3)dξ +

∫ x2

y2

∂u

∂η
(y1 , η, x3)dη

+

∫ x3

y3

∂u

∂ζ
(y1, y2, ζ)dζ.

Integrating over the y-variables and raising to the qth power, we deduce

|u(x1, x2, x3) − uC |q ≤ |C|−q

[
a3

∫ a

0

|∇u(ξ, x2, x3)|dξ

+a2

∫ a

0

∫ a

0

|∇u(y1, η, x3)|dy1dη +a

∫

C

|∇u|dC
]q
.

Employing in this relation the inequality (II.3.3) along with the Hölder in-
equality and integrating over the x-variables we obtain

∫

C

|u− uC |q ≤ 3qaq

∫

C

|∇u|q,

which completes the proof. ut

Remark II.5.1 An extension of (II.5.7) to arbitrary locally Lipschitz do-
mains will be given in Theorem II.5.4. Here, however, we wish to observe
that, unlike Theorem II.5.1, some regularity assumptions on Ω are strictly
necessary for inequalities of type (II.5.7) to hold, as shown by means of coun-
terexample in Courant & Hilbert (1937, Kapitel VII, §8.2); see also Fraenkel
(1979, and §2 in particular). �

Let us now analyze some consequences of Lemma II.5.1. Suppose Ω is a
cube of side a and subdivide it into N equal cubes Ci, each having sides of
length a/N1/n. Applying (II.5.7) to each cube Ci and using the Minkowski
inequality and (II.3.3) one recovers
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‖u‖q
q,Ω ≤

N∑

i=1

2q−1

(
a

N1/n

)n(1−q) ∣∣∣∣
∫

Ci

udCi

∣∣∣∣
q

+
(2na)q

2N q/n
‖∇u‖q

q,Ω.

Therefore, introducing the N independent functions

ψi(x) = 2(q−1)/q

(
a

N1/n

)n(1−q)/q

χi(x),

with χi characteristic function of the cube Ci, from the previous inequality
one has the following result due to Friedrichs (1933).

Lemma II.5.2 Let C be the cube (II.5.6) and let

u ∈ W 1,q(C), 1 ≤ q <∞.

Then, given an arbitrary positive integer N , there exist N independent func-
tions ψi ∈ L∞(C) depending only on C and N such that

‖u‖q
q,C ≤

N∑

i=1

∣∣∣∣
∫

C

ψiu

∣∣∣∣
q

+
(2na)q

2N q/n
‖∇u‖q

q,C. (II.5.8)

Inequality (II.5.8) is very useful in proving compactness results, as we are
about to show. In fact, let Ω be bounded and let {um} ⊂W 1,q

0 (Ω), 1 ≤ q <∞,
be uniformly bounded in the norm ‖·‖1,q. Extending um by zero outsideΩ and
denoting again by um such an extension, we thus have that {um} is uniformly
bounded in W 1,q(C), for some cube C (see Exercise II.3.11), and therefore,
by Lemma II.5.2, Theorem II.2.4(ii) and Theorem II.3.2, it is not difficult to
show the existence of a subsequence {um′} that is Cauchy in Lq(C) and, as
a consequence, converges strongly in Lq(Ω). On the other hand, by Lemma
II.3.2 and by Exercise II.5.5, it follows that {um′} converges also in Lr(Ω), for
all r ∈ [1, nq/(n−q)), if q < n, for all r ∈ [1,∞) if q = n, while it converges in
C(Ω) if q > n. We have proved the following compact embedding result (see
Rellich 1930).

Theorem II.5.2 Assume Ω bounded, and let q ∈ [1,∞). Then

W 1,q
0 (Ω) ↪→↪→ Lr(Ω) ,

with arbitrary r ∈ [1, nq/(n− q)), if q < n, and arbitrary r ∈ [1,∞), if q = n.
Finally, if q > n, then W 1,q

0 (Ω) ↪→↪→ C(Ω)

In Theorem II.5.2, when q < n, the exponent q∗ = nq/(n− q) is excluded.
Actually one proves by means of counterexamples that the strong convergence
is, in general, ruled out in this case. For, in the ball B1 consider the sequence
of functions

um(x) =




m(n−q)/q(1 −m|x|) if |x| < 1/m

0 if |x| ≥ 1/m
m = 1, 2, . . .
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with q < n. One has

‖∇um‖q = C1, ‖um‖q∗ = C2,

with C1 and C2 independent of m. Since

lim
m→∞

um(x) = 0 a.e. in B1

it follows that no subsequence can converge strongly in Lq∗(B1).

Theorem II.5.2 admits the following counterpart in negative Sobolev
spaces.

Theorem II.5.3 Let Ω be bounded. Then Lq(Ω) ↪→↪→ W−1,q
0 (Ω), for any

1 < q < ∞. Precisely, if {um} ⊂ Lq(Ω) is uniformly bounded, there exists a
subsequence {um′} and u ∈ Lq(Ω) such that

lim
m′→∞

‖u− um′‖−1,q = 0 .

Proof. In view of inequality (II.5.1), we may endow W 1,q
0 (Ω) with the equiv-

alent norm ‖∇(·)‖q. We observe next that, by assumption and by Theorem
II.2.4(iii), there are u ∈ Lq(Ω) and a subsequence {um′} such that um′

w→ u.
Set Um′ = u− um′ . By Theorem II.3.5 and Theorem II.1.4, for each m′ ∈ N,

we can find wm′ ∈W 1,q′

0 (Ω) such that

‖Um′‖−1,q = |(Um′ , wm′)| , ‖∇wm′‖q′ = 1 . (II.5.9)

Then, by Theorem II.5.2 and Theorem II.1.3(ii), there exist a subsequence

{wm′′} and w ∈ W 1,q′

0 (Ω) such that wm′′ → w in Lq′
(Ω), and so (II.5.9)

delivers

‖Um′′‖−1,q ≤ |(Um′′ , w)|+‖Um′′‖q‖wm′′ −w‖q′ ≤ |(Um′′ , w)|+C ‖wm′′ −w‖q′ ,

which, in turn, gives the desired result since Um′′
w→ 0 in Lq(Ω) and wm′′ → w

in Lq′
(Ω). ut

Some generalizations of Theorem II.5.2 are proposed to the reader in the
following exercises.

Exercise II.5.7 Assume Ω bounded and let q ∈ [1,∞), m ≥ 1. Show that

Wm,q
0 (Ω) ↪→↪→ Lr(Ω)

with arbitrary r ∈ [1, nq/(n − mq)) if mq < n and all r ∈ [1,∞) if mq = n.

Finally, show that if mq > n, then Wm,q
0 (Ω) ↪→↪→ Ck(Ω), for all k ∈ N such that

0 ≤ k < 1 −mq/n.
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Exercise II.5.8 Prove that, when Ω is bounded and locally Lipschitz, Theorem

II.5.2 and Exercise II.5.7 continue to hold if Wm,q
0 (Ω) is replaced by Wm,q(Ω).

Hint: Use Theorem II.3.3 and (II.3.19).

We want now to obtain further inequalities as a consequence of the com-
pactness results just derived. The following theorem extends the Poincaré
inequality (II.5.7) to more general domains.

Theorem II.5.4 Let Ω be bounded and locally Lipschitz. Then, for all u ∈
W 1,q(Ω), 1 ≤ q <∞, we have

‖u− uΩ‖q ≤ c‖∇u‖q, (II.5.10)

where c = c(n, q, Ω).

Proof. To simplify notation, we omit the subscript Ω. If (II.5.10) were not
true, a sequence {um} ⊂W 1,q(Ω) would exist such that for all m ∈ N

um = 0, ‖um‖q = 1, ‖∇um‖q ≤ 1/m. (II.5.11)

Therefore, from (II.5.11)2,3 and Exercise II.5.8 there is a subsequence con-
verging in the norm of W 1,q(Ω) to some u ∈ W 1,q(Ω) which, by (II.5.11),
should have ∇u = 0, u = 0, namely, u ≡ 0 a.e. in Ω and ‖u‖q = 1. This gives
a contradiction that proves the theorem. ut

Theorem II.5.4 admits several interesting consequences, some of which are
left to the reader in the following exercises.

Exercise II.5.9 Let Ω be an arbitrary domain and let u ∈ W 1,1
loc (Ω). Show that, if

Du = 0, then there is u0 ∈ R such that u = u0 a.e. in Ω. Using this result, show

that, more generally, if u ∈Wm,1
loc (Ω) with Dαu = 0, |α| = m, then u = P a.e in Ω,

where P is a polynomial of degree ≤ m− 1. Hint: Use Lemma II.1.1.

Exercise II.5.10 Assume Ω bounded and locally Lipschitz and let u ∈ W 1,q(Ω).
If q ∈ [1, n), prove the following Poincaré-Sobolev inequality :

‖u− uΩ‖r ≤ c‖∇u‖q, (II.5.12)

where r = nq/(n−q) and c = c(n, q, Ω). Moreover, show that, if q > n, the following
inequality holds

‖u− uΩ‖C ≤ c1‖∇u‖q . (II.5.13)

Hint: Use Theorem II.5.4 and (II.3.16)1,3.

Exercise II.5.11 Let u ∈W 1,q (Br(x0)), q > n. Show that the following inequality
holds

max
x∈Br(x0)

|u(x)− u(x0)| ≤ c r1−n/q‖∇u‖q,Br(x0) ,

with c = c(n, q). Hint: Use (II.5.13) on the unit ball and then rescale the result for

a ball of radius r.
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Another consequence of Theorem II.5.4 furnishes an interesting generaliza-
tion of the Wirtinger inequality (Hardy, Littlewood, and Polya 1934, p. 185),
which we are going to show. Denote by ∇∗u the projection of ∇u on the unit
sphere Sn−1 in Rn, n ≥ 2. We have

|∇∗u|2 = r2

[
|∇u|2 −

∣∣∣∣
∂u

∂r

∣∣∣∣
2
]
, r = |x|. (II.5.14)

For a function f defined on Sn−1 we may write

‖f − f‖q
q,Sn−1 ≤ 2nn

2n − 1
‖f − f‖q

q,Ω, (II.5.15)

where

f = |Sn−1|−1

∫

Sn−1

fdSn−1 (II.5.16)

and Ω is the spherical shell of radii 1/2 and 1. Noting that

f = |Ω|−1

∫

Ω

f,

we may employ Theorem II.5.4 to obtain

‖f − f‖q
q,Ω ≤ cq‖∇f‖q

q,Ω = c1‖∇∗f‖q
q,Sn−1 .

Thus, combining (II.5.15) with the latter inequality, we deduce the desired
Wirtinger inequality:

‖f − f‖q,Sn−1 ≤ c2‖∇∗f‖q,Sn−1 , 1 ≤ q <∞, (II.5.17)

with f defined in (II.5.16), and c2 = c2(n, q).

Exercise II.5.12 (Finn and Gilbarg 1957). Show that, for q = 2, the smallest

constant c2 for which (II.5.17) holds is c2 = (n−1)−1/2. Hint: Consider the associated

eigenvalue problem ∆∗u+ λu = 0, where ∆∗ denotes the Laplace operator on the

unit sphere.

In the exercises that follow, we propose to the reader the proof of some
useful inequalities, easily obtainable by using the same compactness argument
adopted in the proof of Theorem II.5.4.

Exercise II.5.13 Let Ω be bounded and locally Lipschitz and let Σ be an arbitrary
portion of ∂Ω of positive ((n − 1)-dimensional) measure. Show that for all u ∈
W 1,q(Ω), 1 ≤ q < ∞, the following inequality holds

‖u‖q ≤ c

„
‖∇u‖q +

˛̨
˛̨
Z

Σ

u

˛̨
˛̨
«

(II.5.18)

with c = c(n, q,Ω,Σ).
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Exercise II.5.14 Let Ω be bounded and locally Lipschitz, and let u ∈ Wm,q(Ω).
Then, there exists c = c(n, q, Ω,ω) such that

‖u‖m,q ≤ c

0
@ X

|α|=m

‖Dαu‖q +

Z

ω

|u|

1
A (II.5.19)

where ω is an arbitrary subdomain of Ω of positive (n-dimensional) measure. Hint:

Use Exercise II.5.9 .

Exercise II.5.15 Let Ω be bounded and locally Lipschitz and let u be a vector
function in Ω with components from W 1,q (Ω), 1 ≤ q < ∞. Assuming u · n = 0 at
∂Ω, show that there exists a constant c = c(n, q, Ω) such that

‖u‖q ≤ c‖∇u‖q.

Hint: Use Exercise II.5.8.

Exercise II.5.16 (Ehrling inequality) Let Ω be bounded and locally Lipschitz.
Show that for any ε > 0 there is c = c(ε,n, q,Ω) > 0 such that

‖∇u‖q ≤ c‖u‖q + ε‖D2u‖q, (II.5.20)

for all u ∈W 2,q (Ω), 1 ≤ q < ∞. The regularity assumption on Ω can be removed if

u ∈ W 2,q
0 (Ω). Hint: Use Exercise II.5.8 and Theorem II.5.2.

Remark II.5.2 Inequalities of the type given in Exercise II.5.13 and Exercise
II.5.14 are relevant in the context of the equivalence of norms in the spaces
Wm,q. A general theorem, that contains these inequalities as a particular case,
can be found in Smirnov (1964, §114, Theorem 3). �

We end this section by giving another significant application of the
contradiction-compactness argument used in the proof of Theorem II.5.4, that
generalizes the result given in Galdi (2007, Lemma 5.4). To this end, we set

o

W
1,q(Ω) = {u ∈ W 1,q(Ω) : u|Σ = 0} , (II.5.21)

where Σ is an arbitrarily fixed locally Lipschitz boundary portion of ∂Ω. It

is easily shown that
o

W1,q(Ω) is a closed subspace of W 1,q (Exercise II.5.17).
Moreover, in view of Exercise II.5.13, we find that a norm equivalent to ‖(·)‖1,q

is given by ‖∇(·)‖q, and we shall endow
o

W1,q(Ω) with this latter.
We recall that a sequence of of linear functionals, {`i}, on a Banach space

X, is called complete if

`i(u) = 0 , for all i ∈ N, implies u = 0 in X .

We have the following result.
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Lemma II.5.3 Let Ω be locally Lipschitz, and let {li} be a complete se-

quence of linear functionals on
o

W1,q(Ω), 1 < q <∞. Then, given ε > 0 there
exist N ∈ N and a positive constant C such that

‖u‖ ≤ ε‖∇u‖q +C
N∑

i=1

|li(u)| ,

where ‖u‖ ≡ ‖u‖r with r ∈ [1, nq/(n− q)), if q < n, and r ∈ [1,∞), if q = n,
while ‖u‖ ≡ ‖u‖C if q > n . The numbers N and C depend on Ω, ε, q, and
also on r if q ≤ n.

Proof. We give a proof in the case q < n, the other two cases being treated in
a completely analogous way, with the help of Theorem II.5.2. Thus, assume,
by contradiction, that there is ε > 0 such that, for all C > 0 and all N ∈ N

we can find at least one u = u(C,N) ∈
o

W1,q(Ω) such that

‖u‖r ≥ ε‖∇u‖q +C

N∑

i=1

|li(u)| .

We then fix N = N1 and find a sequence {um}, possibly depending on N1,
such that

‖um‖r ≥ ε‖∇um‖q +m

N1∑

i=1

|li(um)| .

Setting wm = um/‖∇um‖q,
2 from the preceding inequality we find

‖wm‖r ≥ ε+m

N1∑

i=1

|li(wm)| , ‖∇wm‖q = 1, m ∈ N. (II.5.22)

From (II.5.22) we then deduce that

‖wm‖1,q ≤ C1 (II.5.23)

with C1 = C1(Ω,Σ, q) > 0. So, by Theorem II.5.2 and by the weak com-
pactness property of the unit closed ball (see Remark II.3.1), there exist a

subsequence, again denoted by {wm}, and w(1) ∈
o

W1,q(Ω) such that

wm → w(1) in Lr(Ω)

wm
w→ w(1) in

o

W1,q(Ω) .
(II.5.24)

Using these latter properties along with (II.5.22) we infer, on the one hand,

2 Of course, we may assume, without loss of generality, that ‖∇um‖q 6= 0, for all
m ∈ N.
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N1∑

i=1

|li(w(1))| = 0 ,

and, on the other hand,
‖w(1)‖r ≥ ε .

Moreover, from (II.5.22)2, (II.5.23), and (II.5.24) we obtain

‖w(1)‖r + ‖w(1)|1,q ≤ C2

with C2 = C2(D, S, r, q). We next fix N = N2 > N1 and, by the same pro-

cedure, we can find another w(2) ∈
o

W1,q(Ω) satisfying the same properties as
w(1). By iteration, we can thus construct two sequences, {Nk} and {w(k)},
with {Nk} increasing and unbounded, such that

Nk∑

i=1

|li(w(k))| = 0 ,

‖w(k)‖r + ‖w(k)‖1,q ≤ C2

‖w(k)‖r ≥ ε ,

(II.5.25)

for all k ∈ N. By (II.5.25)2 and again by Theorem II.5.2, it follows that there
are a subsequence of {w(k)}, which we continue to denote by {w(k)}, and a

function w(0) ∈
o

W1,q(Ω) such that

w(k) → w(0) in Lq(Ω)

w(k) w→ w(0) in
o

W1,q(Ω) .
(II.5.26)

In view of (II.5.25)3 and of (II.5.26)1, we must have

‖w(0)‖q ≥ ε . (II.5.27)

We now claim that w(0) ≡ 0, contradicting (II.5.27). In fact, if w(0) 6≡ 0, by
the completeness of the family of functionals {li}, we must have, for at least
one member of the family, li, that

li(w
(0)) 6= 0 . (II.5.28)

By (II.5.26)2, it is
lim

k→∞
li(w

(k)) = li(w
(0)) , (II.5.29)

while from (II.5.25)1 evaluated at all Nk > i, we find

li(w
(k)) = 0 , for all sufficiently large k .

However, in view of (II.5.29), this condition contradicts (II.5.28). Thus, w(0) =
0 and the lemma is proved. ut
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Exercise II.5.17 Show that the space defined in (II.5.21) is a closed subspace of

W 1,q(Ω).

Exercise II.5.18 Prove the following abstract formulation of Lemma II.5.3. Let
X,Y be Banach spaces with norm ‖ · ‖X and ‖ · ‖Y , respectively. Suppose that X is
reflexive and compactly embedded in Y . Moreover, let {`i} be a complete sequence
of functionals in X . Show that, given ε > 0 there exist N = N(ε) ∈ N and a constant
C = C(ε) such that

‖u‖Y ≤ ε‖u‖X +C
NX

i=1

|`i(u)| , for all u ∈ X .

II.6 The Homogeneous Sobolev Spaces Dm,q and
Embedding Inequalities

In dealing with boundary-value problems in unbounded domains it can happen
that, even for very smooth and rapidly decaying data, the associated solution
u does not belong to any space of the type Wm,q . This is because the behavior
at large distances can be different for each derivative of u of a given order and,
as a consequence, the corresponding summability properties can be different.
As a simple example, consider the Dirichlet problem

∆u = 0 in Ω ≡ R3 − B1 , u = 1 at ∂Ω,

lim
|x|→∞

u(x) = 0 .

The solution is u(x) = 1/|x| and we have

D2u ∈ Lr(Ω), 1 < r <∞,

∇u ∈ Ls(Ω), 3/2 < s <∞,

u ∈ Lt(Ω), 3 < t <∞.

