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Basic concepts

Not so many words—just the reason a simple mathematician
Los Alamos 1996

In this chapter we provide the mathematical foundation for the following re-
sults. One main objective here is the self-contained derivation of the generating
function of k-noncrossing matchings, which will play a central role for RNA
pseudoknot structures.

We begin with the combinatorial framework needed for the reflection prin-
ciple, facilitating the enumeration of nonrecursive combinatorial objects. The
reflection principle [49] requires some understanding of group actions and fa-
miliarity with formal power series. This combinatorial section concludes with
the discussion of D-finite generating functions [125–127].

Next we discuss the basic ideas behind the singularity analysis which are
due to [42]. The proofs of the main theorems there can be found in [42]. We
then discuss the implications of singularity analysis for k-noncrossing match-
ings in the context of Theorems 2.7 and 2.8 [80]. Finally we provide a case
study for secondary structures in order to familiarize the reader with the new
concepts.

We then conclude this chapter by introducing random-induced subgraphs
of n-cubes [102, 105, 106]. Aside from providing the basic terminology we
present the key tool needed in Chapter 7: vertex boundaries, branching pro-
cesses, and Janson’s inequality.

2.1 k-Noncrossing partial matchings

A diagram is a labeled graph over the vertex set [n] = {1, 2, . . . , n} with degree
smaller or equal than 1. A diagram is represented by drawing the vertices
1, 2, . . . , n in a horizontal line and the arcs (i, j), where i < j, in the upper
half plane. The length of an arc (i, j) is s = j−i and an arc of length s is called
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1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2-noncrossing 3-noncrossing 4-noncrossing

Fig. 2.1. k-Noncrossing diagrams: a 2-noncrossing (left), 3-noncrossing (middle),
and 4-noncrossing diagram (right). The dashed arcs represent the maximal mutually
crossing arcs.

an s-arc. A k-crossing is a set of k distinct arcs (i1, j1), (i2, j2), . . . (ik, jk) such
that

i1 < i2 < · · · < ik < j1 < j2 < · · · < jk.

A diagram without any k-crossings is called k-noncrossing diagram or
k-noncrossing partial matching (Fig. 2.1). A k-noncrossing diagram without
any isolated points is called a k-noncrossing matching. A k-nesting is a set of
k distinct arcs such that

i1 < i2 < · · · < ik < jk < · · · j2 < j1.

A diagram without any k-nestings is called a k-nonnesting diagram. Note that
partial matchings can have arcs of any length, while the diagram representa-
tion of RNA structures assumes a minimum arc length of 2 or 4, respectively.

2.1.1 Young tableaux, RSK algorithm, and Weyl chambers

A Young diagram (shape) is a collection of squares arranged in left-justified
rows with weakly decreasing number of boxes in each row. A Young tableau,
or tableau, is a filling of the squares by numbers which is weakly increasing in
each row and strictly decreasing in each column. A tableau is called standard
if each entry occurs exactly once; see Fig. 2.2.

1 1 12 2 3

2 2 3 4 5 6

4 7

Fig. 2.2. Shape (left), Young tableau (middle), and standard Young tableau (right).

An oscillating tableau is a sequence

∅ = μ0, μ1, . . . , μn = ∅

of standard Young diagrams, such that for 1 ≤ i ≤ n, μi is obtained from μi−1

by either adding one square or removing one square. For instance, the sequence
is an oscillating tableaux; see Fig. 2.3. In the following we consider a specific
generalization by allowing for hesitation steps, i.e., we consider ∗-tableaux
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Fig. 2.3. Oscillating tableaux: two subsequent shapes, μi−1 and μi, differ by exactly
one square.

being sequences ∅ = μ0, μ1, . . . , μn = ∅ such that for 1 ≤ i ≤ n, μi is
obtained from μi−1 by either adding/removing one square or doing nothing;
see Fig. 2.4. Let μi−1 and μi be two shapes. If μi contains the shape μi−1 we
write μi−1 ⊆ μi and if, in particular, the shape μi is obtained by adding a
square to the shape μi−1 we write μi \ μi−1 = �.

Fig. 2.4. ∗-tableaux: μi−1 and μi either differ by one square or are equal.

We next come to a procedure via which elements can be row-inserted into
Young tableaux, called RSK algorithm. Suppose we want to insert k into a
standard Young tableau λ. Let λi,j denote the element in the ith row and jth
column of the Young tableau. Let j be the largest integer such that λ1,j−1 ≤ k.
(If λ1,1 > k, then j = 1.) If λ1,j does not exist, then simply add k at the end
of the first row. Otherwise, if λ1,j exists, then replace λ1,j by k. Next insert
λ1,j into the second row following the above procedure and continue until an
element is inserted at the end of a row. As a result we obtain a new standard
Young tableau with k included. For instance, inserting the sequence of integers
(5, 2, 4, 1, 6, 3), see Fig. 2.5, starting with an empty shape yields the following
sequence of standard Young tableaux:

+2 +4 +1 +6 +3
2 4
5

2
5

1 4 6
2
5

1 3 6
2 4

5 1 4
2

55

+5

Fig. 2.5. RSK insertion: the sequence of integers (5, 2, 4, 1, 6, 3) is RSK inserted,
starting with an empty shape. The labeling of the arrows by “+x” indicates the
RSK insertion of the integer x.

One key observation with respect to the RSK algorithm is that it can be,
in some sense, “inverted” [27]. To be precise, we have

Lemma 2.1. Suppose we are given two shapes μi−1, μi such that μi−1\μi = �
and a standard Young tableaux Ti−1 of shape μi−1. Then there exists a unique
j contained in Ti−1 and a standard Young tableaux Ti of shape μi such that
Ti−1 is obtained from Ti by inserting j via the RSK algorithm.
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Proof. Indeed, suppose μi−1 differs from μi in the first row. Then j is the
element at the end of the first row in Ti−1. Otherwise suppose � is the row of
the square being removed from Ti−1. Remove the square and insert its element
x into the (�− 1)th row at precisely the position, where the removed element
y would push it down via the RSK algorithm. That is, y is maximal subject
to y < x. Since each column is strictly increasing y always exists. Iterating
this process results in exactly one element j being removed from Ti and a new
filling of the shape μi−1, i.e., a unique tableau Ti−1. By construction, inserting
j with the RSK algorithm produces Ti−1.

In Fig. 2.6 we give an illustration of Lemma 2.1. We shall furthermore see
that ∗-tableaux can be interpreted as lattice walks. This interpretation allows
for the application of powerful principles tailored for their enumeration. For
this purpose we provide next some basic background on lattice walks.

3
1

4
2

1 4
3

3 43
+4 +1 +2

5 –5

3
1

4
2 –2

3
1 4 –1 3 4 –4 3 –3

3
1

4
2

3
1

4
2 5

+5+3

Fig. 2.6. The RSK algorithm and its inverse. First we extract via the inverse RSK
and then reinsert using RSK, recovering the original Young tableau. The arrows are
labeled by “+x” and −x” in case of RSK insertion and extraction, respectively.

Let Z
k−1 denote the (k − 1)-dimensional lattice. We consider walks in

Z
k−1 having the steps s contained in {±ei, 0 | 1 ≤ i ≤ k − 1}, where ei

denotes the ith unit vector and 0 corresponds to a hesitation step. That is
for a, b ∈ Z

k−1 a walk from a to b, γa,b, of length n is an n tuple (s1, . . . , sn)
where sh ∈ {±ei, 0 | 1 ≤ i ≤ k − 1} such that b = a +

∑n
h=1 sh; see Fig. 2.7.

We set γa,b(sr) = a +
∑r

h=1 sh ∈ Z
k−1, i.e., the element at which the walk

resides at step r.

2.1.2 The Weyl group

We next introduce the Weyl group Bk−1. For this purpose we consider the
abelian group

Ek−1
∼= 〈−1〉k−1,

whose elements are (k − 1)-tuples with coordinates being ±1. Ek−1 is gener-
ated by the elements εi, having coordinates “1” everywhere except of the ith
coordinate which is “−1.” We note that the symmetric group Sk−1 and Ek−1

act on Z
k−1 via
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(2,1)

(6,5)

x

y x = y

Fig. 2.7. Lattice walks: a walk from (2, 1) to (6, 5) of length 8 inside the fundamental
Weyl chamber C0 = {(x1, x2) ∈ Z

2 | 0 ≤ x2 ≤ x1}. See the text for the definition
of C0.

σ(xi)1≤i≤k−1 = (xσ−1(i))1≤i≤k−1,

εi(x1, . . . , xi, . . . , xk−1) = (x1, . . . ,−xi, . . . , xk−1).

It is straightforward to verify that {(ε, σ) | σ ∈ Sk−1, ε ∈ Ek−1} carries a
natural group structure via

(εi, σ) · (εj , σ′) = (εi · (σεjσ−1), σσ′) = (εiεσ(j), σσ′).

This is the Weyl group Bk−1, i.e., the semidirect product Ek−1 � Sk−1, and
generated by the set Mk−1 = {εk−1} ∪ {ρj | 2 ≤ j ≤ k − 1}, where ρj =
(j − 1, j) denotes the canonical transposition, i.e., ρj transposes the coordi-
nates xj−1 and xj . Since Bk−1 acts on a basis vector e1, . . . , en as a permu-
tation, followed by some sign changes, the root system of Bk−1 [54] is given
by

Δk−1 = {±ei | 1 ≤ i ≤ k − 1} ∪ {ei ± ej | 1 ≤ i, j ≤ k − 1}.
We observe that there exists a bijection between

Δ′
k−1 = {ek−1, ej−1 − ej | 2 ≤ j ≤ k − 1}

and the set of generators Mk−1 which maps each α ∈ Δ′
k−1 into a reflection

as follows (in particular, Bk−1 is generated by reflections):

{ek−1} ∪ {ej−1 − ej | 2 ≤ j ≤ k − 1} −→ {εk−1} ∪ {ρj | 2 ≤ j ≤ k − 1},

α 
→
(

βα : x 
→ x− 2
〈α, x〉
〈α, α〉α

)

(2.1)

where 〈x, x′〉 denotes the standard scalar product in R
k−1. It is clear that

Δ′
k−1 is a basis of R

k−1. We refer to the subspaces 〈ei〉 for 1 ≤ i ≤ k − 1 and
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〈ej−1 − ej〉 for 2 ≤ j ≤ k − 1 as walls. A Weyl chamber is defined as the set
of x ∈ Z

k−1 with the property that 〈α, x〉 ≥ 0 for all α ∈ Δ′
k−1. We denote

Weyl chambers by “C” and refer to the particular Weyl chamber

{x ∈ Z
k−1 | 0 ≤ xk−1 ≤ xk−2 ≤ · · · ≤ x1} (2.2)

as the fundamental Weyl chamber, C0. Any element β of Bk−1 can be ex-
pressed in several ways as a product of reflections and the minimal number
of Mk−1-reflections needed to represent β ∈ Bk−1 is called the length of β,
denoted by �(β). According to a theorem of Iwahori [74], multiplication of
β by a Mk−1-reflection, βα, changes �(β) by either +1 or −1, respectively.
Therefore we have

(−1)�(βαβ) = (−1)1+�(β). (2.3)

We next show how to compute the length of an element of β ∈ Bk−1. Such a β
can be written as β = ησ, where σ ∈ Sk−1, η = (η1, . . . , ηk−1), ηi ∈ {+1,−1}.
Let furthermore

B = {i | ηi = −1, β = (ηi)1≤i≤k−1σ}.

Let us make the action of β on an element of Z
k−1 explicit

β(xi)1≤i≤k−1 = ησ(xi)1≤i≤k−1 =

(
∏

i∈B

εi

)
(xσ−1(i))1≤i≤k−1.

Here εi(x1, . . . , xi, . . . , xk−1) = (x1, . . . ,−xi, . . . , xk−1) and the product is
taken in Bk−1. Accordingly we have

�(β) = �(ησ) = �

(
∏

i∈B

εi ◦ σ

)
, (2.4)

where εj = τjεk−1τj and τj = (k − 1, k − 2) · · · · · (j + 1, j). Since the εk−1

and the τj are Mk−1-reflections we can conclude from eq. (2.3)

(−1)�(β) = (−1)�(∏ i∈B(τiεk−1τi)σ) = (−1)|B|+�(σ)

and consequently

(−1)�(β) = sgn(σ)
∏

i∈B

ηi = sgn(σ)
k−1∏

i=1

ηi. (2.5)

2.1.3 From tableaux to paths and back

In this section we connect the concepts of ∗-tableaux and specific lattice walks
contained in Weyl chambers. Our main result is instrumental for the enumer-
ation of RNA structures. It will allow us to interpret k-noncrossing partial
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matchings as walks in Z
k−1 which remain in the interior of the Weyl cham-

ber C0. The result is due to Chen et al. [25]. The original bijection between
oscillating tableaux and matchings is due to Stanley and was generalized by
Sundaram [129]. In Chapter 3 we generalize these ideas in the context of tan-
gled diagrams and prove a generalization of Theorem 2.2. This enables us to
develop a framework for RNA tertiary structures.

Theorem 2.2. (Chen et al. [25]) There exists a bijection between k-noncrossing
partial matchings and walks of length n in Z

k−1 which start and end at
a = (k − 1, k − 2, . . . , 1), denoted by γa,a, having steps 0,±ei, 1 ≤ i ≤ k − 1
such that 0 < xk−1 < · · · < x1 at any step, i.e., we have a bijection

Mk(n) −→ {γa,a | γa,a remains inside the Weyl chamber C0},

where Mk(n) denotes the set of k-noncrossing partial matchings over [n].

Proof. Claim 1. There exists a bijection between the set of ∗-tableaux of length
n and partial matchings over [n].

Given a tableau (μi)n
i=0, where μi differs from μi−1 by at most one square,

we define a sequence (G0
n, T0), (G1

n, T1), . . . , (Gn
n, Tn), recursively, where Gi

n

is a diagram and Ti is a standard Young tableau. We define G0
n to be the

diagram with empty arc set and T0 to be the empty standard Young tableau.
The tableau Ti is obtained from Ti−1 and the diagram Gi

n is obtained from
Gi−1

n by the following procedure:

1. (Insert origins) For μi
� μi−1, then Ti is obtained from Ti−1 by adding the

entry i in the square μi\μi−1.
2. (Isolated vertices) For μi = μi−1 then set Ti = Ti−1

3. (Remove origins) For μi
� μi−1, then let Ti be the unique standard Young

tableau of shape μi and j be the unique number such that Ti−1 is obtained
from Ti by row-inserting j with the RSK algorithm. Then set EGi

n
=

EGi−1
n
∪ {(j, i)}, where EGi

n
is the arc set of the diagram Gi

n.

For instance, given the sequence of tableau (μi)7i=0

∅
� � � � � � �

∅. (∗)

The previous procedure gives rise to the fillings of μi and the diagram Gi
n:

∅
� 1 � 1 2 � 1 �

4
1 � 4 � 4 �

∅

EG0
n

= ∅,

EG1
n

= ∅,

EG2
n

= ∅,

EG3
n

= {(2, 3)},

EG4
n

= {(2, 3)},
EG5

n
= {(2, 3), (1, 5)},

EG6
n

= {(2, 3), (1, 5)},
EG7

n
= {(2, 3), (1, 5), (4, 7)}.
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The resulting partial matching G7
n is given by

Let Gn = Gn
n. Obviously, Gn is a diagram, and the set of i where μi = μi−1

equals the set of isolated vertices of Gn. By construction each entry j is
removed exactly once whence no edges of the form (j, i) and (j, i′) can be
obtained. Therefore Gn has degree ≤ 1 and we have a well-defined mapping

ψ : {(μi)n
i=0 | (μi)n

i=0 is a ∗-tableaux} −→
{Gn|Gn is a partial matching over [n]}.

It is clear from the above procedure that Gn is a partial matching and then ψ
is injective. To prove subjectivity we observe that each diagram Gn induces
an ∗-tableaux as follows. We set μn

Gn
= ∅ and Tn = ∅. Starting from vertex

i = n, n−1, . . . , 1, 0 we derive a sequence of Young tableaux (Tn, Tn−1, . . . , T0)
as follows:

I. If i is a terminus of a Gn-arc (j, i) add j via the RSK algorithm to Ti set
μi−1

Gn
� μi

Gn
to be the shape of Ti−1 (corresponds to (3)).

II. If i is an isolated Gn-vertex set μi−1
Gn

= μi
Gn

(corresponds to (2)).
III. If i is the origin of a Gn-arc (i, k) let μi−1

Gn
� μi

Gn
be the shape of Ti−1,

the standard Young tableau obtained by removing the square containing
i (corresponds to (1)).

Then we have by construction ψ((μi
Gn

)n
i=0) = Gn, whence ψ is bijective.

