
Chapter 2
The Uniform Boundedness Principle and the
Closed Graph Theorem

2.1 The Baire Category Theorem

The following classical result plays an essential role in the proofs of Chapter 2.

• Theorem 2.1 (Baire). Let X be a complete metric space and let (Xn)n≥1 be a
sequence of closed subsets in X. Assume that

IntXn = ∅ for every n ≥ 1.

Then

Int

( ∞⋃

n=1

Xn

)

= ∅.

Remark 1. The Baire category theorem is often used in the following form. Let X
be a nonempty complete metric space. Let (Xn)n≥1 be a sequence of closed subsets
such that ∞⋃

n=1

Xn = X.

Then there exists some n0 such that IntXn0 	= ∅.

Proof. SetOn = Xcn, so thatOn is open and dense in X for every n ≥ 1. Our aim is
to prove that G = ⋂∞

n=1On is dense in X. Let ω be a nonempty open set in X; we
shall prove that ω ∩G 	= ∅.

As usual, set
B(x, r) = {y ∈ X; d(y, x) < r}.

Pick any x0 ∈ ω and r0 > 0 such that

B(x0, r0) ⊂ ω.

Then, choose x1 ∈ B(x0, r0) ∩O1 and r1 > 0 such that
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{
B(x1, r1) ⊂ B(x0, r0) ∩O1,

0 < r1 <
r0
2 ,

which is always possible since O1 is open and dense. By induction one constructs
two sequences (xn) and (rn) such that

{
B(xn+1, rn+1) ⊂ B(xn, rn) ∩On+1, ∀n ≥ 0,

0 < rn+1 <
rn
2 .

It follows that (xn) is a Cauchy sequence; let xn → �.
Since xn+p ∈ B(xn, rn) for every n ≥ 0 and for every p ≥ 0, we obtain at the

limit (as p → ∞),
� ∈ B(xn, rn), ∀n ≥ 0.

In particular, � ∈ ω ∩G.

2.2 The Uniform Boundedness Principle

Notation. Let E and F be two n.v.s. We denote by L(E, F ) the space of continuous
(= bounded) linear operators from E into F equipped with the norm

∥
∥T

∥
∥

L (E,F )
= sup

x∈E‖x‖≤1

‖T x‖.

As usual, one writes L (E) instead of L (E,E).

• Theorem 2.2 (Banach–Steinhaus, uniform boundedness principle). Let E and
F be two Banach spaces and let (Ti)i∈I be a family (not necessarily countable) of
continuous linear operators from E into F . Assume that

(1) sup
i∈I

‖Tix‖ < ∞ ∀x ∈ E.

Then

(2) sup
i∈I

∥
∥Ti

∥
∥

L (E,F )
< ∞.

In other words, there exists a constant c such that

‖Tix‖ ≤ c‖x‖ ∀x ∈ E, ∀i ∈ I.
Remark 2. The conclusion of Theorem 2.2 is quite remarkable and surprising. From
pointwise estimates one derives a global (uniform) estimate.

Proof. For every n ≥ 1, let

Xn = {x ∈ E; ∀i ∈ I, ‖Tix‖ ≤ n},
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so that Xn is closed, and by (1) we have

∞⋃

n=1

Xn = E.

It follows from the Baire category theorem that Int(Xn0) 	= ∅ for some n0 ≥ 1. Pick
x0 ∈ E and r > 0 such that B(x0, r) ⊂ Xn0 . We have

‖Ti(x0 + rz)‖ ≤ n0 ∀i ∈ I, ∀z ∈ B(0, 1).

This leads to
r
∥
∥Ti

∥
∥L(E,F ) ≤ n0 + ‖Tix0‖,

which implies (2).

Remark 3. Recall that in general, a pointwise limit of continuous maps need not be
continuous. The linearity assumption plays an essential role in Theorem 2.2. Note,
however, that in the setting of Theorem 2.2 it does not follow that ‖Tn − T ‖L(E,F )
→ 0.

Here are a few direct consequences of the uniform boundedness principle.

Corollary 2.3. Let E and F be two Banach spaces. Let (Tn) be a sequence of con-
tinuous linear operators from E into F such that for every x ∈ E, Tnx converges
(as n → ∞) to a limit denoted by T x. Then we have

(a) supn
∥
∥Tn

∥
∥

L (E,F )
< ∞,

(b) T ∈ L(E, F ),
(c)

∥
∥T

∥
∥

L (E,F )
≤ lim infn→∞ ‖Tn‖L (E,F ).

Proof. (a) follows directly from Theorem 2.2, and thus there exists a constant c
such that

‖Tnx‖ ≤ c‖x‖ ∀n, ∀x ∈ E.
At the limit we find

‖T x‖ ≤ c‖x‖ ∀x ∈ E.
Since T is clearly linear, we obtain (b).

Finally, we have

‖Tnx‖ ≤ ‖Tn‖L(E,F )‖x‖ ∀x ∈ E,
and (c) follows directly.

• Corollary 2.4. Let G be a Banach space and let B be a subset of G. Assume that

(3) for every f ∈ G� the set f (B) = {〈f, x〉; x ∈ B} is bounded (in R).

Then

(4) B is bounded.
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Proof. We shall use Theorem 2.2 with E = G�, F = R, and I = B. For every
b ∈ B, set

Tb(f ) = 〈f, b〉, f ∈ E = G�,

so that by (3),
sup
b∈B

|Tb(f )| < ∞ ∀f ∈ E.

It follows from Theorem 2.2 that there exists a constant c such that

|〈f, b〉| ≤ c‖f ‖ ∀f ∈ G� ∀b ∈ B.
Therefore we find (using Corollary 1.4) that

‖b‖ ≤ c ∀b ∈ B.
Remark 4. Corollary 2.4 says that in order to prove that a set B is bounded it suffices
to “look” at B through the bounded linear functionals. This is a familiar procedure
in finite-dimensional spaces, where the linear functionals are the components with
respect to some basis. In some sense, Corollary 2.4 replaces, in infinite-dimensional
spaces, the use of components. Sometimes, one expresses the conclusion of Corollary
2.4 by saying that “weakly bounded” ⇐⇒ “strongly bounded” (see Chapter 3).

