Chapter 2

The Central Limit Theorem from Laplace
to Cauchy: Changes in Stochastic Objectives
and in Analytical Methods

In 1812, Pierre-Simon de Laplace (1749-1827) published the first edition of his
Théorie analytique des probabilités (henceforth simply abbreviated by TAP).! With
its typical problems, stochastic models, and analytic methods this book would con-
siderably influence probability theory and mathematical statistics right until the be-
ginning of the 20th century.

Until Laplace and his successors, classical probability consisted mainly in the
sum of its applications to physical, social, and moral problems. However, as Laplace
already pointed out in the concise preface to the first edition of his TAP, probability
was also important for mathematics in a narrower sense. In many problems referring
to stochastic models depending on a large number of trials, probabilities could only
be expressed by formulae too complicated for direct numerical evaluation. Thus,
for a reasonable application of many of the results of probability calculus, partic-
ular considerations were needed to obtain useful approximations of the ‘“formulae
of large numbers.” In the aforementioned preface, Laplace called these problems
“the most delicate, the most difficult, and the most useful” of the entire theory.
He expressed his hope that discussion of these problems would catch the attention of
other “geometers.” Therefore, in addition to the qualitative feature of applicability,
which was characteristic for classical probability theory, a new, purely mathematical
aspect emerged: the relevance of specific analytical methods of probability theory.

Laplace had been intensely dealing with the “delicate problems” of probability
just described from the very beginning of his scientific career. In his 1781 “Mémoire
sur les probabilités,” one can already find “in nuce” almost all of the problems of
TAP, which can be roughly divided into two categories: “sums of random variables”

! For a description of the origin and the major contents of this book, see [Stigler 2005; Sheynin
2005b, 99-110]. An English translation by Richard Pulskamp of the second, probabilistic, part of
the TAP is available at
http://www.cs.xu.edu/math/Sources/Laplace/index.html.
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and “inverse probabilities.”” The first category includes, for example, the a priori
probabilities of profit and loss in certain games of chance, or of the arithmetic mean
of observations being subject to random errors; the latter for instance deals with the
a posteriori probabilities that the ratio of the chances of a boy’s and a girl’s birth
is within a given interval centered around the ratio of the corresponding observed
values. By 1774, Laplace had already developed useful approximation methods for
those a posteriori probabilities depending on a large number of observations. He did
not succeed in adapting this method to a priori probabilities until 1810, however.
Only then, with a “tricky” modification of the method of generating functions, did
he achieve any usable results on approximations of probabilities of sums of indepen-
dent random variables, which, from the modern point of view, are subsumed under
the rubric of the “central limit theorem.” It was the CLT which considerably shaped
the contents and methods of the TAP and significantly influenced the development
of probability and error theory during the 19th century.

As we have already seen (Sect. 1.4), the history of the CLT, as far as the con-
tributions of Laplace and his successors are concerned, has already been studied in
fair detail. Therefore, a main focus in the present section will be on those questions
which still seem to be open: Which changes in the probabilistic and analytical con-
text of the CLT occurred between ca. 1810 and 1850; how did these changes come
about, and how have these changes influenced analytical style and methods in the
treatment of this theorem?

2.1 Laplace’s Central “Limit”” Theorem

As already noticed, Laplace’s CLT was the result of an almost forty years’ effort.
In the following, we will describe the historical development of Laplace’s treatment
of sums of independent random variables, his methods for finding appropriate ap-
proximation formulae, and the major applications of his finally achieved CLT.

2 Inverse probabilities are conditional probabilities P(H|B) for certain “hypothetic” causes H
which may have entailed the observed results B. (P(H | B) is considered as “inverse” to P(B|H).)
The probabilities P(H |B) can be interpreted as if they quantify conclusions from an observation
B to its causation H “a posteriori.” If there are n possible causes H; (j = 1,...,n), and if the
P(H;) are known, then, by virtue of Bayes’s formula:

P(B|Hy)P(Hy)
Y= P(BIH;)P(H,)’

P(Hi|B) = k=1,...,n.

Since the probabilities P(H;) are unknown in most cases, one is often forced to the “subjective”
assumption of the H; being equiprobable. If, conversely, a certain probability distribution is—
more or less arbitrarily—presupposed, then any probabilities derived therefrom can be interpreted
as “a priori probabilities.”
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2.1.1 Sums of Independent Random Variables

Sums of independent random variables had played an important role in Laplace’s
probabilistic work from the very beginning.® In this context, the problem of calcu-
lating the probability distribution of the sum of angles of inclination, which were
assumed to be determined randomly, as well as the related problem of calculating
the probabilities of the deviations between the arithmetic mean of data which were
afflicted by observational errors and the underlying “true value,” became especially
important. In one of his first published papers, Laplace [1776] had already set out to
determine the probability that the sum of the angles of inclination of comet orbits (or
the arithmetic mean of these angles respectively) is within given limits. He assumed
that all angles, which had to be measured against the ecliptic, were distributed ran-
domly according to a uniform distribution between 0° and 90° (and also tacitly
presupposed that all angles were stochastically independent). Laplace succeeded in
calculating these probabilities for an arbitrary number of comets via induction (with
a minor mistake which was subsequently corrected in [Laplace 1781]). In this 1781
paper, Laplace even introduced a general—however very intricate—method, based
on convolutions of density functions, in order to exactly determine the probability
that a sum of independent random variables (“quantités variables,” as Laplace put it)
was within given limits.* In the most simple case, each of the n variables had the
same rectangular distribution between 0 and /. For the probability P that the sum
of those variables was between a and b with 0 < a < b < nh, Laplace obtained (in
modern notation)

1 iy i - M ; .
P=o— |\ 2|, |V o=y =3 | D @i | @)

i=0 i=0

where N = min(n, [%]) and M = min(n, [;]). Formulae of this kind were too
complicated for a direct numerical evaluation if the number of random variables
exceeded a relatively small value. The arithmetic mean of the actual observed an-
gles of inclination of the then known 63 comets was 46°16’. Through the use of
(2.1) alone, Laplace was unable to address the hypothesis that the comets’ planes
of motion resulted at “random.” At this stage of his mathematical work, however,
Laplace could not develop usable approximations.