Claim 2. Gn is k-noncrossing if and only if all shapes μi in the ∗-tableaux
have less than k rows.
From Claim 1 we know ψ−1(Gn) = (∅ = μ0, μ1, . . . , μn = ∅), so it suffices
to prove that the maximal number of rows in the shape set ψ−1(Gn) is less
than k. First we observe that the arcs (i1, j1), . . . (i�, j�) form a �-crossing of
Gn if and only if there exists a tableau Ti such that elements i1, i2, . . . i� are
in the � squares of Ti and being deleted in increasing order i1 < i2 < . . . < i�
afterwards. Next, we will obtain a permutation πi from the entries in each
tableau Ti recursively as follows:

1. If Ti−1 is obtained from Ti by row-inserting j with the RSK algorithm,
then πi−1 = πij.

2. If Ti−1 = Ti, then πi = πi−1.
3. If Ti−1 is obtained from Ti by deleting the entry i, then πi−1 is obtained

from πi by deleting i.

If π = r1r2 . . . rt, then the entries being deleted afterward are in the order
rt, . . . , r2, r1.

Using the RSK algorithm w.r.t. the permutation πi, the resulting row-
inserting Young tableau is exactly Ti. We prove this by induction in reverse
order of the ∗-tableaux. It is trivial for the case i = n. Suppose it holds for
j, 1 ≤ j ≤ n. Consider the above three cases: inserting an element, doing
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nothing, and deleting an element. In the first case, the assertion is implied by
the RSK algorithm in the construction of the ∗-tableaux. In the second case,
it holds by the induction hypothesis on step j.

It remains to consider the third case, that is, removing the entry from
Tj to get Tj−1. We show that also in this case the insertion Young tableau
of πi equals the labeled tableau Ti. Write πj = x1x2 . . . xpjy1y2 . . . yq and
πj−1 = x1x2 . . . xpy1y2 . . . yq. In view of step 3 j is larger than elements
x1, x2, . . . , xp, y1, . . . yq. We need to prove that the insertion tableau Sj−1 of
πj−1 by the RSK algorithm is exactly the same as deleting the entry j in Tj .
We proceed by induction on q. In the case q = 0, Tj is obtained from Tj−1 by
adding j at the end of the first row. Suppose the assertion holds for q−1, that
is Sj−1(x1x2 . . . xpy1y2 . . . yq−1) = Sj(x1x2 . . . xpjy1y2 . . . yq−1) \ j . Con-
sider inserting yq into Sj−1, via the RSK algorithm. If the insertion track
path never touches the position of j, then Sj−1(x1x2 . . . xpy1y2 . . . yq−1yq) =
Sj(x1x2 . . . xpjy1y2 . . . yq−1yq) \ j . Otherwise, if the insertion path touched
j and pushed j into the next row, then since j is greater than any other
entry, j must be moved to the end of next row and the push process stops.
Accordingly, the insertion path in Sj−1(x1x2 . . . xpy1y2 . . . yq−1) is the same
path as in Sj(x1x2 . . . xpjy1y2 . . . yq−1) except the last step moving j to
a new position j, so deleting j will get Sj−1(x1x2 . . . xpy1y2 . . . yq−1yq) =
Sj(x1x2 . . . xpjy1y2 . . . yq−1yq) \ j . According to Schensted’s theorem [115],
for any permutation π, assume A is the corresponding insertion Young tableau
by using the RSK algorithm on π. Then the length of the longest decreasing
subsequences of π is the number of rows in A, whence the assertion.

Now we can prove Claim 2. A diagram contains an �-crossing if and only
if there exists a πi which has decreasing subsequence of length �. And the
insertion Young tableau of πi equals the labeled tableau Ti. According to
Schensted’s theorem, π has a decreasing sequence of length � if and only if
rows of Ti is �.

Fig. 2.8. The diagram corresponding to the sequence of tableaux in eq. (∗).

For instance, consider the partial matching of Fig. 2.8. We then obtain the
sequence π = (∅ ← 1 ← 12 ← 1 ← 1 ← 41 ← 4 ← 4 ← ∅). For the segment
π1 = 1 ← π2 = 12 we have j = 2 and q = 0. Since the insertion track path
never touches the position of 2

S(1) = = 1 2 =1 2 1 = S(12) 2 .
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2 3 4 5 6 71 1 2 3 4 5 6 7

+ 1 − 1+ 2 + 1 − 2 − 1

2 3 410

2

3

1

Fig. 2.9. The basic correspondences between partial matchings, ∗-tableaux, and
walks inside the Weyl chamber C0. Here “±�i” denotes the addition and removal
of a square in the ith row, respectively.

For the segment π4 = 1 ← π5 = 41 we have j = 4 and q = 1:

1
4 4 4S(41)S(1) = = =1 1 = .

Here the insertion path touches 4 and 4 moves to the end of the next row,
where the push process stops.

Claim 3. There is a bijection between ∗-tableaux with at most k−1 rows of
length n and walks with steps ±ei, 0 which stay in the interior of C0 starting
and ending at (k − 1, k − 2, . . . , 1) see Fig. 2.9.
This bijection is obtained by setting for 1 ≤ � ≤ k − 1, x� to be the
length of the �-th row. By definition of standard Young tableaux, we have
λ1 ≥ λ2 ≥ . . . ≥ λn, i.e., the length of each row is weakly decreasing.
This property also characterizes walks that stay within the Weyl cham-
ber C0, i.e., where we have x1 > x2 > · · · > xk−1 > 0 since a walk
from (k − 1, . . . , 2, 1) to itself in the interior of C0 corresponds to a walk
from the origin to itself in the region x1 ≥ x2 > · · · ≥ xk−1 ≥ 0. In an
∗-tableau μi differs from μi−1 by at most one square and adding or delet-
ing a square in the �th row or doing nothing corresponds to steps ±e� and
0, respectively. Since the ∗-tableau is of empty shape, we have walks from
the origin to itself, whence Claim 3 follows and the proof of the theorem is
complete.
To summarize, given an ∗-tableaux of empty shape, (∅, λ1, . . . , λn−1, ∅), read-
ing λi \ λi−1 from left to right, at step i, we do the following:

For a +�-step we insert i into the new square
For a ∅-step we do nothing
For a −�-step we extract the unique entry, j(i), of the tableaux T i−1,
which via RSK insertion into T i recovers it (Fig. 2.6)
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1
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+1 +2 +3 +4 –2 –1 +8

(2,5)

–4 –3 –8

(8,11)(3,10)(4,9)(1,6)

1 4 5 6 9 1082 3 7 11

1 4 5 6 9 1082 3 7 11

1 4 5 6 9 1082 3 7 11

Fig. 2.10. From ∗-tableaux to partial matchings. If λi\λi−1 = −�, then the unique
number is extracted, which, if RSK inserted into λi, recovers λi−1. This yields the
arc set of a k-noncrossing, partial matching.

The latter extractions generate the arc set {(i, j(i)) | i is a −�-step} of a
k-noncrossing diagram; see Fig. 2.10. Given a k-noncrossing diagram, starting
with the empty shape, consider the sequence (n, n − 1, . . . , 1) and do the
following:

If j is the endpoint of an arc (i, j), then RSK insert i.
If j is the startpoint of an arc (j, s), then remove the square containing j.
If j is an isolated point, then do nothing; see Fig. 2.11.

Fig. 2.11. From k-noncrosssing diagrams to ∗-tableaux using RSK insertion of the
origins of arcs and removal of squares at the termini.
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2.1.4 The generating function via the reflection principle

In this section we compute the enumerative generating function of k-noncrossing
partial matchings. Our computation is based on the reflection principle. The
key idea behind the reflection principle goes back to André [5, 49] and is to
count walks that remain in the interior of a Weyl chamber by observing that
all “bad” walks, i.e., those which touch a wall, cancel themselves. The par-
ticular method for deriving this pairing is via reflecting the walk choosing a
point where it touches a wall. The following observation is essential for the
reflection principle, formulated in Theorem 2.4.

Lemma 2.3. Let Δ′
k−1 = {ek−1, ej−1 − ej | 2 ≤ j ≤ k − 1}. Then every walk

starting at some lattice point in the interior of a Weyl chamber, C, having
steps ±ei, 0 that crosses from inside C into outside C touches a subspace
〈ej−1 − ej | 2 ≤ j ≤ k − 1〉 or 〈ej | 1 ≤ j ≤ k − 1〉.

Proof. To prove the lemma we can, without loss of generality, assume

C = C0 = {(x1, . . . , xk−1) | x1 ≥ x2 ≥ · · · ≥ xk−1 ≥ 0}.

Then the assertion is that every walk having steps ±ei, 0 that crosses from the
inside C0 into outside C0 intersects either 〈ek−1〉 or 〈ej−1 − ej〉 for 2 ≤ j ≤
k− 1. This is correct since to leave C0 is tantamount to the existence of some
i such that xi < xi+1. Let sj be minimal w.r.t. a +

∑j+1
h sh �∈ C0. Since we

have steps ±ei, 0 we conclude xk−1 = 0 or xj = xj−1 for some 2 ≤ j ≤ k − 1,
whence the lemma.

Let Γn(a, b) be the number of walks γa,b. For a, b ∈ C0 (eq. (2.2)) let
Γ +

n (a, b) denote the number of walks γa,b that never touches a wall, i.e., remain
in the interior of C0. Finally for a, b ∈ Z

k−1, let Γ−
n (a, b) denote the number

of walks γa,b = (s1, . . . , sn) that hit a wall at some step sr. �(β) denotes
the length of β ∈ Bk−1. For a = b = (k − 1, . . . , 1) we have according to
Theorem 2.2

Γ +
n (a, a) = Mk(n),

where Mk(n) = |Mk(n)|, i.e., the number of all k-noncrossing partial match-
ings over [n].

Theorem 2.4. (Reflection Principle) (Gessel and Viennot [49]) Suppose a, b ∈
C0, then we have

Γ +
n (a, b) =

∑

β∈Bk−1

(−1)�(β) Γn(β(a), b).

Theorem 2.4 allows us to compute the exponential generating function for
Γ +

n (a, b), which is the number of walks from a to b that remain in the interior
of C0 [53]. Fig. 2.12 gives a simple application of reflection principles in lattice
walk.
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1 2 3 4 5 60

(2,1)

(6,5)

(3,3)

x

y

x = y

Fig. 2.12. Illustration of the reflection principle: “bad” walks cancel each other.
Each lattice walk (here we consider only walks with steps (1, 0) or (0, 1)) from (2, 1)
to (6, 5) that hits the wall y = x can uniquely be reflected into the walk from (1, 2)
to (6, 5). Setting a = (2, 1), b = (n + 2, n + 1), and ã = (1, 2), the largest root
corresponds to the subspace 〈e2 − e1〉. We display a walk that hits this wall after
three steps. Its initial segment (red) is then reflected leading to a walk from (2, 1) to
(6, 5). Reflection implies Γ+

n (a, b) = Γn(a, b) − Γn(ã, b) = Cn, where Cn is Catalan
number.

Proof. Totally order the roots of Δ. Let Γ−
n (a, b) be the number of walks

γ from a to b, a, b ∈ Z
k−1 of length n using the steps s, s ∈ {±ei, 0} such that

〈γ(sr), α〉 = 0 for some α ∈ Δ (i.e., the walk intersects with the subspace 〈α〉).
According to Lemma 2.3 every walk that crosses from inside C into outside
C touches a wall from which we can draw two conclusions:

Γn(a, b) = Γ +
n (a, b) + Γ−

n (a, b),
β �= id =⇒ Γn(β(a), b) = Γ−

n (β(a), b).

Claim.
∑

β∈Bk−1
(−1)�(β) Γ−

n (β(a), b) = 0.
Let (s1, . . . , sn) be a walk from β(a) to b. By assumption there exists some
step sr at which we have 〈γβ(a),b(sr), α〉 = 0, for α ∈ Δ, where 〈 , 〉 denotes
the standard scalar product in R

k−1. Let α∗ be the largest root for which we
have 〈γβ(a),b(sr), α∗〉 = 0 and βα∗(x) = x− 2〈α∗,x〉

〈α∗,α∗〉α∗ its associated reflection
(eq. (2.1)). We consider the walk

(βα∗(s1), . . . , βα∗(sr), sr+1, . . . , sn).

Now by definition (βα∗(s1), . . . , βα∗(sr), sr+1, . . . , sn) starts at (βα∗ ◦ β)(a)
and we have according to eq. (2.3)

(−1)�(βα∗◦β) = (−1)�(β)+1.



36 2 Basic concepts

Therefore to each element γβ(a),b of Γ−
n (β(a), b) having sign (−1)�(β) there

exists a γβα∗β(a),b ∈ Γ−
n (βα∗β(a), b) with sign (−1)�(β)+1 and the claim follows.

We immediately derive
∑

β∈Bk−1

(−1)�(β) Γn(β(a), b)

= Γn(a, b) +
∑

β∈Bk−1,β 
=id

(−1)�(β) Γn(β(a), b)︸ ︷︷ ︸
=Γ−

n (β(a),b)

= Γ +
n (a, b) + Γ−

n (a, b) +
∑

β∈Bk−1,β 
=id

(−1)�(β) Γ−
n (β(a), b)

︸ ︷︷ ︸
∑

β∈Bk−1
(−1)�(β) Γ−

n (β(a),b)=0

,

whence the theorem.

We can now achieve our main objective and specify the generating func-
tions of the walks Γ +

n (a, b) having steps 0,±ei and Γ ′
n

+(a, b) having steps ±ei

as a determinant of Bessel functions [53].

Theorem 2.5. (Grabiner and Magyar [53]) Let Ir(2x) =
∑

j≥0
x2j+r

j!(r+j)! be the
hyperbolic Bessel function of the first kind of order r. Then the exponential
generating functions for Γ +

n (a, b) and Γ ′
n

+(a, b) are given by

∑

n≥0

Γ +
n (a, b)

xn

n!
= exdet[Ibj−ai

(2x)− Iai+bj
(2x)]|k−1

i,j=1,

∑

n≥0

Γ ′
n

+(a, b)
xn

n!
= det[Ibj−ai

(2x)− Iai+bj
(2x)]|k−1

i,j=1.

Proof. Let ui, 1 ≤ i ≤ k − 1, be indeterminants and u = (ui)k−1
1 . We define

ub−a =
∏k−1

i=1 ubi−ai
i . Let F (x, u) be a generating function, then F (x, u)|ub−a

equals the family of coefficients ai(u) at ub−a of
∑

i≥0 ai(u)xi = F (x, u). We
first consider unrestricted walks from a to b whose cardinality is given by

Γn(a, b) =

[
1 +

k−1∑

i=1

(ui + u−1
i )

]n ∣∣∣∣
ub−a

.

The exponential generating function of Γn(a, b) is

∑

n≥0

Γn(a, b)
xn

n!
=
∑

n≥0

[
1 +

k−1∑

i=1

(ui + u−1
i )

]n ∣∣∣∣
ub−a

xn

n!
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=
∑

n≥0

[1 +
∑k−1

i=1 (ui + u−1
i )]n

n!
xn

∣∣∣∣
ub−a

= ex · exp[x
k−1∑

i=1

(ui + u−1
i )]

∣∣∣∣
ub−a

= ex ·
k−1∏

i=1

(
exp(x(ui + u−1

i ))
∣∣∣∣
ui

bi−ai

)
.

According to Theorem 2.4 we have

∑

n≥0

Γ +
n (a, b)

xn

n!
=
∑

n≥0

∑

β∈Bk−1

(−1)�(β) Γn(β(a), b)
xn

n!

=
∑

β∈Bk−1

(−1)�(β)
∑

n≥0

Γn(β(a), b)
xn

n!

= ex
∑

β∈Bk−1

(−1)�(β)
k−1∏

i=1

exp(x(ui + u−1
i ))

∣∣∣∣
ub−β(a)

,

whereas in case of Γ ′
n

+(a, b)

∑

n≥0

Γ ′
n

+(a, b)
xn

n!
=

∑

β∈Bk−1

(−1)�(β)
k−1∏

i=1

exp(x(ui + u−1
i ))

∣∣∣∣
ub−β(a)

holds. We continue by analyzing
∑

n≥0 Γ +
n (a, b)xn

n! . Equation (2.5) provides
an interpretation of the term (−1)�(β):

(−1)�(β) = sgn(σ)
∏

i∈B

ηi = sgn(σ)
k−1∏

i=1

ηi,

where ηi = ±1. Based on this interpretation we compute

∑

n≥0

Γ +
n (a, b)

xn

n!
=

ex
∑

σ∈Sk−1

∑

ηi=−1,+1

sgn(σ)
k−1∏

i=1

ηi

(
exp(x(ui + u−1

i ))
∣∣∣∣
u

bi−ηiaσi
i

)
=

ex
∑

σ∈Sk−1

sgn(σ)
k−1∏

i=1

(
exp(x(ui + u−1

i ))
∣∣∣∣
u

bi−aσi
i

− exp(x(ui + u−1
i ))

∣∣∣∣
u

bi+aσi
i

)
.
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We proceed by analyzing the terms exp(x(ui + u−1
i )):

exp(x(ui + u−1
i )) =

∑

n≥0

xn

n!
(ui + u−1

i )n

=
∑

n≥0

xn

n!

n∑

j=0

(
n

j

)
un−2j

i

=
∑

n≥0

xn
n∑

j=0

un−2j
i

j!(n− j)!