Next we have a statement dual to Corollary 2.4:

Corollary 2.5. Let G be a Banach space and let B� be a subset of G�. Assume that

(5) for every x ∈ G the set 〈B�, x〉 = {〈f, x〉; f ∈ B�} is bounded (in R).

Then

(6) B� is bounded.

Proof. Use Theorem 2.2 with E = G, F = R, and I = B�. For every b ∈ B� set

Tb(x) = 〈b, x〉 (x ∈ G = E).

We find that there exists a constant c such that

|〈b, x〉| ≤ c‖x‖ ∀b ∈ B�, ∀x ∈ G.
We conclude (from the definition of a dual norm) that

‖b‖ ≤ c ∀b ∈ B�.

2.3 The Open Mapping Theorem and the Closed Graph Theorem

Here are two basic results due to Banach.
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• Theorem 2.6 (open mapping theorem). Let E and F be two Banach spaces and
let T be a continuous linear operator fromE into F that is surjective (= onto). Then
there exists a constant c > 0 such that

(7) T (BE(0, 1)) ⊃ BF (0, c).

Remark 5. Property (7) implies that the image under T of any open set in E is an
open set inF (which justifies the name given to this theorem!). Indeed, let us suppose
U is open in E and let us prove that T (U) is open. Fix any point y0 ∈ T (U), so
that y0 = T x0 for some x0 ∈ U . Let r > 0 be such that B(x0, r) ⊂ U , i.e.,
x0 + B(0, r) ⊂ U . It follows that

y0 + T (B(0, r)) ⊂ T (U).

Using (7) we obtain
T (B(0, r)) ⊃ B(0, rc)

and therefore
B(y0, rc) ⊂ T (U).

Some important consequences of Theorem 2.6 are the following.

• Corollary 2.7. LetE andF be two Banach spaces and let T be a continuous linear
operator fromE into F that is bijective, i.e., injective (= one-to-one) and surjective.
Then T −1 is also continuous (from F into E).

Proof of Corollary 2.7. Property (7) and the assumption that T is injective imply that
if x ∈ E is chosen so that ‖T x‖ < c, then ‖x‖ < 1. By homogeneity, we find that

‖x‖ ≤ 1

c
‖T x‖ ∀x ∈ E

and therefore T −1 is continuous.

Corollary 2.8. Let E be a vector space provided with two norms, ‖ ‖1 and ‖ ‖2.
Assume that E is a Banach space for both norms and that there exists a constant
C ≥ 0 such that

‖x‖2 ≤ C‖x‖1 ∀x ∈ E.
Then the two norms are equivalent, i.e., there is a constant c > 0 such that

‖x‖1 ≤ c‖x‖2 ∀x ∈ E.
Proof of Corollary 2.8. Apply Corollary 2.7 with

E = (E, ‖ ‖1), F = (E, ‖ ‖2), and T = I .

Proof of Theorem 2.6. We split the argument into two steps:

Step 1. Assume that T is a linear surjective operator from E onto F . Then there
exists a constant c > 0 such that
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(8) T (B(0, 1)) ⊃ B(0, 2c).

Proof. SetXn = nT (B(0, 1)). Since T is surjective, we have
⋃∞
n=1Xn = F , and by

the Baire category theorem there exists some n0 such that Int(Xn0) 	= ∅. It follows
that

Int [T (B(0, 1))] 	= ∅.
Pick c > 0 and y0 ∈ F such that

(9) B(y0, 4c) ⊂ T (B(0, 1)).

In particular, y0 ∈ T (B(0, 1)), and by symmetry,

(10) −y0 ∈ T (B(0, 1)).

Adding (9) and (10) leads to

B(0, 4c) ⊂ T (B(0, 1))+ T (B(0, 1)).

On the other hand, since T (B(0, 1)) is convex, we have

T (B(0, 1))+ T (B(0, 1)) = 2T (B(0, 1)),

and (8) follows.

Step 2. Assume T is a continuous linear operator from E into F that satisfies (8).
Then we have

(11) T (B(0, 1)) ⊃ B(0, c).

Proof. Choose any y ∈ F with ‖y‖ < c. The aim is to find some x ∈ E such that

‖x‖ < 1 and T x = y.

By (8) we know that

(12) ∀ε > 0 ∃z ∈ E with ‖z‖ < 1

2
and ‖y − T z‖ < ε.

Choosing ε = c/2, we find some z1 ∈ E such that

‖z1‖ < 1

2
and ‖y − T z1‖ < c

2
.

By the same construction applied to y − T z1 (instead of y) with ε = c/4 we find
some z2 ∈ E such that

‖z2‖ < 1

4
and ‖(y − T z1)− T z2‖ < c

4
.

Proceeding similarly, by induction we obtain a sequence (zn) such that
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‖zn‖ < 1

2n
and ‖y − T (z1 + z2 + · · · + zn)‖ < c

2n
∀n.

It follows that the sequence xn = z1 + z2 + · · · + zn is a Cauchy sequence. Let
xn → x with, clearly, ‖x‖ < 1 and y = T x (since T is continuous).

• Theorem 2.9 (closed graph theorem). Let E and F be two Banach spaces. Let T
be a linear operator from E into F . Assume that the graph of T , G(T ), is closed in
E × F . Then T is continuous.

Remark 6. The converse is obviously true, since the graph of any continuous map
(linear or not) is closed.

Proof of Theorem 2.9. Consider, on E, the two norms

‖x‖1 = ‖x‖E + ‖T x‖F and ‖x‖2 = ‖x‖E
(the norm ‖ ‖1 is called the graph norm).

It is easy to check, using the assumption that G(T ) is closed, that E is a Banach
space for the norm ‖ ‖1. On the other hand, E is also a Banach space for the norm
‖ ‖2 and ‖ ‖2 ≤ ‖ ‖1. It follows from Corollary 2.8 that the two norms are equivalent
and thus there exists a constant c > 0 such that ‖x‖1 ≤ c‖x‖2. We conclude that
‖T x‖F ≤ c‖x‖E.

� 2.4 Complementary Subspaces. Right and Left Invertibility of
Linear Operators

We start with some geometric properties of closed subspaces in a Banach space that
follow from the open mapping theorem.