Thus, to formulate boundary-value problems of the above type, one finds it
more convenient to introduce spaces more “natural” than the Sobolev spaces
Wm,q, and which, unlike the latter, involve only the derivatives of order m.
These classes of functions will be called homogeneous Sobolev spaces, and we
shall devote this and the next few sections to the study of their relevant
properties.

For m ∈ N and 1 ≤ q < ∞ we define the following linear space (without
topology)

Dm,q = Dm,q(Ω) =
{
u ∈ L1

loc(Ω) : D`u ∈ Lq(Ω), |`| = m
}
.

In order to investigate some preliminary properties of Dm,q , we introduce
the following notation. If u satisfies
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D`u ∈ Lq(Ω′), 0 ≤ |`| ≤ m, for all bounded Ω′ with Ω′ ⊂ Ω,

we shall write
u ∈Wm,q

loc (Ω).

Likewise, if

D`u ∈ Lq(Ω′), 0 ≤ |`| ≤m, for all bounded Ω′ ⊂ Ω

we shall write
u ∈Wm,q

loc (Ω) .

We have the following.

Lemma II.6.1 Let Ω be an arbitrary domain of Rn, n ≥ 2, and let u ∈
Dm,q(Ω), m ≥ 0, q ∈ (1,∞). Then u ∈Wm,q

loc (Ω) and the following inequality
holds

‖u‖m,q,ω ≤ c


∑

|`|=m

‖D`u‖q,ω + ‖u‖1,ω


 (II.6.1)

where ω is an arbitrary bounded locally Lipschitz domain with ω ⊂ Ω . If, in
addition, Ω is locally Lipschitz, then u ∈Wm,q

loc (Ω) , and (II.6.1) holds for all
bounded and locally Lipschitz domains ω ⊂ Ω.

Proof. Clearly, proving that u ∈ Wm,q(ω), for any ω satisfying the prop-
erties stated in the first part of the lemma, implies u ∈ Wm,q

loc (Ω). Let
d = dist (∂ω, ∂Ω) (> 0), and extend u by zero outside Ω. For d > 1/k > 0,
k ∈ N, we denote by uk the regularizer of u corresponding to ε = 1/k. Obvi-
ously, uk ∈Wm,q(ω); moreover, by Exercise II.3.2, we have

(D`u)k(x) = (D`uk)(x), for all ` with |`| = m, and all x ∈ ω.

We may thus use (II.5.19) to find, for any k, k′ ∈ N,

‖uk − uk′‖m,q,ω ≤ C


 ∑

|`|=m

‖(D`u)k − (D`u)k′)‖q,ω + ‖uk − uk′‖1,ω


 ,

for some C = C(N, q, ω). Observing that, by (II.2.9)2, (D`u)k, |`| = m, and uk

converge (strongly) in Lq(ω) and L1(ω) to D`u and u, respectively, as k → ∞,
from the previous inequality we deduce that {uk} is Cauchy in Wm,q(ω), as
well as the validity of (II.6.1) . The first part of the lemma is thus proved. In
order to show the second part, we begin to observe that, by Exercise II.1.5,
we can find a finite number of locally Lipschitz and star-shaped domains Ωi,
i = 1, . . . , r, satisfying the following condition

ω ⊆
r⋃

i=1

Ωi ⊆ Ω .
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If we thus show that u ∈ Wm,q(Ωi) for each i = 1, . . . , r, the stated property
follows with the help of Exercise II.5.14. For a fixed i, we extend u|Ωi to
zero outside Ωi, and continue to denote by u this extension. By means of
a translation in Rn, we may take the point xi, with respect to which Ωi is
star-shaped, to be the origin of the coordinates. Then, the domains

Ω
(k)
i = {x ∈ Rn : (1 − 1/k)x ∈ Ωi} , k ∈ N ≡ {m ∈ N : m ≥ 2} ,

satisfy Ω
(k)
i ⊃ Ωi, for all k ∈ N; see Exercise II.1.3. Setting

uk = uk(x) ≡ u((1 − 1/k)x) , x ∈ Ω
(k)
i ,

and h0 = maxx∈∂Ωi |x|, we find that the mollifier, (uk)ε, of uk belongs to
Wm,q(Ωi), if we choose (for example) ε = h0/(2k−2). With the aid of (II.2.9)1,
we deduce

‖u−(uk)ε‖1,Ωi ≤ ‖u−uε‖1,Ωi +‖uε−(uk)ε‖1,Ωi ≤ ‖u−uε‖1,Ωi +‖u−uk‖1,Ωi ,

which, in turn, by (II.2.9)2 and by Exercise II.2.8, implies

lim
k→∞

‖u− (uk)ε‖1,Ωi = 0 . (II.6.2)

We next set χ(x) = D`u(x), |`| = m. Observing that, by Exercise II.3.2 and
Exercise II.3.3, it is

D`(uk)ε = (1 − 1/k)m[χ((1 − 1/k)x)]ε x ∈ Ωi ,

we may repeat an argument similar to that leading to (II.6.2) to show

lim
k→∞

‖D`u−D`(uk)ε‖q,Ωi = 0 . (II.6.3)

Now, with the help of (II.6.2) and (II.6.3), we can use the same procedure used
in the proof of the first part of the lemma with ω ≡ Ωi, to show the statement
contained in the second part. The lemma is thus completely proved. ut
Remark II.6.1 From Lemma II.6.1 it follows, in particular, that if Ω is
bounded and locally Lipschitz, then u ∈ Dm,q(Ω) implies u ∈ Wm,q(Ω),
so that Dm,q(Ω) = Wm,q(Ω) algebraically, and, in fact, also topologically,
if we endow the space Dm,q(Ω) with the norm

∑
|`|=m ‖D`u‖q + ‖u‖1. On

the other hand, if Ω is unbounded in all directions, these latter properties
no longer hold, since a priori one loses information on global summability of
derivatives of order less than m, and one can only state local properties in the
sense specified in Lemma II.6.1. �

Exercise II.6.1 Let u ∈ Dm,q(Rn), n ≥ 2, m ≥ 0, q ∈ (1,∞). Show that u ∈
Wm,q(BR), for all R > 0, and there exists a constant C = C(R) such that

‖u‖m,q,BR ≤ C

 X

`=m

‖D`u‖q,Rn + ‖u‖1,B1

!
.

Hint: Adapt the arguments used in the proof of the first part of Lemma II.6.1
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In Dm,q we introduce the seminorm

|u|m,q ≡


∑

|`|=m

∫

Ω

|D`u|q



1/q

. (II.6.4)

Let Pm be the class of all polynomials of degree ≤ m − 1 and, for u ∈ Dm,q ,
set

[u]m = {w ∈ Dm,q : w = u+ P, for some P ∈ Pm}.
Denoting by Ḋm,q = Ḋm,q(Ω) the space of all (equivalence classes) [u]m,
u ∈ Dm,q , we see at once that (II.6.4) induces the following norm in Ḋm,q :

|[u]m|m,q ≡ |u|m,q , u ∈ [u]m . (II.6.5)

We shall now show that Ḋm,q equipped with the norm (II.6.5) is a Banach
space.

Lemma II.6.2 Let Ω be an arbitrary domain of Rn, n ≥ 2. Then Ḋm,q(Ω)
is a Banach space. In particular, if q = 2, it is a Hilbert space with the scalar
product

[[u]m, [v]m]m =
∑

|`|=m

∫

Ω

D`uD`v , u ∈ [u]m , v ∈ [v]m .

Proof. It is enough to show the first part of the lemma, the second follows
easily. We shall consider the case m = 1, leaving the more general case as an
exercise. We also set [u]1 ≡ [u]. Let {[us]} be a Cauchy sequence in Ḋ1,q(Ω);
we have to show the following statements:

(i) For any {vs} with vs ∈ [us], s ∈ N, there exists u ∈ D1,q(Ω) such that

lim
s→∞

‖Divs −Diu‖q = 0 , i = 1, . . . , n ;

(ii) For any {vs}, {v′s}, with vs, v
′
s ∈ [us], s ∈ N, and with u, u′ corresponding

limits, we have u′ ∈ [u].

It is seen that (ii) easily follows from (i). In fact, since vs, v
′
s ∈ [us], from (i)

we have
(Diu, ϕ) = (Diu

′, ϕ), for all ϕ ∈ C∞
0 (Ω),

which, in view of Exercise II.5.9, implies (ii). Let us show (i). By the com-
pleteness of Lq, we find Vi ∈ Lq(Ω), i = 1, . . . , n, with

Divs → Vi in Lq(Ω). (II.6.6)

Let O be the open covering ofΩ indicated in Lemma II.1.1 and let B0 ∈ O. By
the Poincaré inequality and (II.6.6) we deduce the existence of u(0) ∈ Lq(B0)
such that
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vs − vsB0
→ u(0) in Lq(B0).

Since for all ϕ ∈ C∞
0 (B0) it is

∫

B0

Viϕ = lim
s→∞

∫

B0

Divsϕ = lim
s→∞

∫

B0

(vs − vsB0
)Diϕ = −

∫

B0

u(0)Diϕ,

by definition of the weak derivative, it follows

Vi = Diu
(0) a.e. in B0. (II.6.7)

By the property (ii) of O, we can find B1 ∈ (O− B0) with B1∩B0 ≡ B1,2 6=
∅. As before, we show the existence of u(1) ∈ Lq(B1) such that

Vi = Diu
(1) a.e. in B1. (II.6.8)

Thus, u(1) = u(0) + c a.e. in B1,2, for some c ∈ R. Therefore, we may modify
u(1) by the addition of a constant in such a way that u(1) and u(0) agree a.e.
in B1,2. Continue to denote by u(1) the modified function and define a new
function u(0,1) that is equal to u(0) in B0 and is equal to u(1) in B1. By (II.6.6)–
(II.6.8) we deduce that u(0,1), Diu

(0,1) ∈ Lq(B0 ∪B1), with Vi = Diu
(0,1) a.e.

in B0 ∪ B1. In view of the property (iii) of the covering O, we can repeat
this procedure to show, by a simple inductive argument, the existence of
u ∈ Lq

loc(Ω) satisfying the statement (i) of the lemma, which is thus completely
proved. ut

Notation. Sometime, and unless confusion arises, the elements of Ḋm,q(Ω) will
be denoted simply by u, instead of [u]m, with u a representative of the class
[u]m.

The functional (II.6.4) defines a norm in the space C∞
0 (Ω). We then in-

troduce the Banach space Dm,q
0 = Dm,q

0 (Ω) as the (Cantor) completion of the
normed space {C∞

0 (Ω), | · |m,q}.
Remark II.6.2 Since C∞

0 (Ω) can be viewed as a subspace of Ḋm,q(Ω) via
the natural map

i : u ∈ C∞
0 (Ω) → i(u) = [u]m ∈ Ḋm,q(Ω),

it follows that, for any domain Ω, Dm,q
0 (Ω) is isomorphic to a closed subspace

of Ḋm,q(Ω). More specifically, [u]m ∈ Ḋm,q(Ω) belongs to Dm,q
0 (Ω) if and only

if there is u ∈ [u]m and corresponding {uk} ⊂ C∞
0 (Ω) such that limk→∞ |uk−

u|m,q = 0. Other characterizations of the spaces Dm,q
0 will be given in Section

II.7. We finally observe that (see Exercise II.2.6)

D0,q
0 (Ω) = D0,q(Ω) = Lq(Ω), q ≥ 1.

�



II.6 The Homogeneous Sobolev Spaces Dm,q and Embedding Inequalities 85

Remark II.6.3 If Ω is contained in a layer, then by means of inequality
(II.5.1) and Lemma II.6.1 one can easily show that ‖ · ‖m,q is equivalent to
| · |m,q + ‖ · ‖q and to | · |m,q. Therefore, if we endow Wm,q

0 (Ω) with this latter
norm, we find that Dm,q

0 (Ω) and Wm,q
0 (Ω) are isomorphic. �

Exercise II.6.2 Show that Ḋm,q and Dm,q
0 are separable for 1 ≤ q < ∞ and

reflexive for 1 < q < ∞. Thus, for q ∈ (1,∞) these spaces are weakly complete and
the unit closed ball is weakly compact (see Theorem II.1.3(ii)). Hint (for m = 1):
Let

W =


w ∈ [Lq]n : w =

„
∂u

∂x1
, . . . ,

∂u

∂xn

«
, for some u ∈ Ḋ1,q

ff
.

W is isomorphic to Ḋ1,q , and, since Ḋ1,q is complete, W is a closed subspace of

[Lq]n. Therefore, W is separable for 1 ≤ q < ∞ and reflexive for 1 < q < ∞ (see

Theorem II.2.5, Theorem II.1.1 and Theorem II.1.2), which, in turn, gives the stated

properties for Ḋ1,q. Since D1,q
0 is isomorphic to a closed subspace of Ḋ1,q, the same

properties are true for D1,q
0 ; see also Simader and Sohr (1997, Theorem I.2.2).

Our next goal will be to investigate global properties of functions from
Dm,q(Ω), including their behavior at large distances, when Ω is either an
exterior domain or a half-space.

Remark II.6.4 It will be clear from the context that, in fact, most of the
results we shall prove continue to hold for a much larger class of domains. This
class certainly includes domains Ω for which any function from D1,q(Ω) can
be extended to one from D1,q(Rn) with preservation of the seminorm | · |1,q.
For the existence of such extensions, we refer the reader to the classical paper
of Besov (1967); see also Burenkov (1976). �

Our following objective is to prove some embedding inequalities that en-
sure that derivatives of u of order less than m belong to suitable Lebesgue or
weighted-Lebesgue spaces. Such estimates, unlike the bounded-domain case,
where they give information on the “regularity” of u, furnish information on
the behavior of u at large distances. We begin to derive these inequalities for
the case m = 1 (see Theorem II.6.1, Theorem II.6.3), the general case m ≥ 1
being treated by a simple iterative argument (see Theorem II.6.4).

We recall that, if q ∈ [1, n) every u ∈ C∞
0 (Ω), satisfies the Sobolev in-

equality (II.3.7), that we rewrite below for reader’s convenience:

‖u‖s ≤ q(n − 1)

2(n− q)
√
n
|u|1,q , for all q ∈ [1, n) , s = nq/(n− q). (II.6.9)

We shall next consider certain weighted inequalities that (in a less general
form) were first considered by Leray (1933, p. 47; 1934, §6) and Hardy (Hardy,
Littlewood, and Polya 1934, §7.3). Specifically, if u ∈ C∞

0 (Ω), we have

‖u|x− x0|−1‖q ≤ q

(n− q)
|u|1,q, for all q ∈ [1, n). (II.6.10)



86 II Basic Function Spaces and Related Inequalities

In fact, consider the identity

∇ · (g|u|q) = |u|q∇ · g + g · ∇|u|q (II.6.11)

with
g = (x− x0) /|x− x0|q. (II.6.12)

Since
∇ · g = (n− q)/|x− x0|q,

integrating (II.6.11) and using the Hölder inequality proves (II.6.10). Notice
that if q > n and

Ωc ⊃ Ba(x0), some a > 0,

then by the same token one shows the validity of the following inequality:

‖u|x− x0|−1‖q ≤ q

(q − n)
|u|1,q, for all q > n ; (II.6.13)

see also Exercise II.6.7. In case q = n ( 6= 1) and if

Ωc ⊃ Ba(x0), some a > 0,

we have instead

‖u [|x− x0| ln(|x− x0|/a)]−1 ‖n ≤ n

a (n− 1)
|u|1,n. (II.6.14)

To show this latter, we use again identity (II.6.11) with

g = − (x− x0)

|x− x0|n[ln(|x− x0|/a)]n−1 .

Since

∇ · g =
a (n− 1)

[|x− x0| ln(|x− x0|/a)]n
,

substituting into (II.6.11), integrating over Ω, and applying the Hölder in-
equality to the last term on the right-hand side of (II.6.11) proves (II.6.14).

We shall next analyze if and to what extent inequalities similar to (II.6.9),
(II.6.10), (II.6.13), and (II.6.14) continue to hold for functions from D1,q(Ω),
where the domain Ω can be either an exterior domain or a half-space.1 In
order to perform this study, we need to know more about the behavior at
large distances of functions of D1,q(Ω). In this respect we have

Lemma II.6.3 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain and let

u ∈ D1,q(Ω), 1 ≤ q < n.

Then, there exists a unique u0 ∈ R such that, for all R > δ(Ωc),
∫

Sn−1

|u(R, ω) − u0|qdω ≤ γ0R
q−n

∫

ΩR

|∇u|q,

where γ0 = [(q − 1)/(n− q)]q−1 if q > 1 and γ0 = 1 if q = 1.

1 See Remark II.6.4.
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Proof. Let r > R > δ(Ωc), and consider first the case q > 1. For a smooth u,
by the Hölder inequality we have

∫ r

R

∫

Sn−1

∣∣∣∣
∂u

∂ρ

∣∣∣∣
q

ρn−1dρdSn−1 =

∫

Sn−1

[∫ r

R

∣∣∣∣
∂u

∂ρ

∣∣∣∣
q

ρn−1dρ

]
dSn−1

≥
∫

Sn−1




∣∣∣∣
∫ r

R

∂u

∂ρ
dρ

∣∣∣∣
q

(∫ r

R

ρ(1−n)/(q−1)dρ

)q−1


 = γ−1

0 Rn−q

∫

Sn−1

|u(r) − u(R)|q,

(II.6.15)
while, by the Wirtinger inequality (II.5.17), it follows that

∫ r

R

ρn−q−1

(∫

Sn−1

|∇∗u|qdSn−1

)
dρ

≥ c−q
1

∫ r

R

(∫

Sn−1

|u− u|qdSn−1

)
ρn−q−1dρ,

where

f = (nωn)−1

∫

Sn−1

f.

Therefore, setting

Dr(R) =

∫

ΩR,r

|∇u|q,

and taking into account that, by (II.5.14), |∂u/∂r|q, (|∇∗u|/r)q ≤ |∇u|q, we
find

Dr(R) ≥ γ−1
0 Rn−q

∫

Sn−1

|u(r) − u(R)|q

Dr(R) ≥ c−q
1

∫ r

R

(∫

Sn−1

|u− u|qdSn−1

)
ρn−q−1dρ.

(II.6.16)

In view of Lemma II.6.1, and with the help of Theorem II.3.1, one shows that
(II.6.16) continues to hold for all functions merely satisfying the assumption
of the lemma. Letting R, r → ∞, into (II.6.16)1, we deduce that u converges
(strongly) in Lq(Sn−1) to some function u∗. Set

u0 = u∗, w = u− u0.

Obviously,

lim
|x|→∞

∫

Sn−1

w(x) = 0. (II.6.17)

Rewriting (II.6.16) with w instead of u, we recover the existence of a sequence
{rm} ⊂ R+, with limm→∞ rm = ∞ such that
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lim
m→∞

∫

Sn−1

|w(rm) −w(rm)|q = 0,

which, because of (II.6.17), furnishes

lim
m→∞

∫

Sn−1

|w(rm)|q = 0.

Inserting this information into (II.6.16)1 written with w in place of u and
letting r → ∞ completes the proof of the lemma when q > 1. If q = 1, we
easily show that

∫ r

R

∫

Sn−1

∣∣∣∣
∂u

∂ρ

∣∣∣∣ρn−1dρdSn−1 ≥ Rn−1

∫

Sn−1

|u(r) − u(R)| .