=
∞∑

r=−∞
ur

i

∞∑

j=0

x2j+r

j!(j + r)!

=
∞∑

r=−∞
ur

i Ir(2x).

Therefore, for any r ∈ Z, we have

exp(x(ui + u−1
i ))

∣∣∣∣
ur

i

=
∑

j≥0

x2j+r

j!(j + r)!
= Ir(2x).

As a result we arrive at

∑

n≥0

Γ +
n (a, b)

xn

n!
= ex

∑

σ∈Sk−1

sgn(σ)
k−1∏

i=1

(
Ibi−aσi

(2x)− Ibi+aσi
(2x)

)
, (2.6)

that is
∑

n≥0

Γ +
n (a, b)

xn

n!
= exdet[Ibj−ai

(2x)− Iai+bj
(2x)]|k−1

i,j=1,

completing the proof of the theorem.

Let fk(n, 0) denote the number of k-noncrossing matchings without iso-
lated vertices over [n]. By abuse of notation we will in later chapters simply
write fk(n) instead of fk(n, 0). When n is odd, by the definition, fk(n, 0) = 0.
Since Γ +

n (a, a) = Mk(n) and Γ ′+
n (a, a) = fk(n, 0) we obtain according to The-

orem 2.5 for the generating functions of matchings and partial matchings as
follows:

Corollary 2.6. Let Ir(2x) =
∑

j≥0
x2j+r

j!(r+j)! be the hyperbolic Bessel function
of the first kind of order r. Then the generating functions for matchings and
partial matchings are given by

∑

n≥0

fk(2n, 0) · x2n

(2n)!
= det[Ii−j(2x)− Ii+j(2x)]|k−1

i,j=1, (2.7)

∑

n≥0

Mk(n) · xn

n!
= exdet[Ii−j(2x)− Ii+j(2x)]|k−1

i,j=1. (2.8)
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Let

Hk(z) =
∑

n≥0

fk(2n, 0) · z2n

(2n)!
.

The main importance of Corollary 2.6 lies in the fact that it implies that
Hk(z) is D-finite; see Corollary 2.14. It does not allow to derive “simple”
expressions for Hk(z) for k ≥ 3.

By taking the approximation of the Bessel function[1], for −π
2 < arg(z) <

π
2 , and

Ir(z) =
ex

√
2πz

(
H∑

h=0

(−1)h

h!8h

h∏

t=1

(4r2 − (2t− 1)2)z−h + O(|z|−H−1)

)

into the determinant given in eq. (2.7), we derive the following asymptotic
formula.

Theorem 2.7. (Jin et al. [80]) For arbitrary k ∈ N, k ≥ 2, arg(z) �= ±π
2

holds

Hk(z) =

[
k−1∏

i=1

Γ

(
i + 1− 1

2

) k−2∏

r=1

r!

](
e2z

π

)k−1

z−(k−1)2− k−1
2 (1+O(|z|−1)),

where Γ (z) denotes the gamma function.

Employing the subtraction of singularities principle [98], in combination
with Theorem 2.7, we obtain the following result, which is of central impor-
tance for all asymptotic formulas involving k-noncrossing matchings:

Theorem 2.8. (Jin et al. [80]) For arbitrary k ∈ N, k ≥ 2 we have

fk(2n, 0) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))2n, where ck > 0. (2.9)

The proofs of Theorems 2.7 and 2.8 are elementary but involved and be-
yond the scope of this book. We refer the interested reader to [80]. Note that
Theorem 2.8 implies that ρ2

k = (2(k − 1))−2 is a singularity of Fk(z); see
Section 2.3.

Instead, we shall proceed by analyzing the relation between k-noncrossing
matchings and k-noncrossing partial matchings. For this purpose we recruit
the powerful concept of integral representations [36] in which combinatorial
quantities like, for instance, binomial coefficients are replaced by contour in-
tegrals.

Lemma 2.9. Let z be an indeterminate over C. Then we have the identity of
power series

∀|z| < μk;
∑

n≥0

Mk(n) zn =
(

1
1− z

) ∑

n≥0

fk(2n, 0)
(

z

1− z

)2n

. (2.10)
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Proof. We have

Mk(n) =
�n

2 
∑

m=0

(
n

2m

)
fk(2m, 0),

where �a� is the largest integer not larger than a. Expressing the combinatorial
terms by contour integrals [36] we obtain

(
n

2m

)
=

1
2πi

∮

|u|=α

(1 + u)nu−2m−1du,

fk(2m, 0) =
1

2πi

∮

|v|=β

Fk(v2)v−2m−1dv,

where α, β are arbitrary small positive numbers and Fk(z) =
∑

n≥0 fk(2n, 0)zn.
We derive

Mk(n) =
1

(2πi)2
∑

m

∮

|u|=α,|v|=β

(1 + u)nu−2m−1Fk(v2)v−2m−1dudv

=
1

(2πi)2

∮

|u|=α,|v|=β

(1 + u)n uv

(uv)2 − 1
Fk(v2)dudv

=
1

(2πi)2

∮

|v|=β

Fk(v2)v−1

[∮

|u|=α

(1 + u)nu

(u + 1
v )(u− 1

v )
du

]
dv.

Since u = 1
v and u = − 1

v are the only singularities (poles) enclosed by the
particular contour, eq. (2.10) implies

∮

|u|=α

(1 + u)nu

(u + 1
v )(u− 1

v )
du = 2πi

[
(1 + u)nu

u− 1
v

|u=− 1
v

+
(1 + u)nu

u + 1
v

|u= 1
v

]

= πi

([
1− 1

v

]n

+
[
1 +

1
v

]n)
.

Therefore, for |z| < μk

∑

n≥0

Mk(n)zn

=
1

4πi

∑

n≥0

∮

|v|=β

Fk(v2)v−1

([
1− 1

v

]n

+
[
1 +

1
v

]n)
zndv

=
1

4πi

∮

|v|=β

Fk(v2)
1

v − (v − 1)z
dv +

1
4πi

∮

|v|=β

Fk(v2)
1

v − (v + 1)z
dv.

The first integrand has its unique pole at v = − z
1−z and the second at v = z

1−z ,
respectively:

1
v − (v − 1)z

=
1

v + z
1−z

1
1− z

and
1

v − (v + 1)z
=

1
v − z

1−z

1
1− z

.
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We derive

∑

n≥0

Mk(n)zn =
1

1− z

[
1
2
Fk

((
z

1− z

)2
)

+
1
2
Fk

((
z

1− z

)2
)]

=
1

1− z
Fk

((
z

1− z

)2
)

,

whence Lemma 2.1.

2.1.5 D-finiteness

The power series, Fk(x) =
∑

n≥0 fk(2n, 0)xn, [125] is of central importance
in Section 2.3 in the context of singularity analysis [42]. It is a D-finite power
series and allows for analytic continuation in any simply connected domain
containing zero.

Definition 2.10. (a) A sequence f(n) of complex number is said to be
P -recursive, if there are polynomials p0(n), . . . , pm(n) ∈ C[n] with pm(n) �= 0,
such that for all n ∈ N

pm(n)f(n + m) + pm−1(n)f(n + m− 1) + · · ·+ p0(n)f(n) = 0. (2.11)

(b) A formal power series F (x) =
∑

n≥0 f(n)xn is rational, if there are poly-
nomials A(x) and B(x) in C[x] with B(x) �= 0, such that

F (x) =
A(x)
B(x)

.

(c) F (x) is algebraic, if there exist polynomials q0(x), . . . , qm(x) ∈ C[x] with
qm(x) �= 0, such that

qm(x)F m(x) + qm−1(x)F m−1(x) + · · ·+ q1(x)F (x) + q0(x) = 0.

(d) F (x) is D-finite, if there are polynomials q0(x), . . . , qm(x) ∈ C[x] with
qm(x) �= 0, such that

qm(x)F (m)(x)+qm−1(x)F (m−1)(x)+· · ·+q1(x)F ′(x)+q0(x)F (x) = 0, (2.12)

where F (i)(x) = diF (x)/dxi, and C[x] is the ring of polynomials in x with
complex coefficients.

Let C(x) denote the rational function field, i.e., the field generated by
taking equivalence classes of fractions of polynomials. Let Calg[[x]] and D
denote the sets of algebraic power series over C and D-finite power series,
respectively. Clearly, a rational formal power series is in particular algebraic.
Furthermore, if u ∈ Calg[[x]], then u is also D-finite[127].

It is well known that a sequence is P -recursive if and only if its generating
function is D-finite[125].
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Lemma 2.11. Suppose F (z) =
∑

n≥0 f(n)zn. Then F (z) is D-finite if only
if f(n) is P -recursive.

Proof. Since
zjF (i)(z) =

∑

n≥0

(n + i− j)if(n + i− j)zn, (2.13)

where (n − j + i)i = (n − j + i)(n − j + i − 1) · · · (n − j + 1) denotes the
falling factorials, combining eqs. (2.13) and (2.12) implies the recurrence of
eq. (2.11) for f(n) by equating the coefficients of zn. Accordingly, we conclude
that the coefficients f(n) of the power series F (z) are P -recursive and we can
derive the unique recurrence from the differential equation (2.12) of F (z). If
a sequence f(n) is P -recursive, then eq. (2.11) holds. Since each pi(n) ∈ C[n]
can be represented as C-linear combination of (n + i)j , j ≥ 0, the term∑

n≥0 pi(n)f(n + i)zn can also be represented as a C-linear combination of
series of the form

∑
n≥0(n + i)jf(n + i)zn. In view of

∑

n≥0

(n + i)j f(n + i)zn = Ri(z) + zj−iF (j)(z),

where Ri(z) ∈ z−1
C[z−1], we can recover eq. (2.12) by multiplying eq. (2.11)

with zn and summing over n ≥ 0. Thus for a given recurrence of f(n), we can
derive a unique differential equation of F (z) in the form (2.12).

Lemma 2.12. Each P -recursion of fk(2n, 0), R, having polynomial coeffi-
cients with greatest common divisor (gcd) one corresponds to a P -recursion of
ek(n) = fk(2n, 0)/(2n)!, ε(R). Each P -recursion of ek(2n, 0), Q, corresponds
uniquely to a P -recursion of fk(2n, 0), ω(Q), having polynomial coefficients
with gcd one. Furthermore, we have ω(ε(R)) = R.

Proof. Suppose we have a P -recurrence
∑rk

i=0 ai(n)fk(2(n + i), 0) = 0, where
ai(n) are polynomials in n with integer coefficients, having gcd one and
a0(n) �= 0. Then

rk∑

i=0

ai(n)(2(n + i))2i ek(n + i) = 0,

i.e., a P -recurrence for ek(n). Suppose now we have a P -recurrence for ek(n),∑rk

i=0 bi(n)ek(n + i) = 0, where the bi(n) are all polynomials of n with integer
coefficients, and b0(n) �= 0. We then immediately derive

rk∑

i=0

ci(n)fk(2(n + i), 0) = 0,

where ci(n) = bi(n) (2n)!
(2(n+i))! . ci(n) are rational functions in n. Suppose d(n)

is the lcm of the denominators of the ci(n). Then
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rk∑

i=0

c′i(n)fk(2(n + i), 0) = 0,

where the c′i(n) = d(n)bi(n) (2n)!
(2(n+i))! are by construction polynomials, having

gcd one and c′0(n) �= 0, whence the lemma.
We proceed by studying closure properties of D-finite power series which

are of key importance in the following chapters.

Theorem 2.13. (Stanley [127]) P -recursive sequences, D-finite, and alge-
braic power series have the following properties:

(a) If f, g are P -recursive, then f · g is P -recursive.
(b) If F, G ∈ D, and α, β ∈ C, then αF + βG ∈ D and F G ∈ D.
(c) If F ∈ D and G ∈ Calg[[x]] with G(0) = 0, then F (G(x)) ∈ D.
Here we omit the proof of (a) and (b) which can be found in [127]. We present,
however, a direct proof of (c).

Proof. (c) We assume that G(0) = 0 so that the composition F (G(x))
is well defined. Let K = F (G(x)). Then K(i) is a linear combination of
F (G(x)), F ′(G(x)), . . ., over C[G, G′, . . .], i.e., the ring of polynomials in
G, G′, . . . with complex coefficients.

Claim. G(i) ∈ C(x, G), i ≥ 0, and therefore C[G, G′, . . .] ⊂ C(x, G), where
C(x, G) denotes the field generated by x and G.
Since G is algebraic, it satisfies

qd(x)Gd(x) + qd−1(x)Gd−1(x) + · · ·+ q1(x)G(x) + q0(x) = 0, (2.14)

where q0(x), . . . , qd(x) ∈ C[x], qd(x) �= 0 and d is minimal, i.e., (Gi(x))d−1
i=0 is

linear independent over C[x]. In other words, for all (q̃i(x))d−1
i=1 �= 0 we have

q̃d−1(x)Gd−1(x) + · · ·+ q̃1(x)G(x) + q̃0(x) �= 0.

We consider

P (x, G) = qd(x)Gd(x) + qd−1(x)Gd−1(x) + · · ·+ q1(x)G(x) + q0(x).

Differentiating eq. (2.14) once, we derive

0 =
d

dx
P (x, G) =

∂P (x, y)
∂x

∣∣∣
y=G

+ G′ ∂P (x, y)
∂y

∣∣∣
y=G

.

The degree of ∂P (x,y)
∂y

∣∣∣
y=G

in G is smaller than d− 1 and qd(x) �= 0, whence

∂P (x,y)
∂y

∣∣∣
y=G

�= 0. We therefore arrive at
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G′ = −
∂P (x,y)

∂x

∣∣∣
y=G

∂P (x,y)
∂y

∣∣∣
y=G

∈ C(x, G).

Iterating the above argument, we obtain G(i) ∈ C(x, G), i ≥ 0, and therefore
C[G, G′, . . .] ⊂ C(x, G), whence the claim.

Let Ṽ be the C(x, G) vector space spanned by F (G(x)), F ′(G(x)), . . ..
Since F ∈ D, we have dimC(x)〈F, F ′, · · · 〉 < ∞, immediately implying the
finiteness of dimC(G)〈F (G), F ′(G), · · · 〉. Thus, since C(G) is a subfield of
C(x, G), we derive

dimC(x,G)〈F, F ′, · · · 〉 < ∞

and consequently dimC(x,G) Ṽ < ∞ and dimC(x) C(x, G) < ∞. As a result

dimC(x) Ṽ = dimC(x,G) Ṽ · dimC(x) C(x, G) < ∞

follows and since each K(i) ∈ Ṽ , we conclude that F (G(x)) is D-finite.

Corollary 2.14. The generating function of k-noncrossing matchings over 2n
vertices, Fk(z) =

∑
n≥0 fk(2n, 0) zn, is D-finite.

Proof. Corollary 2.6 gives the exponential generating function of fk(2n, 0)

∑

n≥1

fk(2n, 0)
x2n

(2n)!
= det[Ii−j(2x)− Ii+j(2x)]k−1

i,j=1, (2.15)

where Im(x) is Bessel function of the first order. Recall that the Bessel function
of the first kind satisfies In(x) = i−nJn(ix) and Jn(x) is the solution of the
Bessel differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0.

For every fixed n ∈ N, Jn(x) is D-finite. Let G(x) = ix. Clearly, G(x) ∈
Calg[[x]] and G(0) = 0, Jn(ix) and In(x) are accordingly D-finite in view of
the assertion (c) of Theorem 2.13. Analogously we show that In(2x) is D-finite
for every fixed n ∈ N. Using eq. (2.15) and assertion (b) of Theorem 2.13, we
conclude that

Hk(x) =
∑

n≥0

fk(2n, 0)
(2n)!

x2n

is D-finite. In other words the sequence f(n) = fk(2n,0)
(2n)! is P -recursive and

furthermore g(n) = (2n)! is, in view of (2n + 1)(2n + 2)g(n) − g(n + 1) = 0,
P -recursive. Therefore, fk(2n, 0) = f(n)g(n) is P -recursive. This proves that
Fk(z) =

∑
n≥0 fk(2n, 0)zn is D-finite.
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2.2 Symbolic enumeration

In the following we will compute various generating functions via the symbolic
enumeration method [42].

Definition 2.15. A combinatorial class is a set C together with a size func-
tion, wC : C −→ Z

+, (C, wC) such that w−1
C (n) is finite for any n ∈ Z

+.

Suppose (C, wC) is a combinatorial class and c ∈ C. We call wC(c) the size of
c and write simply w(c). There are two special combinatorial classes: E and
Z which contain only one element of sizes 0 and 1, respectively. The subset
of C which contains all the elements of size n, w−1

C (n), is denoted by Cn, and
let Cn = |Cn|. The generating function of a combinatorial class (C, wC) is
given by

C(z) =
∑

c∈C
zwC(c) =

∑

n≥0

Cn zn,

where Cn ⊂ C. In particular, the generating functions of the classes E
and Z are

E(z) = 1 and Z(z) = z. (2.16)

Definition 2.16. Suppose C,D are combinatorial classes. Then C is isomor-
phic to D, C ∼= D, if and only if

∀n ≥ 0, |Cn| = |Dn|.