3 For a comprehensive biography also dealing with Laplace’s probabilistic work, see [Gillispie
1997]. Detailed discussions of Laplace’s contributions to probability and statistics can be found
in [Sheynin 1976; 1977; 2005b; Stigler 1986; Hald 1998]. The web site already referred to in
footnote 1 contains English translations of most works in probability theory by Laplace.

4 See [Sheynin 1973, 219 f.] and [Hald 1998, 56-60] for descriptions of this method.
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2.1.2 Laplace’s Method of Approximating Integrals,
and “Algebraic Analysis”

Beginning with his “Mémoire sur la probabilité des causes” [1774], Laplace devel-
oped techniques for approximating integrals depending on a “great number,” such
as, for example, the Gamma function I'(s+1) = fooo e *x%dx with the “great num-
ber” s. The basic idea of this “Laplacian method of approximation” is as follows:
Let the integrand f(x) depend on a very large parameter such that the function f
has a single, very sharp peak, with the consequence that appreciable contributions
to the entire integral result only from a small interval around this maximum. Then it
can be expected that the function f is asymptotically equal to a function of the form
f (a)e_“(x“‘)zk + (@ > 0) if f attains its maximum at x = . Based on this idea,
the Laplacian method consists of appropriate series expansions around the abscissa
of the maximum. In the case of the Gamma function, Laplace started with

o0 o0
's+1)= / e *x’dx = / e (7 4 5)%dz.
0 —s
The maximum M = e °s® of the integrand is attained at x = s, or equivalently
z = 0. Laplace [1785, 258 f.; 1812/20/86, 128—131] set
e e (z+s) = Me @

and expanded 12 = —log(e *(1+42z/s)*) into a series of powers of z. Conversely, he
also expanded z into a series of powers of ¢, and obtained the following expansion
after transforming the variable of integration from z to ¢:

® 41 12
's+1)=M e A2 1+ + — 4 )dt
—oo s

3/2s 6
1 1
=125 o (1 + — ) @2
S n(+12s+288s2+ ) @2)

For many probabilistic formulae, Laplace’s method of approximation worked ex-
tremely well. For the problem of sums of (independent) random variables, however,
it was only at a rather late stage of his mathematical work that Laplace developed
techniques based on which suitable approximations could be deduced.

In the above-mentioned article of 1774, Laplace treated approximation problems
in an analytical style closely related to that of Euler. Laplace discussed the behavior
of the peak with an “infinitely large” parameter, carefully considering “infinitely”
large or small quantities. In his later work, however, he abandoned the “Eulerian”
style of calculating with infinite quantities of different gradations and, influenced
by Lagrange’s algebraic analysis, developed a special algebraic-algorithmic style
dealing primarily with formal series expansions, as we have just seen in connection
with the Gamma function. Laplace’s deduction of the CLT was likewise written in
this style.
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2.1.3 The Emergence of Characteristic Functions
and the Deduction of Approximating Normal Distributions

Laplace for the first time exemplified his approach to the CLT in the “Mémoire
sur les approximations des formules qui sont fonctions des trés grands nombres
et sur leur application aux probabilités” [1810a]. Crucial for this success in
approximating distributions of sums of independent random variables by normal
distributions was his modification of generating functions. Let me demonstrate the
essentials of his approach to the CLT’ in the special case of identically distributed
random variables X, ..., X,, which have zero means and which take the val-
ues % (m a given natural number, k = —m,—m + 1,...,m — 1,m) with the
respective probabilities pg.° For the calculation of the probability P; that Y ;_; X;
has the value # (—nm < j < nm), Laplace made use of the generating func-
tion T(t) = Y p__,, prt®. Due to the mutual independence of the X;’s—which
was usually only tacitly presupposed by Laplace—P; is equal to the coefficient
of t/ in [T(¢)]" after carrying out the multiplication. The direct execution of this
method—its general principle going back to de Moivre, see [Seal 1949]—Ieads at
best to very complicated algebraic terms for P;. Laplace, however, introduced the
trick of substituting the variable # by e (i = +/—1). Thus, he introduced the (now
so-called) characteristic functions in a special case.
From
1 T

— | e e dx =6, (t,s€7Z) (2.3)
2n J

it follows that "

| L e
P(j)=— e ¥ e’ dx.
) =5 /_ ) > &
k=—m

The last integral above was at least formally accessible to Laplace’s method of

approximation. There was, however, a certain modification necessary, as Laplace

did not consider an expansion of the whole integrand around its maximum at

x = 0, but only of the power with exponent n (equal to the characteristic function).
By expanding e** into powers of x one gets

3> The most important sources for Laplace’s treatment of the CLT are [Laplace 1810a; 1811], and
the fourth chapter of the TAP.

6 The following explanation differs, as far as terminology and further details are concerned,
from Laplace’s exposition. Unlike Laplace, we only consider, for the sake of simplicity, ran-
dom variables with values within the interval [—1; 1]. For paraphrases in Laplace’s original style
see [Sheynin 1977, 10-16] and [Fischer 2000, 29-33]. Hald [1998, 303-317] gives a thorough
account on Laplace’s analytical approach to the CLT.



22 2 The Central Limit Theorem from Laplace to Cauchy

P(j) = : / _Ux|: Z pkelkx:| dx

k=—m

L k2 2 ix? !
=5 JX[Z pr(l + ikx — 6 +:| dx.

k=—m
Taking into consideration that )¢, pek = 0, and with the substitution m>0” =
> h—_m Pkk?, we obtain

1 " 2,.2.2 n

P(j) = _/ [ Mo s a

21 J_n 2

where A is a constant depending on Yy _,, pxk?>. The formal expansion of
2.2.2

n
log[l_g_mu..} —logz

into a series of powers of x leads to

2.2 .2
mo-nx .
logz = T A4
2
and therefrom to
_W12L72nx2 s 3. mzazn‘c
z=¢e 2 Anc e — o~ (1 —iAnx® +---).