Therefore, replacing (II.6.15) with this latter relation and arguing exactly as
before, we show the result also when q = 1 ut
Exercise II.6.3 The previous lemma describes the precise way in which a function
u, having first derivatives in Lq(Ω), 1 ≤ q < n, Ω an exterior domain, must tend
to a (finite) limit at large spatial distances. Show by a counterexample that the
condition q < n is indeed necessary for the validity of the result. Moreover, prove
that if q ≥ n the following estimate holds, for all r ≥ r0 > max{1, δ(Ωc)}:

Z

Sn−1

|u(r, ω)|qdω ≤ 2q−1

„Z

Sn−1

|u(r0, ω)|qdω + h(r)|u|q1,q,Ωr0,r

«
, (II.6.18)

where

h(r) =

8
<
:

(log r)n−1 if q = n

[(q − 1)/(q − n)]q−1 rq−n if q > n.

Finally, using (II.6.18), show

lim
r→∞

(h(r))−1

Z

Sn−1

|u(r, ω)|qdω = 0.

(For pointwise estimates, see Section II.9.) Hint: To show (II.6.18), start with the
identity

u(r, ω) = u(r0, ω) +

Z r

r0

(∂u/∂ρ)dρ,

and apply the Hölder inequality.

This preliminary result allows us to prove the following, which answers
the question raised previously; see also Finn (1965a), Galdi and Maremonti
(1986).

Theorem II.6.1 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain, and let

u ∈ D1,q(Ω), 1 ≤ q <∞ .

The following properties hold.
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(i) If q ∈ [1, n), set
w = u− u0

with u0 defined in Lemma II.6.3. Then, for any x0 ∈ Rn, we have

w|x− x0|−1 ∈ Lq(ΩR(x0)),

where
Ωa(x0) ≡ Ω −Ba(x0), Ba(x0) ⊃ Ωc,

and the following inequality holds:

(∫

ΩR(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ q

(n− q)
|w|1,q,ΩR(x0). (II.6.19)

If |x0| = αR, for some α ≥ α0 > 1 and some R > δ(Ωc), we have

(∫

ΩR

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ c|w|1,q,ΩR, (II.6.20)

where c = c(n, q, α0). Furthermore, if Ω is locally Lipschitz, then

w ∈ Ls(Ω), s = nq/(n− q), (II.6.21)

and for some γ1 independent of u

‖w‖s ≤ γ1|w|1,q. (II.6.22)

(ii) If q ∈ [n,∞), assume Ω locally Lipschitz with Ωc ⊃ Ba(x0), for some
a > 0, and set

w =

{ |x− x0|−1 if q > n

(|x− x0| ln(|x− x0|/a))−1 if q = n .
(II.6.23)

Then, if u has zero trace at ∂Ω, we have wu ∈ Lq(Ω), and the following
inequality holds, for all R > δ(Ωc),

‖wu‖q,ΩR(x0) ≤ Cq |u|1,q,ΩR(x0) , (II.6.24)

where ΩR(x0) ≡ Ω ∩ BR(x0), and Cq = q/(q − n), if q > n, while
Cq = n/[a (n− 1)], if q = n.

Proof. As in the proof of Lemma II.6.3, it will be enough to consider smooth
functions only. We begin to prove part (i). Let us integrate identity (II.6.11),
with w in place of u and g given by (II.6.12), over the spherical shell:

ΩR,r(x0) ≡ Ω ∩ (Br(x0) − BR(x0)) , r > R.
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We have

(n− q)

∫

ΩR,r(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤
∫

∂BR(x0)

g · n|w|q + r1−q

∫

∂Br(x0)

|w|q

+q

∫

ΩR,r(x0)

|g||w|q−1|∇w|,

where n is the unit normal to ∂BR(x0) pointing toward x0. This yields that
the first term on the right-hand side of this latter equation is non-positive.
Thus, estimating the integral over ∂Br(x0) with the help of Lemma II.6.3, we
deduce

(n − q)

∫

ΩR,r(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤ c1

∫

Ωr(x0)

|∇w|q + q

∫

ΩR,r(x0)

|g||w|q−1|∇w|,

where c1 = c1(n, q). Now, if q = 1 the result follows by letting r → ∞
into this relation; otherwise, employing Young’s inequality (II.2.5) with ε =
[(q− 1)/λ(n− q)]q−1, 0 < λ < 1, in the last integral at the right-hand side we
obtain

∫

ΩR,r(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤ c1
(n− q)(1 − λ)

∫

Ωr(x0)

|∇w|q

+
(q − 1)q−1

(1 − λ)λq−1(n− q)q

∫

ΩR,r(x0)

|∇w|q.

We now let r → ∞ into this relation and minimize over λ, thus completing the
proof of the first part of the lemma. To show the second part, for r > (α+2)R
we set

ΩR,r ≡ Ω ∩ (Br(x0) − BR),

and so, operating as before, we derive

(n− q)

∫

ΩR,r

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤
∫

∂BR

g · n|w|q + r1−q

∫

∂Br(x0)

|w|q

+q

∫

ΩR,r(x0)

|g||w|q−1|∇w|.

If q > 1, we use Young’s inequality in the last integral, then Lemma II.6.3
to estimate the surface integral over ∂Br(x0). Letting r → ∞ we may then
conclude, as in the proof of the first part of the lemma, the validity of the
following inequality:

∫

ΩR

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤ 1

(n− q)(1 − λ)

∫

∂BR

g · n|w|q

+
(q − 1)q−1

(1 − λ)λq−1(n − q)q

∫

ΩR

|∇w|q
(II.6.25)
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for all λ ∈ (0, 1). Now, if x ∈ ∂BR it is

|x− x0| ≥ |x0| − |x| ≥ (α0 − 1)R,

and so
|g(x)| ≤ |x− x0|1−q ≤ [(α0 − 1)R]1−q, x ∈ ∂BR.

From this inequality and Lemma II.6.3 we obtain the following:

∫

∂BR

g · n|w|q ≤ Rn−q

(α0 − 1)q−1

∫

Sn−1

|w|q ≤ γ0

(α0 − 1)q−1

∫

ΩR

|∇w|q,

which, once replaced into (II.6.25), proves (II.6.20) for q > 1. The proof for
q = 1 is similar and therefore is left to the reader. To complete the proof of
part (i), it remains to show the last statement. To this end, let ϕ ∈ C1(R) be
a nondecreasing function such that ϕ(ξ) = 0 if |ξ| ≤ 1 and ϕ(ξ) = 1 if |ξ| ≥ 2.
We set for r > 2R > δ(Ωc)

ϕR(x) = ϕ(|x|/R),

χr(x) = 1 − ϕr(x),

w#(x) = ϕR(x)χr(x)w(x).

Notice that
|∇χr(x)| ≤ c/r, c = c(ϕ).

Evidently, w# ∈ W 1,q
0 (Ω), and we may apply Sobolev inequality (II.3.7) to

deduce
‖w#‖s ≤ γ|w#|1,q, s = nq/(n− q),

which, by the properties of ϕR and χr, in turn implies

‖w#‖s ≤ c1
(
|w|1,q + ‖w‖q,ΩR,2R + ‖w|x|−1‖q,Ωr,2r

)
,

with c1 = c1(R, ϕ, n, q). We now let r → ∞ into this relation. By inequality
(II.6.19) the last term on the right-hand side must tend to zero. Using this
fact along with the monotone convergence theorem, we recover

‖w‖s,Ω2R ≤ c1
(
|w|1,q + ‖w‖q,ΩR,2R

)
. (II.6.26)

We next apply the inequality (II.5.18) to the integral over ΩR,2R to deduce

‖w‖s,Ω2R ≤ c2

(
|w|1,q +

(∫

∂BR∪∂B2R

|w|q
)1/q

)
.

Using Lemma II.6.3 in this inequality, we finally obtain

‖w‖s,Ω2R ≤ c3|w|1,q. (II.6.27)
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We now want to estimate w “near” ∂Ω. We set

ζR(x) = 1 − ϕ(|x|/2R)

and notice that
ζRw ∈ W 1,q(Ω).

Employing the embedding Theorem II.3.4, we obtain

‖w‖s,Ω2R ≤ c4
(
|w|1,q + ‖w‖q,Ω2R,4R

)
.

We may now bound the last term on the right-hand side of this relation by
|w|1,q, in the same way as we did for the analogous term in (II.6.26), thus
deducing

‖w‖s,Ω2R ≤ c5|w|1,q.

The last claim in part (i) of the lemma then follows from this latter inequality
and from (II.6.27). We shall prove the claim in part (ii) when q > n, the
case q = n being treated in exactly the same way. We integrate (II.6.11) over
ΩR(x0), with arbitrary R > δ(Ωc). Recalling that u has zero trace at ∂Ω, we
find

(q − n)

∫

ΩR(x0)

|u|q
|x− x0|q

= −
∫

∂BR(x0)

g ·n|u|q −
∫

ΩR(x0)

g · ∇|u|q .

The surface integral in this relation is non positive, so that, proceeding as in
the proof of (II.6.13) we obtain

∫

ΩR(x0)

|u|q
|x− x0|q

≤ q

(q − n)

∫

ΩR(x0)

|∇u|q , (II.6.28)

which, in turn, by the arbitrarity of R proves the claim. ut

Exercise II.6.4 Let Lq
w(Ω), q ≥ n ≥ 2, be the class of (measurable) functions v

such that w v ∈ Lq(Ω), with w defined in (II.6.24). Show that Lq
w(Ω) endowed with

the norm ‖w(·)‖q is a Banach space.

Exercise II.6.5 Let u ∈ D1,q(BR), q ∈ [1, n). Show that u satisfies (II.6.21), with

Ω ≡ BR, with a constant γ1 independent of R.

Exercise II.6.6 Let u ∈ D1,q(BR(x0)), n ≥ 2, q > n, R > 0. Show that the
following inequality holds

‖(u− u(x0))/|x− x0|‖q,BR(x0) ≤ q/(q − n)|u|1,q,BR (x0) .

Hint: Integrate (II.6.11) over BR(x0) − Bε(x0), ε < R. Then, use the results of

Exercise II.5.11 and let ε→ 0. (Notice that u(x0) is well defined, because, for q > n,

D1,q(Ω) ⊂ W 1,q(BR(x0)) ⊂ C(BR(x0)); see Lemma II.6.1 and Theorem II.3.4.)



II.6 The Homogeneous Sobolev Spaces Dm,q and Embedding Inequalities 93

Exercise II.6.7 Let Ω be an exterior, locally Lipschitz domain, and assume that
u ∈ D1,q(Ω), q > n, with zero trace at ∂Ω. Show that, for all R > δ(Ωc) and all
x0 ∈ ΩR,

‖w(u− u(x0))‖q,ΩR ≤ q

q − n
|u|1,q,ΩR ,

where w is defined in (II.6.23)1. Hint: Integrate (II.6.11) over ΩR − Bε(x0), for

sufficiently small ε. Then use the results of Exercise II.5.11 and let ε → 0.

Exercise II.6.8 Let Ω be an exterior domain of R
n, n ≥ 2, and let u ∈ D1,q(Ω),

q ∈ [1,∞), satisfy the following generalized version of “vanishing of the trace” at
∂Ω:

ψ u ∈ W 1,q
0 (Ω) , for all ψ ∈ C∞

0 (Rn) . (II.6.29)

(a) Assume q ≥ n and that Ωc ⊃ Ba(x0), for some x0 ∈ R
n and a > 0. Show

that u satisfy (II.6.24)
(b) Assume q ∈ [1, n), and that the constant u0 associated to u by Lemma II.6.3

is zero. Show that u ∈ Lnq/(n−q)(Ω) and that there exists C = C(n, q, Ω) such that

‖u‖nq/(n−q) ≤ C |u|1,q .

Theorem II.6.1 ensures, in particular, that, for Ω an exterior locally Lip-
schitz domain and for q ∈ [1, n), every function from D1,q(Ω), possibly mod-
ified by the addition of a uniquely determined constant, obeys the Sobolev
inequality (II.6.22), even though its trace at the boundary need not be zero.
Our next goal is to perform a similar analysis, more generally, for Troisi in-
equality (II.3.8). Specifically, assuming that the seminorms of u appearing on
the right-hand side of (II.3.8) are finite, we wish to investigate if u ∈ Lr(Ω)
and if (II.3.8) holds. To this end, we will use a special “anisotropic cut-off”
function whose existence is proved in the next lemma; see Galdi & Silvestre
(2007a) and Galdi (2007). The lemma will also include properties of this func-
tion which are not immediately needed, but that will be very useful for future
purposes; see, e.g., Chapter VIII.

Lemma II.6.4 For any α,R > 0, there exists a function ψα,R ∈ C∞
0 (Rn)

such that 0 ≤ ψα,R(x) ≤ 1, for all x ∈ Rn and satisfying the following
properties

lim
R→∞

ψα,R(x) = 1 uniformly pointwise, for all α > 0 ,

∣∣∣∣
∂ψα,R

∂x1
(x)

∣∣∣∣ ≤
C1

Rα ,

∣∣∣∣
∂ψα,R

∂xi
(x)

∣∣∣∣ ≤
C1

R
, i = 2, . . . , n ,

|∆ψα,R(x)| ≤ C2

R2
,

(e1 × x) · ∇ψα,R(x) = 0 for all x ∈ R3 ,

(II.6.30)

where C1, C2 are independent of x and R.Moreover, the support of ∂ψα,R/∂xj,

j = 1, . . . , n, is contained in the cylindrical shell SR = S(1)
R ∩ S(2)

R where
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S(1)
R =

{
x ∈ Rn :

R√
2
< r <

√
2R,

}
,

S(2)
R =

{
x ∈ Rn :

Rα

√
2
< |x1| <

√
2Rα

}
∪
{
x ∈ Rn : −R

α

√
2
≤ x1 ≤ Rα

√
2

}
,

(II.6.31)
and where r = (x2

2 + · · ·x2
n)1/2. In addition, the following properties hold for

all α > 0

∂ψα,R

∂x1
∈ Lq(R3) , for all q ≥ n−1

α + 1 ,

∥∥∥∥
∂ψα,R

∂x1

∥∥∥∥
q

≤ C3 ,

‖(u− u0) |∇ψα,R| ‖s ≤ C4 |u|
1,s,Ω

Rβ√
2

, for all u ∈ D1,s(Rn) , 1 ≤ s < n ,

(II.6.32)
where u0 is the constant associated to u by Lemma II.6.3, β = min{1, α}, and
C3, C4 are independent of R.

Proof. Let ψ = ψ(t) be a C∞, non-increasing real function, such that ψ(t) = 1,
t ∈ [0, 1] and ψ(t) = 0, t ≥ 2. We set

ψα,R(x) = ψ

(√
x2

1

R2α
+
r2

R2

)
, x ∈ Rn ,

so that we find

ψα,R(x) =





1 if
x2

1

R2α
+
r2

R2
≤ 1

0 if
x2

1

R2α
+
r2

R2
≥ 4 .

(II.6.33)

The first property in (II.6.30) then follows at once. Moreover, since

∂ψα,R

∂x1
(x) =

x1

Rα
√
x2

1 + R2α−2r2
ψ′
(√

x2
1

R2α
+
r2

R2

)
,

∂ψα,R

∂xi
(x) =

xi

R
√
R2−2αx2

1 + r2
ψ′
(√

x2
1

R2α
+
r2

R2

)
, i = 2, . . . n,

the uniform bounds for the first derivatives hold with C := maxt≥0 |ψ′(t)|.
The estimate for the Laplacean of ψα,R is easily obtained with C2 depending
on C1 and maxt≥0 |ψ′′(t)|. Moreover, the orthogonality relation (II.6.30)4 is
immediate if we take account the above components of ∇ψα,R and the fact
that e1 × x = −x3e2 + x2e3. Denote next by Σ the support of ∇ψα,R. From
(II.6.33) we deduce that

Σ ⊂
{
x ∈ Rn : 1 <

x2
1

R2α
+
r2

R2
< 4

}
≡ Σ1 .
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Consider the following sets

S1 =

{
x ∈ Rn :

x2
1

R2α
<

1

2
and

r2

R2
<

1

2

}
,

S2 =

{
x ∈ Rn :

x2
1

R2α
> 2 and

r2

R2
> 2

}
.

Clearly, Σ1
c ⊃ S1 ∪ S2. Therefore, by de Morgan’s law, we get Σ1 ⊂ Sc

1 ∩ Sc
2

and we conclude, from (II.6.31), that Σ1 ⊂ S, since Sc
1 ∩ Sc

2 = S. It remains
to prove (II.6.32). The first property follows at once from the estimate for
∂ψα,R/∂x1 given in (II.6.30) and the fact that the measure of the support of
∂ψα,R/∂x1 is bounded by a constant times Rα+n−1. Furthermore, we observe

that, for all x ∈ SR, it is |x| ≤ C
√

(R2α +R2), with C a positive constant
independent of R. Thus, from (II.6.30) we find, with w ≡ u− u0,

‖w |∇ψα,R|‖s,Ω = ‖w |∇ψα,R|‖s,SR ≤ C2 ‖w/|x|‖s,SR ≤ C2‖w/|x|‖
s,B

Rβ√
2

,

with C2 a positive constant independent of R and w. The second property in
(II.6.32) then follows from this latter inequality and from (II.6.19). The proof
of the lemma is complete. ut

We are now in a position to prove the following result.

Theorem II.6.2 Let Ω ⊆ Rn, n ≥ 3, be an exterior locally Lipschitz domain.
Assume u ∈ D1,2(Ω) and

∂u

∂x1
∈ Lq1 (Ω), 1 < q1 < 2.

Then, denoting by u0 the uniquely determined constant associated to u by
Lemma II.6.3, we have

w = u− u0 ∈ Lr(Ω), r =
2nq1

2 + (n− 3)q1
,

and

‖w‖n
r ≤ C

(∥∥∥∥
∂u

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diu‖2 + |u|n1,2

)
, (II.6.34)

with C = C(q1, n, Ω).