In the following we shall identify isomorphic combinatorial classes and write
C = D if C ∼= D. We set

C +D := C ∪ D, if C ∩ D = ∅ and for a ∈ C +D,

wC+D(a) =

{
wC(a) if a ∈ C
wD(a) if a ∈ D.

C × D := {a = (c, d) | c ∈ C, d ∈ D} and for a ∈ C × D,

wC×D(a) = wC(c) + wD(d).

We furthermore set

Cm :=
∏m

h=1 C and
Seq(C) := E + C + C2 + · · · .

In view of eq. (2.16), Seq(C) is a combinatorial class if and only if there is no
element in C of size 0.
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Theorem 2.17. Suppose A, C, and D are combinatorial classes with gener-
ating functions A(z), C(z), and D(z). Then

(a) A = C +D =⇒ A(z) = C(z) + D(z),
(b) A = C × D =⇒ A(z) = C(z) ·D(z),
(c) A = Seq(C) =⇒ A(z) = 1

1−C(z) .

Proof. Suppose A = C +D, then

A(z) =
∑

a∈A
zwA(a) =

∑

a∈C
zwC(a) +

∑

a∈D
zwD(a) = C(z) + D(z).

In case of A = C × D, we compute

A(z) =
∑

a∈A
zwA(a)

=
∑

(c,d)∈C×D
zwC(c)+wD(d)

=

(
∑

c∈C
zwC(c)

)
·
(
∑

d∈D
zwD(d)

)

= C(z) ·D(z).

Consequently, in case of A = Seq(C),

A(z) = 1 + C(z) + C(z)2 + · · · = 1
1−C(z)

.

In order to keep track of some specific combinatorial class in order to
express multivariate generating functions, we introduce the concept of combi-
natorial markers. A combinatorial marker is a combinatorial class with only
one element of size 0 or one element of size 1.

For instance, suppose Fk,h is the combinatorial class of all k-noncrossing
matchings with h arcs and its size function is the length of a matching in Fk,h,
i.e., the number of vertices. Let Pk,h denote the combinatorial class of all the
k-noncrossing partial matchings with h arcs and its size function counting the
total number of vertices. Let Z represent the combinatorial class consisting
of a single vertex. Then, plainly

Pk,h = Fk,h × (Seq (Z))2h+1
.

Suppose now we want to keep track of the number of isolated vertices in a
k-noncrossing partial matching having h arcs. Then we introduce the combi-
natorial marker μ in order to keep track of the isolated vertices as follows:

Pk,h = Fk,h × (Seq (μ×Z))2h+1
,
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whence

Pk,h(z, u) = Fk,h(z) ·
(

1
1− uz

)2h+1

,

where Pk,h(z, u) and Fk,h(z) are the generating functions of the combinatorial
classes Pk,h and Fk,h and u is an indeterminant.

2.3 Singularity analysis

Let f(z) =
∑

n anzn be a generating function with radius of convergence, R.
In light of the fact that explicit formulas for the coefficients an can be very
complicated or even impossible to obtain, we shall investigate the generating
function f(z) by deriving information about an for large n.

In the following we are primarily concerned with the estimation of an in
terms of the exponential factor γ and the subexponential factor P (n), that is,
we have the following situation

an ∼ P (n) · γn, (2.17)

where γ is a fixed number and P (n) is a polynomial in n. While this is, of
course, a vast simplification of the original problem (explicit computation of
the coefficients an), eq. (2.17) extracts key information about the coefficients.

2.3.1 Transfer theorems

The derivation of exponential growth rate and subexponential factors of
eq. (2.17) mainly rely on singular expansions and transfer theorems. Transfer
theorems realize the translation of error terms from functions to coefficients.
The underlying basic tool here is, of course, Cauchy’s integral formula

an =
1

2πi

∮

C

f(z)
zn+1

dz,

where C is any simple closed curve in the region 0 < |x| < R, containing 0.
In the following we shall employ a particular integration path; see Fig. 2.13.

The contour is a path, slightly “outside” the disc of radius R. This contour is
comprised of an inner arc segment 3 and an outer arc segment 1 and two con-
necting linear part segments 2 and 4. The major contribution to the contour
integral stems from segments 2, 3, and 4.

The behavior of f(z) close to the dominant singularity is the determining
factor for the asymptotic behavior of its coefficients. Let us get started by
specifying a suitable domain for our contours.

Definition 2.18. Given two numbers φ, r, where r > |ρ| and 0 < φ < π
2 , the

open domain Δρ(φ, r) is defined as
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Δρ(φ, r) = {z | |z| < r, z �= ρ, |Arg(z − ρ)| > φ}.

A domain is a Δρ-domain at ρ if it is of the form Δρ(φ, r) for some r and φ.
A function is Δρ-analytic if it is analytic in some Δρ-domain.

x-axis

y-axis

1

23

4

z=1

5

6

Fig. 2.13. Δ1-domain enclosing a contour. We assume z = 1 to be the unique
dominant singularity. The coefficients are obtained via Cauchy’s integral formula
and the integral path is decomposed into four segments. Segment 1 becomes asymp-
totically irrelevant since by construction the function involved is bounded on this
segment. Relevant are the rectilinear segments 2 and 4 and the inner circle 3. The
only contributions to the contour integral are being made here.

Let [zn] f(z) denote the coefficient of zn of the power series expansion of f(z)
at 0. Since the Taylor coefficients have the property

∀ γ ∈ C \ 0; [zn]f(z) = γn[zn]f
(

z

γ

)
,

we can, without loss of generality, reduce our analysis to the case where z = 1
is the unique dominant singularity. We use U(a, r) = {z ∈ C||z − a| < r} in
order to denote the open neighborhood of a in C. Furthermore, we use the
notations

(f(z) = O (g(z)) as z → ρ) ⇐⇒ (f(z)/g(z) is bounded as z → ρ) ,

(f(z) = o (g(z)) as z → ρ) ⇐⇒ (f(z)/g(z) → 0 as z → ρ) ,

(f(z) = Θ (g(z)) as z → ρ) ⇐⇒ (f(z)/g(z) → c as z → ρ) ,

(f(z) ∼ g(z) as z → ρ) ⇐⇒ (f(z)/g(z) → 1 as z → ρ) ,
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where c is some constant. If we write f(z) = O (g(z)), f(z) = o (g(z)), f(z) =
Θ (g(z)), or f(z) ∼ g(z), it is implicitly assumed that z tends to a (unique)
singularity.

Theorem 2.19. (Waterman [41]) (a) Suppose f(z) = (1−z)−α, α ∈ C\Z≤0,
then

[zn] f(z) ∼ nα−1

Γ (α)

[
1 +

α(α− 1)
2n

+
α(α− 1)(α− 2)(3α− 1)

24n2
+

α2(α− 1)2(α− 2)(α− 3)
48n3

+ O

(
1
n4

)]
.

(b) Suppose f(z) = (1− z)r log( 1
1−z ), r ∈ Z≥0, then we have

[zn]f(z) ∼ (−1)r r!
n(n− 1) . . . (n− r)

.

Theorems 2.19 and 2.20 are the key tools for the singularity analysis of the
generating function of RNA pseudoknot structures.

Theorem 2.20. (Flajolet and Sedgewick [42]) Let f(z) be a Δ1-analytic func-
tion at its unique singularity z = 1. Let g(z) be a linear combination of func-
tions in the set B, where

B = {(1− z)α logβ

(
1

1− z

)
|α, β ∈ R},

that is, we have in the intersection of a neighborhood of 1 with the Δ1-domain

f(z) = o(g(z)) for z → 1.

Then we have
[zn]f(z) = o ([zn]g(z)) ,

where o ∈ {O, o, Θ,∼}.
Let S(ρ, n) denote the subexponential factor of [zn] f(z) at the domi-

nant singularity ρ. In general [42], if f(z) has multiple dominant singularities,
[zn] f(z) is asymptotically determined by the sum over all dominant singular-
ities, i.e.,

[zn] f(z) ∼
∑

i

S(ρi, n)ρn
i .

2.3.2 The supercritical paradigm

In this section we discuss an implication of Theorem 2.20. The supercritical
paradigm refers to a composition of two functions where the “inner” function
is regular at the singularity of the outer function. In this case the singularity
type is that of the “outer” function. What happens is that the inner function
only “shifts” the singularity of the outer function.

The scenario considered here is tailored for Chapters 4 and 5.
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Theorem 2.21. Let ψ(z, s) be an algebraic, analytic function in a domain
D = {(z, s)||z| ≤ r, |s| < ε} such that ψ(0, s) = 0. In addition suppose γ(s) is
the unique dominant singularity of Fk(ψ(z, s)) and unique analytic solution
of ψ(γ(s), s) = ρ2

k, |γ(s)| ≤ r, ∂zψ(γ(s), s) �= 0 for |s| < ε. Then Fk(ψ(z, s))
has a singular expansion and

[zn]Fk(ψ(z, s)) ∼ A(s) n−((k−1)2+(k−1)/2)

(
1

γ(s)

)n

, (2.18)

uniformly in s contained in a small neighborhood of 0 and A(s) is continuous.

We postpone the proof of Theorem 2.21 to Section 2.4.2. The key property of
the singular expansion of Theorem 2.21 is the uniformity of eq. (2.18) in the
parameter s.

In the following chapters, we will be working with compositions Fk(ϑ(z)),
where ϑ(z) is algebraic and satisfies ϑ(0) = 0, that is, we apply Theorem 2.21
for fixed parameter s. According to Theorem 2.13, Fk(ϑ(z)) is D-finite and
Theorem 2.21 implies that if ϑ satisfies certain conditions the subexponential
factors of Fk(ϑ(z)) coincide with those of Fk(z).

2.4 The generating function Fk(z)

While Theorems 2.7 and 2.8 shed light of the generating function Fk(z), The-
orem 2.21 motivates a closer look in particular at its singular expansion. The
key to this is to find the ODE that Fk(z) satisfies. This is not “just” a mat-
ter of computation, in Proposition 2.22 we have to prove that the latter are
correct.

2.4.1 Some ODEs

In Section 2.1.5, we have shown that Fk(z) is D-finite, that is, there exists
some e ∈ N for which Fk(z) satisfies an ODE of the form

q0,k(z)
de

dze
Fk(z) + q1,k(z)

de−1

dze−1
Fk(z) + · · ·+ qe,k(z)Fk(z) = 0, (2.19)

where qj,k(z) are polynomials. The fact that Fk(z) is the solution of an ODE
implies the existence of an analytic continuation into any simply connected
domain [125], i.e., Δρ2

k
-analyticity.

Explicit knowledge of the above ODE is of key importance for two reasons:

Any dominant singularity of a solution is contained in the set of roots of
q0,k(z) [125]. In other words the ODE “controls” the dominant singularities
that are crucial for asymptotic enumeration.
Under certain regularity conditions (discussed below) the singular expan-
sion of Fk(z) follows from the ODE; see Proposition 2.24.
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Accordingly, let us first compute for 2 ≤ k ≤ 9 the ODEs for Fk(z).

Proposition 2.22. For 2 ≤ k ≤ 9, Fk(z) satisfies the ODEs listed in Ta-
ble 2.1 and we have in particular

q0,2(z) = (4z − 1) z, (2.20)
q0,3(z) = (16z − 1) z2, (2.21)
q0,4(z) = (144 z2 − 40 z + 1) z3, (2.22)
q0,5(z) = (1024 z2 − 80 z + 1) z4, (2.23)
q0,6(z) = (14, 400 z3 − 4144 z2 + 140 z − 1) z5, (2.24)
q0,7(z) = (147, 456 z3 − 12, 544 z2 + 224 z − 1) z6, (2.25)
q0,8(z) = (2, 822, 400z4 − 826, 624z3 + 31, 584z2 − 336z + 1)z7, (2.26)
q0,9(z) = (37, 748, 736z4 − 3, 358, 720z3 + 69, 888z2 − 480z + 1)z8, (2.27)

Proposition 2.22 immediately implies the following sets of roots:

∇2 =
{

1
4

}
; ∇4 = ∇2 ∪

{
1
36

}
; ∇6 = ∇4 ∪

{
1

100

}
; ∇8 = ∇6 ∪

{
1

196

}
;

∇3 =
{

1
16

}
; ∇5 = ∇3 ∪

{
1
64

}
; ∇7 = ∇5 ∪

{
1

144

}
; ∇9 = ∇7 ∪

{
1

256

}
.

Equations (2.20), (2.21), (2.22), (2.23), (2.24), (2.25), (2.26), and (2.27) and
Theorem 2.8 show that for 2 ≤ k ≤ 9 the unique dominant singularity of
Fk(z) is given by ρ2

k, where ρk = 1/2(k − 1).

Proof. The ODEs for Fk(z), 2 ≤ k ≤ 9, listed in Table 2.1, induce according
to Lemma 2.11 uniquely respective P -recurrences Rk. For 2 ≤ k ≤ 9 the
polynomial coefficients of any Rk have a greatest common divisor (gcd) of
1 and, in addition, the coefficient of the fk(2n, 0)-term in Rk is nonzero.
According to Lemma 2.12, each Rk corresponds to a unique P -recurrence
ε(Rk) for fk(2n, 0)/(2n)!, which in turn corresponds uniquely to an ODE
for the exponential generating function Hk(z) =

∑
n≥0 fk(2n, 0) · z2n

(2n)! ; see
Corollary 2.14. We furthermore have according to eq. (2.15)

∑

n≥1

fk(2n, 0)
x2n

(2n)!
= det[Ii−j(2x)− Ii+j(2x)]k−1

i,j=1.

According to Lemma 2.11 the P -recurrences ε(Rk) induce respective ODEs
for Hk(z). The key point is now that for Hk(z), eq. (2.15) provides an in-
terpretation of Hk(z) as a determinant of Bessel functions. We proceed by
verifying for 2 ≤ k ≤ 9 that det[Ii−j(2x)− Ii+j(2x)]k−1

i,j=1 satisfies the Hk(z)-
ODEs derived from Table 2.1 via Lemmas 2.11 and 2.12. Consequently we
have now established the correctness of the derived Hk(z)-ODEs. These allow
us via Lemmas 2.12 and 2.11 to recover the ODEs listed in Table 2.1 and the
proposition follows.
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2.4.2 The singular expansion of Fk(z)

Let us begin by introducing some concepts: a meromorphic ODE is an ODE
of the form

f (r)(z) + d1(z)f (r−1)(z) + · · ·+ dr(z)f(z) = 0, (2.28)

where f (m)(z) = dm

dzm f(z), 0 ≤ m ≤ r and the dj(z), are meromorphic in
some domain Ω. Assuming that ζ is a pole of a meromorphic function d(z),
ωζ(d) denotes the order of the pole ζ. In case d(z) is analytic at ζ we write
ωζ(d) = 0.

Meromorphic differential equations have a singularity at ζ if at least one
of the ωζ(dj) is positive. Such a ζ is said to be a regular singularity if

∀ 1 ≤ j ≤ r; ωζ(dj) ≤ j

and an irregular singularity otherwise. The indicial equation I(α) = 0 of a
differential equation of the form (2.28) at its regular singularity ζ is given by

I(α) = (α)r + δ1(α)r−1 + · · ·+ δr, (α)� := α(α− 1) · · · (α− � + 1),

where δj := limz→α(z − α)jdj(z).

Theorem 2.23. (Henrici; Wasow [66, 140]) Suppose we are given a mero-
morphic differential equation (2.28) with regular singularity ζ. Then, in a
slit neighborhood of ζ, any solution of eq. (2.28) is a linear combination of
functions of the form

(z − ζ)αi (log(z − ζ))�ij Hij(z − ζ), for 1 ≤ i ≤ r, 1 ≤ j ≤ i,

where α1, . . . , αr are the roots of the indicial equation at ζ, �ij are non-negative
integer, and each Hij is analytic at 0.

According to Proposition 2.22, the ODEs for Fk(z) for 2 ≤ k ≤ 9 are
known. We next proceed by deriving from these ODEs the singular expansion
of Fk(z).

Proposition 2.24. For 2 ≤ k ≤ 9, the singular expansion of Fk(z) for z →
ρ2

k is given by

Fk(z) =

{
Pk(z − ρ2

k) + c′k(z − ρ2
k)((k−1)2+(k−1)/2)−1 log(z − ρ2

k) (1 + o(1))
Pk(z − ρ2

k) + c′k(z − ρ2
k)((k−1)2+(k−1)/2)−1 (1 + o(1))

depending on k being odd or even. Furthermore, the terms Pk(z) are polyno-
mials of degree not larger than (k − 1)2 + (k − 1)/2− 1, c′k is some constant,
and ρk = 1/2(k − 1).