After transforming the variable of integration according to x = % the result is

1 (W i w2022 idy?
P(j) = e /VieTT 2 (1— +~~-)dy.
2n/n ) —nyn Jn

For an approximation with a “very large” n we ignore, like Laplace, all series terms
with a power of /s in the denominator, and at the same time, set the limits of
integration equal to +oo. In this way we get

00 —iiL m202y2
e “Vrne 2 dy,

1
P(j) ~
() i )

where the last integral is, as Laplace showed in different ways, equal to

1 L
e 2m202n. (2.4)
2mn
Summing up (2.4) for # € [r1+/n; r2+/n], which can be approximated by integra-
tion (dx ~ ﬁ), leads to the result
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1 __J%_
P(rlﬁSZXz < rp/n) & Z Y o
j€lmry/msmra./n] moN.nn

w2 o] a2
o / ——¢ 2m202(dx = / e 202 dx,
mry MO 21 rr o« 21

which corresponds to the integral form of the CLT. With only one exception (see
Sect. 2.1.5.3) Laplace dealt with independent identically distributed and bounded
random variables with densities.” To this aim he at first considered the range of
values of those random variables discrete (as described above), and then he assumed
m “infinitely large.”

Nowhere in his work did Laplace state a general theorem which would have
corresponded to the CLT in today’s sense. He only treated particular problems con-
cerning the approximation of probabilities of sums or linear combinations of a great
number of random variables (in many cases errors of observation, see Sect. 2.1.5.2)
by methods which in principle corresponded to the procedure described above.
In modern notation, Laplace’s most general version of the CLT [Laplace
1812/20/86, 335-338] was as follows: Let €1,...,¢€, be a large number of in-
dependent errors of observation, each having the same density with mean p and
variance 02. If A1, ..., A, are constant multipliers and @ > 0, then

n
24
j=1

The special case of a CLT for the binomial distribution Laplace [1812/20/86,
280-284] on the basis of Stirling’s formula treated in a particular section of his TAP
by methods which are in principle due to de Moivre and still employed in modern
textbooks.

n
P ij(ej—u) <a

2 [ a2
~ / e 20%dx.  (2.5)
j=1 0

- oA/2T

2.1.4 The “Rigor” of Laplace’s Analysis

From Laplace’s point of view, approximating an analytical expression depending on
a great number n meant transforming it into a series expansion with terms whose
order of magnitude decreased sufficiently fast with increasing n. The greater the
number of calculated terms and the faster these terms decrease, the better the ap-
proximation. Laplace did not determine absolute or relative errors of approxima-
tions, but instead put his trust, according to the leitmotif of algebraic analysis, in the
power of series expansions.

In the case of Laplace’s CLT, the series terms seem to decrease with ascending
powers of JLE (or even of % if the individual random variables have a symmetric

distribution). Apparently, it was Laplace’s point of view to trust in the quality

7 Laplace [1810a, 326 f.; 1812/20/86, 313 f.] hinted, though in a quite vague manner only, also at
the possibility of analogous considerations concerning unbounded random variables.
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of his approximations already because of those decreasing series terms. In the
Essai philosophique sur les probabilités, whose first edition appeared in 1814 and
served as a “popular” introduction to the Théorie analytique, Laplace [1814/20/86,
XXXIX] wrote of his approximations:

(...) the series converges the faster the more complicated the formula is, such that the
procedure is more precise the more it becomes necessary.

However, some authors did, if rather rarely, object to Laplace’s specific approach
to approximations. A first hint came from Adrien Marie Legendre as early as 1811.
In his Exercises du calcul intégral [1811, 290 f.] he discussed the approximation
formula

\/ﬁnn+1/2 Zm:

exp(E(n)), E@m)= (2.6)
exp(n)

— 2k(2k 1)n2k 1
which can (with slight modifications) be traced back to de Moivre and Stirling
around 1730 (see [Schneider 1968, 266-276]). The B, are the (Jakob) Bernoullian
numbers; Leonhard Euler had already shown in 1739 that, from a certain index,
these numbers grow faster than any geometric sequence [Schneider 1968, 276]. But
only Legendre clearly addressed the divergence of the series E(s) and the result-
ing difficulties for its analytical treatment. Laplace’s series (2.2) was, as apparent
from its first terms, equivalent to (2.6). (An exact proof for the equality of both se-
ries expansions, however, was not given during the 19th century.) From Legendre’s
description [1811, 343-348] of Laplace’s account it became therefore plausible
that the Laplacian method of approximation could lead in the general case to (in
Legendre’s own words) “semi-convergent expansions” only. Thus, for critical math-
ematicians, Laplace’s treatment of the CLT became suspicious as well. How could
it be justified neglecting series terms of “higher order,” if the series was possibly
divergent?

In 1844, Robert Leslie Ellis tried to discuss Laplace’s reasoning regarding the
CLT in a modified form (see [Hald 1998, 333-335]). He also explicitly analyzed
the example of mutually independent random variables with the common density
function f(x) = %e_‘x‘. Referring to his—only quite formal-—manipulations with
series expansions in treating this particular case, he wrote at the end of his explana-
tions [1844, 215]:

But some doubt may perhaps remain, whether such an approximation to the form of the

function P [the probability to be approximated], if such an expression may be used, is also
an approximation to its numerical value (...)

A similar assessment of Laplace’s series expansions was given by Cauchy in
[1853g’] (see Sect. 2.5.6).