Proof. Let φρ = φρ(x) be a smooth “cut-off” function that is 1 for x ∈ Ωρ, it is
0 for x ∈ Ω2ρ, and that satisfies maxx∈Ω |∇φρ(x)| ≤M , with M independent
of x. We thus have w = φρw + (1 − φρ)w ≡ w1 + w2. We begin to show the
following property: D1w2 and Diw2, i = 2, . . . , n, can be approximated, in
Lq1∩L2 and L2, respectively, by a sequence of functions from C∞

0 (Rn). To this
end, we set w̃2,k = ψα,Rkw2, where ψα,R the function constructed in Lemma
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II.6.4 with a choice of α that we specify later in the proof, and where {Rk} is an
unbounded sequence of positive numbers with R0 sufficiently large. We thus
have that the support of w̃2,k is compact in Rn. Therefore, its regularizer,
(w̃2,k)ε is in C∞

0 (Rn). Observing that Dj(w̃2,k)ε = (Djw̃2,k)ε, j = 1, . . . , n
(see Exercise II.3.2), in view of (II.2.9) we may choose a vanishing sequence
{εk} such that

lim
k→∞

‖Djw̃2,k −Djw2,k‖sj = 0 , (II.6.35)

where w2,k = (w̃2,k)εk , s1 ∈ {q1, 2}, and sj = 2 for j = 2, . . . , n. By the
Minkowski inequality, we also obtain

‖Djw2 −Djw2,k‖sj ≤ ‖Djw2 −Djw̃2,k‖sj + ‖Djw̃2,k −Djw2,k‖sj , (II.6.36)

so that, in view of (II.6.35), to show the stated property we have to show that
the first term on the right-hand side of (II.6.36) tends to 0 as k → ∞. We
now observe that

‖Djw2 −Djw̃2,k‖sj ≤ ‖(1 − ψα,Rk)Djw2‖sj + ‖Djψα,Rkw2‖sj , (II.6.37)

and so, in view of (II.6.30)1, the property follows if we prove that the second
term on the right-hand side of (II.6.37) vanishes as k → ∞. Take j = 1 and
sj = q1 first. Since

‖D1ψα,Rkw2‖q1 ≤ ‖D1ψα,Rk‖ 2nq1
2n−(n−2)q1

‖w2‖ 2n
n−2 ,ΩRk/

√
2 ,

and, by Theorem II.6.1, w2 ∈ L2n/(n−2)(Ω), we take α ≥ (n − 1)[2n − (n −
2)q1]/[3nq1 − 2(n+ q1)] to deduce, from the properties of ψα,R,

lim
k→∞

‖D1w2 −D1w̃2,k‖q1 = 0 . (II.6.38)

We next choose sj = 2, j = 1, . . . , n, and obtain, with the help of (II.6.32),

‖Djψα,Rkw2‖2 ≤ C ‖w2/|x|‖2,ΩRk/
√

2 ,

which, by (II.6.19) and (II.6.37) implies

lim
k→∞

‖Djw2 −Djw̃2,k‖2 = 0 . (II.6.39)

From (II.6.35), (II.6.36), (II.6.38), and (II.6.39) it then follows

lim
k→∞

‖Djw2 −Djw2,k‖sj = 0 , j = 1, . . . , n , (II.6.40)

which proves the desired property. Notice that, by Theorem II.6.1, (II.6.40)
yields

lim
k→∞

‖w2 − w2,k‖2n/(n−2) = 0 . (II.6.41)

We next observe that each function w2,k obeys, in particular, Troisi inequality
(II.3.8) with s = r, q1 = q1 and q2 = · · · = qn = 2. In fact, this inequality
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shows also that {w2,k} is Cauchy in Lr(Ω) and thus it converges there to some
w. In view of (II.6.40) and (II.6.41), it is simple to show that w = w2, a.e. in
Ω, and that the inequality continues to hold also for the function w2:

‖w2‖n
r ≤ c

∥∥∥∥
∂w2

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diw2‖2 . (II.6.42)

Furthermore, by the fact that w ∈ L2n/(n−2)(Ω), it follows w1 ∈ Lr(Ω), and
since w = w1+w2, we deduce w ∈ Lr(Ω). It thus remains to prove the validity
of (II.6.34) when Ω 6= Rn. Recalling that w2 = φρw, we readily obtain

‖w2‖n
r ≤ c1

∥∥∥∥
∂w

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diw‖2

+c2
[
(‖w‖q1,σ + |w|1,2)‖w‖n−1

2,σ + ‖w‖q1,σ|w|n−1
1,2

]
,

(II.6.43)

where σ is the (bounded) support of ∇φρ. We now suitably apply the Hölder
inequality in the σ-terms in square brackets and then use (II.6.22) with q = 2.
Consequently, (II.6.43) furnishes

‖w2‖n
r ≤ c1

∥∥∥∥
∂w

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diw‖2 + c3 |w|n1,2 . (II.6.44)

Finally, from Exercise II.3.12, we readily find that

‖w1‖r ≤ c4 ( ‖w‖2,σ′ + |w|1,2) ,

with σ′ the (bounded) support of φρ. Then, inequality (II.6.34) follows from
this latter inequality, from (II.6.22) with q = 2 and (II.6.44). ut

Exercise II.6.9 Show that if Ω = R
n, the last term on the right-hand side of

(II.6.34) can be omitted.

We would like now to extend the results of Theorem II.6.1 to the case
when Ω is a half-space (see Remark II.6.4).2 We begin to observe that, given
u ∈ D1,q(Rn

+), 1 ≤ q < ∞, we may extend it to a function u′ ∈ D1,q(Rn)
satisfying (see Exercise II.3.10)

u(x) = u′(x), x ∈ Rn
+ ,

|u′|1,q,Rn ≤ c|u|1,q,Rn
+
≤ c|u′|1,q,Rn .

(II.6.45)

If 1 ≤ q < n, by Lemma II.6.3, there is a uniquely determined u0 ∈ R such
that (u′ − u0) ∈ Ls(Rn), s = nq/(n− q), and, moreover,

2 As a matter of fact, also Theorem II.6.2 can be extended to Ω = R
n
+. However,

for our purposes, this extension would be irrelevant.
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‖u′ − u0‖s,Rn ≤ γ1|u′|1,q,Rn .

This relation, together with (II.6.45), then delivers

‖u− u0‖s,Rn
+
≤ γ3|u|1,q,Rn

+
,

which is what we wanted to show. It is interesting to observe that if u has
zero trace at the boundary xn = 0 then u0 = 0.3 Actually, denoting by û the
function obtained by setting u ≡ 0 outside Rn

+, one easily shows

û ∈ D1,q(Rn)

|û|1,q,Rn ≤ |u|1,q,Rn
+

(see Exercise II.6.10). Setting Sn−1
− = Sn−1∩Rn

−, by Lemma II.6.3 we deduce

|u0|q|Sn−1
− | ≤

∫

Sn−1

|û(R, ω) − u0|qdω ≤ γ0R
q−n|û|1,q,ΩR ,

for all R > 0, which furnishes u0 = 0. By the same token, we can show
weighted inequalities of the type (II.6.19) and (II.6.20). Next, if q ≥ n, we
notice that, if u has zero trace at the plane xn = 0, we may apply the results
of part (ii) in Theorem II.6.1 to the extension û, to show that the same results
continue to hold for Ω = Rn

+ , and with an arbitrary x0 ∈ Rn
−. Actually, we can

prove a somewhat stronger weighted inequality, holding for any u ∈ D1,q(Rn
+),

q ∈ (1,∞), that vanishes at xn = 0. We start with the identity (valid for
smooth u)

∂

∂xn

[ |u|q
(1 + xn)q−1

]
=

1

(1 + xn)q−1

∂|u|q
∂xn

+ (1 − q)
|u|q

(1 + xn)q .

Integrating this inequality over the parallelepiped Pa,b = {x ∈ Rn
+ : |x′| <

b , xn ∈ (0, a)}, x′ ≡ (x1, · · · , xn−1) , and using the fact that u vanishes at
xn = 0 along with the Hölder inequality, we deduce

‖u/(1 + xn)‖q,Pa,b ≤ q

q − 1
|u|1,q,Pa,b .

Since D1,q(Rn
+) ⊂ W 1,q(Pa,b), by a density argument we can extend this

latter inequality to functions merely belonging to D1,q(Rn
+) having zero trace

at xn = 0. Thus, in particular, letting b→ ∞, we find, for all a > 0,

‖u/(1 + xn)‖q,La ≤ q

q − 1
|u|1,q,La . (II.6.46)

where
La = {x ∈ Rn

+ : xn ∈ (0, a)} . (II.6.47)

We may summarize the above considerations in the following.

3 Notice that since u ∈W 1,q (C) for every cube C of R
n
+ with a side at xn = 0, the

trace of u at xn = 0 is well defined. A more general result for u0 to be zero is
furnished in Exercise II.7.5 and Section II.10.
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Theorem II.6.3 Let n ≥ 2 and assume

u ∈ D1,q(Rn
+), 1 ≤ q <∞.

(i) If q ∈ [1, n), there exists a uniquely determined u0 ∈ R such that the
function

w = u− u0

enjoys the following properties. For any x0 ∈ Rn, it is

w|x− x0|−1 ∈ Lq(ΩR(x0)),

where
ΩR(x0) ≡ Rn

+ − BR(x0)

and the following inequality holds:

(∫

ΩR(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ q/(n − q)|w|1,q,ΩR(x0). (II.6.48)

Furthermore, if x0 ∈ Rn
+, |x0| = αR, for some α ≥ α0 > 1 and some

R > 0, we have

(∫

ΩR

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ c|w|1,q,ΩR

with ΩR = Rn
+ − BR and c = c(n, q, α0). In addition,

w ∈ Ls(Rn
+), s = nq/(n− q) (II.6.49)

and for some γ2 independent of u

‖w‖s ≤ γ2|w|1,q.

If the trace of u is zero at xn = 0 , then u0 = 0.
(ii) If q ≥ n, and u has zero trace at xn = 0 then wu ∈ Lq(Rn

+) and inequality
(II.6.24) holds with any x0 ∈ Rn

−.4

(iii) If q ∈ (1,∞) and u has zero trace at xn = 0, then u/(1 + xn) ∈ Lq(Rn
+)

and inequality (II.6.46) holds for all a > 0.

By means of a simple procedure based on the iterative use of (II.6.22) and
(II.6.49) one can show the following general embedding theorem for functions
in Dm,q(Ω), whose proof is left to the reader as an exercise.

Theorem II.6.4 Let Ω ⊂ Rn, n ≥ 2, be either a locally Lipschitz exterior
domain or Ω = Rn

+, and let u ∈ Dm,q(Ω), m ≥ 1, 1 ≤ q <∞.

4 So that (II.6.24) holds with ΩR(x0) ≡ R
n
+.
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(a) If q ∈ [1, n), let ` ∈ {1, . . . , m} be the largest integer such that `q < n.
Then there are ` uniquely determined homogeneous polynomials Mm−r ,
r = 1, . . . , `, of degree ≤m− r such that, setting

um−k =

k∑

r=1

Mm−r , k ∈ {1, . . . , `} ,

we have
(i) (u− um−k) ∈ Dm−k,qk (Ω) ,

(ii)
∑̀

k=1

|u− um−k|m−k,qk ≤ c|u|m,q ,

where qk = nq/(n− kq) .
(b) If q ≥ n, Ω 6= Rn, and the trace of Dαu, |α| = m− 1, is zero at ∂Ω, then

wDαu ∈ Lq(ΩR(x0)), with w and ΩR(x0) given in part (ii) of Theorem
II.6.1 and Theorem II.6.3, and (II.6.24) holds with u ≡ Dαu.

(c) If u ∈ Dm,q(Rn
+), q ∈ (1,∞), and the trace of Dαu, |α| = m− 1, is zero

at xn = 0, then Dαu/(1 + xn) ∈ Lq(Rn
+) and inequality (II.6.46), with

u ≡ Dαu, holds for all a > 0.

Our final objective is to establish embedding inequalities for functions from
Dm,q(Ω) that vanish at ∂Ω. We wish to prove these results without assuming
any regularity on ∂Ω, and so we introduce the following generalized version
of “vanishing of traces at the boundary” for u ∈ Dm,q(Ω) (see Simader and
Sohr 1997, Chapter I)

ψu ∈ Wm,q
0 (Ω) , for all ψ ∈ C∞

0 (Rn) . (II.6.50)

Remark II.6.5 In view of Theorem II.4.2, we find at once that, if Ω has the
regularity specified in that theorem, condition (II.6.50) is equivalent to the
condition Γm(u) = 0 at ∂Ω. �

Theorem II.6.5 Let Ω be an exterior domain of Rn, n ≥ 2, and let u ∈
Dm,q(Ω), m ≥ 1, q ∈ [1,∞), satisfy (II.6.50).

(i) Assume Ωc ⊃ Ba, for some a > 0. Then, the following inequality holds
for all R > δ(Ωc)

‖u‖m−1,q,ΩR ≤mC |u|m,q,ΩR ,

where C = n−1/qR1+(n−1)/qa(1−n)/q.
(ii) Assume q ∈ [1, n) and let ` ∈ {1, . . . , m} be the largest integer such

that `q < n. Then, if the homogeneous polynomials Mm−r , r = 1, . . . , `,
defined in Theorem II.6.4(a) are all zero, the properties (i) and (ii) of that
theorem hold.

Proof. For any given R > δ(Ωc), let ψ ∈ C∞
0 (Rn) to be 1 in Ω2R and 0 in

Ω3R. By (II.6.50), we know that there is {us} ⊂Wm,q
0 (Ω) converging to ψu.
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Thus, it is enough to show the statement in (i) for u ∈ C∞
0 (Ω) and for m = 1.

If we extend u to 0 in Ωc, we find

u(x) =

∫ |x|

a

∂u

∂r
(r x/|x|)dr .

By using the Hölder inequality in this identity, we derive

|u(x)|q ≤ Rq−1a1−n

∫ R

a

|∇u|qrn−1dr .

Therefore, by multiplying both sides of this inequality by rn−1, and by inte-
grating the resulting relations over r ∈ [a, R] and again over the unit sphere,
we obtain the desired inequality. Under the stated assumptions in part (ii),
from Theorem II.6.4(a) we find

∑̀

k=1

|u|m−k,nq/(n−kq),ΩR ≤ C |u|m,q , (II.6.51)

while, by a repeated use of (II.6.9), it follows that

∑̀

k=1

|us|m−k,nq/(n−kq),ΩR
≤ C |us|m,q .

Passing to the limit s→ ∞ in this relation, and recalling the properties of ψ,
we deduce

∑̀

k=1

|u|m−k, nq
n−kq ,ΩR

≤ C

(∑̀

k=1

|u|m−k,q,Ω2R,3R +

m∑

k=`+1

|u|m−k,q,Ω2R,3R + |u|m,q

)
.

Combining this inequality with (II.6.51), we find

∑̀

k=1

|u|m−k,nq/(n−kq) ≤ C
(
‖u‖m−`−1,q,Ω2R,3R + |u|m,q

)
, (II.6.52)

and the result follows from (II.6.52) and part (i). ut

Exercise II.6.10 Let u ∈ D1,q(Ω), 1 ≤ q < ∞. Assume Ω ∩ Br(x0) locally Lip-

schitz for every x0 ∈ ∂Ω and some r > 0. Show that if u has zero trace at ∂Ω,

then its extension bu to R
n, obtained by setting u ≡ 0 in Ωc, is in D1,q(Rn). Hint:

Take ϕ arbitrary from C∞
0 (Rn). and let B be an open ball with B ⊃ supp (ϕ). Then

ϕu ∈ W 1,q
0 (Ω ∩B), and one can argue as in Exercise II.3.11.
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II.7 Approximation of Functions from Dm,q by Smooth
Functions and Characterization of the Space Dm,q

0

In the preceding section, we have defined the space Dm,q
0 (Ω) as the (Cantor)

completion of the normed space {C∞
0 (Ω) , |·|m,q}. As such, the generic element

of Dm,q
0 (Ω) is an equivalence class of Cauchy sequences. Our main objective

in this section is to furnish a “concrete” representation of Dm,q
0 (Ω), up to an

isomorphism, when Ω is either an exterior domain or a half-space.
In order to reach this objective, it is of the utmost importance to inves-

tigate the conditions under which an element from Dm,q(Ω) can be approx-
imated by functions from C∞

0 (Ω) in the seminorm (II.6.4) (see Galdi and
Simader 1990, and Remark II.6.4). As a by-product, we shall also find condi-
tions ensuring the validity of this approximation by functions from C∞

0 (Ω).
Like we did previously in analogous circumstances, we shall consider the case
m = 1, leaving the case m > 1 to the reader (see Theorem II.7.3 through
Theorem II.7.8).

Theorem II.7.1 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain, and let u ∈
D1,q(Ω), 1 ≤ q <∞. Then, u can be approximated in the seminorm | · |1,q by
functions from C∞

0 (Ω) under the following assumptions.

(i) If q ∈ [1, n), u satisfies (II.6.50) with m = 1, and u0 = 0, where u0 is the
constant of Lemma II.6.3 ;

(ii) If q ∈ [n,∞), u satisfies (II.6.50) with m = 1, .

Proof. We shall follow the ideas of Sobolev (1963b), combined with the argu-
ments used in the proof of Theorem II.6.2. Let ψ ∈ C∞

0 (R) be nonincreasing
with ψ(ξ) = 1 if |ξ| ≤ 1/2 and ψ(ξ) = 0 if |ξ| ≥ 1 and set, for R large enough,

ψR(x) = ψ

(
ln ln |x|
ln lnR

)
. (II.7.1)

Notice that, for a suitable constant c > 0 independent of R,

|DαψR(x)| ≤ c

ln lnR

1

|x|m ln |x| , |α| = m ≥ 1 (II.7.2)

and DαψR(x) 6≡ 0, |α| ≥ 1, only if x ∈ Ω̃R, where

Ω̃R =
{
x ∈ Ω : exp

√
lnR < |x| < R

}
. (II.7.3)

Next, let u ∈ D1,q(Ω), q ∈ [1,∞), satisfying (II.6.50) with m = 1, and with
u0 = 0 if q ∈ [1, n). We write u = (1−ψR)u+ψRu. By (II.6.50) we then have

ψRu ∈W 1,q
0 (Ω) (II.7.4)

for all R > δ(Ωc). So, given ε > 0 we may find a sufficiently large R and a
function uR,ε ∈ C∞

0 (Ω) such that
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|uR,ε − ψRu|1,q < ε,

and

|u− uR,ε|1,q≤‖(1 − ψR)∇u‖q + ‖∇ψRu‖q + |uR,ε − ψRu|1,q< 2ε+ ‖∇ψRu‖q.

The lemma will then follow from this inequality, provided we show that the
last term on its right-hand side tends to zero as R→ ∞. Setting

`(R) ≡ ‖∇ψRu‖q, (II.7.5)

in view of (II.7.2) and (II.7.3) we can find a constant c1 > 0 such that

`(R)q ≤ c1
(ln lnR)q

∫ R

exp
√

ln R

∫

Sn−1

|u(r, ω)|q
(ln r)q rn−q−1dωdr.

Now, by Lemma II.6.3 and Exercise II.6.3, recalling that u0 = 0 if q ∈ [1, n),
we have ∫

Sn−1

|u(r, ω)|q ≤ c2g(r),

where, in particular,

g(r) =





(ln r)n−1 if q = n

rq−n if q 6= n , q 6= 1

r1−n|u|1,1,Ωr if q = 1.

Therefore, if q = n we obtain

`(R)n ≤ c2
(ln lnR)n

∫ R

exp
√

ln R

(r ln r)−1dr ≤ c2(ln lnR)1−n; (II.7.6)

and if q 6= n, q 6= 1,

`(R)q ≤ c2
(ln lnR)q

∫ R

exp
√

ln R

(ln r)−qr−1dr ≤ c2
(ln lnR)q

(lnR)(1−q)/2

(q − 1)
.

(II.7.7)
Finally, if q = 1, we have

`(R) ≤ c2
(ln lnR)

∫ R

exp
√

ln R

(ln r)−1r−1|u|1,1,Ωrdr ≤ c2
2
|u|1,1,Ωexp

√
ln R .

(II.7.8)
So, for all q ∈ [1,∞), we recover

lim
R→∞

`(R) = 0,

which completes the proof of the theorem. ut
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Remark II.7.1 If the trace of u does not vanish at the boundary, that is,
if u does not satisfy (II.6.50), Theorem II.7.1 should be suitably modified. In
fact, on the one hand, the function ψRu does not satisfy the condition (II.7.4)
but, rather, it verifies the following one:

ψRu ∈ W 1,q(Ω), for all R > δ(Ωc).

So, from Theorem II.3.1 it follows that, if Ω is locally Lipschitz, given ε > 0,
we may find a sufficiently large R and a function uR,ε ∈ C∞

0 (Ω) such that

|uR,ε − ψRu|1,q < ε

and, as in the proof of Theorem II.7.1, we can prove that any u ∈ D1,q(Ω)
can be approximated in the seminorm | · |1,q by functions from C∞

0 (Ω) for
q ≥ n. However, the same result continues to hold also when 1 ≤ q < n. In
fact, it suffices to notice that, for any u ∈ D1,q(Ω) with u0 6= 0, the function
ψR(u − u0), with u0 defined in Lemma II.6.3, is of bounded support in Ω,
belongs to W 1,q(Ω) and approaches u in the seminorm | · |1,q. We thus have
the following.