� Theorem 2.10. Let E be a Banach space. Assume that G and L are two closed
linear subspaces such thatG+L is closed. Then there exists a constant C ≥ 0 such
that

(13)

{
every z ∈ G+ L admits a decomposition of the form

z = x + y with x ∈ G, y ∈ L, ‖x‖ ≤ C‖z‖ and ‖y‖ ≤ C‖z‖.
Proof. Consider the product space G× L with its norm

‖ [x, y] ‖ = ‖x‖ + ‖y‖
and the space G+ L provided with the norm of E.

The mapping T : G × L → G + L defined by T [x, y] = x + y is continuous,
linear, and surjective. By the open mapping theorem there exists a constant c > 0
such that every z ∈ G + L with ‖z‖ < c can be written as z = x + y with x ∈ G,
y ∈ L, and ‖x‖ + ‖y‖ < 1. By homogeneity every z ∈ G+ L can be written as
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z = x + y with x ∈ G, y ∈ L, and ‖x‖ + ‖y‖ ≤ (1/c)‖z‖.
� Corollary 2.11. Under the same assumptions as in Theorem 2.10, there exists a
constant C such that

(14) dist(x,G ∩ L) ≤ C{dist(x,G)+ dist(x, L)} ∀x ∈ E.
Proof. Given x ∈ E and ε > 0, there exist a ∈ G and b ∈ L such that

‖x − a‖ ≤ dist(x,G)+ ε, ‖x − b‖ ≤ dist(x, L)+ ε.

Property (13) applied to z = a − b says that there exist a′ ∈ G and b′ ∈ L such that

a − b = a′ + b′, ‖a′‖ ≤ C‖a − b‖, ‖b′‖ ≤ C‖a − b‖.
It follows that a − a′ ∈ G ∩ L and

dist(x,G ∩ L) ≤ ‖x − (a − a′)‖ ≤ ‖x − a‖ + ‖a′‖
≤ ‖x − a‖ + C‖a − b‖ ≤ ‖x − a‖ + C(‖x − a‖ + ‖x − b‖)
≤ (1 + C) dist(x,G)+ dist(x, L)+ (1 + 2C)ε.

Finally, we obtain (14) by letting ε → 0.

Remark 7. The converse of Corollary 2.11 is also true: If G and L are two closed
linear subspaces such that (14) holds, then G+ L is closed (see Exercise 2.16).

Definition. Let G ⊂ E be a closed subspace of a Banach space E. A subspace
L ⊂ E is said to be a topological complement or simply a complement of G if

(i) L is closed,
(ii) G ∩ L = {0} and G+ L = E.

We shall also say that G and L are complementary subspaces of E. If this holds,
then every z ∈ E may be uniquely written as z = x + y with x ∈ G and y ∈ L.
It follows from Theorem 2.10 that the projection operators z 
→ x and z 
→ y

are continuous linear operators. (That property could also serve as a definition of
complementary subspaces.)

Examples

1. Every finite-dimensional subspace G admits a complement. Indeed, let e1,
e2, . . . , en be a basis of G. Every x ∈ G may be written as x = ∑n

i=1 xiei .
Set ϕi(x) = xi . Using Hahn–Banach (analytic form)—or more precisely Corol-
lary 1.2—each ϕi can be extended by a continuous linear functional ϕ̃i defined
on E. It is easy to check that L = ∩ni=1(ϕ̃i)

−1(0) is a complement of G.

2. Every closed subspace G of finite codimension admits a complement. It suffices
to choose any finite-dimensional space L such thatG∩L = {0} andG+L = E

(L is closed since it is finite-dimensional).
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Here is a typical example of this kind of situation. Let N ⊂ E� be a subspace of
dimension p. Then

G = {x ∈ E; 〈f, x〉 = 0 ∀f ∈ N} = N⊥

is closed and of codimension p. Indeed, let f1, f2, . . . , fp be a basis of N . Then
there exist e1, e2, . . . , ep ∈ E such that

〈fi, ej 〉 = δij ∀i, j = 1, 2, . . . , p.

[Consider the map 
 : E → R
p defined by

(15) 
(x) = (〈f1, x〉, 〈f2, x〉, . . . , 〈fp, x〉)
and note that 
 is surjective; otherwise, there would exist—by Hahn–Banach
(second geometric form)—some α = (α1, α2, . . . , αp) 	= 0 such that

α ·
(x) =
〈
p∑

i=1

αifi, x

〉

= 0 ∀x ∈ E,

which is absurd].
It is easy to check that the vectors (ei)1≤i≤p are linearly independent and that the
space generated by the ei’s is a complement of G. Another proof of the fact that
the codimension of N⊥ equals the dimension of N is presented in Chapter 11
(Proposition 11.11).

3. In a Hilbert space every closed subspace admits a complement (see Section 5.2).

Remark 8. It is important to know that some closed subspaces (even in reflexive
Banach spaces) have no complement. In fact, a remarkable result of J. Lindenstrauss
and L. Tzafriri [1] asserts that in every Banach space that is not isomorphic to a
Hilbert space, there exist closed subspaces without any complement.

Definition. Let T ∈ L(E, F ). A right inverse of T is an operator S ∈ L(F,E) such
that T ◦S = IF . A left inverse of T is an operator S ∈ L(F,E) such that S ◦T = IE .

Our next results provide necessary and sufficient conditions for the existence of
such inverses.

� Theorem 2.12. Assume that T ∈ L(E, F ) is surjective. The following properties
are equivalent:

(i) T admits a right inverse.
(ii) N(T ) = T −1(0) admits a complement in E.

Proof.
(i) ⇒ (ii). Let S be a right inverse of T . It is easy to see (please check) that

R(S) = S(F ) is a complement of N(T ) in E.
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(ii) ⇒ (i). Let L be a complement of N(T ). Let P be the (continuous) projection
operator from E onto L. Given f ∈ F , we denote by x any solution of the equation
T x = f . Set Sf = Px and note that S is independent of the choice of x. It is easy
to check that S ∈ L(F,E) and that T ◦ S = IF .

Remark 9. In view of Remark 8 and Theorem 2.12, it is easy to construct surjective
operators T without a right inverse. Indeed, letG ⊂ E be a closed subspace without
complement, let F = E/G, and let T be the canonical projection from E onto F
(for the definition and properties of the quotient space, see Section 11.2).