In 1856 Anton Meyer® submitted a proof of the CLT in the special case of two-
valued random variables to the Academy in Brussels. Meyer’s proof was not based

8 Meyer was the author of a rather influential treatise of probability and error theory [Meyer 18741,
which was also translated into German [Meyer 1874/79] and constitutes an important source for
the state of the art at the beginning of the last quarter of the 19th century.
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on the usual procedure which can be traced back to de Moivre, and which had also
been elaborated in Laplace’s Théorie analytique. He instead used Laplace’s modifi-
cation of generating functions. There exists a brief report by Jean Baptiste Brasseur
on Meyer’s article (which itself seems to have been lost). Brasseur [1856] hoped
that Meyer’s method would lead to a more exact discussion of the neglect of the
“terms of higher order of smallness.” Meyer’s paper was accepted for publication,
however on condition that a better examination of the “convergence of the series”
be made. The publication failed, Meyer died the following year.

2.1.5 The Central Limit Theorem as a Tool of Good Sense

The examples of Ellis, Cauchy, and Meyer show that, in the middle of the 19th cen-
tury, Laplace’s methods of deducing approximative normal distributions for sums
of random variables were considered to be unrigorous by some authors. Such crit-
icism was quite rare, but this was in part due to the status of probability theory
within mathematics during the 19th century. As Lorraine Daston [1988] explained,
probability theory, at least until the middle of the 19th century, was not a disci-
pline of mathematics in a narrower sense, but rather part of a “mathesis mixta.” The
value of probabilistic research was determined less by internal mathematical cri-
teria, but rather by the quality of its application to “real” situations. Laplace’s CLT
met the latter point in an excellent manner. The results of all applications of this the-
orem matched with “good sense” and thus confirmed Laplace’s well-known saying
[1814/20/86, CLIII] that

Basically, probability is only good sense reduced to a calculus.

We shall test this claim with three prominent applications of CLT: the comet prob-
lem (already mentioned above), the problem of foundation of the method of least
squares, and the problem of risk in games of chance.

2.1.5.1 The Comet Problem

In 1810, Laplace could base his examinations of the “randomness” of the orbits of
comets on the observation of 97 comets. Under the hypothesis of a uniform dis-
tribution for the angles of inclination between 0 G and 100 G (centesimal degrees,
corresponding to 0° and 90°) and with aid of the CLT, he calculated the probability
that the arithmetic mean of all angles falls within a certain interval around “50 G.”
The mean of the observed values was 51.87663 G, and thus Laplace considered the
interval [50 G — 1.87663 G; 50 G + 1.87663 GJ. The probability of this interval was
only around 0.5. Therefore, there was a considerable probability that, presupposing
a uniform distribution, the mean of all angles deviated from 50 G even more than the
observed mean. Laplace [1810a, 316] followed that there did not exist any “primi-
tive cause” which affected the specific positions of comet orbits. Thus, Laplace, by
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using probabilistic methods, succeeded in confirming the prior assertion of Achille
Pierre de Séjour (stated in Essai sur les cométes 1775) which he had already referred
to in his first pertinent contribution [Laplace 1776, 280].

In contrast, an analogous calculation regarding the 10 planets (and planetoids)
known at that time, which could be carried out with the “exact” formula (2.1) of
1776/1781, showed that the position of their orbits depended on a common “cause”
[Laplace 1810a, 307 f.]. Such considerations were important regarding the currently
so-called Kant-Laplace nebular-hypothesis. Stigler [1986, 137 f.] and Hald [1998,
303-306], both referring to the first, although very specific and purely algebraic, ap-
plications of the tricky substitution t* = e* V=T in generating functions discussed
by Laplace in [1785, 267-270], maintain that Laplace had already discovered “his”
CLT by the 1780s. However, the relevance of this theorem for astronomical issues,
intensively studied by Laplace between 1785 and 1810, was likely to have led to the
publication of pertinent results as soon as possible. Thus, Laplace presumably did
not develop his method for deriving approximate normal distributions for sums of
independent random variables much earlier than around 1810.

The problem whether orbits of comets and planets depended on “primitive
causes” was only one of several opportunities when Laplace searched for “regu-
lar causes” in nature. Other examples, treated similarly as the comets and planets
issue, such as the daily changes of air pressure between mornings and evenings, or
the slight deviations to the east during the free fall of bodies, can be found in the
fifth chapter of Laplace’s TAP.”

2.1.5.2 The Foundation of the Method of Least Squares

The most prominent application of the method of least squares'” during the 19th
century was as follows:

Letd; (i=1,...,s) be observed values, a;; (j =1,...,t, t <s) given coefficients,
and §; “elements” to be determined such that

t
di—i—e,-:Zaiij (iZl,...,S), 2.7
j=1

where the ¢ are unknown, mutually independent errors of observation. Laplace
named the equations (2.7) “equations of condition” (“equations de condition”).
The problem was to estimate the &; as precisely as possible after observing the d;.
According to the method of least squares, first published by Legendre in 1805, esti-
mators x; for the §; can be obtained by virtue of the principle

° For a survey of the pertinent work of Laplace see [Hald 1998, 431-443].

10 There exists a good deal of historical literature on the method of least squares. For detailed
discussions of the error theoretic development during the 18th and 19th centuries see [Stigler
1986; Hald 1998; Farebrother 1999]. The most important original sources can be found (mainly in
German translation) in [Schneider 1988].
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2
N

t
Z di — Z ajjXj = min, (2.8)
j=1

i=1

from which the ¢ equations

K t K
Zzaikaijxj = Zaikdi (k=1,...,1)

i=1j=1 i=1

follow. Thus, the method of least squares belongs to those methods which combine
the equations of condition after setting ¢; = 0 linearly to a new system of ¢ equa-
tions in ¢ unknowns. In modern matrix-notation, this means: Given the system of
equations of condition

d+e= At

for the vector of unknown elements § = (&, ..., S,)T with
A= (a;) eRY (s>1),d =(d,....d)T, e = (e1,...,¢)7,

the goal is to find a system of “multipliers” B € R** such that the vector of solutions
x of the equation system
Bd = BAx

is in a certain sense “optimal” with regard to the “true” &. Choosing B = AT, one
gets exactly the same values for the coordinates of x which result from the condition
(2.8), that is, from the method of least squares.