Theorem II.7.2 Let Ω be locally Lipschitz, and let u ∈ D1,q(Ω). Then, u
can be approximated in the norm | · |1,q by functions from C∞

0 (Ω).

�

Exercise II.7.1 Let Ω be locally Lipschitz. Show that C∞
0 (Ω) is dense in Ḋ1,q(Ω).

The technique employed in the proof of Theorem II.7.1 and Theorem II.7.2,
along with the results of Theorem II.6.4, allow us to generalize the previous
results to the space Dm,q(Ω), m ≥ 1, in the following theorems, whose proofs
we leave to the reader as an exercise.

Theorem II.7.3 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain and let u ∈
Dm,q(Ω), 1 ≤ q <∞, m ≥ 1 . Then u ∈ Dm,q(Ω) can be approximated in the
norm | · |m,q by functions from C∞

0 (Ω) under the following assumptions.

(i) If q ∈ [1, n), u satisfies (II.6.50) and the following conditions hold:

um−` ≡ 0 , (II.7.9)

where ` ∈ {1, . . . , m} is the largest integers such that `q < n and the
polynomials um−` are defined in Theorem II.6.4.

(ii) If q ∈ [n,∞), u satisfies (II.6.50)

Theorem II.7.4 Let Ω be a locally Lipschitz, exterior domain of Rn, n ≥ 2.
Then, every u ∈ Dm,q(Ω) can be approximated in the seminorm | · |m,q by
functions from C∞

0 (Ω).
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We are now in the position to prove a characterization of the space
Dm,q

0 (Ω). For the sake of argument, we shall first consider the case m = 1.

Set

D̃1,q
0 (Ω) =





{u ∈ D1,q(Ω) : ‖u‖ nq
n−q

<∞ , u satisfies (II.6.50) with m = 1} ,
if q ∈ [1, n)

{u ∈ D1,q(Ω) : u satisfies (II.6.50) with m = 1} , if q ∈ [n,∞)
(II.7.10)

where, if q ≥ n, we assume Ωc ⊃ Ba, for some a > 0.
With the help of Exercise II.6.8, it is not difficult to show that D̃1,q

0 (Ω),
1 ≤ q < ∞, endowed with the norm | · |1,q is a Banach space, and that this
norm is equivalent to the following one

| · |1,q + ‖ · ‖nq/(n−q) if q ∈ [1, n)

| · |1,q + ‖w(·)‖q if q ∈ [n,∞) .
(II.7.11)

where w is defined in (II.6.23).

Theorem II.7.5 Let Ω be an exterior domain of Rn, n ≥ 2. Then D1,q
0 (Ω),

q ∈ [1,∞), is isomorphic to D̃1,q
0 (Ω), where Ω 6= Rn, if q ≥ n. If q ≥ n and

Ω = Rn, then D1,q
0 (Rn) is isomorphic to Ḋ1,q(Rn).

Proof. We first consider the two cases: either (i) q ∈ [1, n), or (ii) q ∈ [n,∞)

and Ω 6= Rn, and begin to construct a suitable map T : D1,q
0 (Ω) → D̃1,q

0 (Ω).
Let ũ be a generic element in D1,q

0 (Ω), that is, an equivalence class of Cauchy
sequences, and let {uk} ∈ ũ. Then {Djuk}, j = 1, . . . , n, are Cauchy sequences
in Lq(Ω) and, therefore, there exist corresponding Vj ∈ Lq(Ω), such that

lim
k→∞

‖Djuk − Vj‖q = 0 , j = 1, . . . , n . (II.7.12)

Moreover, in view of Exercise II.6.4, {uk} is a Cauchy sequence also in
Lnq/(n−q)(Ω), if q ∈ [1, n), and in Lq

w(Ω), if q ≥ n and Ω 6= Rn. Thus,
there is u ∈ Lnq/(n−q)(Ω), if q ∈ [1, n), or u ∈ Lq

w(Ω), if q ≥ n and Ω 6= Rn,
such that

lim
k→∞

‖uk − u‖nq/(n−q) = 0 , if q ∈ [1, n)

lim
k→∞

‖w(uk − u)‖q = 0 , if q ≥ n, Ω 6= Rn .
(II.7.13)

From the definition of weak derivative and from (II.7.12)–(II.7.13), it imme-
diately follows that Vj = Dju. Next, let ψ ∈ C∞

0 (Rn). We have to show that
ψu can be approximated, in W 1,q(Ω)–norm, by a sequence {vk} ⊂ C∞

0 (Ω).
Take vk = ψuk. From (II.7.13) it is clear that ‖ψu − vk‖q → 0 as k → ∞.
Moreover,

|ψu− vk|1,q ≤ C ( |u− uk|1,q + ‖u− uk‖q,K)
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with K the support of ψ, so that, from this inequality and (II.7.12), (II.7.13),
we find |ψu− vk|1,q → 0 as k → ∞, which concludes the proof of the desired

property. We may thus infer u ∈ D̃1,q
0 (Ω). Since, as it is readily checked, the

function u does not depend on the particular sequence {uk} ∈ ũ, we may

define a map, T, that to each ũ ∈ D1,q
0 (Ω) assigns the function u ∈ D̃1,q

0 (Ω)
determined in the way described above. Of course, T is linear and it is also
an isometry, and, in addition,

|ũ|1,q ≡ lim
k→∞

|uk|1,q = |u|1,q ≡ |T(ũ)|1,q.

It remains to show that the range of T coincides with D̃1,q
0 (Ω). This amounts

to say that, for each u ∈ D̃1,q
0 (Ω) we can find {uk} ⊂ C∞

0 (Ω) such that
|uk−u|1,q → 0 as k → ∞. However, the validity of this property is assured by
Theorem II.7.1. Finally, the case Ω = Rn and q ≥ n. In view of Remark II.6.2,
we only have to show that the natural map i is surjective, namely, that for any
[u] ≡ [u]1 ∈ Ḋ1,q

0 (Rn), we can find {uk} ⊂ C∞
0 (Ω) such that |uk − v|1,q → 0,

as k → ∞, v ∈ [u]. This property follows from Theorem II.7.1, and the proof
of the theorem is complete. ut

We may thus summarize the above theorem with the following represen-
tation of the spaces D1,q

0 (Ω) (up to an isomorphism).

If q ∈ [1, n):

D1,q
0 (Ω) = {u ∈ D1,q(Ω) : ‖u‖nq/(n−q) <∞ , u satisfies (II.6.50) with m = 1},

(II.7.14)
with equivalent norm given in (II.7.11)1 .

If q ≥ n, and Ωc ⊃ Ba, for some a > 0:

D1,q
0 (Ω) = {u ∈ D1,q(Ω) : u satisfies (II.6.50) with m = 1} , (II.7.15)

with equivalent norm given in (II.7.11)2 .

If q ≥ n and Ω = Rn:

D1,q
0 (Rn) = {[u] : u ∈ D1,q(Rn)} , (II.7.16)

where
[u] = {v ∈ D1,q(Rn) such that v = u+ c , c ∈ R} .

By combining Theorem II.7.3 with the arguments used in showing Theo-
rem II.7.5, one is now able to furnish the following representation (up to an
isomorphism) of the space Dm,q

0 (Ω), for arbitrary m ≥ 1.

Theorem II.7.6 Let Ω be an exterior domain of Rn, n ≥ 2. The following
representations hold.
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(i) If q < n, let ` ∈ {1, . . . , m} be the largest integer such that `q < n. If
` < m, we assume Ωc ⊃ Ba for some a > 0. Then:

Dm,q
0 (Ω) =

{
u ∈ Dm,q(Ω) :

∑̀

k=1

|u|m−k, nq
n−kq

<∞ , u satisfies (II.6.50)

}
,

(II.7.17)
with equivalent norm

‖u‖m−1,q,ΩR0
+
∑̀

k=1

|u|m−k,nq/(n−kq) + |u|m,q ,

where R0 is a fixed number strictly greater than δ(Ωc) .
(ii) If q ≥ n, assume Ωc ⊃ Ba for some a > 0. Then:

Dm,q
0 (Ω) = {u ∈ Dm,q(Ω) : u satisfies (II.6.50)} , (II.7.18)

with equivalent norm

‖u‖m−1,q,ΩR0
+ |u|m,q ,

where R0 is a fixed number strictly greater than δ(Ωc) .
(iii) If q < n, mq ≥ n, and Ω = Rn:

Dm,q
0 (Rn) =

{
[u]m−` , u ∈ Dm,q(Ω) :

∑̀

k=1

|u|m−k, nq
n−kq

<∞
}

(II.7.19)

where ` (< m) is the largest integer such that `q < n, and where, we
recall,

[u]m−` = {v ∈ Dm,q(Rn) : v = u+ Pm−`−1} ,
with Pm−`−1 polynomial of degree ≤ m− ` − 1 .

(iv) If q ≥ n and Ω = Rn:

Dm,q
0 (Rn) = {[u]m , u ∈ Dm,q(Ω)} (II.7.20)

The proof of the above theorem is quite straightforward. In fact, it is
obtained by combining the procedure used in Theorem II.7.5, with the results
of Theorem II.7.3 and Theorem II.6.5. We leave the details to the reader.

Exercise II.7.2 Show that the space defined on the right-hand side of (II.7.19) is

a Banach space with respect to the norm |[u]|m,q ≡ |u|m,q, u ∈ [u]m−`. Hint. Follow

the arguments of the proof of Theorem II.7.1.

Remark II.7.2 From Theorem II.7.6 we deduce that, unless mq < n, the
space Dm,q

0 (Rn) is a Banach space whose elements are equivalence classes of
functions that differ by polynomials of suitable degree. In particular, if q ≥ n,
then Dm,q

0 (Rn) = Ḋm,q(Rn). In this respect, see also the following exercise.
�
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Exercise II.7.3 Let {uk} be a Cauchy sequence in Dm,q
0 (Rn), where mq ≥ n, and

let [u]m ∈ Ḋm,q(Rn) be such that |uk − u|m,q → 0 as k → ∞, u ∈ [u]m. Show, by
means of an example, that even though u ∈ Ls(BR), for all s ∈ [1, q] and all R > 0,
we may have ‖uk‖1,BR → ∞ as k → ∞, for all sufficiently large R. Hint (Deny &
Lions 1954, §4): Take m = 1, q = n = 2 and choose

uk(x) = −
Z ∞

|x|

(t ln t)−1ak(t) dt ,

where ak = ak(t), k ∈ N, is a smooth, non-negative function of C∞
0 (R) which is 0

for t ≤ 2 and for t ≥ k + 4, and it is 1 for t ∈ [5/2, 3 + k]. Then |uk − u|1,2 → 0
as k → ∞, where u(x) = (

p
|x| lnx)−1a(x), with a(x) = 0 for |x| ≤ 2 and = 1 for

|x| ≥ 5/2, while

lim
k→∞

Z

BR

|uk(x)| = ∞ , for all R > 5/2 .

Exercise II.7.4 Let Ω be an exterior domain and let u ∈ D2,2
0 (Ω). Show that

|D2u|2,2 = ‖∆u‖2 .

Hint: It is enough to show the identity for u ∈ C∞
0 (Ω).

Results similar to those of Theorem II.7.3 and Theorem II.7.4 can be
proved in the case when Ω = Rn

+. In fact, as we already noticed, every function
u ∈ Dm,q(Rn

+) can be extended to the whole of Rn to a function u′ satisfying
(II.6.45). In particular, if the trace Γm(u) on every (bounded) portion of the
plane xn = 0 is identically zero, we may take u′ as the function obtained by
setting u ≡ 0 outside Rn

+. With this and Theorem II.6.4(c) in mind, one can
show the following theorems, whose proofs are left to the reader.

Theorem II.7.7 The following representation holds, for all m ≥ 0, q ∈
[1,∞).

Dm,q
0 (Rn

+) = {u ∈ Dm,q(Rn
+) : Γm(u) = 0 on S} ,

with S arbitrary bounded domain in the plane xn = 0 , with equivalent norm

|u|m,q + ‖u‖m−1,q,La0
,

where La is defined in (II.6.47) and a0 is a fixed positive number.

Theorem II.7.8 Let u ∈ Dm,q(Rn
+), m ≥ 0, q ∈ [1,∞). Then, u can be

approximated in the seminorm | · |m,q by functions from C∞
0 (R

n

+).

Remark II.7.3 Unlike the case Ω exterior, Theorem II.7.7 does not explicitly
impose any restriction at large distances on the behavior of u when 1 ≤ q < n,
such as the vanishing condition (II.7.9) on the polynomials um−`. Actually by
means of an argument completely analogous to that preceding Theorem II.6.3,
one can show that the polynomials um−` are identically zero as a consequence
of the vanishing of the trace Γm(u). �
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Exercise II.7.5 (Coscia and Patria 1992, Lemma 5) Let u ∈ D1,q(Rn
+), 1 ≤ q < n.

By Theorem II.6.3 there is u0 ∈ R such that u − u0 ∈ Ls(Rn
+), s = nq/(n − q).

Show that if the trace γ(u) at Σ = {x ∈ R
n : xn = 0} belongs to Lr(Σ), for

some r ∈ [1,∞), then u0 = 0. This fact, together with Theorem II.7.8, implies that

every such function can be approximated in the seminorm | · |1,q by functions from

C∞
0 (R

n
+).

II.8 The Normed Dual of Dm,q

0 (Ω). The Spaces D−m,q

0

We begin to furnish a characterization of the normed dual space (Dm,q
0 (Ω))′

of Dm,q
0 (Ω), when Ω is either an exterior domain or Ω = Rn or Ω = Rn

+,
analogous to the one we described at the end of Section II.3 for the space
Wm,q

0 (Ω). A (bounded) linear functional F belongs to (Dm,q
0 (Ω))′ if and only

if
‖F‖(Dm,q

0 (Ω))′ ≡ sup
u∈Dm,q

0 (Ω) , |u|m,q=1

|F(u)| <∞ .

Let us first take Ω exterior, Ω 6= Rn and satisfying the assumptions of Theo-
rem II.7.6, or Ω = Rn

+. Consider the functional

F(u) = (f, u), f ∈ C∞
0 (Ω), all u ∈ Dm,q

0 (Ω). (II.8.1)

Applying the Hölder inequality in (II.8.1) we obtain

|F(u)| ≤ ‖f‖q′‖u‖q,Ω0, (II.8.2)

where Ω0 = supp (f). Then, by Theorem II.7.6 and Theorem II.6.5(i), if Ω is
exterior, and by Theorem II.7.7, if Ω = Rn

+, we find that inequality (II.8.2)
implies

|F(u)| ≤ c ‖f‖q′ |u|m,q

with c = c(Ω0). We now set

|f |−m,q′ = sup
u∈Dm,q

0 (Ω) , |u|m,q=1

|F(u)|. (II.8.3)

Evidently, (II.8.3) is a norm in C∞
0 (Ω). Denote by D−m,q′

0 (Ω) the completion
of C∞

0 (Ω) in this norm. The following result holds.

Lemma II.8.1 Let Ω be an exterior domain ( 6= Rn) satisfying the assump-
tions of Theorem II.7.6, or Ω = Rn

+. Then, for any q ∈ (1,∞), functionals of

the form (II.8.1) are dense in (Dm,q
0 (Ω))′, and (Dm,q

0 (Ω))′ and D−m,q′

0 (Ω) are
isomorphic.

Proof. Let

S = {F ∈ (Dm,q
0 (Ω))′ : F(u) = (f, u) for some f ∈ C∞

0 (Ω)} .
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Clearly, S is a subspace of (Dm,q
0 (Ω))′. Let us prove that S is dense in

(Dm,q
0 (Ω))′. In fact, assuming by contradiction that S 6= (Dm,q

0 (Ω))′, by the
Hahn–Banach theorem (see Theorem II.1.7(b)) there exists a nonzero element
Z ∈ (Dm,q

0 (Ω))′′ such that

Z(F) = 0, for all F ∈ S.

Since Dm,q
0 (Ω) is reflexive for q ∈ (1,∞) (cf. Exercise II.6.2), the preceding

condition implies that there exists a nonzero z ∈ Dm,q
0 (Ω) such that

F(z) = 0, for all F ∈ S,

that is
(f, z) = 0, for all f ∈ C∞

0 (Ω),

that is, z = 0, which leads to a contradiction. Following Lax (1955, §2), it is

now readily seen that (Dm,q
0 (Ω))′ and D−m,q′

0 (Ω), 1 < q <∞, are isomorphic.
To this end, let L ∈ (Dm,q

0 (Ω))′ and let {fk} ⊂ C∞
0 (Ω) be such that the

sequence Fk ≡ (fk, u), k ∈ N, u ∈ Dm,q
0 (Ω), converges to L in the norm

| · |(Dm,q
0 (Ω))′ of (Dm,q

0 (Ω))′. Since

|Fk|(Dm,q
0 (Ω))′ = |fk|−m,q′ , (II.8.4)

{fk} is a Cauchy sequence in D−m,q′

0 (Ω) converging to some F ∈ D−m,q′

0 (Ω).
Clearly, F depends only on L and not on the particular sequence {fk} and,

in addition, it is uniquely determined. Likewise, to each F ∈ D−m,q′

0 (Ω) we
may uniquely associate an L ∈ (Dm,q

0 (Ω))′, thus establishing the existence

of a linear bijection, L , between (Dm,q
0 (Ω))′ and D−m,q′

0 (Ω). However, from
(II.8.4), it follows that L is an isomorphism, and the proof of the lemma is
complete. ut

Let us now consider the case Ω = Rn. For mq < n, we employ, in (II.8.1),
the Hölder inequality and make use m times of the Sobolev inequality (II.3.7)
to deduce

|F(u)| ≤ ‖f‖nq′/(n+q′)‖u‖nq/(n−mq) ≤ c‖f‖nq′/(n+q′)|u|m,q. (II.8.5)

Ifmq ≥ n, by Theorem II.7.6 we know that elements fromDm,q
0 (Rn) are equiv-

alence classes [u]s determined by functions that may differ by polynomials Ps

of degree ≤ s− 1, where

{
s = m, if q ≥ n,

s = m− `, if q < n and ` (< m) is the largest integersuch that `q < n.
(II.8.6)

Thus, if mq ≥ n, functionals of the type (II.8.1) must satisfy F(u1) = F(u2)
whenever u1, u2 belong to the same class [u]s. This is equivalent to the fol-
lowing condition on f :
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∫

Rn

f Ps = 0, (II.8.7)

where Ps is an arbitrary polynomial of degree ≤ s−1, with s satisfying (II.8.6).
As a consequence, from (II.8.7), for u ∈ [u]s we have (with BR ⊃ supp (f))

|F(u)| =
∣∣∣∣
∫

BR

fu

∣∣∣∣ =
∣∣∣∣
∫

BR

f(u + Ps)

∣∣∣∣ ≤ ‖f‖q′,Rn‖u+ Ps‖q,BR . (II.8.8)

We may choose Ps in such a way that, setting

us = u− Ps,

it follows
1

|BR|

∫

BR

Dαus = 0, 0 ≤ |α| ≤ s.

In view of these latter conditions, by a repeated use of the Poincaré inequality
(II.5.10) in the last term on the right-hand side of (II.8.8), we obtain

|F(u)| ≤ c1‖f‖q′,Rn |u|s+1,q,BR.

Now, if q ≥ n, from (II.8.6) it is s = m− 1 and so

|u|s+1,q,BR ≤ |u|m,q,Rn.