� Theorem 2.13. Assume that T ∈ L(E, F ) is injective. The following properties
are equivalent:

(i) T admits a left inverse.
(ii) R(T ) = T (E) is closed and admits a complement in F.

Proof.
(i) ⇒ (ii). It is easy to check that R(T ) is closed and that N(S) is a complement

of R(T ) [write f = T Sf + (f − T Sf )].
(ii) ⇒ (i). Let P be a continuous projection operator from F onto R(T ). Let

f ∈ F ; since Pf ∈ R(T ), there exists a unique x ∈ E such that T x = Pf . Set
Sf = x. It is clear that S ◦ T = IE ; moreover, S is continuous by Corollary 2.7.

� 2.5 Orthogonality Revisited

There are some simple formulas giving the orthogonal expression of a sum or of an
intersection.

Proposition 2.14. Let G and L be two closed subspaces in E. Then

G ∩ L = (G⊥ + L⊥)⊥,(16)

G⊥ ∩ L⊥ = (G+ L)⊥.(17)

Proof of (16). It is clear that G ∩ L ⊂ (G⊥ + L⊥)⊥; indeed, if x ∈ G ∩ L and
f ∈ G⊥ + L⊥ then 〈f, x〉 = 0. Conversely, we have G⊥ ⊂ G⊥ + L⊥ and thus
(G⊥ + L⊥)⊥ ⊂ G⊥⊥ = G (note that if N1 ⊂ N2 then N⊥

2 ⊂ N⊥
1 ); similarly

(G⊥ + L⊥)⊥ ⊂ L. Therefore (G⊥ + L⊥)⊥ ⊂ G ∩ L.
Proof of (17). Use the same argument as for the proof of (16).

Corollary 2.15. Let G and L be two closed subspaces in E. Then

(G ∩ L)⊥ ⊃ G⊥ + L⊥,(18)

(G⊥ ∩ L⊥)⊥ = G+ L.(19)
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Proof. Use Propositions 1.9 and 2.14.

Here is a deeper result.

� Theorem 2.16. Let G and L be two closed subspaces in a Banach space E. The
following properties are equivalent:

(a) G+ L is closed in E,
(b) G⊥ + L⊥ is closed in E�,
(c) G+ L = (G⊥ ∩ L⊥)⊥,
(d) G⊥ + L⊥ = (G ∩ L)⊥.

Proof. (a) ⇐⇒ (c) follows from (19). (d) �⇒ (b) is obvious.
We are left with the implications (a) ⇒ (d) and (b) ⇒ (a).

(a) �⇒ (d). In view of (18) it suffices to prove that (G∩L)⊥ ⊂ G⊥ +L⊥. Given
f ∈ (G∩L)⊥, consider the functional ϕ : G+L → R defined as follows. For every
x ∈ G+ L write x = a + b with a ∈ G and b ∈ L. Set

ϕ(x) = 〈f, a〉.
Clearly, ϕ is independent of the decomposition of x, and ϕ is linear. On the other
hand, by Theorem 2.10 we may choose a decomposition of x in such a way that
‖a‖ ≤ C‖x‖, and thus

|ϕ(x)| ≤ C‖x‖ ∀x ∈ G+ L.

Extend ϕ by a continuous linear functional ϕ̃ defined on all of E (see Corollary 1.2).
So, we have

f = (f − ϕ̃)+ ϕ̃ with f − ϕ̃ ∈ G⊥ and ϕ̃ ∈ L⊥.

(b) �⇒ (a). We know by Corollary 2.11 that there exists a constant C such that

(20) dist(f,G⊥ ∩ L⊥) ≤ C{dist(f,G⊥)+ dist(f, L⊥)} ∀f ∈ E�.
On the other hand, we have

(21) dist(f,G⊥) = sup
x∈G‖x‖≤1

〈f, x〉 ∀f ∈ E�.

[Use Theorem 1.12 with ϕ(x) = IBE (x)− 〈f, x〉 and ψ(x) = IG(x), where

BE = {x ∈ E; ‖x‖ ≤ 1}.]
Similarly, we have
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(22) dist(f, L⊥) = sup
x∈L‖x‖≤1

〈f, x〉 ∀f ∈ E�

and also (by (17))

(23) dist(f,G⊥ ∩ L⊥) = dist(f, (G+ L)⊥) = sup
x∈G+L‖x‖≤1

〈f, x〉 ∀f ∈ E�.

Combining (20), (21), (22), and (23) we obtain

(24) sup
x∈G+L‖x‖≤1

〈f, x〉 ≤ C

{

sup
x∈G‖x‖≤1

〈f, x〉 + sup
x∈L‖x‖≤1

〈f, x〉
}

∀f ∈ E�.

It follows from (24) that

(25) BG +GL ⊃ 1

C
BG+L.

Indeed, suppose by contradiction that there existed some x0 ∈ G+ L with ‖x0‖ ≤
1/C and x0 /∈ BG + BL. Then there would be a closed hyperplane in E strictly
separating {x0} and BG + BL. Thus, there would exist some f0 ∈ E� and some
α ∈ R such that

〈f0, x〉 < α < 〈f0, x0〉 ∀x ∈ BG + BL.

Therefore, we would have

sup
x∈G‖x‖≤1

〈f0, x〉 + sup
x∈L‖x‖≤1

〈f0, x〉 ≤ α < 〈f0, x0〉,

which contradicts (24), and (25) is proved.

Finally, consider the space X = G× L with the norm

‖ [x, y] ‖ = max{‖x‖, ‖y‖}
and the space Y = G+ L with the norm of E. The map T : X → Y defined by
T ([x, y]) = x + y is linear and continuous. From (25) we know that

T (BX) ⊃ 1

C
BY .

Using Step 2 from the proof of Theorem 2.6 (open mapping theorem) we con-
clude that

T (BX) ⊃ 1

2C
BY .

It follows that T is surjective from X onto Y , i.e., G+ L = G+ L.
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2.6 An Introduction to Unbounded Linear Operators. Definition
of the Adjoint

Definition. Let E and F be two Banach spaces. An unbounded linear operator
from E into F is a linear map A : D(A) ⊂ E → F defined on a linear subspace
D(A) ⊂ E with values in F . The set D(A) is called the domain of A.