In the special case of “direct observations” of one single element &, that means,
in the case where the equations of condition have the particular form

di+e¢=¢ (=1,...,5),

the method of least squares yields the arithmetic mean x = ) ;_, d;/s as an esti-
mator for £. This property rather frequently played an important role in foundational
discussions on least squares during the 19th century.

Legendre [1805] had only given an intuitive justification of least squares, which
did not use any probabilistic arguments. In 1809 Carl Friedrich Gauss succeeded
in showing that the least squares estimators x; according to (2.8) are equal to the
estimators meeting the condition of being “most probable,” a condition which is now
called the “maximum-likelihood-principle” (see Sect. 3.1). For this justification of
giving preference to the method of least squares, Gauss presupposed that the errors
of observation were identically normally distributed (with expectation 0).

The joint occurrence of normal distributions in Gauss’s argument and in
Laplace’s CLT possibly motivated the latter to give a new foundation of least
squares in the case of a large number of equations of condition (see [Stigler 1986,
143] for a discussion of this “Gauss—Laplace Synthesis”). Laplace [1811] showed
that the method of least squares was “optimal” according to certain criteria, which
suggested to him calling this method later, in the TAP, the “most advantageous.”
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If one takes the recapitulating description in the Essai philosophique (the
introduction to the TAP) as a standard, the “most advantageous” method was,
according to Laplace [1814/20/86, LXII], the method in which “one and the same
error of the results is less probable than with any other procedure.” A sensible
translation of this sentence into modern mathematical language is: the estimator x’
for a true value £ according to the “most advantageous” method has, in comparison
with all estimators x” obtained by competing methods, the following property:

P(§—x'| >a) < P(|E—x"| > a)foralla > 0. (2.9)

Laplace (e.g., [1812/20/86, 348]) claimed to have proven that the method of least
squares would be, in this sense, the “most advantageous,” at least among those meth-
ods which combine a large number of observational equations linearly into a set of
equations with (if possible) a uniquely determined system of solutions.

In his foundation of the method of least squares, Laplace [1811, 387-398;
1812/20/86, 318-327] treated first the simplest case of equations of condition with
a single element &:

aé=di+ea,...,a56 =ds+ ¢

(a; given coefficients, d; observations, ¢; mutually independent errors with zero
means). Laplace estimated £ in the form

_ iz bidi
i1 biai’

bi,...,bs being indeterminate constants at first. The difference between the true
value £ and the estimator x became therefore

Yi=1bici
Yi=1biai

In order to determine the “most advantageous” multipliers b;, Laplace tried to cal-
culate the probability law for linear forms ) ;_; b;€;, s being a great number. For
each error he assumed the same symmetric density function which vanished beyond
a bounded interval. In his work of 1810 Laplace had already deduced an approxi-
mating normal distribution for the sum of a large number of identically distributed
errors, a result which at first served only for a rather theoretical discussion of arith-
metic means. Now, Laplace used an analogous analytical approach to the linear
combination, with the following result (represented in modern notation):

o@/

E—x = (2.10)

UZZbZ

P(—r/s <) bie <ris) ~
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o2 being the variance common to all errors. Setting /s = co,/2 bl.z, Laplace

for £ — x according to (2.10) deduced:"!

co,/23 b?
< Lo

[ > aibi]

co /2> b?

[ > aib;]

2 ¢ 2
T Jo

Laplace now proceeded, without giving any explanations, as if the approximation
(2.11) was, presupposing a large number s, even exact. This was one of the crucial
points of his foundation of least squares. As we will see below, Cauchy’s criticism
of exactly this point would later become a major motivation for his own “rigorous
proof” of the CLT. Also Gauss, at several places of his work, critically pointed out
that, strictly speaking, Laplace’s argumentation was only valid for the unrealistic
situation of an “infinitely large” number of observations. >

On the basis of the assumption of an exact normal distribution, Laplace required
that one choose the multipliers b; according to the condition that for any probability

V2 b?
level (depending only on ¢) the “limits of error” + CC\IZTZbIl should be minimal. Be-

> biei
> a;ib;

P ‘ | — x| <

cause the modulus of these limits is minimal if and only if b; = ka;, with constant
k # 0, this condition in fact leads to the least squares estimator x = % The

criterion of “minimal limits” is equivalent to condition (2.9), which was di’scussed
only in Laplace’s Essai philosophique.

Laplace [1811, 401-409; 1812/20/86, 327-332] also tried to apply his reasoning
to the simultaneous treatment of more than one element. To achieve this, he devel-
oped a rudimentary form of the multidimensional CLT, from which he, however,
passed on to a one-dimensional consideration. A truly complete multidimensional
solution of this problem, by an explicit consideration of confidence ellipsoids, was
only reached by Bienaymé [1852]. Presupposing mutually independent errors of
observation €1, ..., €,, each having the same density f with mean 0, Bienaymé
by further developing Laplace’s techniques derived a series expansion for the den-
sity p(t) of the multi-dimensional linear combination A := Y ;_, a;¢; with fixed
a; € R! (¢ <n). His result was equivalent to

t
Y apyw | (1-R(1)),

Jik=1

® 1 1
pr)=——F——exp| =
(2m) 20! N 202

' Tn order to deduce the following approximation, Laplace in his TAP would have been able to
apply equation (2.5), which was even derived for errors with an asymmetrical density, if he had set
w=0,a=co~2 andA; = b;/ Y a;b; there. As the TAP was largely a compilation of earlier
work, he simply copied the argumentation from his 1811 paper, which was based on symmetric
errors. And only in the subsequent section of the TAP did he establish the relation (2.5), however
without any comment on its possible use for discussing least squares.