If q < n, again from (II.8.6), the Hölder inequality and (II.7.17) of Remark
II.7.2, we deduce

|u|s+1,q,BR = |u|m−`,q,BR ≤ |u|m−`,nq/(n−`q),Rn ≤ c|u|m,q,Rn .

Thus, in all cases, we deduce

|F(u)| ≤ c2‖f‖q′,Rn |u|m,q,Rn . (II.8.9)

Once (II.8.9) has been established, we may again use the arguments of Lemma

II.8.1 to show that the spaces (Dm,q
0 (Rn))′ and D−m,q′

0 (Rn), 1 < q < ∞, are
isomorphic.

Thus, for q ∈ (1,∞), let us define Fq,m(Ω) as the class of functionals
(II.8.1), which, if Ω = Rn and n ≤ mq <∞, verify, in addition, (II.8.7) for an
arbitrary polynomialPs of degree ≤ s−1, with s satisfying (II.8.6). The results
just discussed along with those of Lemma II.8.1 can be then summarized in
the following.

Theorem II.8.1 Let Ω ⊆ Rn be either an exterior, locally Lipschitz domain,

or Ω = Rn
+ or Ω = Rn. The completion, D−m,q′

0 (Ω), of Fq,m(Ω) in the norm
(II.8.3) is isomorphic to (Dm,q

0 (Ω))′.
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Remark II.8.1 If m = 1, a restriction of the type (II.8.7) occurs if and only
if q ≥ n. In such a case, Ps reduces to an arbitrary constant so that condition
(II.8.7) becomes ∫

Rn

f = 0. (II.8.10)

�

Hereafter, the value of F ∈ D−1,q′

0 (Ω) at u ∈ D1,q
0 (Ω) (duality pairing)

will be denoted by
[F , u].

Notice that if, in particular, F ∈ C∞
0 (Ω), we have

[F , u] = (F , u).

By an obvious continuity argument, the same relation holds, more generally,

for all F ∈ Ls(Ω) ∩D−1,q′

0 (Ω), s ∈ [1,∞) .
Our next goal is to provide a useful representation of functionals on

D1,q
0 (Ω), valid for an arbitrary domain Ω, as well as another characterization

of the space (D1,q
0 (Ω))′. Taking into account that D1,q

0 (Ω) is a closed subspace
of Ḋ1,q(Ω) (see Remark II.6.2), this representation becomes a particular case
of the following important general result.

Theorem II.8.2 Let Ω be a domain in Rn. Then, for any given F ∈
(Ḋ1,q(Ω))′, q ∈ (1,∞), there exists f ∈ [Lq′

(Ω)]n such that, for all u ∈
Ḋ1,q(Ω),

F(u) = (f ,∇u) . (II.8.11)

Moreover,
‖F‖(Ḋ1,q(Ω))′ = ‖f‖q′ . (II.8.12)

Proof. We recall that, for any q ∈ (1,∞), Ḋ1,q(Ω) can be viewed as a subspace
of [Lq(Ω)]n, via the map

M : u ∈ Ḋ1,q(Ω) → h ≡ ∇u ∈ [Lq(Ω)]n . (II.8.13)

Therefore, given F ∈ (Ḋ1,q(Ω))′, by the Hahn–Banach theorem (see Theorem
II.1.7) there exists a (not necessarily unique) functional L ∈ [[Lq(Ω)]n]′, such
that

L(h) = F(u) , u ∈ Ḋ1,q(Ω) , (II.8.14)

and that, moreover, satisfies

‖L‖[[Lq(Ω)]n]′ = ‖F‖(Ḋ1,q(Ω))′ . (II.8.15)

However, by Theorem II.2.6, we have that, corresponding to the functional L,
there exists a uniquely determined f ∈ [Lq′

(Ω)]n such that L(w) = (f ,w) for
all w ∈ [Lq(Ω)]n, with ‖f‖q′ = ‖L‖[[Lq(Ω)]n]′ . Therefore, the theorem follows
from this latter consideration, and from (II.8.14) and (II.8.15). ut
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We would like to analyze some significant consequences of this result for
the space D1,q

0 (Ω). We begin to observe that, since D1,q
0 (Ω) ⊂ Ḋ1,q(Ω), by

Theorem II.8.2 the generic linear functional on D1,q
0 (Ω) can be represented

as in (II.8.11), for all u ∈ D1,q
0 (Ω), where the function f ∈ [Lq′

(Ω)]n is
determined up to a function f0 such that

(f0,∇u) = 0 , for all u ∈ D1,q
0 (Ω) . (II.8.16)

Let L̃q′
(Ω) be the subspace of [Lq′

(Ω)]n constituted by all those functions

satisfying (II.8.16). It is immediately verified that L̃q′
(Ω) is closed. Moreover,

setting G0,q′(Ω) = M(D1,q′

0 (Ω)), with M defined in (II.8.13), we can readily

show that G0,q′(Ω) is also a closed subspace of [Lq′
(Ω)]n; see Exercise II.8.1.

Now, let f ∈ [Lq′
(Ω)]n and consider the problem:

Find w ∈ D1,q′

0 (Ω) such that (∇w − f ,∇u) = 0 , for all u ∈ D1,q
0 (Ω).

(II.8.17)
IfΩ and f are sufficiently smooth, we can show that this problem is equivalent
to the following classical Dirichlet problem

∆w = ∇ · f in Ω , w = 0 at ∂Ω , w ∈ D1,q′

0 (Ω) .

Lemma II.8.2 Assume that, for any given f ∈ [Lq′
(Ω)]n, problem (II.8.17)

has one and only one solution w ∈ D1,q′

0 (Ω). Then, the following decomposi-
tion holds

[Lq′
(Ω)]n = L̃q′

(Ω) ⊕G0,q′(Ω) . (II.8.18)

Conversely, if (II.8.18) holds, then, for any f ∈ [Lq′
(Ω)]n, problem (II.8.17)

is uniquely solvable. Finally, the linear operator Πq′ : f ∈ [Lq′
(Ω)]n → f1 ∈

G0,q′(Ω) is a projection (that is, Π2
q′ = Πq′) and is continuous.

Proof. The last statement in the lemma is a consequence of (II.8.18); see
Rudin (1973, Theorem 5.16(b)). Since both Lq′

(Ω) and G0,q′(Ω) are closed,
in order to prove (II.8.18), under the given assumption, we have to show

that (a) Lq′
(Ω) ∩ G0,q′(Ω) = {0}, and that (b) f = f0 + f1, f0 ∈ L̃q′

(Ω),

f1 ∈ G0,q′(Ω). Suppose there are l ∈ L̃q′
(Ω) and g = ∇g ∈ G0,q′(Ω), for

some g ∈ D1,q′

0 (Ω), such that l = g. This means, by definition of L̃q′
(Ω)

that (∇g,∇u) = 0 for all u ∈ D1,q
0 (Ω), which, in turn, by the uniqueness

assumption on problem (II.8.17), implies ∇g = l = 0. Thus, (a) is proved.
Next, for the given f , let w ∈ D1,q

0 (Ω) be the corresponding solution to

(II.8.17) and set f0 = f − ∇w (∈ L̃q′
(Ω)), and f1 = ∇w (∈ G0,q′). Then,

f = f0 + f1 which proves (b). The converse claim, namely, that (II.8.18)
implies the unique solvability of (II.8.17), is almost obvious and, therefore, it
is left to the reader as an exercise ut
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With the help of Theorem II.8.2 and Lemma II.8.2, we can now show the
following result.

Theorem II.8.3 Assume the hypothesis of Lemma II.8.2 is satisfied and q′ ∈
(1,∞). Then D1,q′

0 (Ω) and (D1,q
0 (Ω))′ are homeomorphic. Specifically, the

linear map

M : w ∈ D1,q′

0 (Ω) → M(w) ∈ (D1,q
0 (Ω))′ , (II.8.19)

where
[M(w), u] = (∇w,∇u) , for all u ∈ D1,q

0 (Ω) , (II.8.20)

is a bijection and, moreover, for some c = c(q, n, Ω) > 0,

c |w|1,q′ ≤ ‖M(w)‖(D1,q
0 (Ω))′ ≤ |w|1,q′ . (II.8.21)

Proof. By assumption, we find that M is injective, and, by Theorem II.8.2
((II.8.11), in particular) and Lemma II.8.2, that M is surjective, so that M

is a bijection. Furthermore, the inequality on the right-hand side of (II.8.21)
is an obvious consequence of the Hölder inequality, while the one on the left-
hand side follows from the continuity of the projection operator Πq′ and from
(II.8.12). ut

In view of the results of Theorem II.8.3, it is of great interest to investigate
under what conditions problem (II.8.17) has, for a given f ∈ [Lq′

(Ω)]n, a
unique corresponding solution w. As a matter of fact, such unique solvability
depends, in general, on the domain Ω and on the exponent q′. In particular,
we have the following.

Theorem II.8.4 Let Ω be either Rn, or Rn
+, or a bounded domain with

a boundary of class C2. Then, for all q ∈ (1,∞), the spaces D1,q′

0 (Ω) and
(D1,q

0 (Ω))′ are homeomorphic, in the sense specified in Theorem II.8.3. If Ω
is an exterior domain of class C2 (with ∂Ω 6= ∅) the same conclusion holds if
and only if q′ ∈ (n/(n− 1), n), if n ≥ 3, and q′ = 2, if n = 2.

We shall not give a proof of this theorem, mainly, because a completely
analogous analysis of unique solvability will be carried out in Chapters IV and
V, in the more complicated context of the Stokes problem. Here we shall limit
ourselves to observe that the restriction on the exponent q′, in the case of the
exterior domain, comes from the fact that the Dirichlet problem (II.8.17) for
n ≥ 3 looses existence if 1 < q′ ≤ n/(n − 1) (q′ ∈ (1, 2) if n = 2), while it
lacks of uniqueness if q′ ≥ n, n ≥ 3 (q′ > 2, if n = 2). For further details, we
refer the interested reader to the Notes at the end of this chapter.

Exercise II.8.1 Show that G0,q(Ω), q ∈ [1,∞), is a closed subspace of Lq(Ω).

Exercise II.8.2 Show that the subspace S of (Ḋ1,q(Ω))′, q ∈ (1,∞), defined as
follows
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S = {u ∈ C∞
0 (Ω) : u = ∇ ·ψ , for some ψ ∈ C∞

0 (Ω)}
is dense in (Ḋ1,q(Ω))′. This result generalizes the one proved by Kozono & Sohr

(1991, Corollary 2.3). Hint: Use Theorem II.8.2.

II.9 Pointwise behavior at Large Distances of Functions
from D1,q

We begin to give two classical results of potential theory, in a form suitable
to our purposes.

Lemma II.9.1 Let A be a bounded, locally Lipschitz domain of Rn, n ≥ 2,
and let w ∈ C2(A). The following identity holds for all x ∈ A:

w(x) =
1

nωn

∫

A

∂w(y)

∂yi

(xi − yi)

|x− y|n dy −
1

nωn

∫

∂A

w(y)
(xi − yi)

|x − y|n Ni(y)dσy

where N ≡ (Ni) is the outer unit normal to ∂A.

Proof. Denote by E(x− y) the fundamental solution of Laplace’s equation:

E(x− y) =





(2π)−1 log |x− y| if n = 2

[n(2 − n)ωn]
−1 |x− y|2−n if n ≥ 3.

(II.9.1)

Employing the (second) Green’s identity1

∫

Aε

(v∆u− u∆v) =

∫

∂Aε

(v
∂u

∂N
− u

∂v

∂N
)

with v(y) ≡ w(y), u(y) = E(x− y), Aε = A−Bε(x) and integrating by parts
we deduce

∫

Aε

∂E(x− y)

∂yi

∂w(y)

∂yi
=

∫

∂Bε

w(y)
∂E(x − y)

∂yi
Ni(y)dσy

+

∫

∂A

w(y)
∂E(x − y)

∂yi
Ni(y)dσy

which, in turn, by the properties of E and a standard procedure, proves the
result in the limit ε→ 0. ut

Lemma II.9.2 Let

1 As is well known, this identity is obtained by means of the Gauss divergence
theorem which, by Lemma II.4.1, holds for locally Lipschitz domains and smooth
functions u, v.
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I1(x) =

∫

Rn

dy

|x− y|λ|y|µ , λ < n, µ < n.

Then, if λ + µ > n, there exists a constant c = c(λ, µ, n) such that

|I1(x)| ≤ c|x|−(λ+µ−n).

Moreover, let

I2(x) =

∫

A(x)−B1(x)

dy

|x− y|n log |y| ,

with

A(x) = {y ∈ Rn : κ1|x| < |y| < κ2|x|} , κ1 ∈ (0, 1), κ2 ∈ (1,∞)

and x satisfying

|x| > 2/κ, κ = min{1− κ1, κ2 − 1, κ2
1}.

Then, there exist positive constants c1, c2 depending only on κ1, κ2, and n
such that

I2(x) ≤ c1 + c2(log |x|)−1.

Proof. Setting

x′ =
x

|x| , y′ =
y

|x| ,

it follows that

|I1(x)| ≤ c|x|−(λ+µ−n)

∫

Rn

dy′

|x′ − y′|λ|y′|µ ≡ c|x|−(λ+µ−n)I.

To estimate I, we rotate the coordinates in such a way that x′ goes into
x0 = (1, 0, . . .0) so that

I =

∫

Rn

dy′

|x0 − y′|λ|y′|µ
.

Thus, I is convergent, since λ < n, µ < n and λ+µ > n, and it is independent
of x. The first estimate is therefore proved. To show the second one, we put
|x| = R and perform into I2 the same change of coordinates operated before
to obtain

I2(x) =

∫

A′−B1/R(x0)

dy′

|x0 − y′|n log(R|y′|) ,

where
A′ = {y′ ∈ Rn : κ1 < |y′| < κ2} .

Being R1/2|y′| ≥ κ1/κ
1/2 > 1, we have log(R|y′|) ≥ (logR)/2 and so
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I2(x) ≤ 2(log |x|)−1{I1 + I2},

with

I1 =

∫

1/R≤|x0−y′|≤3κ/4

|x0 − y′|−ndy′

I2 =

∫

A′−B3κ/4(x0)

dy′

|x0 − y′|n .

Clearly,
I2 = b

and, since κ < 1,
I1 ≤ a log |x|,

where a and b are independent of x. The lemma is thus completely proved.
ut

The result just shown will be used in the proof of the following one; see
also Padula (1990, Lemma 2.6).

Theorem II.9.1 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain and let

u ∈ D1,r(Ω) ∩D1,q(Ω), for some r ∈ [1,∞) and some q ∈ (n,∞). (II.9.2)

Then, if r < n, there exists u0 ∈ R such that

lim
|x|→∞

|u(x)− u0| = 0 uniformly. (II.9.3)

The same conclusion holds if (II.9.2) is replaced by the following one: there
exists u0 ∈ R such that

(u− u0) ∈ Ls(Ω) ∩D1,q(Ω), for some s ∈ [1,∞) and some q ∈ (n,∞).
(II.9.4)

Moreover, under the assumption (II.9.2), with r = n, we find that

lim
|x|→∞

|u(x)|/(log |x|)(n−1)/n = 0 , uniformly. (II.9.5)

Finally, if
u ∈ D1,q(Ω), for some q ∈ (n,∞) ,

we have that
lim

|x|→∞
|u(x)|/|x|(q−n)/q = 0 , uniformly. (II.9.6)
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Proof. We begin to observe that, by density, (II.3.12) continues to hold for
all u ∈ W 1,q(B(x)), q > n, and consequently, by Lemma II.6.1, for all u ∈
D1,q(Ω), q > n. Thus, we find

|v(x)| ≤ c
(
‖v‖1,B1(x) + |v|1,q,B1(x)

)
, for all v ∈ D1,q(Ω), q > n , (II.9.7)

for some c independent of x. Now, under the assumption (II.9.2), by Theorem
II.6.1 there exists u0 ∈ R such that

‖u− u0‖nr/(n−r) <∞. (II.9.8)

Relation (II.9.3) then follows with the help of (II.9.8), by setting v = u−u0 in
(II.9.7), and then by letting |x| → ∞. Under the assumption (II.9.4), we again
use (II.9.7) with v = u − u0, and let |x| → ∞ in the resulting inequality. Let
us next prove relation (II.9.6). We take R so large that exp

√
lnR > 2δ(Ωc)

and set
u(1) = (1 − ψR)u,

where ψR is given in (II.7.1). Putting

Ωρ = Ω − Bρ, ρ = exp
√

lnR,

by the properties of the function ψR (see (II.7.5), (II.7.7)), it follows for suf-
ficiently large R that

|u(1)|1,q,Ωρ ≤ |u|1,q,Ωρ + c(ln lnR)−1. (II.9.9)

Moreover, u(1) ∈ D1,q(Ωρ) and, since u(1) vanishes at ∂Ωρ, by Theorem II.7.1
there exists a sequence {us}s∈N ⊂ C∞

0 (Ωρ) converging to u(1) in the norm
| · |1,q. For fixed s, s′ ∈ N, we apply Lemma II.9.1 to the function w(x) ≡
h(x)|x|−γ, where h(x) = us(x) − us′(x) and A ⊃ supp (w). We thus have

|h(x)||x|−γ ≤
∫

Ωρ

|∇h(y)||y|−γ |x− y|1−ndy

+γ

∫

Ωρ

|h(y)||y|−1−γ |x− y|1−ndy.

Employing the Hölder inequality and (II.6.13) with x0 = 0, there follows

|h(x)||x|−γ ≤ c|h|1,q,Ωρ

(∫

Rn

|y|−γq′ |x− y|(1−n)q′
dy

)1/q′

,

where q′ = q/(q− 1) and c = c(n, q). Taking γ ∈ (1− n/q, n− n/q) and since
q > n, we may estimate the integral over Rn by means of Lemma II.9.2 to
deduce

|h(x)||x|−γ ≤ c|h|1,q,Ωρ|x|−γ+(q−n)/q.
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Recalling the definition of the function h and letting s, s′ → ∞, from this
latter inequality we obtain

|u(1)(x)| ≤ c|u(1)|1,q,Ωρ|x|(q−n)/q, for all x ∈ Ωρ

and so, by the properties of ψR and by (II.9.9), it follows that

|u(x)| ≤ c1
(
|u|1,q,Ωρ + (ln lnR)−1

)
|x|(q−n)/q, for all x ∈ Ωρ,

which proves (II.9.6). It remains to show (II.9.5). To this end, let x ∈ Ω with
|x| = R, R > 2δ(Ωc) and sufficiently large. Since

u ∈W 1,q(ΩR/2,2R) ∩W 1,n(ΩR/2,2R),

we may use the density Theorem II.3.1 together with Theorem II.3.4 and
Theorem II.4.1 to prove the validity of the identity in the statement of Lemma
II.9.1 with A ≡ ΩR/2,2R and w(y) ≡ u(y)/(log |y|)(n−1)/n. We thus obtain for
all x ∈ Ω with |x| = R

|u(x)|/(log |x|)(n−1)/n ≤ c(I1 + I2 + I3 + I4 + I5 + I6), (II.9.10)

where c = c(n) and

I1 =

∫

ΩR/2,2R−B1(x)

|∇u(y)|[(log |y|)1/n|x− y|]1−ndy,

I2 =

∫

B1(x)

|∇u(y)|[(log |y|)1/n|x− y|]1−ndy,

I3 =

∫

ΩR/2,2R−B1(x)

|u(y)||y|−1(log |y|)1/n−2|x− y|1−ndy,

I4 =

∫

B1(x)

|u(y)||y|−1(log |y|)1/n−2|x− y|1−ndy,

I5 =

∫

∂BR/2

|u(y)|(log |y|)(1−n)/n|x− y|−1dσy,

I6 =

∫

∂B2R

|u(y)|(log |y|)(1−n)/n|x− y|−1dσy.