Note the appearance of the logarithmic term for odd k in the singular
expansion of Fk(z).
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Proof. Claim 1. The dominant singularity ρ2
k of the ordinary differential equa-

tion of Fk(z) is regular.
We express eq. (2.19) as

F(rk)
k (z) +

q1,k(z)
q0,k(z)

F(rk−1)
k (z) +

q2,k(z)
q0,k(z)

F(rk−2)
k (z) + · · ·+ qrk,k(z)

q0,k(z)
Fk(z) = 0,

writing F(m)
k (z) = dm

dzm Fk(z) for 0 ≤ m ≤ rk. For 2 ≤ k ≤ 9, see Table 2.1,
q0,k(z) has simple nonzero roots. Since all singularities of Fk(z)

are contained in the roots of q0,k(z) and
according to Theorem 2.8 we have

fk(2n, 0) ∼ ck n−((k−1)2+(k−1)/2) (2(k − 1))2n, where ck > 0

and accordingly derive

q0,k(z) = (z − ρ2
k)q′0,k(z),

where q′0,k(z) has also simple nonzero roots. Let

dj,k(z) = qj,k(z)/q0,k(z), 1 ≤ j ≤ k.

Then

(z − ρ2
k)jdj,k(z) = (z − ρ2

k)j qj,k(z)
q0,k(z)

= (z − ρ2
k)j−1 qj,k(z)

q′0,k(z)
. (2.29)

We set δj,k = limz→ρ2
k
(z − ρ2

k)jdj,k(z). Equation (2.29) shows that δ1,k exists
and δj,k = 0 for j ≥ 2. Furthermore, the order of the pole of dj,k(z), for j ≥ 1,
at ρ2

k is at most 1. Therefore, for 2 ≤ k ≤ 9, the dominant singularity, ρ2
k, is

unique and regular.
According to Claim 1 the singularity ρ2

k is regular and Theorem 2.23 implies

Fk(z) =
k∑

i=1

i∑

j=1

λij(z − ρ2
k)αi log�ij (z − ρ2

k)Hij(z − ρ2
k), (2.30)

where �ij is a non-negative integer, Hij is analytic at 0, and α1, α2, . . . , αk are
the roots of the indicial equation, λij ∈ C. For 2 ≤ k ≤ 9 we derive from the
indicial equations

αi =

{
i− 1 for i ≤ k − 1,

(k − 1)2 + k−1
2 − 1 for i = k.

Since Hij is analytic at 0, its Taylor expansion at 0 exists

(z − ρ2
k)αi log�ij (z − ρ2

k)Hi,j(z − ρ2
k) =

∞∑

t=0

aijt(z − ρ2
k)αi+t log�ij (z − ρ2

k).
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Substituting the Taylor expansion into (2.30), we obtain

Fk(z) =
k∑

i=1

i∑

j=1

∞∑

t=0

aijt(z − ρ2
k)αi+t log�ij (z − ρ2

k). (2.31)

We set

M1 = {(i, j, t) | 1 ≤ i ≤ k, 1 ≤ j ≤ i, 0 ≤ t, aijt �= 0, �i,j > 0},
M2 = {(i, j, t) | 1 ≤ i ≤ k, 1 ≤ j ≤ i, 0 ≤ t, aijt �= 0, αi + t /∈ N},

and M = M1 ∪M2. Clearly, M is not empty since Fk(z) would be analytic at
z = ρ2

k, otherwise. Let

mk = min{αi + t | (i, j, t) ∈ M, aijt �= 0}
lk = max{�ij | αi + t = mk, (i, j, t) ∈ M, aijt �= 0}

and let c′k denotes the coefficient of (z − ρ2
k)mk loglk(z − ρ2

k) in eq. (2.31). By
construction we then arrive at

Fk(z) = Pk(z − ρ2
k) + c′k(z − ρ2

k)mk loglk(z − ρ2
k)(1 + o(1)), (2.32)

where Pk(z) is a polynomial of degree ≤ mk and Theorem 2.20 implies

[zn]Fk(z) ∼ [zn]c′k(z − ρ2
k)mk loglk(z − ρ2

k). (2.33)

We distinguish the cases of k being odd and even. In case of k being odd, the
terms αi are, for 1 ≤ i ≤ k, all positive integers and the same holds for mk.
This implies lk �= 0, since Fk(z) would be analytic at ρ2

k, otherwise. According
to [42], we have

[zn]c′k(z − ρ2
k)mk loglk(z − ρ2

k) ∼ c′′k
(
ρ2

k

)−n
n−mk−1

∑

j≥0

Fj,k(log n)
nj

,

where the Fj,k(z) are polynomials whose degree is lk − 1. In view of eq. (2.9)

[zn]Fk(z) ∼ ck

(
ρ2

k

)−n
n−(k−1)2− k−1

2 , (2.34)

where ck is some positive constant, whence

mk = (k − 1)2 +
k − 1

2
− 1 and lk = 1.

In case of k being even, αk = (k−1)2+ k−1
2 −1 �∈ Z while αi ∈ Z for 1 ≤ i < k.

Equation (2.34) implies that mk is not an integer and according to [42] we
have

[zn]c′k(z − ρ2
k)mk loglk(z − ρ2

k) ∼ c′′k
(
ρ2

k

)−n n−mk−1

Γ (−mk)

∑

j≥0

Ej,k(log n)
nj

,
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where Ej,k(z) is a polynomial whose degree is lk. In view of eq. (2.34) we
conclude that

mk = (k − 1)2 +
k − 1

2
− 1 and lk = 0.

Thus we have proved that for z → ρ2
k,

Fk(z) =

{
Pk(z − ρ2

k) + c′k(z − ρ2
k)(k−1)2+ k−1

2 −1 log(z − ρ2
k) (1 + o(1))

Pk(z − ρ2
k) + c′k(z − ρ2

k)(k−1)2+ k−1
2 −1 (1 + o(1)) ,

depending on k being odd or even and where Pk(z) is a polynomial of degree
≤ (k − 1)2 + k−1

2 − 1 and c′k is some constant.

Proposition 2.24 provides for 2 ≤ k ≤ 9 the singular expansion of Fk(z).
These particular expansions and a simple scaling property of the Taylor ex-
pansion are the key tools for proving Theorem 2.21.

Proof of Theorem 2.21. We consider the composite function Fk(ψ(z, s)).
In view of [zn]f(z, s) = γn[zn]f( z

γ , s) it suffices to analyze the function
Fk(ψ(γ(s)z, s)) and to subsequently rescale in order to obtain the correct
exponential factor. For this purpose we set

ψ̃(z, s) = ψ(γ(s)z, s),

where ψ(z, s) is analytic in a domain D = {(z, s)||z| ≤ r, |s| < ε}. Conse-
quently ψ̃(z, s) is analytic in |z| < r̃ and |s| < ε̃, for some 1 < r̃, 0 < ε̃ < ε,
since it is a composition of two analytic functions in D. Taking its Taylor
expansion at z = 1,

ψ̃(z, s) =
∑

n≥0

ψ̃n(s)(1− z)n, (2.35)

where ψ̃n(s) is analytic in |s| < ε̃. According to Proposition 2.24, the singular
expansion of Fk(z), for z → ρ2

k, is given by

Fk(z) =

{
Pk(z − ρ2

k) + c′k(z − ρ2
k)((k−1)2+(k−1)/2)−1 log(z − ρ2

k) (1 + o(1))
Pk(z − ρ2

k) + c′k(z − ρ2
k)((k−1)2+(k−1)/2)−1 (1 + o(1)) ,

depending on whether k is odd or even and where Pk(z) are polynomials of
degree ≤ (k − 1)2 + (k − 1)/2− 1, c′k is some constant, and ρk = 1/2(k − 1).
By assumption, γ(s) is the unique analytic solution of ψ(γ(s), s) = ρ2

k and by
construction Fk(ψ(γ(s)z, s)) = Fk(ψ̃(z, s)). In view of eq. (2.35), we have for
z → 1 the expansion

ψ̃(z, s)− ρ2
k =

∑

n≥1

ψ̃n(s)(1− z)n = ψ̃1(s)(1− z)(1 + o(1)), (2.36)
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that is uniform in s since ψ̃n(s) is analytic for |s| < ε̃ and ψ̃0(s) = ψ(γ(s), s) =
ρ2

k. As for the singular expansion of Fk(ψ̃(z, s)) we derive, substituting the
eq. (2.36) into the singular expansion of Fk(z), for z → 1,
{

P̃k(z, s) + ck(s)(1− z)((k−1)2+(k−1)/2)−1 log(1− z) (1 + o(1)) for k odd,

P̃k(z, s) + ck(s)(1− z)((k−1)2+(k−1)/2)−1 (1 + o(1)) for k even

where P̃k(z, s) = Pk(ψ̃(z, s)− ρ2
k) and ck(s) = c′kψ̃1(s)((k−1)2+(k−1)/2)−1 and

ψ̃1(s) = ∂zψ̃(z, s)|z=1 = γ(s)∂zψ(γ(s), s) �= 0 for |s| < ε.

Furthermore P̃k(z, s) is analytic at |z| ≤ 1, whence [zn]P̃k(z, s) is exponen-
tially small compared to 1. Therefore, we arrive at

[zn]Fk(ψ̃(z, s)) ∼
{

[zn]ck(s)(1− z)((k−1)2+(k−1)/2)−1 log(1− z) (1 + o(1))
[zn]ck(s)(1− z)((k−1)2+(k−1)/2)−1 (1 + o(1)) ,

(2.37)

depending on k being odd or even and uniformly in |s| < ε̃. We observe that
ck(s) is analytic in |s| < ε̃. Note that a dependency in the parameter s is only
given in the coefficients ck(s) that are analytic in s. The transfer Theorem 2.20
and eq. (2.37) imply that

[zn]Fk(ψ̃(z, s)) ∼ A(s) n−((k−1)2+(k−1)/2) for some A(s) ∈ C,

uniformly in s contained in a small neighborhood of 0. Finally, as mentioned
in the beginning of the proof, we use the scaling property of Taylor expansions
in order to derive

[zn]Fk(ψ(z, s)) = (γ(s))−n [zn]Fk(ψ̃(z, s))

and the proof of the theorem is complete.

2.5 n-Cubes

In this section we deal with a formalization of the space of all sequences. For
this purpose we regard the nucleotides an element of an arbitrary finite set (al-
phabet), A. The existence of the so-called point-mutations, that is mutations
of individual nucleotides, see Fig. 2.14, suggests to consider two sequences to
be adjacent, if they differ in exactly one position. This point of view gives rise
to consider sequence space as a graph. In this graph each A, U, G, C sequence
of n nucleotides has 3n neighbors.
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A U CU A

C

U G G C G C C G G G A

A U CU AU G G C C C G G G A

Fig. 2.14. Single point mutations.

k

2 (4x− 1)xf ′′ (x) + (10x− 2) f ′ (x) + 2 f (x) = 0

3
(
16x3 − x2

)
f (3) (x) +

(
96x2 − 8x

)
f ′′ (x) + (108x− 12) f ′ (x) + 12 f (x) = 0

4
(
144x5 − 40x4 + x3

)
f (4) (x) +

(
1584x4 − 556x3 + 20x2

)
f (3) (x)

+
(
4428x3 − 1968x2 + 112x

)
f ′′ (x) +

(
3024x2 − 1728x+ 168

)
f ′ (x)

+ (216x− 168) f (x) = 0

5
(
1024x6 − 80x5 + x4

)
f (5) (x) +

(
20, 480x5 − 2256x4 + 40x3

)
f (4) (x)

+
(
121, 600x4 − 19, 380x3 + 532x2

)
f (3) (x) +

(
241, 920x3 − 56, 692x2 + 2728x

)

f ′′ (x) +
(
130, 560x2 − 46, 048x+ 4400

)
f ′ (x) + (7680x− 4400) f (x) = 0

6
(
14, 400x8 − 4144x7 + 140x6 − x5

)
f (6) (x)

+
(
367, 200x7 − 148, 368x6 + 7126x5 − 70x4

)
f (5) (x)

+
(
3, 078, 000x6 − 1, 728, 900x5 + 123, 850x4 − 1792x3

)
f (4) (x)

+
(
10, 179, 000x5 − 7, 880, 640x4 + 880, 152x3 − 20, 704x2

)
f (3) (x)

+
(
12, 555, 000x4 − 13, 367, 880x3 + 2, 399, 184x2 − 106, 016x

)
f ′′ (x)

+
(
4, 374, 000x3 − 6, 475, 680x2 + 1, 922, 736x− 187, 200

)
f ′ (x)

+
(
162, 000x2 − 350, 640x+ 187, 200

)
f (x) = 0

7
(
147, 456x9 − 12, 544x8 + 224x7 − x6

)
f (7) (x)

+
(
6, 193, 152x8 − 757, 760x7 + 18, 816x6 − 112x5

)
f (6) (x)

+
(
89, 800, 704x7 − 16, 035, 456x6 + 582, 280x5 − 4872x4

)
f (5) (x)

+
(
561, 254, 400x6 − 146, 691, 840x5 + 8, 254, 664x4 − 104, 480x3

)
f (4) (x)

+
(
1, 535, 708, 160x5 − 585, 419, 280x4 + 54, 069, 792x3 − 1, 151, 984x2

)
f (3) (x)

+
(
1, 651, 829, 760x4 − 916, 833, 600x3 + 144, 777, 216x2 − 6, 094, 528x

)
f ′′ (x)

+
(
516, 741, 120x3 − 421, 901, 280x2 + 117, 590, 208x− 11, 797, 632

)
f ′ (x)

+
(
17, 418, 240x2 − 22, 034, 880x+ 11, 797, 632

)
f (x) = 0

8
(
2, 822, 400x11 − 826, 624x10 + 31, 584x9 − 336x8 + x7

)
f (8) (x)

+
(
129, 830, 400x10 − 55, 968, 384x9 + 3, 026, 208x8 − 43, 512x7 + 168x6

)
f (7) (x)

+
(
2, 202, 883, 200x9 − 1, 363, 532, 352x8 + 107, 691, 912x7 − 2, 188, 752x6

+11, 424x5
)

f (6) (x) + (17455132800x8 − 15, 140, 260, 128x7 + 1, 789, 953, 376x6

−54349, 728x5 + 405, 200x4)f (5) (x)
+(67, 586, 778, 000x7 − 80, 551, 356, 480x6 + 14, 421, 855, 200x5

−698, 609, 104x4 + 8, 035, 104x3)f (4) (x)
+(122, 393, 376, 000x6 − 197, 784, 236, 160x5 + 53, 661, 386, 080x4

−4437573, 920x3 + 88, 180, 864x2)f (3) (x)

Table 2.1. The differential equations for Fk(z)(2 ≤ k ≤ 9), obtained by Maple
package gfun.
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−4437573, 920x3 + 88, 180, 864x2)f (3) (x)
+(90, 239, 184, 000x5 − 196, 676, 000, 640x4 + 80, 758, 975, 680x3

−11, 973, 419, 104x2 + 488, 846, 272x)f ′′ (x)
+(19, 559, 232, 000x4 − 57, 892, 907, 520x3 + 35, 467, 753, 520x2

−9, 969, 500, 032x+ 1, 033, 305, 728)f ′ (x)
+
(
444, 528, 000x3 − 1, 852, 865, 280x2 + 186, 993, 760x− 1, 033, 305, 728

)
f (x) = 0

9
(
37, 748, 736x12 − 3, 358, 720x11 + 69, 888x10 − 480x9 + x8

)
f (9) (x)

+
(
2, 717, 908, 992x11 − 351, 387, 648x10 + 10, 065, 408x9 − 90, 912x8

+240x7
)
f (8) (x)

+(72, 873, 934, 848x10 − 1, 378, 440, 8064x9

+563, 449, 728x8 − 6, 950, 616x7 + 24, 024x6)f (7) (x)
+(940, 566, 380, 544x9 − 258, 478, 202, 880x8 + 15, 638, 941, 312x7

−2, 368, 505, 160x6 + 1, 304, 336x5)f (6) (x)
+(6, 273, 464, 795, 136x8 − 2, 467, 959, 432, 192x7 + 227, 994, 061, 392x6

−18, 674, 432, 128x5 + 41, 782, 224x4)f (5) (x)
+(21, 523, 928, 186, 880x7 − 119, 317, 461, 350, 40x6 + 17, 131, 29, 509, 184x5

−75, 115, 763, 872x4 + 802, 970, 368x3)f (4) (x)
+(35, 583, 374, 131, 200x6 − 27, 454, 499, 6659, 20x5 + 614, 7724, 228, 704x4

−475, 182, 777, 504x3 + 8, 956, 331, 968x2)f (3) (x)
+(24, 400, 027, 975, 680x5 − 26, 056, 335, 882, 240x4 + 9, 086, 553, 292, 608x3

−1, 308, 864, 283, 488x2 + 52, 313, 960, 192x)f ′′ (x)
+(4, 976, 321, 495, 040x4 − 740, 2528, 051, 200x3 + 4, 051, 342, 551, 744x2

−1, 122, 348, 764, 928x+ 120, 086, 385, 408)f ′ (x)
+
(
107, 017, 666, 560x3 − 230, 051, 819, 520x2 + 208, 033, 076, 736x− 120,
086, 385, 408) f (x) = 0

Table 2.1. continued

2.5.1 Some basic facts

The n-cube, Qn
α, is a combinatorial graph with vertex set An, where A is some

finite alphabet of size α ≥ 2. Without loss of generality we will assume F2 ⊂ A
(here F2 denotes the field having the two elements 0, 1) and call Qn

2 the binary
n-cube. In an n-cube two vertices are adjacent if they differ in exactly one
coordinate; see Fig. 2.15.