12 See, for example, [Gauss 1821, 99; 1823, 18].
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where o2 denotes the variance common to all errors, (a jk) the inverse matrix of
(Aig) € R with A;y = Y7 _, ariayg,'> N? the determinant of the matrix (A;y),
and R(7) an infinite series of terms, each depending on moments of f'* and tending
to 0 as n — oo (see [Heyde & Seneta 1977, 66-71; Hald 1998, 501-504]).

By around 1810, several methods of dealing with observational data were avail-
able, but the method of least squares was apparently the most useful in the general
case. Thus, it was reasonable to champion least squares even without a probabilis-
tic discussion. Yet the CLT “proved” that, at least under “natural” assumptions, this
method was superior to other procedures. From Laplace’s point of view, his asymp-
totic discussion of least squares completely confirmed the established opinion of
astronomers and geodesists. Thus, on the one hand, his CLT was a tool of good
sense, and its rigor was not to be scrutinized. On the other hand, it became plausible
that, in the time after Laplace, critical discussions of the superiority of least squares
also questioned the validity of the applied normal approximations, and thus of the
CLT itself.

2.1.5.3 Benefits from Games of Chance

As a general rule, Laplace considered independent identically distributed random
variables with densities. A rare exception from this rule can be found in his dis-
cussion of the “benefits depending on the probability of future events” (chapter IX
of TAP). Laplace [1812/20/86, 428—432] dealt with a particular sequence of games
with only two outcomes for each single game: “gain” and “loss.” He assumed that
the respective probabilities of gain and loss were possibly different from game to
game. According to these assumptions, Laplace based his analysis on a large number
s of single games (tacitly considered as being independent) with results X1, ..., X,
where each X; could take the values v; (gain) and —u; (loss) with probabilities g;
and 1 — g;, respectively. Proceeding in a way analogous to his treatment of sums of
observational errors, he achieved the result that

P (‘Z X; — Z(t]ivi - _CIi),ui)) < r\/2261i(1 —qi)(vi + ,ui)z)

2 /r 4t
~— | e :
vr Jo

Laplace argued that Y (g;v; — (1 — ¢;);) was of the order of magnitude s if each
summand was “a little” greater than 0, whereas r\/2 > qi(1 —qi)(vi + ui)? was
of the order /s only. Therefore, for arbitrarily large » > 0 and sufficiently large s,
even

Z(t]ivi — (1 =gi)ui) — 7‘\/2 Z%’(l —qi)(vi + wi)?

B, designating the i-th coordinate of the vector «; .

14 Bienaymé explicitly calculated those terms which depend on moments up to the 4th order.
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became greater than 0."> Laplace followed that an “infinitely large and certain” total
gain would be accumulated if only g¢;v; — (1 —¢;)p; > Oforall 1 <i < s. By
this application of the CLT, Laplace provided the basis for a theory of risk, which in
turn would even play an important role in the history of the CLT during the 1920s
(see Sect. 5.2.8.1).

2.2 Poisson’s Modifications

Among all contributions of the 19th century in connection with Laplace’s CLT aim-
ing at a more comprehensible presentation or at modifications of the Laplacian
methods according to contemporary analytical standards, the two approaches [1824;
1829] by Siméon Denis Poisson (1781-1840) had a special influence on the contri-
butions of later authors. Poisson shared Laplace’s view on the status of probability
theory in the classical sense.'® Concerning moral problems, however, Poisson gen-
eralized Laplace’s stochastic models to a considerable extent, and he did not share
Laplace’s cautious attitude toward these issues. Poisson’s idea of all processes in
the physical and moral world being governed by distinct mathematical laws is in
line with his attempts toward a more exact mathematical analysis. Accordingly, the
consequences for CLT were twofold: Firstly, Poisson formulated and proved this
theorem generally for “choses,” thus creating an early concept of random variables,
and secondly, he tried to discuss the validity of this theorem, mainly through coun-
terexamples.

2.2.1 Poisson’s Concept of Random Variable

In the first [1824] of the above-mentioned articles, Poisson treated sums and linear
combinations of observational errors with different (not necessarily symmetrical)
distributions, followed by a discussion of the Laplacian foundation of least squares.
In the second article of 1829, he took up the issue from a far more general point of
view. There, Poisson investigated asymptotic behavior of the distribution of a sum
of functions (!) of the values of a “thing” (“chose”), where in several independent
experiments these values were obtained with possibly different probabilities. The
additional complication of considering a “function” essentially served to cover both
sums of random values and of powers of these values within the same theorem. From
today’s point of view, all these quantities would plainly be described as random
variables. Thus, Poisson’s concept of the values of a “thing” was directed primarily

15 Apparently, Laplace tacitly assumed the existence of positive constants a, b such that g;v; —
(1 —gi)p; > aand (v; + p;)> < b foralli.

16 Poisson’s work in probability is well described in [Sheynin 1978; Bru 1981; Hald 1998; Sheynin
2005b].
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toward the most important applications, and was still far away from the modern
conception of abstract “random variable,” as explained by Kolmogorov [1933a].!”