Set

I(x) ≡
(∫

ΩR/2,2R−B1(x)

dy

|x− y|n log |y|

)(n−1)/n

.

The following estimates are a simple consequence of the Hölder inequality:
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I1 ≤ I(x)|u|1,n,ΩR/2,2R
,

I2 ≤ c1(logR)(1−n)/n|u|1,q,B1(x),

I3 ≤ I(x)

(∫

ΩR/2,2R

|u(y)|n
(|y| log |y|)n dy

)1/n

,

I4 ≤ c2(logR)(1−2n)/n

(∫

B1(x)

|u(y)|q
|y|q dy

)1/q

.

Moreover, since

|x− y| ≥
{
R/2 for y ∈ ∂BR/2

R for y ∈ ∂B2R

,

it follows that

I5 + I6 ≤ c3(logR)(1−n)/n

{(∫

Sn−1

|u(R/2, ω)|ndω
)1/n

+

(∫

Sn−1

|u(2R, ω)|ndω
)1/n

}
.

By Lemma II.9.2, we have

I(x) ≤ c4 + c5(log |x|)−1 (II.9.11)

while, by Exercise II.6.3, given ε > 0 there is a sufficiently large R such that
for all R > R it holds that

∫

Sn−1

|u(R/2, ω)|ndω +

∫

Sn−1

|u(2R, ω)|ndω ≤ c6 ε (logR)n−1, (II.9.12)

and

∫

ΩR/2,2R

|u(y)|n
(|y| log |y|)n dy ≤ c7ε

∫ 2R

R/2

(r log r)−1dr ≤ c8 ε. (II.9.13)

In addition, from (II.9.6), we find

∫

B1(x)

|u(y)|q
|y|q dy ≤ c9R

−n. (II.9.14)

Since, clearly, as R → ∞,

|u|1,n,ΩR/2,2R
, |u|1,q,B1 = o(1), (II.9.15)

in view of (II.9.11)–(II.9.15) we deduce in the limit R→ ∞
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6∑

i=1

Ii = o(1) (II.9.16)

and (II.9.5) follows from (II.9.10) and (II.9.16). The theorem is therefore com-
pletely proved. ut

Remark II.9.1 The result just shown applies, with no change to domains
Ω that possess an extension property of the type specified in Remark II.6.4,
such as a half-space. �

II.10 Boundary Trace of Functions from Dm,q(Rn

+
)

Our next objective is to investigate the trace space at the boundary of a
function u ∈ Dm,q(Ω), for Ω ≡ Rn

+. Actually, if Ω is an exterior domain,
there is nothing to add to what was said in Section II.4, since, as shown in
Lemma II.6.1, ifΩ is locally Lipschitz then u ∈Wm,q(ΩR). On the other hand,
if u ∈ Dm,q(Rn

+) then u ∈ Wm,q(C), for any cube C ⊂ Rn
+, and therefore,

by the results of Section II.4, u possesses a well-defined trace Γ(m)(u) at the
plane Σ = {x ∈ Rn : xn = 0} that belongs to the trace space Wm,q(Σ

′), for
every bounded portion Σ′ of Σ. However, from those results we cannot draw
any conclusion concerning the finiteness of the norms of Γm(u) on the whole
of Σ. Nevertheless, such global information is of primary importance in the
resolution of nonhomogeneous boundary-value problems.

A detailed investigation of the properties of the traces on Σ of functions
belonging to the spaces Dm,q(Rn

+) has been performed by Kudrjavcev (1966a,
1966b). Here we shall describe some of his results in the case where m =
1, since this is the only case we need to consider in the applications. The
interested reader is referred to Remark II.10.2 and to the work of Kudrjavcev
(1966b, Theorems 2.4′ and 2.7) for generalizations to the case where m > 1.

For a function u ∈ D1,q(Rn
+), we shall denote throughout by u its trace at

Σ. From Theorem II.4.1 we derive, in particular, for any bounded (measur-
able) Σ′ ⊂ Σ,

‖u‖q,Σ′ ≤ c
(
|u|1,q,Rn

+
+ ‖u‖q,B

)
, (II.10.1)

where c = c(Σ′, n, q, B) and B any bounded, locally Lipschitz domain of Rn
+

with B ⊃ Σ′. Let σ be a non-negative, measurable function in Σ. By the
symbol

Lq(Σ, σ), 1 ≤ q ≤ ∞,

we denote the space of (equivalence classes of) real functions w on Σ that are
Lq-summable in with the “weight” σ, namely,

‖σw‖q <∞.

We have
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Theorem II.10.1 Let Σ = {x ∈ Rn : xn = 0} and x′ = (x1, . . . , xn−1).
Then, for any u ∈ D1,q(Rn

+) the trace u of u at Σ satisfies

u ∈ Lq(Σ, σ1), σ1 = (1 + |x′|)(1−n)/q−ε1,

where ε1 is an arbitrary positive number, and the following inequality holds:

‖σ1u‖q,Σ ≤ c1

(
|u|1,q,Rn

+
+ ‖u‖q,B+

)
,

with c1 = c1(n, q, ε1) and B+ = B1 ∩ Rn
+. Moreover, if 1 ≤ q < n, we have

u− u0 ∈ Lq(Σ, σ2), σ2 = (1 + |x′|)(1−q)/q−ε2,

where u0 is the constant associated to u by Theorem II.6.3 and ε2 is an
arbitrary positive number, and the following inequality holds:

‖σ2(u− u0)‖q,Σ ≤ c2|u|1,q,Rn
+
,

with c2 = c2(n, q, ε2).

Proof. The proof of the first part of the theorem is found in Kudrjavcev
(1966b, Theorem 2.3′) and it will be omitted here. The second part can be
obtained by coupling Kudrjavcev’s technique with the results of Theorem
II.6.3, as we are going to show. For simplicity, we shall consider the case
where n = 2, leaving to the reader the simple task of establishing the result
for n ≥ 3. Setting

w = u− u0,

we have to prove the following inequality:

∫ ∞

−∞
σ2(x1)

q |w(x1)|qdx1 ≤ cq2|u|q1,q,R2
+
, σ2(x1) = (1 + |x1|)(1−q)/q−ε2 .

(II.10.2)
Since, by Theorem II.6.3,

(u− u0) ∈ L2q/(2−q)(R2
+),

‖u− u0‖2q/(2−q) ≤ γ2|u|1,q,R2
+
,

(II.10.3)

from (II.10.1) we find

∫ 1

−1

σ2(x1)
q |w(x1)|qdx1 ≤ cq|u|q

1,q,R2
+
,

and so to show (II.10.2) it suffices to show

∫ ∞

1

σ2(x1)
q |w(x1)|qdx1,

∫ −1

−∞
σ2(x1)

q|w(x1)|qdx1 ≤ c3|u|q1,q,R2
+
. (II.10.4)
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Let us consider the first integral in (II.10.4). In R2
+ we introduce a polar

coordinate system ρ ∈ (0,∞), θ ∈ [0, π] with θ the angle formed by ρ with
the positive x1-axis. Since

x1 = ρ cos θ,

x2 = ρ sin θ,

we have
∫ ∞

1

σ2(x1)
q|w(x1)|qdx1 =

∫ ∞

1

σ2(ρ)
q |w(ρ, 0)|qdρ. (II.10.5)

Setting
w = u− u0,

for x1 ≥ 1,

w(x1) ≡ w(ρ, 0) = w(ρ, θ) −
∫ θ

0

∂u

∂τ
(ρ, τ )dτ.

Taking the modulus of both sides of this identity, raising them to the qth
power, using (II.3.3) and the Hölder inequality, we find

|w(ρ, 0)|q ≤ c1

(
|w(ρ, θ)|q +

∫ θ

0

∣∣∣∣
∂u

∂τ
(ρ, τ )

∣∣∣∣
q

dτ

)
. (II.10.6)

Observing that ∣∣∣∣
∂u

∂θ
(ρ, θ)

∣∣∣∣ ≤ ρ|∇u|,

from (II.10.6) we derive, for all α ≥ 0,
∫ ∞

1

|w(ρ, 0)|q
ραq dρ ≤ c2

(∫ ∞

1

∫ π

0

|w(ρ, θ)|q
ραq+1 ρ dρ dθ

+

∫ ∞

1

∫ π

0

|∇u(ρ, θ)|q
ρq(α−1)+1

ρ dρ dθ

)
.

(II.10.7)

Taking
α > 1 − 1/q, (II.10.8)

we have for ρ ≥ 1
ρq(α−1)+1 ≥ 1. (II.10.9)

Further, from (II.10.3) and (II.10.8)

∫ ∞

1

∫ π

0

|w(ρ, θ)|q
ραq+1 ρdρdθ ≤

(
π

∫ ∞

1

ρ1−2(αq+1)/qdρ

)q/2

×
(∫

R2
+

|w|2q/(2−q)

)(2−q)/q

≤ c5 |u|q1,q,R2
+

.

(II.10.10)
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Therefore, the first relation in (II.10.4) follows from (II.10.5), (II.10.7),
(II.10.9), and (II.10.10). To recover the second one, it is enough to observe
that, for x1 ≤ −1,

w(x1) ≡ w(ρ, π) = w(ρ, θ) +

∫ π

θ

∂u(ρ, τ )

∂τ
dτ,

and to proceed as in the previous case. The theorem is thus completely proved.
ut

Remark II.10.1 Theorem II.10.1 tells us, in particular, that if 1 ≤ q < n, u
must tend to the constant u0 at large distances on Σ, in the sense that for at
least a sequence of radii {Rm},

lim
Rm→∞

∫

Sn−2

|u(Rm, ω) − u0|dω = 0,

where (R, ω) denotes a system of polar coordinate on Σ. On the other hand,
if q ≥ n, u may even grow at large distance on Σ. �

Remark II.10.2 We notice, in passing, that Theorem II.10.1 admits of an
obvious extension to the case where m > 1, in the sense that it selects the
weighted Lq-space to which the trace uα ≡ Dαu at Σ, |α| = m − 1, of
u ∈ Dm,q(Rn

+) must belong. In particular, if mq < n, in the light of Theorem
II.6.4, u can be modified by the addition of a suitable polynomial P in such
a way that u ≡ u−P and all derivatives of u up to the order m− 1 included
tend to zero on Σ in the way specified in Remark II.10.1. �

A weighted space of the type Lq(Σ, σ), however, does not coincide with
the “trace space” of functions from D1,q(Rn

+). This latter is, in fact, more
restricted. To characterize such a space we set, as in the case of a bounded
domain,

〈〈u〉〉1−1/q,q ≡
(∫

Σ

∫

Σ

|u(x) − u(y)|q
|x− y|n−2+q dxdy

)1/q

(II.10.11)

and denote by D1−1/q,q(Σ) the space of (equivalence classes of) real functions
for which the functional (II.10.11) is finite. As in Section II.4, one can show
that, provided we identify two functions if they differ by a constant, (II.10.11)
defines a norm in D1−1/q,q(Σ) and that D1−1/q,q(Σ) is complete in this norm.

Exercise II.10.1 (Miranda 1978, Teorema 59.II). Show that

u ∈ W 1,q(Σ), implies u ∈ D1−1/q,q(Σ).

The following theorem holds, (Kudrjavcev 1966b, Theorems 2.4′ and 2.7
and Corollary 1).
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Theorem II.10.2 Let Σ be as in Theorem II.10.1 and let u ∈ D1,q(Rn
+),

1 < q <∞. Then the trace u of u at Σ belongs to D1−1/q,q(Σ) and, further,

〈〈u〉〉1−1/q,q ≤ c1|u|1,q

with c1 = c1(n, q). Conversely, given u ∈ D1−1/q,q(Σ), 1 < q < ∞, there
exists u ∈ D1,q(Rn

+) such that u is the trace of u at Σ and, further,

|u|1,q ≤ c2 〈〈u〉〉1−1/q,q,

with c2 = c2(n, q).

II.11 Some Integral Transforms and Related Inequalities

By integral transform with kernel K of a function f , we mean the function Ψ
defined by

Ψ(x) =

∫

Ω

K(x, y)f(y)dy. (II.11.1)

Our objective in this section is to present some basic inequalities relating Ψ
and f , under different assumptions on the kernel. We shall first consider the
situation in which

K(x, y) = K(x− y),

where K(ξ) is defined in the whole of Rn. In this case, the transform (II.11.1)
with Ω ≡ Rn is called a convolution, and it is also denoted by K ∗ f . An
example of convolution is the regularizer of f , which we already introduced
in Section II.2. For these transforms we have the following classical result due
to Young (see, e.g., Miranda 1978, Teorema 10.I).

Theorem II.11.1 Let

K ∈ Ls(Rn), 1 ≤ s <∞.

If
f ∈ Lq(Rn), 1 ≤ q ≤ ∞, 1/q ≥ 1 − 1/s,

then
K ∗ f ∈ Lr(Rn), 1/r = 1/s+ 1/q − 1,

and the following inequality holds:

‖K ∗ f‖r ≤ ‖K‖s‖f‖q . (II.11.2)

Exercise II.11.1 Prove inequality (II.11.2) for the case q = 1. Hint: Use the gen-

eralized Minkowski inequality (II.2.8).
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Another class of transforms that will be frequently considered is that de-
fined by kernels K of the form

K(x, y) =
k(x, y)

|y|λ , λ > 0, y ∈ Ω, (II.11.3)

where k(x, y) is a given regular function. If 0 < λ < n and k(x, y) ≡ 1, the
kernel (II.11.3) is referred to as weakly singular and the corresponding trans-
form (II.11.1) is called the Riesz potential. If λ = n and k(x, y) is suitable
(see (II.11.15)–(II.11.17)), the kernel and the associated transform are called
singular. The study in Lebesgue spaces Ls of Riesz potentials finds a funda-
mental contribution in the celebrated paper of Sobolev (1938) (see Theorem
II.11.3), while that related to (multidimensional) singular kernels traces back
to the work of Calderón and Zygmund (1956) (see Theorem II.11.4).

When Ω is bounded and K is weakly singular one can easily show elemen-
tary estimates for Ψ = K ∗ f in terms of f . For example, if

λ < n(1 − 1/q)

one has the inequality
sup
x∈Ω

|Ψ(x)| ≤ c‖f‖q (II.11.4)

with

c =

(
1

n− λq′

)1/q′

ω1/q′
n δ(Ω)n/q′−λ. (II.11.5)

To show this, it suffices to observe that for all r > 0 and λr < n,

(∫

|x−y|≤R

|x− y|−λrdy

)1/r

≤
(

1

n− λr

)1/r

ω1/r
n Rn/r−λ. (II.11.6)

Thus, (II.11.4) and (II.11.5) follow from (II.11.1), (II.11.3), (II.11.6), and
the Hölder inequality. Actually, one can prove an estimate stronger than
(II.11.4) under the same assumption on λ, n, and q. In fact, from (II.11.3)
with k(x, y) = 1, by the mean value theorem it follows that

|K(x− y) −K(z − y)| ≤ λ|x− z|d(y)−(λ+1),

where d(y) is the distance of y from the segment s with endpoints x and z.
Setting σ = |x−z| and employing this last inequality, from (II.11.1) we deduce

|Ψ(x) − Ψ(z)| ≤
∫

|x−y|<2σ

|f(y)||x− y|−λdy +

∫

|z−y|<2σ

|f(y)||z − y|−λdy

+λσ

∫

Ω∩{|x0−y|>σ}
|f(y)|d(y)−(λ+1)dy

(II.11.7)
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with x0 the midpoint of s. Since d ≥ σ/2, by Carnot’s theorem it easily follows
that 2d ≥ |x − x0|. Therefore, assuming λ < n(1 − 1/q) and employing the
Hölder inequality, the last term in (II.11.7) can be increased by

C1

(
σ + σn(1−1/q)−λ

)
‖f‖q , (II.11.8)

where C1 = C1(δ(Ω), n, q, λ). On the other hand, by an easy calculation that
makes use of (II.11.6) and the Hölder inequality, we show that the first two
integrals in (II.11.7) can be dominated by

C2 σ
n(1−1/q)−λ‖f‖q ,

where C2 = C2(n, λ). Thus, this latter relation along with (II.11.7) and
(II.11.8) furnishes

|Ψ(x) − Ψ(z)| ≤ C
(
σ + σn(1−1/q)−λ

)
‖f‖q ,

where C = 2 max(C1, C2). Still retaining the assumption that Ω is bounded,
we shall now discuss the case where λ = n(1 − 1/q). We set

K̃(x− y) =

{ |x− y|−λ if x, y ∈ Ω

0 if x, y 6∈ Ω .

Clearly,

Ψ(x) =

∫

Ω

|x− y|−λf(y)dy =

∫

Rn

K̃(x− y)f(y)dy,

and so, by noticing that

K̃ ∈ Ls(Rn), for all s < n/λ, (II.11.9)

from Young’s Theorem II.11.1 it follows that if f ∈ Lq(Ω) then

Ψ ∈ Lr(Ω), 1/r = 1/s+ 1/q− 1 (II.11.10)

and that the following inequality holds:

‖Ψ‖r ≤ c‖f‖q .

Taking into account (II.11.9) and that λ = n(1 − 1/q), from (II.11.10) we
conclude that

Ψ ∈ Lr(Ω), for all r ∈ [1,∞).

The results established so far are collected in

Theorem II.11.2 Assume Ω bounded, K weakly singular, and f ∈ Lq(Ω),
1 < q < ∞. Then if λ < n(1 − 1/q), the integral transform Ψ defined by
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(II.11.1) belongs to C0,µ(Ω) where µ = min{1, n(1−1/q)−λ} and the following
estimate holds:

‖Ψ‖C0,µ ≤ C1‖f‖q , (II.11.11)

with C1 = C1(δ(Ω), n, q, λ). Moreover, if λ = n(1 − 1/q), then Ψ ∈ Lr(Ω) for
all r ∈ [1,∞), and the following estimate holds:

‖Ψ‖r ≤ C2‖f‖q, (II.11.12)

with C2 = C2(δ(Ω), n, q, λ).

The complementary situation λ > n(1− 1/q) is considered in Sobolev’s theo-
rem which, in addition, does not require the boundedness of Ω. Precisely, we
have (Sobolev 1938; for a simpler proof see Stein 1970, Chapter V)

Theorem II.11.3 Assume f ∈ Lq(Rn), 1 < q <∞, and K weakly singular.
Then, if λ > n(1 − 1/q), the integral transform Ψ defined by (II.11.1) with
Ω ≡ Rn belongs to Ls(Rn), where 1/s = λ/n+ 1/q − 1. Moreover, we have

‖Ψ‖s ≤ C‖f‖q (II.11.13)

with C = C(q, n, λ).

Remark II.11.1 By means of simple counterexamples one shows that the
Sobolev theorem fails either when q = 1 or when s = ∞ (see Stein 1970,
p.119).

Some interesting observations and consequences related to Theorem II.5.1-
Theorem II.5.4 are left to the reader in the following exercises. �

Exercise II.11.2 Show that if (II.11.13) holds, necessarily 1/s = λ/n + 1/q − 1.

Hint: Use the homogeneity of the Riesz potential.