One says thatA is bounded (or continuous) ifD(A) = E and if there is a constant
c ≥ 0 such that

‖Au‖ ≤ c‖u‖ ∀u ∈ E.
The norm of a bounded operator is defined by

∥
∥A

∥
∥

L (E,F )
= Sup

u	=0

‖Au‖
‖u‖ .

Remark 10. It may of course happen that an unbounded linear operator turns out to
be bounded. This terminology is slightly inconsistent, but it is commonly used and
does not lead to any confusion.

Here are some important definitions and further notation:

Graph of A = G(A) = {[u,Au]; u ∈ D(A)} ⊂ E × F ,

Range of A = R(A) = {Au; u ∈ D(A)} ⊂ F ,

Kernel of A = N(A) = {u ∈ D(A);Au = 0} ⊂ E.

A map A is said to be closed if G(A) is closed in E × F .

• Remark 11. In order to prove that an operator A is closed, one proceeds in general
as follows. Take a sequence (un) in D(A) such that un → u in E and Aun → f in
F . Then check two facts:

(a) u ∈ D(A),
(b) f = Au.

Note that it does not suffice to consider sequences (un) such that un → 0 in E
and Aun → f in F (and to prove that f = 0).

Remark 12. If A is closed, then N(A) is closed; however, R(A) need not be closed.

Remark 13. In practice, most unbounded operators are closed and are densely defined,
i.e., D(A) is dense in E.

Definition of the adjoint A�. Let A : D(A) ⊂ E → F be an unbounded linear
operator that is densely defined. We shall introduce an unbounded operator A� :
D(A�) ⊂ F� → E� as follows. First, one defines its domain:

D(A�) = {v ∈ F�; ∃c ≥ 0 such that |〈v,Au〉| ≤ c‖u‖ ∀u ∈ D(A)}.
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It is clear that D(A�) is a linear subspace of F�. We shall now define A�v. Given
v ∈ D(A�), consider the map g : D(A) → R defined by

g(u) = 〈v,Au〉 ∀u ∈ D(A).
We have

|g(u)| ≤ c‖u‖ ∀u ∈ D(A).
By Hahn–Banach (analytic form; see Theorem 1.1) there exists a linear map f :
E → R that extends g and such that

|f (u)| ≤ c‖u‖ ∀u ∈ E.
It follows that f ∈ E�. Note that the extension of g is unique, since D(A) is dense
in E.

Set
A�v = f.

The unbounded linear operator A�: D(A�) ⊂ F� → E� is called the adjoint of
A. In brief, the fundamental relation between A and A� is given by

〈v,Au〉F�,F = 〈A�v, u〉E�,E ∀u ∈ D(A), ∀v ∈ D(A�).

Remark 14. It is not necessary to invoke Hahn–Banach to extend g. It suffices to
use the classical extension by continuity, which applies since D(A) is dense, g is
uniformly continuous on D(A), and R is complete (see, e.g., H. L. Royden [1]
(Proposition 11 in Chapter 7) or J. Dugundji [1] (Theorem 5.2 in Chapter XIV).

� Remark 15. It may happen that D(A�) is not dense in F� (even if A is closed);
but this is a rather pathological situation (see Exercise 2.22). It is always true that if
A is closed then D(A�) is dense in F� for the weak� topology σ(F �, F ) defined in
Chapter 3 (see Problem 9). In particular, if F is reflexive, thenD(A�) is dense in F�

for the usual (norm) topology (see Theorem 3.24).

Remark 16. If A is a bounded operator then A� is also a bounded operator (from F�

into E�) and, moreover,

∥
∥A�

∥
∥

L (F �,E�)
= ∥
∥A

∥
∥
L (E,F )

.

Indeed, it is clear that D(A�) = F�. From the basic relation, we have

|〈A�v, u〉| ≤ ‖A‖ ‖u‖ ‖v‖ ∀u ∈ E, ∀v ∈ F�,
which implies that ‖A�v‖ ≤ ‖A‖ ‖v‖ and thus ‖A�‖ ≤ ‖A‖.

We also have

|〈v,Au〉| ≤ ‖A�‖ ‖u‖ ‖v‖ ∀u ∈ E, ∀v ∈ F�,
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which implies (by Corollary 1.4) that ‖Au‖ ≤ ‖A�‖ ‖u‖ and thus ‖A‖ ≤ ‖A�‖.

Proposition 2.17. Let A : D(A) ⊂ E → F be a densely defined unbounded linear
operator. Then A� is closed, i.e., G(A�) is closed in F� × E�.

Proof. Let vn ∈ D(A�) be such that vn → v in F� and A�vn → f in E�. One has
to check that (a) v ∈ D(A�) and (b) A�v = f .

We have
〈vn,Au〉 = 〈A�vn, u〉 ∀u ∈ D(A).

At the limit we obtain

〈v,Au〉 = 〈f, u〉 ∀u ∈ D(A).
Therefore v ∈ D(A�) (since |〈v,Au〉| ≤ ‖f ‖ ‖u‖ ∀u ∈ D(A)) and A�v = f .

The graphs of A and A� are related by a very simple orthogonality relation:
Consider the isomorphism I : F� × E� → E� × F� defined by

I ([v, f ]) = [−f, v].
Let A : D(A) ⊂ E → F be a densely defined unbounded linear operator. Then

I [G(A�)] = G(A)⊥.

Indeed, let [v, f ] ∈ F� × E�, then

[v, f ] ∈ G(A�) ⇐⇒ 〈f, u〉 = 〈v,Au〉 ∀u ∈ D(A)
⇐⇒ −〈f, u〉 + 〈v,Au〉 = 0 ∀u ∈ D(A)
⇐⇒ [−f, v] ∈ G(A)⊥.