2.2.2 Poisson’s Representation of the Probabilities of Sums

In his discussion of sums of independent random variables, Poisson normally as-
sumed that each variable X, took values within the interval [a; b] (—a and b could
be even infinitely large) and had a density function f;, which was introduced by
fa(x) = F,(x), where F,(x) = P(X, < x).In a manner similar to Laplace’s ap-
proach, Poisson started his analysis with discrete random variables. Unlike Laplace,
however, he did not consider probabilities of single discrete values but immediately
calculated, partly through combinatorial considerations, the probability that the sum
Ss = X1 + --- + X would be within certain limits. Through the strict use of in-
finitesimal quantities in the transition from discrete to continuous random variables,
he [1829, 5; 1824, 275; 286] established the formula

Plc—e<S;<c+ye)
1 o0
-z /.
The justification of this formula was incomplete, even from a contemporary point

of view. But Poisson [1824, 276] examined the validity of (2.12) in the special case
s = 1. By interchanging the order of integration he concluded from (2.12) that

s b
/ Jn (x)e‘”ﬁdx> eocv=1 sin(ea) afx—a. (2.12)
1 a

n=

1 b [ d

Plc—e<X;  <c+e)=— / / (e<x—c)w 1 sin(soz)—a) fi(x)dx. (2.13)
TJe Jooo o

By virtue of the addition theorems for sine and cosine, and the well-known for-

mula'® —
/ k) 2T k0,
0 X 2

he showed that

Oforx €c—e;c+e¢]

—0o0

o0 N
/ e(x_c)“ﬁsin(ea)d—a - % mfor xele —eic+ e (2.14)
o

17 Poisson’s approach to random variables was taken up and further developed soon afterwards by
Carl Friedrich Hauber [1830], in his “Theorie der mittleren Werthe” (“Theory of Mean Values”), in
an interesting attempt to develop a concept of far-reaching generality for random variables, which
were named “unbestimmte Grofen” (“indetermined quantities”). Many properties of expectations
and variances of sums or products of independent random variables which today belong to the
standards of each elementary theory of random variables, were explicitly stated and proven for the
first time by Hauber.

18 For a history of this formula, which can be essentially traced back to Euler and still plays an
important role in several branches of analysis, see [Fischer 2007].
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The required result

c+e
P(c—e§X15c+8)=/ £ ()
c—¢&

followed immediately from (2.13) and (2.14). In turn, it must have been within
Poisson’s scope to establish (2.12) by means of (2.14), even in the general case
of arbitrary s. But only Dirichlet and Cauchy, as we will see below, directly used
the jump function in (2.14) for elegant derivations of formulae equivalent to (2.12)
for the probabilities of sums. Dirichlet at least was most probably motivated by
Poisson’s discussion of (2.13) and (2.14).

Dealing with the general case, Poisson set

b b
/ Jn(x) cos(ax)dx =: pp cos @y, / Jn(x) sin(ax)dx =: p, sing,, (2.15)

and
R:=p1-ps, Y:i=¢1+ -+ ¢s. (2.16)

Using R(—a) = R(«) and ¥ (—«) = —y(«), he concluded from (2.12):
Plc—e<S;<c+¢)= %/ Rcos(l//—ca)sin(soc)c%. (2.17)
0

In his article of 1824, Poisson dealt with the case of an “infinitely large” s by cal-
culating with infinitely small and infinitely large quantities. In his article of 1829,
however, series expansions constituted the analytical background for an approxi-
mation with “large” (but not infinite) s. Afterwards, Poisson apparently preferred
the second version (described in detail by Hald [1998, 317-327]), which was also
adopted into his major probabilistic work, the Recherches sur la probabilité des
Jjugements en matiére criminelle et en matiére civile [1837].

2.2.3 The Role of the Central Limit Theorem in Poisson’s Work

As we will see in the following, Poisson’s work on the CLT was based on Laplace’s
ideas on the one hand; on the other hand, however, Poisson’s discussion of new
analytical aspects paved the way toward a more rigorous treatment of the CLT.

2.2.3.1 Poisson’s Version of the Central Limit Theorem

Poisson’s results concerning the CLT can be summarized in modern terminology
essentially as follows:

Let X;,..., X, be a great number of independent random variables with density
functions which decrease sufficiently fast (Poisson did not specify exactly how fast)
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as their arguments tend to £ oo. It is supposed that for the absolute values p, («) of
the characteristic functions of X, (see (2.15)) there exists a function r () indepen-
dent of n with 0 < r(«) < 1 for all @ # 0 such that

pn(a) < r(a). (2.18)
Then, for arbitrary y, y’,

’

s _ Y
Ply=< Yn=1(Xn —EXy) <y |~ L/ e du.,
V25— VarX, v

Vr
where the approximation becomes all the better the larger s is, and the difference be-
tween the left and the right side becomes “infinitely small” with “infinite” s. Strictly
speaking, Poisson’s analysis could be used for arbitrary y, y’, though he explicitly
expressed end results in the sense of (2.19) only for the special case y = —y’ < 0.
Poisson was convinced that this CLT was also valid for discrete random vari-
ables. In this case one could, according to Poisson [1837, 274 f.], assume that the

(2.19)

values cq, ..., c, of a random variable of this kind were subject to the respective
probabilities yq, ..., y, which were represented by y; = cc,i:ss f(z)dz with an
1

“infinitely small” quantity § and a “discontinuous” density function f.'

As with Laplace, the CLT for Poisson was an important tool of classical probabil-
ity, but not an autonomous mathematical theorem. Unlike Laplace, however, Pois-
son pointed out essential presuppositions “en passant,” such as the above-mentioned
condition (2.18) for characteristic functions, and he discussed counterexamples to
an overall validity of asymptotic normal distributions for sums. The most promi-
nent of these counterexamples [Poisson 1824, 278] concerns the sum of identically
distributed random variables with the probability density

1

SO = wivay

for which the direct evaluation of (2.12) shows that

1 2es
P(C—Ef ZXn §C+5) = Earctan(sz_i_c—z_sz).

Therefore in this case, even for large s, an approximate normal distribution can
not be reached. Poisson [1824, 280] pointed out, however, that such cases of very
slowly decreasing densities would not occur in practice, because all errors of obser-
vation were uniformly bounded in reality. Random variables with the density func-
tion f would later play an important role in Cauchy’s critical discussion of least
squares (see Sect. 2.5.2). In fact, such random variables are now called “Cauchy-
distributed.”

19 Poisson at this place used the adjective “discontinuous” in the traditional sense, as being inac-
cessible to a representation through a uniform algebraic term.