Exercise II.11.3 For f ∈ C∞
0 (Rn), set u(x) = (E ∗ f)(x) where E is the funda-

mental solution of Laplace’s equation (see (II.9.1)). Verify that u is a C∞ solution
of the Poisson equation ∆u = f in R

n. Moreover, use the Sobolev theorem to show

‖∇u‖nq/(n−q) ≤ c‖f‖q, 1 < q < n.

Exercise II.11.4 Assume u ∈ W 1,q
0 (Rn), 1 < q < ∞. Starting from the represen-

tation given in Lemma II.9.1, prove the following assertions:

(i) If q < n, then u ∈ Lnq/(n−q)(Rn) and ‖u‖nq/(n−q) ≤ γ‖∇u‖q;

Hint: Use Theorem II.11.3. Notice that, without using the Sobolev theorem, (i) is
obtained directly from Lemma II.3.2 in a much more elementary way (see (2.6))
and with the following advantages: (a) the case q = 1 is included; (b) an explicit
estimate of the constant γ can be given.

(ii) If q = n, then u ∈ Lr(Ω), for all r ∈ [n,∞) and for any compact domain Ω.
Hint: Use Theorem II.11.2.
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(iii) If q > n, then u ∈ C0,µ(Ω), µ = 1 − n/q, for any compact domain Ω. Hint:
Use Theorem II.11.2.

Exercise II.11.5 Let Ω be bounded. Show that every function from W 1,q
0 (Ω), q >

n, satisfies the inequality

‖u‖C ≤ c[δ(Ω)]1−n/q‖∇u‖q , (II.11.14)

with c = c(n, q). Hint: Use the representation formula of Lemma II.9.1 together with

relations (II.11.4) and (II.11.5).

We shall now consider the case of singular kernels. We say that a kernel
of the form (II.11.3) with x ∈ Ω, y ∈ Rn − {0} and λ = n is singular if and
only if

(i) For any admissible x, y and every α > 0

k(x, y) = k(x, αy); (II.11.15)

(ii) For every x ∈ Ω , k(x, y) is integrable on the sphere |y| = 1 and

∫

|y|=1

k(x, y)dy = 0; (II.11.16)

(iii) There exists C > 0, such that1

ess sup
x∈Ω;|y|=1

|k(x, y)| ≤ C . (II.11.17)

Exercise II.11.6 Show that (II.11.16) is equivalent to the following:

Z

r1≤|y|≤r2

K(x, y)dy = 0, (II.11.18)

for every x and r2 > r1 > 0.

Condition (II.11.18) allows us to recognize a noteworthy class of singular
kernels. Precisely, we have the following simple but useful result, due to L.
Bers and M. Schechter, which we state in the form of a lemma (see Bers, John,
& Schechter 1964, p. 223).

Lemma II.11.1 Let M(x, y) be a function on Ω× (Rn − {0}), differentiable
in y and homogeneous of order 1 − n with respect to y, that is,

M(x, αy) = α1−nM(x, y), α > 0.

1 This assumption can be weakened; see Calderón & Zygmund (1956, Theorem
2(ii)). However, a weaker assumption would be irrelevant to our purposes.
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Assume further that Mi(x, y) ≡ ∂M(x, y)/∂yi satisfies, with some C > 0,
independent of x,

ess sup
|y|=1

|Mi(x, y)| ≤ C .

Then Mi(x, y) is a singular kernel.

Proof. For all x ∈ Ω we have

∫

r1≤|y|≤r2

Mi(x, y)dy =

∫

|η|=r2

M(x, η)(ηi/r2)dση

−
∫

|η|=r1

M(x, η)(ηi/r1)dση,

so that (II.11.18) follows by homogeneity. Therefore, setting

k(x, y) = Mi(x, y)|y|n,

by assumption and Exercise II.11.6 we conclude that Mi(x, y) = k(x, y)|y|−n

is a singular kernel. ut

Exercise II.11.7 Let E be the fundamental solution to Laplace’s equation. Show

that DijE(x) is a singular kernel.

For integral transforms defined by singular kernels we have the following
fundamental result due to Calderón & Zygmund (1956, Theorem 2).

Theorem II.11.4 Assume K(x, y) is a singular kernel and let

N(x, y) ≡ K(x, x− y).

Then, if
f ∈ Lq(Rn), 1 < q <∞,

the P.V. convolution integral

Ψ(x) = lim
ε→0

∫

|x−y|≥ε

N(x, y)f(y)dy (II.11.19)

exists for almost all x ∈ Ω. Moreover,

Ψ ∈ Lq(Rn)

and the following inequality holds:

‖Ψ‖q ≤ c‖f‖q . (II.11.20)
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Exercise II.11.8 Assume K given by (II.11.3), with k(x, y) bounded and λ = n.
Show that, if f ∈ C1

0 (Rn), the limit (II.11.19) exists if and only if k(x, y) satisfies
condition (II.11.16). Hint: Use the identity (a > ε > 0)

Z

|x−y|≥ε

N(x, y)f(y)dy =

Z

|x−y|≥a

N(x, y)f(y)

+

Z

ε<|x−y|<a

[f(y) − f(x)]N(x, y)dy

+f(x)

Z

ε<|x−y|<a

N(x, y)dy.

Remark II.11.2 Sometimes it is useful to know more about the constant c
in (II.11.19) and, particularly, about the way in which it depends on q and k.
Here we recall some estimate due to Stein (1970, Chapter II) and to Calderón
and Zygmund (1957, §5). Specifically, as far as the dependence on q, one can
show:

c ≤
{
c1/(q − 1) if 1 < q ≤ 2

c1q if q ≥ 2,

with c1 = c1(k). Likewise, if A > 0 is a constant such that

sup
x∈Ω, |y|=1

|k(x, y)| ≤ A,

then one has
c ≤ c2 A, c2 = c2(q).

�

Two important consequences of the Calderón–Zygmund theorem will be
considered. The first one is due to Stein (1957) and is contained in the follow-
ing.

Theorem II.11.5 Let the assumptions of Theorem II.11.4 be satisfied, and
suppose, in addition

f(x)|x|β ∈ Lq(Rn), β ∈ (−n/q, n(1− 1/q)) ,

and that |k(x, y)| ≤ C, for some C independent of x and y. Then,

Ψ(x)|x|β ∈ Lq(Rn)

and the following inequality holds

‖Ψ(x)|x|β‖q ≤ c1C‖f(x)|x|β‖q, (II.11.21)

where c1 = c1(n, q, β).
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The second consequence is a well-known result of Agmon, Douglis, &
Nirenberg (1959, Theorem 3.3), which we are now going to state.

Theorem II.11.6 Let

K(x′, xn) =
ω̃(x′/|x|, xn/|x|)

|x|n−1
x′ = (x1, . . . , xn−1).

Assume that DiK, i = 1, . . . , n, and D2
nK are continuous in Rn

+ and bounded
in Rn

+ ∩ Sn−1 by a positive constant κ. Assume further

∫

|x′|=1

ω̃(x′, 0)dx′ = 0. (II.11.22)

Then, setting Σ = {x ∈ Rn : xn = 0}, given

φ ∈ Lq(Σ), with 〈〈φ〉〉1−1/q,q finite,

the integral transform

u(x′, xn) =

∫

Σ

K(x′ − y′, xn)φ(y′)dy′ (II.11.23)

belongs to Lq(Rn
+) and the following inequality holds:

|u|1,q ≤ cκ〈〈φ 〉〉1−1/q,q, (II.11.24)

with c = c(n, q).

Theorem II.11.4 and Theorem II.11.6 play a fundamental role in the Lq-
theory of elliptic partial differential equations, mainly in deriving a priori
estimates for solutions (see, e.g., Agmon, Douglis, & Nirenberg 1959). In the
following exercises, we shall propose very simple applications of them to the
Poisson equation in Rn and to the Dirichlet problem for the Poisson equation
in Rn

+. Other more relevant applications will be derived, along the same lines
as those that follow, in Chapter IV, in the context of steady slow motions of
a viscous incompressible fluid (Stokes problem).

Exercise II.11.9 For the problem ∆u = f in R
n show that there is a solution u

such that

(i) If f ∈ Wm,q(Rn), m ≥ 0, 1 < q < ∞, then u ∈ ∩m
k=0D

k+2(Rn) and the
following inequality holds:

|u|k+2,q ≤ c1‖f‖k,q , k = 0, 1, ...,m, c1(n, q, k);

(ii) If f ∈ D−1,q
0 (Rn), m ≥ 0, 1 < q < ∞, then u ∈ D1,q

0 (Rn) and the following
inequality holds:

|u|1,q ≤ c2|f |−1,q, c2(n, q, k).
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Hint: Take f ∈ C∞
0 (Rn). Then a solution is given by u = E ∗f (see Exercise II.11.3).

To show (i), use Theorem II.11.4 and Exercise II.11.7. To show (ii), observe that,

for any ϕ ∈ Lq′(Br) and i = 1, ..., n,

(Diu, ϕ) =

Z

Rn

f(y)φ(y)dy, φ = (DiE) ∗ ϕ,

and that, by Theorem II.11.4,

|φ|1,q′ ≤ c‖ϕ‖q′ ,Br

with c independent of r. Employ, finally, the results of Exercise II.3.4 and Theorem

II.8.1.

Exercise II.11.10 It is well known that the function (Poisson integral)

u(x) = 2

Z

Σ

φ(y)
∂E
∂yn

dy,

with Σ = {x ∈ R
n : xn = 0}, E given in (7.1) and φ ∈ Cm(Σ), m ≥ 0, is a smooth

solution to the Dirichlet problem in the half-space:

∆u = 0 in R
n
+, n ≥ 2

u = φ at Σ
(II.11.25)

(see, e.g., Sobolev 1964, Lecture 13). Use Theorem II.11.6 to show that if

φ ∈Wm,q (Σ) and
X

|k|=m

〈〈Dkφ 〉〉1−1/q,q <∞, 1 < q <∞,

then
|u|s+1,q ≤ c

X

|k|=s

〈〈Dkφ 〉〉1−1/q,q , for all s = 0, 1, ...,m,

with c = c(n, q, s).

Uniqueness of solutions determined in the preceding exercises can be easily
studied by means of the following result, which the reader is invited to prove.

Exercise II.11.11 Let H be harmonic in the whole of R
n. Assume either

(i) H =

NX

i=1

Hi, N ≥ 1, where

Z

Bρ

|Hi(x)|qi

(1 + |x|)λi
< ∞, for some qi ∈ (1,∞), ρ > 0,

and λi ∈ [0, n];

or

(ii) lim
|x|→∞

H(x) = 0.

Show H ≡ 0. Hint: By the mean value theorem, we have, for each x ∈ R
n,

|H(x)| ≤ (nωn)−1

Z

Sn−1

|H(R,ω)|dω, R = |x− y|.
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Remark II.11.3 In virtue of this latter result it follows that solutions de-
termined in Exercise II.11.9(i) are unique in Ḋ2,q(Rn), while those in (ii) are
unique in D1,q

0 (Rn). As far as solutions considered in Exercise II.11.10, their
uniqueness is likewise discussed, since if u solves (II.11.25) with φ ≡ 0, then
the function

ũ(x) =

{
u(x1, . . . , xn) if xn > 0

−u(x1, . . . ,−xn) if xn ≤ 0

is harmonic (and hence smooth; Weyl 1940, Simader 1992) throughout Rn,
including xn = 0; see, for instance, Sobolev (1964, Lecture 13). �

II.12 Notes for the Chapter

Section II.1. A similar (but different in details) proof of Lemma II.1.3 can
be found in Erig (1982, Lemma 5.3).

Section II.3. Inequality (II.3.9) was derived by Ladyzhenskaya (1959a) with
a larger value of the constant. In this respect, see also Serrin (1963).

Extensions of Lemma II.3.3 to domains with a (sufficiently smooth)
bounded boundary can be found in Friedman (1969, Theorem 10.1) for
bounded domains, and in Crispo & Maremonti (2004) for exterior domains.

Sequence of functions like that employed in Exercise II.3.9 can also be
used to find the best exponents (for fixed dimension) in certain inequalities
relating surface and volume integrals, of the type described in Section II.4
(Galdi, Payne, Proctor, & Straughan 1987).

Section II.4. The way of introducing trace inequalities through star-shaped
domains is an intrinsic treatment that does not make a direct use of the
definition of surface integral by means of local representation of the boundary.
For this latter approach see, e.g., Nečas (1967, Chapitre 2 Théorème 4.2) and
Adams (1975, Chapter 5 Theorem 5.22).

The constant C in Theorem II.4.1 can be simply estimated if the shape of
Ω is particular; in this regard see Galdi, Payne, Proctor, & Straughan (1987).

Section II.5. As already remarked, inequality (II.5.1) fails if Ω is not con-
tained in some layer Ld; see Exercise II.5.1. However, in this latter case, (II.5.1)
can be replaced by “weighted” inequalities such as (II.6.10), (II.6.13), and
(II.6.14). Furthermore, the choice of the “weight” can be suitably related to
the “geometry” of Ω at infinity. For instance, if

Ω ⊂ {x ∈ Rn : |x′| < g(xn)} ,

where g satisfies
g(t) > g0, for some g0 > 0,



II.12 Notes for the Chapter 135

then one has
‖u/g(xn)‖q ≤ c|u|1,q, u ∈ C∞

0 (Ω).

For this and similar inequalities, we refer, among others, to Elcrat and
MacLean (1980), Hurri (1990), and Edmunds & Opic (1993).

The Friedrichs inequality (II.5.8) can be a fundamental tool for treating
the convergence of approximating solutions of nonlinear partial differential
equations. A nontrivial generalization of (II.5.8) is found in Padula (1986,
Lemma 3). Extension of the Friedrichs inequality to unbounded domains are
considered in Birman & Solomjak (1974).

From Theorem II.5.2 and Theorem II.4.1 it is not hard to prove com-
pactness results involving convergence in boundary norms. For example, we
have: if {uk} ⊂ W 1,2(Ω) (Ω bounded and locally Lipschitz) is uniformly
bounded, there is a subsequence {um′} such that um′ → u in Lq(∂Ω) with
q = 2(n− 1)/(n− 2) if n > 2 and all q ∈ [1,∞) if n = 2.

The counterexample to compactness after Theorem II.5.2 is due to Benedek
& Panzone (see Serrin 1962).

The Poincaré–Sobolev inequality can be proved for a general class of do-
mains, including those with internal cusps. Such a generalization, which is of
interest in the context of capillarity theory of fluids, can be found in Pepe
(1978). However, in general, embedding inequalities no longer hold if the do-
main does not possess a certain degree of regularity. For this type of questions
we refer to Adams & Fournier (2003, §4.47).

Section II.6. After the pioneering work of Deny & Lions (1954) on the sub-
ject (“Beppo Levi Spaces”), a detailed study of homogeneous Sobolev spaces
Ḋm,q(Ω) and Dm,q

0 (Ω) along with the study of their relevant properties was
performed by the Russian school (Uspenskĭi 1961, Sobolev 1963b, Sedov 1966,
Besov 1967). These authors are essentially concerned with the case where
Ω = Rn. For other detailed analysis of the homogeneous Sobolev spaces we
refer the reader also to the work of Kozono & Sohr (1991) and Simader &
Sohr (1997), and to Chapter I of the book of Maz’ja (1985).

A central role in the study of properties of functions from Dm,q(Ω) is
played by the fundamental Lemma II.6.3 which, for q = 2 and n ≥ 3, was
first proved by Payne & Weinberger (1957). A slightly weaker version of it
was independently provided by Uspenskĭi (1961, Lemma 1). The proof given
in this book is based on a generalization of the ideas of Payne & Weinberger
and is due to me. Another proof has been given by Miyakawa & Sohr (1988,
Lemma 3.3), which, however, does not furnish the explicit form of the constant
u0. Concerning this issue, from Lemma II.6.3 it follows that

u0 = lim
|x|→∞

∫

Sn−1

u(|x|, ω)dω,

or also, as kindly pointed out to me by Professor Christian Simader,

u0 = lim
R→∞

1

|ΩR|

∫

ΩR

u.
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Results contained in Exercise II.6.3 generalize part of those established by
Uspenskĭi (1961, Lemma 1), and for q = n = 2 they coincide with those of
Gilbarg & Weinberger (1978, Lemma 2.1).

Inequality (II.6.20) with q = 2 and n = 3 is due to Finn (1965a, Corollary
2.2a); see also Birman & Solomjak (1974, Lemma 2.19) and Padula (1984,
Lemma 1), while (II.6.22) for n = 3 and q ∈ (1, 3) is proved by Galdi &
Maremonti (1986, Lemma 1.3). Theorem II.6.1, in its generality, is due to me.

The inequality in Theorem II.6.5 is due to Simader and Sohr (1997, Lemma
1.2).

Section II.7. The problem of approximation of functions fromDm,q(Ω) when
Ω = Rn with functions of bounded support was first considered by Sobolev
(1963b). In this section we closely follow Sobolev’s ideas to generalize his
results to more general domains Ω. In this connection, we refer the reader
also to the papers of Besov (1967, 1969) and Burenkov (1976).

The elementary proof of the Hardy-type inequality (II.6.10), (II.6.13) and
(II.6.14) presented here and based on the use of the “auxiliary” function g
was presented for the first time in Galdi (1994a, §2.5). The same approach
was successively rediscovered by Mitidieri (2000).

Section II.8. A slightly weaker version of Theorem II.8.2, with a different
proof, can be found in Kozono & Sohr (1991, Lemma 2.2).

The proof of the unique solvability of the Dirichlet problem (II.8.17) in the
case Ω = Rn,Rn

+ is a simple consequence of Exercise II.11.9(ii) and Remark
II.11.3. In the case Ω bounded and of class C∞, a proof was given for the
first time by Schechter (1963a, Corollary 5.2). A different proof that requires
domains only of class C2 was later provided by Simader (1972). If Ω is an
exterior domain of class C2, a thorough analysis of the problem can be found
in Simader & Sohr (1997, Chapter I). In particular, for n ≥ 3, the analysis of
these authors shows that the problem (II.8.17) has a nonzero one-dimensional
null set, if q′ ≥ n. In other words, there exists one and only one non-zero har-

monic function h ∈ D1,q′

0 (Ω), satisfying a normalization condition
∫

ΩR
h2 = 1,

for some fixed R > δ(Ω)c. For instance, if Ω is the exterior of the unit ball
in Rn, we have h(x) = c(|x|2−n − 1), for a suitable choice of the constant c
depending on R. Consequently, the map M defined in (II.8.19)–(II.8.20) is not
surjective if q′ ∈ (1, n/(n− 1)] and not injective if q′ ∈ [n,∞).

Section II.9. Results similar to those derived in Theorem II.9.1, in the gen-
eral context of spaces Dm,q , m ≥ 1, have been shown by Mizuta (1989).
Estimate (II.9.5) is of a particular interest since, as we shall see in Chapter X,
it permits us to derive at once an important asymptotic estimate for solutions
to the steady, two-dimensional Navier–Stokes equations in exterior domains
having velocity fields with bounded Dirichlet integrals.

Section II.10. The case 1 ≤ q < n in Theorem II.10.1 is due to me.

Section II.11. If in the Sobolev Theorem II.11.3 one considers the function
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ψ(x) =

∫

|x−y|≤R

f(y)|x − y|−λdy,

for fixed R > 0, the proof of (II.11.13) becomes elementary; however, only
for 1/s > λ/n + 1/q − 1 (see Sobolev 1938; 1963a, Chapter 1 §6). For a
generalization of the Sobolev theorem in weighted Lebesgue spaces, along the
same lines of Theorem II.11.5, we refer to Stein & Weiss (1958).
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