Here are some standard orthogonality relations between ranges and kernels:

Corollary 2.18. Let A : D(A) ⊂ E → F be an unbounded linear operator that is
densely defined and closed. Then

N(A) = R(A�)⊥,(i)

N(A�) = R(A)⊥,(ii)

N(A)⊥ ⊃ R(A�),(iii)

N(A�)⊥ = R(A).(iv)

Proof. Note that (iii) and (iv) follow directly from (i) and (ii) combined with Propo-
sition 1.9. There is a simple and direct proof of (i) and (ii) (see Exercise 2.18).
However, it is instructive to relate these facts to Proposition 2.14 by the following
device. Consider the space X = E × F , so that X� = E� × F�, and the subspaces
of X
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G = G(A) and L = E × {0}.
It is very easy to check that

N(A)× {0} = G ∩ L,(26)

E × R(A) = G+ L,(27)

{0} ×N(A�) = G⊥ ∩ L⊥,(28)

R(A�)× F� = G⊥ + L⊥.(29)

Proof of (i). By (29) we have

R(A�)⊥ × {0} = (G⊥ + L⊥)⊥ = G ∩ L (by (16))

= N(A)× {0} (by (26)).

Proof of (ii). By (27) we have

{0} × R(A)⊥ = (G+ L)⊥ = G⊥ ∩ L⊥ (by (17))

= {0} ×N(A�) (by (28)).

Remark 17. It may happen, even if A is a bounded linear operator, that N(A)⊥ 	=
R(A�) (see Exercise 2.23). However, it is always true that N(A)⊥ is the closure
of R(A�) for the weak� topology σ(E�,E) (see Problem 9). In particular, if E is
reflexive then N(A)⊥ = R(A�).

� 2.7 A Characterization of Operators with Closed Range.
A Characterization of Surjective Operators

The main result concerning operators with closed range is the following.

� Theorem 2.19. Let A : D(A) ⊂ E → F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(i) R(A) is closed,
(ii) R(A�) is closed,

(iii) R(A) = N(A�)⊥,
(iv) R(A�) = N(A)⊥.

Proof. With the same notation as in the proof of Corollary 2.18, we have

(i) ⇔ G+ L is closed in X (see (27)),
(ii) ⇔ G⊥ + L⊥ is closed in X� (see (29)),

(iii) ⇔ G+ L = (G⊥ ∩ L⊥)⊥ (see (27) and (28)),
(iv) ⇔ (G ∩ L)⊥ = G⊥ + L⊥ (see (26) and (29)).

The conclusion then follows from Theorem 2.16.
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Remark 18. Let A : D(A) ⊂ E → F be a closed unbounded linear operator. Then
R(A) is closed if and only if there exists a constant C such that

dist(u,N(A)) ≤ C‖Au‖ ∀u ∈ D(A);
see Exercise 2.14.

The next result provides a useful characterization of surjective operators.

� Theorem 2.20. Let A : D(A) ⊂ E → F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(a) A is surjective, i.e., R(A) = F,

(b) there is a constant C such that

‖v‖ ≤ C‖A�v‖ ∀v ∈ D(A�),
(c) N(A�) = {0} and R(A�) is closed.

Remark 19. The implication (b) ⇒ (a) is sometimes useful in practice to establish
that an operator A is surjective. One proceeds as follows. Assuming that v satisfies
A�v = f , one tries to prove that ‖v‖ ≤ C‖f ‖ (with C independent of f ). This
is called the method of a priori estimates. One is not concerned with the question
whether the equationA�v = f admits a solution; one assumes that v is a priori given
and one tries to estimate its norm.

Proof.
(a) ⇒ (b). Set

B� = {v ∈ D(A�); ‖A�v‖ ≤ 1}.
By homogeneity it suffices to prove that B� is bounded. For this purpose—in view
of Corollary 2.5 (uniform boundedness principle)—we have only to show that given
any f0 ∈ F the set 〈B�, f0〉 is bounded (in R). Since A is surjective, there is some
u0 ∈ D(A) such that Au0 = f0. For every v ∈ B� we have

〈v, f0〉 = 〈v,Au0〉 = 〈A�v, u0〉
and thus |〈v, f0〉| ≤ ‖u0‖.

(b) ⇒ (c). Suppose fn = A�vn → f . Using (b) with vn − vm we see that (vn) is
Cauchy, so that vn → v. Since A� is closed (by Proposition 2.17), we conclude that
A�v = f .

(c) ⇒ (a). Since R(A�) is closed, we infer from Theorem 2.19 that R(A) =
N(A�)⊥ = F .

There is a “dual” statement.

� Theorem 2.21. LetA : D(A) ⊂ F be an unbounded linear operator that is densely
defined and closed. The following properties are equivalent:
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(a) A� is surjective, i.e., R(A�) = E�,
(b) there is a constant C such that

‖u‖ ≤ C‖Au‖ ∀u ∈ D(A),
(c) N(A) = {0} and R(A) is closed.

Proof. It is similar to the proof of Theorem 2.20 and we shall leave it as an exercise.

Remark 20. If one assumes that either dimE < ∞ or that dim F < ∞, then the
following are equivalent:

A surjective ⇔ A� injective,

A� surjective ⇔ A injective,

which is indeed a classical result for linear operators in finite-dimensional spaces. The
reason that these equivalences hold is that R(A) and R(A�) are finite-dimensional
(and thus closed).

In the general case one has only the implications

A surjective ⇒ A� injective,

A� surjective ⇒ A injective.

The converses fail, as may be seen from the following simple example. Let E =
F = �2; for every x ∈ �2 write x = (xn)n≥1 and set Ax = ( 1

n
xn
)

n≥1. It is easy to
see that A is a bounded operator and that A� = A; A� (resp. A) is injective but A
(resp. A�) is not surjective; R(A) (resp. R(A�)) is dense and not closed.

Comments on Chapter 2

1. One may write down explicitly some simple closed subspaces without complement.
For example c0 is a closed subspace of �∞ without complement; see, e.g., C. DeVito
[1] (the notation c0 and �∞ is explained in Section 11.3). There are other examples
in W. Rudin [1] (a subspace of L1), G. Köthe [1], and B. Beauzamy [1] (a subspace
of �p, p 	= 2).

2. Most of the results in Chapter 2 extend to Fréchet spaces (locally convex spaces
that are metrizable and complete). There are many possible extensions; see, e.g.,
H. Schaefer [1], J. Horváth [1], R. Edwards [1], F. Treves [1], [3], G. Köthe [1].
These extensions are motivated by the theory of distributions (see L. Schwartz [1]),
in which many important spaces are not Banach spaces. For the applications to the
theory of partial differential equations the reader may consult L. Hörmander [1] or
F. Treves [1], [2], [3].