(0,0) (0,1)

(1,1)(1,0)
(1,1,1)

(0,1,1)(0,1,0)

(0,0,0) (0,0,1)

(1,0,1)(1,0,0)

(1,1,0)

Fig. 2.15. The n-cubes Qn
2 for n = 2 (left) and n = 3 (middle). On the RHS we

display an induced Q3
2-subgraph, induced by the gray vertices.
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Let d(v, v′) be the number of coordinates by which v and v′ differ. d(v, v′)
is oftentimes referred to as Hamming metric. We set ∀C ⊂ An, j ≤ n

B(C, j) = {v ∈ A
n | ∃ a ∈ C; d(v, a) ≤ j}

S(C, j) = B(C, j) \ B(C, j − 1)
d(C) = B(C, 1) \ C

and call B(C, j) and d(C) the ball of radius j around C and the vertex
boundary of C in Qn

α, respectively. If C = {v}, we simply write B(v, j). Let
B, C ⊂ An, we call B �-dense in C if B(v, �) ∩B �= ∅ for any v ∈ C.

Qn
2 can also be viewed as the Cayley graph Cay(Fn

2 , {ei | i = 1, . . . , n}),
where ei is the canonical base vector. We will view F

n
2 as a F2-vectorspace

and denote the linear hull over {v1, . . . , vh}, vj ∈ F
n
2 by 〈v1, v2, . . . , vh〉.

There exists a natural linear order ≤ over Qn
2 given by

v ≤ v′ ⇐⇒ (d(v, 0) < d(v′, 0)) ∨ (d(v, 0) = d(v′, 0) ∧ v ≤lex v′), (2.38)

where ≤lex denotes the lexicographical order. Any notion of minimal element
or smallest element in A ⊂ Qn

2 is considered with respect to the linear order
≤ of eq. (2.38).

Each B ⊂ An induces a unique induced subgraph in Qn
α, denoted by Qn

α[B],
in which b1, b2 ∈ B are adjacent iff b1, b2 are adjacent in Qn

α.
We next prove a combinatorial lemma, which is a slightly stronger version

of a result in [14].

Lemma 2.25. Let d ∈ N, d ≥ 2 and let v, v′ be two Qn
2 -vertices where

d(v, v′) = d. Then any Qn
2 -path from v to v′ has length 2� + d and there

are at most (
2� + d

� + d

)(
� + d

�

)
n� �! d!

Qn
2 -paths from v to v′ of length 2� + d.

Proof. Without loss of generality, we can assume v = (0, . . . , 0) and v′ = (xi)i,
where xi = 1 for 1 ≤ i ≤ d and xi = 0, otherwise. Each path of length m
induces the family of steps (εs)1≤s≤m, where εs ∈ {ej | 1 ≤ j ≤ n}. Since each
path ends at v′, we have for fixed 1 ≤ i ≤ n

∑

{εs|εs=ei}
εs =

{
1 for 1 ≤ i ≤ d,

0 otherwise.

Hence the families induced by these paths contain necessarily the set {e1, . . . , ed}.
Let (ε′s)1≤s≤m′ be the family obtained from (εs)1≤s≤m by removing the steps
e1, . . . , ed, at the smallest index at which they occur. Then (ε′s)1≤s≤m′ rep-
resents a cycle starting and ending at v. Furthermore, we have for all i;∑

{ε′s|ε′s=ei} ε′s = 0, i.e., all steps must come in up-step/down-step pairs. As a
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result we derive m = 2� + d and there are exactly � steps of the form ej that
can be freely chosen (free up-steps). We proceed by counting the number of
the (2� + d)-tuples (εs)1≤s≤2�+d. There are exactly

(
2�+d
�+d

)
ways to select the

(�+d) indices for the up-steps within the set of all 2�+d indices. Furthermore,
there are at most

(
�+d

�

)
ways to select the positions for the � up-steps and at

most n� ways to choose the free up-steps themselves (once their positions are
fixed). Since a free up-step is paired with a unique down-step reversing it, the
� free up-steps determine all � down-steps. Clearly, there are at most �! ways
to assign the down-steps to their � indices. Finally, there are at most d! ways
to assign the fixed up-steps and the lemma follows.

2.5.2 Random subgraphs of the n-cube

Let Qn
α,λn

be the random graph consisting of Qn
α-subgraphs, Γn, induced by

selecting each Qn
α-vertex with independent probability λn; see Fig. 2.16. Qn

α,λn

is the finite probability space

({Qn
α[B] | B ⊂ A

n}, Pn),

with the probability measure Pn(B) = λ
|B|
n (1− λn)αn−|B|.

Fig. 2.16. Eight random-induced subgraphs of Q3
2

A property Mn is a subset of induced subgraphs of Qn
α closed under graph

isomorphisms. The terminology “Mn holds a.s.” is equivalent to

lim
n→∞ P(Mn) = 1.

We use the notation

Bm(�, λn) =
(

m

�

)
λ�

n (1− λn)m−�

and write g(n) = O(f(n)) and g(n) = o(f(n)) for g(n)/f(n) → κ as n → ∞
and g(n)/f(n) → 0 as n →∞, respectively.
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A component of Γn is a maximal connected induced Γn-subgraph, Cn.
The largest Γn-component is denoted by C

(1)
n . Analogously, the second largest

component is denoted by C
(2)
n . The largest Γn-component C

(1)
n is called a giant

component or giant if and only if

|C(2)
n | = o(|C(1)

n |).

Furthermore, we write xn ∼ yn if and only if (a) limn→∞ xn/yn exists and
(b) limn→∞ xn/yn = 1.

Let Zn =
∑n

i=1 ξi be a sum of mutually independent indicator random
variables (r.v.), ξi having values in {0, 1}. Then we have, [58], for η > 0 and
cη = min{− ln(eη[1 + η]−[1+η]), η2

2 }

Prob( |Zn − E[Zn] | > η E[Zn] ) ≤ 2e−cηE[Zn] . (2.39)

n is always assumed to be sufficiently large and ε is a positive constant satis-
fying 0 < ε < 1.

2.5.3 Vertex boundaries

In this section we present some generic results on vertex boundaries, which are
instrumental for our analysis of connectivity, large components, and distances
in n-cubes. The first result is due to [7] used for Sidon sets in groups in the
context of Cayley graphs. In the following G denotes a finite group and M a
finite set acted upon by G.

Proposition 2.26. Suppose G act transitively on M and let A ⊂ M , then we
have

1
|G|

∑

g∈G

|A ∩ gA| = |A|2/|M |. (2.40)

Proof. We prove eq. (2.40) by induction on |A|. For A = {x} we derive
1
|G|

∑
gx=x 1 = |Gx|/|G|, since |M | = |G|/|Gx|. We next prove the induction

step. We write A = A0 ∪ {x} and compute

1
|G|

∑

g

|A ∩ gA| = 1
|G|

∑

g

(|A0 ∩ gA0|+ |{gx} ∩A0|+

|{x} ∩ gA0|+ |{gx} ∩ {x}|

=
1
|G| (|A0|2|Gx|+ 2|A0||Gx|+ |Gx|)

=
1
|G| ((|A0|+ 1)2|Gx|) =

|A|2
|M | .

Aldous [4, 6] observed how to use Proposition 2.26 for deriving a very
general lower bound for vertex boundaries in Cayley graphs:
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Theorem 2.27. Suppose G acts transitively on M and let A ⊂ M , and let
S be a generating set of the Cayley graph Cay(G, S) where |S| = n. Then we
have

∃ s ∈ S; |sA \A| ≥ 1
n
|A|

(
1− |A|

|M |

)
.

Proof. We compute

|A| = 1
|G|

∑

g

(|gA \A|+ |A ∩ gA|) =
1
|G|

∑

g

|gA \A|+ |A| |A||M |

and hence |A|(1 − |A|
|M | ) = 1

|G|
∑

g |gA \ A|. From this we can immediately
conclude

∃ g ∈ G; |gA \A| ≥ |A|
(

1− |A|
|M |

)
.

Let g =
∏k

j=1 sj . Since each element of gA \A is contained in at least one set
sjA \A we obtain

|gA \A| ≤
k∑

j=1

|sjA \A|.

Hence there exists some 1 ≤ j ≤ k such that |sjA \ A| ≥ 1
k |gA \ A| and the

lemma follows.

2.5.4 Branching processes and Janson’s inequality

Let us next recall some basic facts about branching processes [62, 83]. Suppose
ξ is a random variable and (ξ(t)

i ), i, t ∈ N are random variables that count the
number of offspring of the ith individual at generation t− 1. We consider the
family of r.v. Z = (Zi)i∈N0 , given by

Z0 = 1 and Zt =
Zt−1∑

i=1

ξ
(t)
i , for t ≥ 1

and interpret Zt as the number of individuals “alive” in generation t. We will
be interested in the limit probability limt→∞ Prob(Zt > 0), i.e., the probability
of infinite survival.

In the following, we distinguish three branching processes:

Suppose the r.v.s ξ and ξ
(t)
i are all Bm(�, p)-distributed. We denote this

process by Z∗ and its survival probability by

πm(p) = lim
t→∞Prob(Z∗

t > 0).
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Let Z0 denote the branching process in which ξ is Bm(�, p)-distributed
and all subsequent r.vs. ξ

(t)
i are Bm−1(�, p)-distributed and

π0(p) = lim
t→∞Prob(Z0

t > 0).

Let ZP denote the branching process in which the individuals generate
offspring according to the Poisson distribution, i.e.,

Prob(ξ(t)
i = j) =

λj

j!
e−λ,

where λ > 0 and let

πP (λ) = lim
t→∞Prob(ZP

t > 0).

Lemma 2.28. (Bollobas et al. [14])

(1) For all 0 ≤ p ≤ 1, we have πn−1(p) ≤ π0(p) ≤ πn(p).

(2) If λ > 1 is fixed, then πP (λ) is the unique solution of x + e−λx = 1 in the
interval 0 < x < 1.

(3) Let p = λn

n where λn = 1 + εn and 0 < εn = o(1). Then

πn(p) =
2nεn

n− 1
+ O(ε2

n).

In particular, if r = n− s then

πr(p) = 2εn + O(εn/n) + O(s/n) + O(ε2
n);

and hence if s = o(εn n) then πr(p) = (1 + o(1))π0(p).

Corollary 2.29. Let p = λ/n.

(1) If λ > 1 is fixed, then π0(p) = (1 + o(1))πP (λ).

(2) Let λn = 1 + εn, where 0 < εn = o(1). Then, if r = n− s and s = o(nεn),

π0(p) = (1 + o(1))πr(p) = (2 + o(1))εn.

In Chapter 7 we need the following particular formulation of Corollary 2.29.

Corollary 2.30. Let un = n− 1
3 , λn = 1+χn

n , m = n− � 3
4unn�, and

Prob(ξ = �) = Bm(�, λn).



64 2 Basic concepts

Then for χn = ε the r.v. ξ becomes asymptotically Poisson, i.e., P(ξ = �) ∼
(1+ε)�

�! e−(1+ε) and

0 < lim
t→∞Prob(Zt > 0) = α(ε) < 1,

where 0 < α(ε) < 1 is the unique solution of the equation x + e−(1+ε)x = 1.
For o(1) = χn ≥ n− 1

3+δ, δ > 0 we have

lim
t→∞Prob(Zt > 0) = (2 + o(1)) χn.

The next theorem, used in Chapter 7, is Janson’s inequality [75]. It fa-
cilitates the proof of Theorem 7.15 and Theorem 7.13. Intuitively, Janson’s
inequality can be viewed as a large deviation result in the presence of corre-
lation.

Theorem 2.31. Let R be a random subset of some set [V ] = {1, . . . , V } ob-
tained by selecting each element v ∈ V independently with probability λ. Let
S1, . . . , Ss be subsets of [V ] and X be the r.v. counting the number of Si for
which Si ⊂ R. Let furthermore

Ω =
∑

(i,j); Si∩Sj 
=∅

P(Si ∪ Sj ⊂ R),

where the sum is taken over all ordered pairs (i, j). Then for any γ > 0, we
have

P(X ≤ (1− γ)E[X]) ≤ e−
γ2

E[X]
2+2Ω/E[X] .

2.6 Exercises

2.1. Prove Lemma 2.9 via symbolic enumeration. Consider the mapping that
assigns to each partial k-noncrossing matching a k-noncrossing matching by
removing all isolated vertices. Note that given a k-noncrossing matching, there
are exactly 2n+1 positions in which an arbitrary sequence of isolated vertices
can be inserted.

2.2. Compute the generating function of secondary structures with minimum
arc length λ and minimum stack-length σ. Hint: Compute the bivariate gen-
erating function of noncrossing matchings in which each stack has size exactly
one, having exactly m 1-arcs (i.e., arcs of the form (i, i + 1)). Then use sym-
bolic enumeration and the fact that each secondary structure is mapped into
exactly one such matching.
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2.3. We analyze the case k = 2, i.e., RNA secondary structures. Here the
generating function itself coincides with its singular expansion. The particular
approach offers a great simplification of the proof in [69] and easily extends to
all subclasses of secondary structures, considered there. Prove: The number of
RNA secondary, i.e., 2-noncrossing RNA, structures is asymptotically given
by

T
[2]
2 (n) ∼ 1.9572√

n

(
1

n + 1
− 1

8n(n + 1)
+

1
128n2(n + 1)

+ O(n−4)
)

×
(

3 +
√

5
2

)n

.

2.4. An ∗-tableaux is called irreducible if its only two empty shapes are λ0

and λn. Let Irr∗k(z) denote the generating function of irreducible ∗-tableaux.
Prove

Irr∗k(z) = 1− z − 1
1

1−zFk

(
z

1−z

) .

Furthermore, prove that

[zn]Irr∗k(z) ∼ c̃kn−μ−1

(
ρk

1− ρk

)−n

(1 + o(1)),

where c̃k is some computable positive constant, μ = (k − 1)2 + k−1
2 − 1, and

ρk is the real positive dominant singularity of Fk(z).

2.5. Show: suppose λ > 1, then πP (λ) is the unique solution of x + e−λx = 1
in the interval 0 < x < 1.

2.6. Prove: The number of isolated vertices is asymptotically Poisson dis-
tributed in Qn

2,λ, where 0 < λ.

2.7. Let Sn be the symmetric group and Tn ⊂ Sn be a minimal generating
set of transpositions. We consider the Cayley graph Γ (Sn, Tn), having vertex
set Sn and edges (v, v′) where v−1v′ ∈ Tn. Suppose one selects permutations
with probability 1+ε

n . Compute the probability of a cycle of length �, O�, that
contains a given permutation.
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Tangled diagrams

Most of the material presented in this chapter is derived from [27, 28].

3.1 Tangled diagrams and vacillating tableaux

A tangled diagram, or tangle, is a labeled graph over the vertex set [n] =
{1, . . . , n}, with vertices of degree at most 2, drawn in increasing order in a
horizontal line. Their arcs are drawn in the upper half plane. In general, a
tangled diagram has isolated points and other types of degree 2 vertices, as
displayed in Fig. 3.1.

i i j h i j1 j2

i j1 j2

i j

i j

i j h i1 i2 j

i1 i2 j

i1 i2 j1 j2

i ji1 i2 j1 j2

Fig. 3.1. All types of vertices with degree ≥ 1 in tangled diagrams.

Important subclasses of tangles are given as follows: (1) partial match-
ings, i.e., tangles in which each vertex has degree at most 1; (2) partitions,

C. Reidys, Combinatorial Computational Biology of RNA, 67
DOI 10.1007/978-0-387-76731-4 3,
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i.e., tangles in which any vertex of degree 2, j, is incident to the arcs (i, j)
and (j, s), where i < j < s. Furthermore, partitions without arcs of the form
(i, i + 1) are called 2-regular partitions. (3) Braids, i.e., tangled diagrams in
which all vertices of degree 2, j, are either incident to loops (j, j), or crossing
arcs (i, j) and (j, h), where i < j < h; see Fig. 3.2.

1 4 72 3 5 6 1 4 72 3 5 6 1 4 72 3 5 6

Fig. 3.2. From left to right : a partial matching, a partition, and a braid, respectively.

In order to describe the geometric crossings in tangled diagrams we map
a tangled diagram into a partial matching. This mapping is called inflation.
The inflation “splits” each vertex of degree 2, j, into two vertices j and j′

having degree 1; see Fig. 3.3.

1 1 52 3 4 5 6 2 2’ 3 4 4’ 6

Fig. 3.3. The inflation of the first tangled diagram in Fig. 1.21 into its corresponding
partial matching over eight vertices.