3. There are various extensions of the results of Section 2.5 in T. Kato [1].
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Exercises for Chapter 2

2.1 Continuity of convex functions.
LetE be a Banach space and let ϕ : E → (−∞,+∞] be a convex l.s.c. function.

Assume x0 ∈ IntD(ϕ).

1. Prove that there exist two constants R > 0 and M such that

ϕ(x) ≤ M ∀x ∈ E with ‖x − x0‖ ≤ R.

[Hint: Given an appropriate ρ > 0, consider the sets

Fn = {x ∈ E; ‖x − x0‖ ≤ ρ and ϕ(x) ≤ n}.]
2. Prove that ∀r < R, ∃L ≥ 0 such that

|ϕ(x1)− ϕ(x2)| ≤ L‖x1 − x2‖ ∀x1, x2 ∈ E with ‖xi − x0‖ ≤ r, i = 1, 2.

More precisely, one may choose L = 2[M−ϕ(x0)]
R−r .

2.2 Let E be a vector space and let p : E → R be a function with the following
three properties:

(i) p(x + y) ≤ p(x)+ p(y) ∀x, y ∈ E,
(ii) for each fixed x ∈ E the function λ 
→ p(λx) is continuous from R into R,

(iii) whenever a sequence (yn) inE satisfies p(yn) → 0, then p(λyn) → 0 for every
λ ∈ R.

Assume that (xn) is a sequence in E such that p(xn) → 0 and (αn) is a bounded
sequence in R. Prove that p(0) = 0 and that p(αnxn) → 0.

[Hint: Given ε > 0 consider the sets

Fn = {λ ∈ R; |p(λxk)| ≤ ε, ∀k ≥ n}.]
Deduce that if (xn) is a sequence in E such that p(xn − x) → 0 for some x ∈ E,
and (αn) is a sequence in R such that αn → α, then p(αnxn) → p(αx).

2.3 Let E and F be two Banach spaces and let (Tn) be a sequence in L(E, F ).
Assume that for every x ∈ E, Tnx converges as n → ∞ to a limit denoted by T x.
Show that if xn → x in E, then Tnxn → T x in F.

2.4 Let E and F be two Banach spaces and let a : E × F → R be a bilinear form
satisfying:

(i) for each fixed x ∈ E, the map y 
→ a(x, y) is continuous;
(ii) for each fixed y ∈ F , the map x 
→ a(x, y) is continuous.

Prove that there exists a constant C ≥ 0 such that

|a(x, y)| ≤ C‖x‖ ‖y‖ ∀x ∈ E, ∀y ∈ F.
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[Hint: Introduce a linear operator T : E → F� and prove that T is bounded with
the help of Corollary 2.5.]

2.5 Let E be a Banach space and let εn be a sequence of positive numbers such
that lim εn = 0. Further, let (fn) be a sequence in E� satisfying the property

{
∃r > 0, ∀x ∈ E with ‖x‖ < r, ∃C(x) ∈ R such that

〈fn, x〉 ≤ εn‖fn‖ + C(x) ∀n.
Prove that (fn) is bounded.

[Hint: Introduce gn = fn/(1 + εn‖fn‖).]
2.6 Locally bounded nonlinear monotone operators.

Let E be Banach space and let D(A) be any subset in E. A (nonlinear) map
A : D(A) ⊂ E → E� is said to be monotone if it satisfies

〈Ax − Ay, x − y〉 ≥ 0 ∀x, y ∈ D(A).
1. Let x0 ∈ IntD(A). Prove that there exist two constants R > 0 and C such that

‖Ax‖ ≤ C ∀x ∈ D(A) with ‖x − x0‖ < R.

[Hint: Argue by contradiction and construct a sequence (xn) in D(A) such that
xn → x0 and ‖Axn‖ → ∞. Choose r > 0 such that B(x0, r) ⊂ D(A). Use the
monotonicity of A at xn and at (x0 + x) with ‖x‖ < r . Apply Exercise 2.5.]

2. Prove the same conclusion for a point x0 ∈ Int[convD(A)].
3. Extend the conclusion of question 1 to the case of A multivalued, i.e., for every
x ∈ D(A),Ax is a nonempty subset ofE�; the monotonicity is defined as follows:

〈f − g, x − y〉 ≥ 0 ∀x, y ∈ D(A), ∀f ∈ Ax, ∀g ∈ Ay.

2.7 Let α = (αn) be a given sequence of real numbers and let 1 ≤ p ≤ ∞. Assume
that

∑ |αn||xn| < ∞ for every element x = (xn) in �p (the space �p is defined in
Section 11.3).

Prove that α ∈ �p′
.

2.8 Let E be a Banach space and let T : E → E� be a linear operator satisfying

〈T x, x〉 ≥ 0 ∀x ∈ E.
Prove that T is a bounded operator.

[Two methods are possible: (i) Use Exercise 2.6 or (ii) Apply the closed graph
theorem.]

2.9 Let E be a Banach space and let T : E → E� be a linear operator satisfying

〈T x, y〉 = 〈Ty, x〉 ∀x, y ∈ E.
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Prove that T is a bounded operator.

2.10 Let E and F be two Banach spaces and let T ∈ L(E, F ) be surjective.

1. LetM be any subset ofE. Prove that T (M) is closed in F iffM+N(T ) is closed
in E.

2. Deduce that if M is a closed vector space in E and dimN(T ) < ∞, then T (M)
is closed.

2.11 Let E be a Banach space, F = �1, and let T ∈ L(E, F ) be surjective. Prove
that there exists S ∈ L(F,E) such that T ◦ S = IF , i.e., S has a right inverse of T .

[Hint: Do not apply Theorem 2.12; try to define S explicitly using the canonical
basis of �1.]

2.12 Let E and F be two Banach spaces with norms ‖ ‖E and ‖ ‖F . Let T ∈
L(E, F ) be such that R(T ) is closed and dimN(T ) < ∞. Let | | denote another
norm on E that is weaker than ‖ ‖E , i.e., |x| ≤ M‖x‖E ∀x ∈ E.