Accordingly, a tangle with � vertices of degree 2 over n vertices is expanded
into a diagram over n+� vertices via inflation. The inflation map has a unique
inverse, obtained by simply identifying the vertices j, j′. As RSK insertion
refers implicitly a linear order, for this purpose, we consider the following
linear ordering on {1, 1′, . . . , n, n′}:

1 < 1′ < 2 < 2′ < · · · < n < n′.

Let Gn be a tangled diagram with exactly � vertices of degree 2. Then
the inflation of Gn, η(Gn), is a labeled graph on {1, . . . , n + �} vertices with
degree less than or equal to 1, obtained as follows:

Suppose first we have i < j1 < j2. If the arcs (i, j1), (i, j2) are crossing,
then we map ((i, j1), (i, j2)) into ((i, j1), (i′, j2)) and if (i, j1), (i, j2) are nesting
then ((i, j1), (i, j2)) is mapped into ((i, j2), (i′, j1)); see Fig. 3.4.

Second, let i1 < i2 < j. If (i1, j), (i2, j) are crossing, then we map
((i1, j), (i2, j)) into ((i1, j), (i2, j′)). If (i1, j), (i2, j) are nesting then we map
((i1, j), (i2, j)) into ((i1, j′), (i2, j)); see Fig. 3.5

Third suppose i < j. If (i, j), (i, j) are crossing arcs, then ((i, j), (i, j))
is mapped into ((i, j), (i′, j′)). If (i, j), (i, j) are nesting arcs, then we map
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j2j1 j2j1 j2j1iii i’ j2j1i i’

Fig. 3.4. The case i < j1 < j2: crossing (left) and nesting (right).

ji2 j’jji2i1 i1 ji2 j’jji2i1 i1

Fig. 3.5. The case i1 < i2 < j: crossing (left) and nesting (right).

((i, j), (i, j)) into ((i, j′), (i′, j)). Finally, if (i, i) is a loop we map (i, i) into
(i, i′); see Fig. 3.6.

j'ji’ij’ji’iii’ii ji ji i

Fig. 3.6. The cases (i, i) and i < j: we resolve loops as arcs (left) and in case of
i < j we distinguish nesting (middle) and crossing (right).

Lastly, suppose we have i < j < h. If (i, j), (j, h) are crossing, then we map
((i, j), (j, h)) into ((i, j′), (j, h)) and we map ((i, j), (j, h)) into ((i, j), (j′, h)),
otherwise, see Fig. 3.7.

i j’j h i j h i j’j h i j h

Fig. 3.7. The case i < j < h: crossing (left) and nesting (right).

As mentioned above, identifying all vertex-pairs (i, i′) recovers the original
tangle, whence we have the bijection

η : Gn −→ η(Gn).

The mapping η preserves by definition the maximal number of crossing
and nesting arcs, respectively. Equivalently, a tangle Gn is k-noncrossing or
k-nonnesting if and only if its inflation η(Gn) is k-noncrossing or k-nonnesting,
respectively. We have accordingly shown that the notion of crossings and nest-
ings in tangles coincides with the notation of crossings and nestings in partial
matchings.

A vacillating tableau V 2n
λ of shape λ and length 2n is a sequence of shapes

(λ0, λ1, . . . , λ2n) such that (i) λ0 = ∅ and λ2n = λ and (ii) (λ2i−1, λ2i) is
derived from λ2i−2, for 1 ≤ i ≤ n, by one of the following operations. (∅, ∅):
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Fig. 3.8. A vacillating tableaux of shape ∅ and length 12.

do nothing twice; (−�, ∅): first remove a square then do nothing; (∅, +�):
first do nothing then add a square; (±�,±�): add/remove a square at the
odd and even steps, respectively. We denote the set of vacillating tableaux by
V2n

λ ; see Fig. 3.8.

3.2 The bijection

Lemma 3.1. Any vacillating tableaux of shape ∅ and length 2n, V 2n
∅ , induces

a unique inflation of some tangled diagram on [n], φ(V 2n
∅ ), namely, we have

the mapping
φ : V 2n

∅ −→ η(Gn).

Proof. In order to define φ, we recursively define a sequence of triples

((P0, T0, V0), (P1, T1, V1), . . . , (P2n, T2n, V2n)),

where Pi is a set of arcs, Ti is a tableau of shape λi, and

Vi ⊂ {1, 1′, 2, 2′, . . . , n, n′}

is a set of vertices. P0 = ∅, T0 = ∅, and V0 = ∅. We assume that the
left and right endpoints of all Pi-arcs and the entries of the tableau Ti

are contained in {1, 1′, . . . , n, n′}. Once given (P2j−2, T2j−2, V2j−2), we derive
(P2j−1, T2j−1, V2j−1) and (P2j , T2j , V2j) as follows:

(I) (+�, +�). If λ2j−1
� λ2j−2 and λ2j

� λ2j−1, we set P2j−1 = P2j−2,
and T2j−1 is obtained from T2j−2 by adding the entry j in the square λ2j−1 \
λ2j−2. Furthermore we set P2j = P2j−1 and T2j is obtained from T2j−1 by
adding the entry j′ in the square λ2j \ λ2j−1, V2j−1 = V2j−2 ∪ {j}, and
V2j = V2j−1 ∪ {j′}; see Fig. 3.9.

(II) (∅, +�). If λ2j−1 = λ2j−2 and λ2j
� λ2j−1, then (P2j−1, T2j−1) =

(P2j−2, T2j−2), P2j = P2j−1, and T2j is obtained from T2j−1 by adding the

2

1 1

2 2

1 2’1

3 4

Fig. 3.9. From vacillating tableaux to tangles: in case of {+�,+�}, we have V3 =
V2 ∪ {2} and V4 = V3 ∪ {2′}.
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0

1

1 2

Fig. 3.10. (∅,+�): here we have V1 = V0 = ∅ and V2 = V1 ∪ {1}.

entry j in the square λ2j \ λ2j−1, V2j−1 = V2j−2, and V2j = V2j−1 ∪ {j}; see
Fig. 3.10.

(III) (+�,−�). If λ2j−2
� λ2j−1 and λ2j

� λ2j−1 then T2j−1 is obtained
from T2j−2 by adding the entry j in the square λ2j−1 \ λ2j−2 and the tableau
T2j is the unique tableau of shape λ2j such that T2j−1 is obtained from T2j

by RSK inserting the unique number i. We then set P2j−1 = P2j−2, P2j =
P2j−1 ∪ {(i, j′)}, V2j−1 = V2j−2 ∪ {j}, and V2j = V2j−1 ∪ {j′}; see Fig. 3.11.

4

1 1 2
3

1
3

22 1

5 6

Fig. 3.11. (+�,−�): here we have P5 = P4, P6 = P5 ∪ {(2, 3′)}, V5 = V4 ∪ {3},
and V6 = V5 ∪ {3′}.

(IV) (−�, ∅). If λ2j−1
� λ2j−2 and λ2j = λ2j−1, then T2j−1 is the

unique tableau of shape λ2j−1 such that T2j−2 is obtained by RSK insert-
ing the unique number i into T2j−1, P2j−1 = P2j−2 ∪ {(i, j)}, (P2j , T2j) =
(P2j−1, T2j−1), V2j−1 = V2j−2 ∪ {j}, and V2j = V2j−1; see Fig. 3.12.

2

4’

4’

8

2

4’

4’

9 10

Fig. 3.12. (−�,∅): here we have P5 = P4 ∪ {(2, 5)}, P6 = P5, V5 = V4 ∪ {5}, and
V6 = V5.

(V) (−�,−�). If λ2j−1
� λ2j−2 and λ2j

� λ2j−1, let T2j−1 be the
unique tableau of shape λ2j−1 such that T2j−2 is obtained from T2j−1 by
RSK inserting i1 and T2j be the unique tableau of shape λ2j such that
T2j−1 is obtained from T2j by RSK inserting i2, P2j−1 = P2j−2 ∪ {(i1, j)},
P2j = P2j−1 ∪ {(i2, j′)}, V2j−1 = V2j−2 ∪ {j}, and V2j = V2j−1 ∪ {j′}; see
Fig. 3.13.

(VI) (−�, +�). If λ2j−1
� λ2j−2 and λ2j

� λ2j−1, then T2j−1 is the
unique tableau of shape λ2j−1 such that T2j−2 is obtained from T2j−1 by

6

1
3

1
3

1 32 2
3

7 8

Fig. 3.13. (−�,−�): here we have P7 = P6 ∪ {(2, 4)}, P8 = P7 ∪ {(1, 4′)}, V7 =
V6 ∪ {4}, and V8 = V7 ∪ {4′}.
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RSK inserting the unique number i. Then we set P2j−1 = P2j−2 ∪ {(i, j)},
P2j = P2j−1, and T2j is obtained from T2j−1 by adding the entry j′ in the
square λ2j \λ2j−1, V2j−1 = V2j−2 ∪{j}, and V2j = V2j−1 ∪{j′}; see Fig. 3.14.

6

1

2

2

4’

1

2

2

7 8

Fig. 3.14. (−�,+�): we have P7 = P6 ∪ {(1, 4)}, P8 = P7, V7 = V6 ∪ {4}, and
V8 = V7 ∪ {4′}.

(VII) (∅, ∅). If λ2j−1 = λ2j−2 and λ2j = λ2j−1, we have (P2j−1, T2j−1) =
(P2j−2, T2j−2), (P2j , T2j) = (P2j−1, T2j−1), V2j−1 = V2j−2 ∪ {j}, and V2j =
V2j−1.

Claim. The image φ(V 2n
∅ ) is the inflation of a tangled diagram.

First, if (i, j) ∈ P2n, then i < j. Second, any vertex j can occur only as
either a left or right endpoint of an arc, whence φ(V 2n

∅ ) is a 1-diagram. Each
step (+�, +�) induces a pair of arcs of the form (i, j1), (i′, j2) and each
step (−�,−�) induces a pair of arcs of the form (i1, j), (i2, j′). Each step
(−�, +�) corresponds to a pair of arcs (h, j), (j′, s) where h < j < j′ < s,
and each step (+�,−�) induces a pair of arcs of the form (j, s), (h, j′), where
h < j < j′ < s or a 1-arc of the form (i, i′).

Let � be the number of steps not containing ∅. By construction each
of these steps adds the 2-set {j, j′}, whence (V2n, P2n) corresponds to the
inflation of a unique tangled diagram with � vertices of degree 2 and the claim
follows.

We remark that, if squares are added, then the corresponding numbers are
inserted. If squares are deleted Lemma 2.1 is used to extract a unique number,
which then forms the left endpoint of the so-derived arcs; see Fig. 3.15. We
proceed by explicitly constructing the inverse of φ.
Lemma 3.2. Any inflation of a tangled diagram on n vertices, η(Gn), induces
the vacillating tableaux of shape ∅ and length 2n, ψ(η(Gn)), namely, we have
the mapping

ψ : η(Gn) −→ V2n
∅ . (3.1)

Proof. We define ψ as follows. Let η(Gn) be the inflation of the tangle Gn.
We set

ηi =

{
(i, i′), iff i has degree 2 in Gn,

i, otherwise.

Let T2n = ∅ be the empty tableau. We will construct a sequence of
tableaux Th of shape λh

η(Gn), where h ∈ {0, 1, . . . 2n} by considering ηi for
i = n, n−1, n−2, . . . , 1. For each ηj we inductively define the pair of tableaux
(T2j , T2j−1):
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+, +,+ , , + , ,

1

0

1

2 2

1 2’

2’

1

2

1

2

2

1

2

4’

4’

2
(2’,3) (1,4) (2,5)

52,2’1 4,4’

1 5

4’
(4’,6)

3

1 2 3 4 5 6 7 8 9 10 11 12

4’

6

2 2’ 3 4 4’ 6

Fig. 3.15. Lemma 3.1: from vacillating tableaux to inflated tangles.

(I) j is a left endpoint of degree 2, then we have the two η(Gn)-arcs (j, r)
and (j′, h). T2j−1 is obtained by removing the square with entry j′ from the
tableau T2j and T2j−2 is obtained by removing the square with entry j from
T2j−1. Then we have λ2j−1

η(Gn) � λ2j
η(Gn) and λ2j−2

η(Gn) � λ2j−1
η(Gn) (left to right:

(+�, +�)); see Fig. 3.16.

( +, )+

1 3 211’ 1’ 3’ 2’

Fig. 3.16. All the possible cases for (+�,+�) in case of 3-noncrossing tangles.

(II) j is the left endpoint of exactly one arc (j, k) but not a right endpoint,
then first set T2j−1 to be the tableau obtained by removing the square with
entry j from T2j and let T2j−2 = T2j−1. Therefore λ2j−1

η(Gn) � λ2j
η(Gn) and

λ2j−2
η(Gn) = λ2j−1

η(Gn) (left to right: (∅, +�)).
(III) j is a left and right endpoint of crossing arcs or a loop, then we have

the two η(Gn)-arcs (j, s) and (h, j′), h < j < j′ < s or an arc of the form
(j, j′), respectively. T2j−1 is obtained by RSK-inserting h into the tableau T2j

and T2j−2 is obtained by removing the square with entry j from the T2j−1
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( –, )+

2 3 322’ 2’ 3’ 3’

Fig. 3.17. All the possible cases for (+�,−�) in case of 3-noncrossing tangles.

or T2j−1 is obtained by RSK-inserting j into the tableau T2j and T2j−2 is
obtained by removing the square with entry j from the T2j−1, respectively
(left to right: (+�,−�)); see Fig. 3.17.

(IV) ηj = j is the right endpoint of exactly one arc (i, j) but not a left
endpoint, then we set T2j−1 = T2j and obtain T2j−2 by RSK-inserting i into
T2j−1. Consequently we have λ2j−1

η(Gn) = λ2j
η(Gn) and λ2j−2

η(Gn) � λ2j−1
η(Gn) (left to

right: (−�, ∅)).
(V) j is a right endpoint of degree 2, then we have the two η(Gn)-arcs

(i, j) and (h, j′). T2j−1 is obtained by RSK-inserting h into T2j and T2j−2

is obtained by RSK-inserting i into T2j−1. We derive λ2j−1
η(Gn) � λ2j

η(Gn) and

λ2j−2
η(Gn) � λ2j−1

η(Gn) (left to right: (−�,−�)); see Fig. 3.18.

( –, )–

2 5 422’ 2’ 5’ 4’

Fig. 3.18. All the possible cases for (−�,−�) in case of 3-noncrossing tangles.

(VI) j is a left and right endpoint, then we have the two η(Gn)-arcs (i, j)
and (j′, h), where i < j < j′ < h. First, the tableaux T2j−1 is obtained
by removing the square with entry j′ in T2j . Second, the RSK insertion of
i into T2j−1 generates the tableau T2j−2. Accordingly, we derive the shapes
λ2j−1

η(Gn) � λ2j
η(Gn) and λ2j−2

η(Gn) � λ2j−1
η(Gn) (left to right: (−�, +�)); see Fig. 3.19.

(VII) ηj = j is an isolated vertex in η(Gn), then we set T2j−1 = T2j and
T2j−2 = T2j−1. Accordingly, λ2j−1

η(Gn) = λ2j
η(Gn) and λ2j−2

η(Gn) = λ2j−1
η(Gn) (left to

right: (∅, ∅)).

( – , )+

3 3 33’ 3’ 3’ 3 3’

Fig. 3.19. All the possible cases for (−�,+�) when restricted to 3-noncrossing
tangles.
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Therefore, ψ maps the inflation of a tangled diagram into a vacillating
tableau and the lemma follows.

As an illustration of Lemma 3.2, see Fig. 3.20: starting from right to left
the vacillating tableaux is obtained via the RSK algorithm as follows: if j is a

1
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2 2’ 3 4 4’

2 2’ 3 4 4’

2 2’ 3 4 6

2 2’ 3 6

2 2’ 4’ 6

2 4 4’ 6

3 4 4’ 6

2’ 3 4 4’ 6

2 3 4 5 6

4’

4’

4’

4’

4’

4’

4’

4’

Fig. 3.20. An illustration of Lemma 3.2: how to map a tangle into a vacillating
tableaux via ψ.
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right endpoint it gives rise to RSK insertion of its (unique) left endpoint and
if j is a left endpoint the square filled with j is removed.

Theorem 3.3. There exists a bijection between the set of vacillating tableaux
of shape ∅ and length 2n, V2n

∅ , and the set of tangles on n vertices, Gn,

β : V2n
∅ −→ Gn.

Proof. According to Lemmas 3.1 and 3.2, we have the mappings φ : V2n
∅ −→

η(Gn) and ψ : η(Gn) −→ V2n
∅ . We next show that φ and ψ are indeed inverses of

each other. By definition, the mapping φ generates arcs whose left endpoints,
when RSK inserted into Ti, recover the tableaux Ti−1. We observe that by
definition, the mapping ψ reverses this extraction: it is constructed via the
RSK insertion of the left endpoints. Therefore we have the following relations:

φ ◦ ψ(η(Gn)) = φ((λh
η(Gn))

2n
0 ) = η(Gn) and ψ ◦ φ(V 2n

∅ ) = V 2n
∅ ,

from which we conclude that φ and ψ are bijective. Since Gn is in one-to-one
correspondence with η(Gn), the proof of the theorem is complete.

By construction, the bijection η : Gn −→ η(Gn) preserves the maximal number
crossing and nesting arcs, respectively. Equivalently, a tangled diagram Gn is
k-noncrossing or k-nonnesting if and only if its inflation η(Gn) is k-noncrossing
or k-nonnesting [25]. Indeed, this follows immediately from the definition of
the inflation. Accordingly the next result is directly implied by Theorem 2.2:

Theorem 3.4. A tangled diagram Gn is k-noncrossing if and only if all
shapes λi in the corresponding vacillating tableau have less than k rows,
i.e., φ : V2n

∅ −→ Gn maps vacillating tableaux having less than k rows into
k-noncrossing tangles. Furthermore, there is a bijection between the set of
k-noncrossing and k-nonnesting tangles.

Restricting the steps for vacillating tableaux produces the bijection of Chen
et al. [25]. Let M†

k(n), Pk(n), and Bk(n) denote the set of k-noncrossing
matchings, partitions, and braids. Theorem 3.3 implies that the tableaux
sequences of M†

k(n), Pk(n), and Bk(n) are composed by the elements in
SM†

k
, SPk

, and SBk
, respectively, where 1 ≤ h, l ≤ k − 1 and

SM†
k

= {(−�h, ∅), (∅, +�h)},
SPk

= {(∅, ∅), (−�h, ∅), (∅, +�h), (−�h, +�l)},
SBk

= {(∅, ∅), (−�h, ∅), (∅, +�h), (+�h,−�l)},

where we use the following notation: if λi+1 is obtained from λi by adding,
removing a square from the jth row, or doing nothing we write λi+1\λi = +�j ,
λi+1 \ λi = −�j or λi+1 \ λi = ∅, respectively; see Fig. 3.21.

The enumeration of 3-noncrossing partitions and 3-noncrossing enhanced
partitions has been studied by Xin and Bousquet-Mélou [17]. The authors ob-
tain their results by solving a functional equation of walks in the first quadrant
using the reflection principle [149] and the kernel method [92].
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82 4 11

4444411

11 1 3 3 3 3 3
5

10

1

5 5

5 54 4 4
5

1
4

11 111 2

3 5 6 7 9 10 12 13 14

Fig. 3.21. The corresponding tableaux sequences for the partial matching, partition,
and braid shown in Fig. 3.2.

A 2-regular, k-noncrossing partition is a k-noncrossing partition without
arcs of the form (i, i + 1). We denote the set of 2-regular, k-noncrossing par-
titions by Pk,2(n). There exists a bijection between 2-regular, k-noncrossing
partitions and k-noncrossing braids without isolated points, denoted by B†

k(n),
i.e., k-noncrossing enhanced partitions[25]. This bijection is obtained as fol-
lows: for δ ∈ B†

k(n), we identify loops with isolated points and crossing arcs
(i, j) and (j, h), where i < j < h, by noncrossing arcs. This identification
produces a mapping from Pk,2(n) into a subset of partitions P∗

k (n), which we
refer to as ϑ; see Fig. 3.22.

1 1

1

2 3 4 5 6 2 3 4 5

2 3 4 5

Fig. 3.22. An illustration of Theorem 3.5: the bijection ϑ

Theorem 3.5. Let k ∈ N, k ≥ 3. Then we have a bijection

ϑ : Pk,2(n) −→ B†
k(n− 1), ϑ((i, j)) = (i, j − 1).

Proof. By construction, ϑ maps tangled diagrams on [n] to tangled diagrams
on [n − 1]. Since there does not exist any arc of the form (i, i + 1), for any
π ∈ Pk,2(n), ϑ(π) is loop free. By construction, ϑ preserves the orientation of
arcs, whence ϑ(π) is a partition.

Claim 1. ϑ : Pk,2(n) −→ B†
k(n− 1) is well defined.

We first prove that ϑ(π) is k-noncrossing. Suppose there exist k mutu-
ally crossing arcs, {(is, js)}s=k

s=1 in ϑ(π). Since ϑ(π) is a partition, we have
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i1 < · · · < ik < j1 < · · · < jk. So, we obtain for the partition π ∈ Pk,2(n) the
k arcs (is, js + 1), s = 1, . . . , k, where i1 < · · · < ik < j1 + 1 < · · · < jk + 1,
which is impossible since π is k-noncrossing. We next show that ϑ(π) is a k-
noncrossing braid. If ϑ(π) is not a k-noncrossing braid, then it contains k arcs
of the form (i1, j1), . . . , (ik, jk) such that i1 < · · · < ik = j1 < · · · < jk. Then
π contains the arcs (i1, j1 +1), (ik, jk +1) where i1 < · · · < ik < j1 +1 < · · · <
jk + 1, which is impossible since these arcs are a set of k mutually crossing
arcs and Claim 1 follows.

Claim 2. ϑ is bijective.
Clearly ϑ is injective and it remains to prove surjectivity. For any k-noncrossing
braid δ there exists 2-regular partition π such that ϑ(π) = δ. We have to show
that π is k-noncrossing. Suppose that there exists some partition π with k
mutually crossing arcs such that ϑ(π) = δ. Let M ′ = {(i1, j1), . . . , (ik, jk)}
be a set of k mutually crossing arcs in the standard representation of π,
i.e., i1 < · · · < ik < j1 < · · · < jk. Then we have in ϑ(π) the arcs (is, js − 1),
s = 1, . . . , k, such that

i1 < · · · < ik ≤ j1 − 1 < · · · < jk − 1.

Since M = {(i1, j1 − 1), . . . , (ik, jk − 1)} is k-noncrossing, we conclude ik =
j1 − 1. This is impossible in k-noncrossing braids. By transposition, we have
proved that any ϑ-preimage is necessarily a k-noncrossing partition, whence
Claim 2 and the proof of the theorem is complete.

In Fig. 3.22 we give an illustration of the bijection ϑ : Pk,2(n) −→ B†
k(n−1).

3.3 Enumeration

Let tk(n) and t̃k(n) denote the numbers of k-noncrossing tangles and
k-noncrossing tangles without isolated points on [n], respectively. Recall that
fk(2n, 0) is the number of k-noncrossing matchings on 2n vertices. In the fol-
lowing we will illustrate that the enumeration of tangles could be reduced to
the enumeration of matchings via the inflation map. Without loss of general-
ity we can restrict our analysis to the case of tangles without isolated points
since the number of tangled diagrams on [n] is given by

tk(n) =
n∑

i=0

(
n

i

)
t̃k(n− i). (3.2)

Theorem 3.6. The number of k-noncrossing tangles without isolated points
on [n] is given by

t̃k(n) =
n∑

�=0

(
n

�

)
fk(2n− �, 0).
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In particular, for k = 3 we have

t̃3(n) =
n∑

�=0

(
n

�

)(
C 2n−�

2
C 2n−�

2 +2 − C2
2n−�

2 +1

)
,

where Cm denotes the mth Catalan number 1
m+1

(
2m
m

)
.

Proof. Let T̃k(n, V ) be the set of tangles without isolated points where V =
{i1, . . . , ih} is the set of vertices of degree 1 (where h ≡ 0 mod 2 by definition
of T̃k(n, V )) and letM†

k({1, 1′, . . . , n, n′}\V ′), where V ′ = {i′1, . . . , i′h} denotes
the set of matchings on {1, 1′, . . . , n, n′} \ V ′. By construction, the inflation
η : Gn −→ η(Gn) induces a well-defined mapping

η̂ : T̃k(n, V ) −→M†
k({1, 1′, . . . , n, n′} \ V ′)

with inverse κ defined by identifying all pairs (y, y′), where y, y′ ∈ {1, 1′, . . . ,

n, n′} \ V ′. Obviously, we have |M†
k({1, 1′, . . . , n, n′} \ V ′)| = fk(2n− h, 0)

and

t̃k(n) =
∑

V ⊂[n]

t̃k(n, V ) =
n∑

�=0

(
n

�

)
fk(2n− �, 0). (3.3)

Suppose n ≡ 0 mod 2. Let Cm denote the mth Catalan number. Then we
have [53]

f3(n, 0) = C n
2

C n
2 +2 − C2

n
2 +1,

and the theorem follows.

The first five numbers of 3-noncrossing tangles are given by 2, 7, 39, 292, 2635.
In eq. (3.3) we relate the generating functions of k-noncrossing tangles

Tk(z) =
∑

n tk(n)zn and k-noncrossing matchings Fk(z) =
∑

n fk(2n, 0) zn.
We derive the functional equation which is instrumental to prove eq. (3.6) for
2 ≤ k ≤ 9.

For this purpose we employ Cauchy’s integral formula: let D be a simply
connected domain and let C be a simple closed positively oriented contour
that lies in D. If f is analytic inside C and on C, except at the vertices
z1, z2, . . . , zn that are in the interior of C, then we have Cauchy’s integral
formula ∫

C

f(z)dz = 2πi

n∑

k=1

Res[f, zk]. (3.4)

In particular, if f has a simple pole at z0, then Res[f, z0] = lim
z→z0

(z− z0)f(z).

Lemma 3.7. Let k ∈ N, k ≥ 2. Then we have

Tk

(
z2

1 + z + z2

)
=

1 + z + z2

z + 2
Fk(z2) . (3.5)
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Proof. The relation between the number of k-noncrossing tangles, tk(n), and
k-noncrossing matchings, fk(2n, 0), given in eq. (2.7), which implies

tk(n) =
∑

r,�

(
n

r

)(
n− r

�

)
fk(2n− 2r − �, 0).

Substituting the combinatorial terms with the contour integrals we derive
(

n

r

)
=

1
2πi

∮

|u|=α

(1 + u)nu−r−1du,

fk(2n− 2r − �, 0) =
1

2πi

∮

|z|=β3

Fk(z2)z−(2n−2r−�)−1dz,

tk(n) =
∑

r,�

(
n

r

)(
n− r

�

)
fk(2n− 2r − �, 0)

=
1

(2πi)3
∑

r,�

∮
|v|=β1
|z|=β2
|u|=β3

(1 + u)nu−r−1(1 + v)n−rv−�−1 ×

Fk(z2) z−(2n−2r−�)−1dv du dz,

where α, β1, β2, β3 are arbitrary small positive numbers. Since the series are
absolute convergent, we obtain

tk(n) =
1

(2πi)3
∑

r

∮
|v|=β1
|z|=β2
|u|=β3

(1 + u)nu−r−1Fk(z2) z−2n+2r−1(1 + v)n−rv−1 ×

∑

�

(z

v

)�

dv du dz,

which gives rise to

tk(n) =
1

(2πi)3
∑

r

∮

|u|=β3
|z|=β2

(1 + u)nu−r−1Fk(z2) z−2n+2r−1 ×

(∮

|v|=β1

(1 + v)n−r

v − z
dv

)
du dz.

Since v = z is the unique (simple) pole in the integral domain, eq. (3.4) implies
∮

|v|=β1

(1 + v)n−r

v − z
dv = 2πi (1 + z)n−r.

We accordingly have

tk(n) =
1

(2πi)2
∑

r

∮

|u|=β3
|z|=β2

(1 + u)nu−r−1Fk(z2) z−2n+2r−1(1 + z)n−rdu dz.
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Proceeding analogously with respect to the summation over r yields

tk(n) =
1

(2πi)2

∮

|u|=β3
|z|=β2

(1 + u)nFk(z2) z−2n−1(1 + z)nu−1
∑

r

z2r

ur(1 + z)r
du dz

=
1

(2πi)2

∮

|z|=β2

Fk(z2) z−2n−1(1 + z)n

(∮

|u|=β3

(1 + u)n 1
u− z2

1+z

du

)
dz.

Since u = z2

1+z is the only pole in the integral domain, Cauchy’s integral
formula implies

∮

|u|=β3

(1 + u)n 1
u− z2

1+z

du = 2πi

(
1 +

z2

1 + z

)n

.

Now we compute

tk(n) =
1

2πi

∮

|z|=β2

Fk(z2) z−1z−2n(1 + z)n

(
1 +

z2

1 + z

)n

dz

=
1

2πi

∮

|z|=β2

Fk(z2) z−1

(
1 + z + z2

z2

)n

dz

=
1

2πi

∮

|z|=β2

1 + z + z2

z + 2
Fk(z2)

(
z2

1 + z + z2

)−n−1

d

(
z2

1 + z + z2

)

from which

Tk

(
z2

1 + z + z2

)
=

1 + z + z2

z + 2
Fk(z2)

follows and the theorem is proved.

Lemma 3.7, Theorem 2.8, and Proposition 2.24 imply for the asymptotics
of tangles.

Theorem 3.8. For 2 ≤ k ≤ 9 the number of k-noncrossing tangles is asymp-
totically given by

tk(n) ∼ ck n−((k−1)2+ k−1
2 )

(
4(k − 1)2 + 2(k − 1) + 1

)n
where ck > 0. (3.6)

Proof. According to Lemma 3.7, we have the functional equation

Tk

(
z2

z2 + z + 1

)
=

z2 + z + 1
z + 2

Fk(z2), (3.7)

where |z| ≤ ρk < 1 and the function ϑ(z) = z2

z2+z+1 is regular at z = ±ρk and
ρk = 1/2(k − 1). Then

ϑ(ρk) =
ρ2

k

ρ2
k + ρk + 1

and ϑ(−ρk) =
ρ2

k

ρ2
k − ρk + 1
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are both singularities of Tk(z). We claim that ϑ(ρk) is the unique dominant
positive real singularity of Tk(z). Indeed, ϑ(z) is strictly monotonously in-
creasing and continuous for 0 < z ≤ 1, and 0 < ϑ(z) ≤ 1/3. If there is a
positive singularity γ of Tk(z)

γ < ϑ(ρk) ≤ ϑ

(
1
2

)
=

1
7

,

there would exist ϑ−1(γ) < ρk which is a contradiction to ρk being the domi-
nant singularity of Tk(ϑ(z)). Next we show that ϑ(ρk) is unique. Suppose there
exists a dominant singularity η different from ϑ(ρk), where |η| = ϑ(ρk). Then
there exists zη ∈ C such that ϑ(zη) = η and zη �= ρk. Since |ϑ(zη)| = ϑ(ρk),

(ρ2
k + ρk + 1)|zη|2 = |z2

η + zη + 1|ρ2
k ≤

(
|z2

η|+ |zη|+ 1
)

ρ2
k,

whence |zη| ≤ ρk. Accordingly, zη is a dominant singularity of Tk(ϑ(z)) which
is a contradiction to eq. (3.7) which implies that Tk(ϑ(z)) has only the domi-
nant singularities ±ρk. Consequently, ϑ(ρk) is the unique dominant singularity
of Tk(z).

According to Corollary 2.14, the generating function, Fk(z), is D-finite.
Theorem 2.13 shows that the composition F (G(z)) of a D-finite function F
and a rational function G, where G(0) = 0, is again D-finite, and the product
of two D-finite functions is also D-finite, whence Tk(z) and Tk(ϑ(z)) are D-
finite and accordingly have singular expansions. Let STk

(z − ϑ(ρk)) denote
the singular expansion of Tk(z) at z = ϑ(ρk). Since ϑ(z) is regular at z = ρk

and ϑ′(ρk) �= 0, see Table 3.1, we are given the supercritical paradigm [42].
Indeed, we have ϑ′(ρk) �= 0, see Table 3.1 and derive

Tk(ϑ(z)) ∼ STk
(ϑ(z)− ϑ(ρk)) as ϑ(z)→ ϑ(ρk)

= Θ(STk
(z − ρk)) as z → ρk.

Proposition 2.24 implies that for z → ρ2
k

Fk(z) =

{
Pk(z − ρ2

k) + c′k(z − ρ2
k)((k−1)2+(k−1)/2)−1 ln(z − ρ2

k) (1 + o(1))

Pk(z − ρ2
k) + c′k(z − ρ2

k)((k−1)2+(k−1)/2)−1 (1 + o(1))

depending on k being odd and even. Here the terms Pk(z) are polynomials of
degree ≤ (k − 1)2 + (k − 1)/2 − 1 and c′k is some constant. Let SFk

(z − ρ2
k)

k 2 3 4 5 6 7 8 9

ϑ′(ρk) 0.4082 0.3265 0.2531 0.2042 0.1704 0.1461 0.1277 0.1134

Table 3.1. The values of ϑ′(ρk) for 2 ≤ k ≤ 9.
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denote the singular expansion of Fk(z) at z = ρ2
k. Equation (3.7) implies for

z → ρk

Tk(ϑ(z)) ∼ ρ2
k + ρk + 1

ρk + 2
SFk

(z2 − ρ2
k)

and thus
STk

(z − ρk) = Θ (SFk
(z − ρk)) as z → ρk.

Therefore, Tk(z) has at v = ϑ(ρk) exactly the same subexponential factors as
Fk(z) at ρ2

k, i.e., we have

[zn]Tk(z) ∼ ck n−((k−1)2+ k−1
2 )

(
ρ2

k

ρ2
k + ρk + 1

)−n

for some tk > 0

and the theorem is proved.
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