Prove that there exists a constant C such that

‖x‖E ≤ C(‖T x‖F + |x|) ∀x ∈ E.
[Hint: Argue by contradiction.]

2.13 Let E and F be two Banach spaces. Prove that the set

� = {T ∈ L(E, F ); T admits a left inverse}
is open in L(E, F ).

[Hint: Prove first that the set

O = {T ∈ L(E, F ); T is bijective}
is open in L(E, F ).]

2.14 Let E and F be two Banach spaces

1. Let T ∈ L(E, F ). Prove that R(T ) is closed iff there exists a constant C such
that

dist(x,N(T )) ≤ C‖T x‖ ∀x ∈ E.
[Hint: Use the quotient space E/N(T ); see Section 11.2.]

2. Let A : D(A) ⊂ E → F be a closed unbounded operator.
Prove that R(A) is closed iff there exists a constant C such that

dist(u,N(A)) ≤ C‖Au‖ ∀u ∈ D(A).
[Hint: Consider the operator T : E0 → F , where E0 = D(A) with the graph
norm and T = A.]
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2.15 Let E1, E2, and F be three Banach spaces. Let T1 ∈ L(E1, F ) and let
T2 ∈ L(E2, F ) be such that

R(T1) ∩ R(T2) = {0} and R(T1)+ R(T2) = F.

Prove that R(T1) and R(T2) are closed.
[Hint: Apply Exercise 2.10 to the map T : E1 × E2 → F defined by

T (x1, x2) = T1x1 + T2x2.]

2.16 LetE be a Banach space. LetG and L be two closed subspaces ofE. Assume
that there exists a constant C such that

dist(x,G ∩ L) ≤ C dist(x, L), ∀x ∈ G.
Prove that G+ L is closed.

2.17 Let E = C([0, 1]) with its usual norm. Consider the operator A : D(A) ⊂
E → E defined by

D(A) = C1([0, 1]) and Au = u′ = du

dt
.

1. Check that D(A) = E.
2. Is A closed?
3. Consider the operator B : D(B) ⊂ E → E defined by

D(B) = C2([0, 1]) and Bu = u′ = du

dt
.

Is B closed?

2.18 Let E and F be two Banach spaces and let A : D(A) ⊂ E → F be a densely
defined unbounded operator.

1. Prove that N(A�) = R(A)⊥ and N(A) ⊂ R(A�)⊥.
2. Assuming that A is also closed prove that N(A) = R(A�)⊥.

[Try to find direct arguments and do not rely on the proof of Corollary 2.18. For
question 2 argue by contradiction: suppose there is some u ∈ R(A�)⊥ such that
[u, 0] /∈ G(A) and apply Hahn–Banach.]

2.19 Let E be a Banach space and let A : D(A) ⊂ E → E� be a densely defined
unbounded operator.

1. Assume that there exists a constant C such that

〈Au, u〉 ≥ −C‖Au‖2 ∀u ∈ D(A).(1)

Prove that N(A) ⊂ N(A�).
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2. Conversely, assume thatN(A) ⊂ N(A�). Also, assume thatA is closed andR(A)
is closed. Prove that there exists a constant C such that (1) holds.

2.20 Let E and F be two Banach spaces. Let T ∈ L(E, F ) and let A : D(A) ⊂
E → F be an unbounded operator that is densely defined and closed. Consider the
operator B : D(B) ⊂ E → F defined by

D(B) = D(A), B = A+ T .

1. Prove that B is closed.
2. Prove that D(B�) = D(A�) and B� = A� + T �.

2.21 LetE be an infinite-dimensional Banach space. Fix an element a ∈ E, a 	= 0,
and a discontinuous linear functional f : E → R (such functionals exist; see
Exercise 1.5). Consider the operator A : E → E defined by

D(A) = E, Ax = x − f (x)a.

1. Determine N(A) and R(A).
2. Is A closed?
3. Determine A� (define D(A�) carefully).
4. Determine N(A�) and R(A�).
5. Compare N(A) with R(A�)⊥ as well as N(A�) with R(A)⊥.
6. Compare with the results of Exercise 2.18.

2.22 The purpose of this exercise is to construct an unbounded operatorA : D(A) ⊂
E → E that is densely defined, closed, and such that D(A�) 	= E�.

Let E = �1, so that E� = �∞. Consider the operator A : D(A) ⊂ E → E

defined by

D(A) =
{
u = (un) ∈ �1; (nun) ∈ �1

}
and Au = (nun).

1. Check that A is densely defined and closed.
2. Determine D(A�), A�, and D(A�).

2.23 LetE = �1, so thatE� = �∞. Consider the operator T ∈ L(E,E) defined by

T u =
(

1

n
un

)

n≥1
for every u = (un)n≥1 in �1.

Determine N(T ), N(T )⊥, T �, R(T �), and R(T �).
Compare with Corollary 2.18.
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2.24 Let E, F , and G be three Banach spaces. Let A : D(A) ⊂ E → F be a
densely defined unbounded operator. Let T ∈ L(F,G) and consider the operator
B : D(B) ⊂ E → G defined by D(B) = D(A) and B = T ◦ A.
1. Determine B�.
2. Prove (by an example) that B need not be closed even if A is closed.

2.25 Let E, F , and G be three Banach spaces.

1. Let T ∈ L(E, F ) and S ∈ L(F,G). Prove that

(S ◦ T )� = T � ◦ S�.
2. Assume thatT ∈ L(E, F ) is bijective. Prove thatT � is bijective and that (T �)−1 =
(T −1)�.

2.26 Let E and F be two Banach spaces and let T ∈ L(E, F ). Let ψ : F →
(−∞,+∞] be a convex function. Assume that there exists some element in R(T )
where ψ is finite and continuous.

Set
ϕ(x) = ψ(T x), x ∈ E.

Prove that for every f ∈ F�

ϕ�(T �f ) = inf
g∈N(T �) ψ

�(f − g) = min
g∈N(T �) ψ

�(f − g).

2.27 Le E, F be two Banach spaces and let T ∈ L(E, F ). Assume that R(T ) has
finite codimension, i.e., there exists a finite-dimensional subspace X of F such that
X + R(T ) = F and X ∩ R(T ) = {0}.

Prove that R(T ) is closed.
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