2.2 Poisson’s Modifications 35

The significance of his condition for characteristic functions (2.18) Poisson
[1824, 289-291] illustrated by two similar examples, where neither the assertion
of the CLT was true nor this condition was met: He considered linear combinations
> 1 Yn€n Of identically distributed errors obeying the law

fx) =e2H.
Using the formula (2.12) he showed that, for an “infinitely large” s,

1= e—ZC

. 1
P(—CSZVnGnSC)=W i yn=-.

and
1
2n—1

4
P(—c < Z Yn€n <c¢)=1— - arctan(e2¢) if y, =

According to Poisson, in the first example we have

1 o
p1(a)---ps(a) = 1 T
I+ % (1 + 44) (1 + 4S2) eZ”‘" —e 2™

whereas in the second

1 2
pr(e)---ps(a) = 3 3 -
1+ )0+ 351+ 4(2s 1)2)

o _m
€4 +e 4

2.2.3.2 Poisson’s Law of Large Numbers

Regarding error theory, Poisson hardly made any modifications to the Laplacian
discussion of least squares based on the CLT. Yet the discussion of (in modern terms)
stochastic convergence of mean values and relative frequencies, respectively, which
did not play a too dominant role in Laplace’s work, became vital for Poisson and
his major probabilistic work, the Recherches. Like Laplace, Poisson based such
considerations on the CLT.

The approximate stability of arithmetic means or relative frequencies, quite often
observed within different sequences of random experiments of the same kind, was
so important for Poisson’s probabilistic approach that he coined the term “law of
large numbers” for this fact. In the introduction of his Recherches, he characterized
this law as follows:

The phenomena of any kind are subject to a general law, which one can call the Law of

Large Numbers. It consists in the fact, that, if one observes very large numbers of phenom-

ena of the same kind depending on constant or irregularly changeable causes, however not

progressively changeable, but one moment in the one sense, the other moment in the other
sense; one finds ratios of these numbers which are almost constant [Poisson 1837, 7].

It must be emphasized that Poisson’s interpretation of “law of large numbers” is
different from the modern definition of this term.
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For a “proof” of his law of large numbers, Poisson [1837, 139-143, 277 {.]
introduced a special two-stage model of causation for the occurrence of an event
(or, more generally, for the occurrence of a special value of a “chose”), and he es-
tablished two auxiliary theorems on stochastic convergence: the first concerning the
arithmetic means of non-identically distributed random variables, the second con-
cerning the relative frequencies of an event which generally does not occur with con-
stant probability. He based these theorems, which are equivalent to the now so-called
“laws of large numbers,” on his general CLT (for comprehensive historical accounts
see [Bru 1981, 69-75] and [Hald 1998, 577-580]). A distinct deviation of the rel-
ative frequencies with which a certain event had occurred in different sequences of
observations respectively, possibly gave rise to the assumption that these sequences
originated from different systems of causation. In the third part of his Recherches,
Poisson gave a probabilistic discussion of the significance of such hypotheses in
the context of conviction rates, and he essentially used the CLT for calculating the
respective probabilities (see [Stigler 1986, 186—194] for a detailed discussion).

Poisson’s law of large numbers (in its original form) was heavily criticized dur-
ing the 19th century. Among these discussions, two crucial points became subject of
debates: the practical meaning of Poisson’s causation system was scrutinized
(mainly by Bienaymé, see [Stigler 1986, 185; Heyde & Seneta 1977, 46-49]),
and the analytical rigor of the deduction of the “auxiliary” CLT was questioned.
Chebyshev [1846, 17] criticized that Poisson’s analysis was only “approximative,’
and did not provide exact “error limits.” In this way he showed a—still rather
vague—unease with Poisson’s analytical approach. One can, however, interpret
Chebyshev’s criticism as an indication of the shift from “classical” probability,
chiefly determined by its applications, toward a “new mathematical” probability.
Perhaps, Chebyshev’s objections resulted from Poisson’s (as well as Laplace’s)
procedure of neglecting “higher” series terms without giving any justification for
that. Yet, if this was the case, Chebyshev did possibly not realize that Poisson had
given an—at least indirect—justification of this procedure with his first, infinitistic
approach.

2.2.4 Poisson’s Infinitistic Approach

Poisson’s discussions of 1824 and 1829 on the CLT were essentially equivalent.
The first account, however, clarified the fundamentals of Laplace’s method of
approximations as applied to the CLT much more directly, and, as we will see be-
low, paved the way for a more “rigorous” treatment of asymptotic normal distribu-
tions for sums of independent random variables. For a discussion of the essentials
of Poisson’s “first” approach it is sufficient to confine the description to the special
case of identically distributed random variables with a density f vanishing beyond
the finite interval [a; b].
From (2.15), (2.16), (2.17) one gets with
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b 2 b 2
pi=p1 = (/ fi(x) cos(ocx)dx) + (/ fi(x) sin(ax)dx) ,

and ¢ 1= ¢1:

(o]

2 d
Plc—e<S<c+¢)= E/ 0’ cos(sp — car) sin(ea)—a. (2.20)
0 o

IA

Poisson [1824, 279-281] carefully justified that 0 < p < 1 if & # 0. The following

excerpt illustrates his notion of “infinite” quantities and his handling of these quan-

tities in connection with an asymptotic representation of P(¢c —e < S5 < ¢ + ¢):
We want to consider the number s infinitely large, such that the following formulae
are rigorously true at this limit, and the more approximated, the larger s is. Now, from
the quantity p being less than 1 if the variable « is not = 0 it follows that at the limit

s = oo the power p® attains finite values only for infinitely small values of this variable,
and becomes infinitely small if « has a finite value [Poisson 1824, 280].

Poisson expressed in this text the contemporary view of the meaning of “ap-
proximation”: Approximation formulae had to be “rigorously true” at the “limit.”
Moreover, he considered, as can be inferred from his phrasing “limit,” an “infinite”
quantity not as actually infinite. On the other hand, he treated infinitely small quan-
tities as belonging to the common system of numbers.”’ This ambivalence in the
attitude toward the infinite is typical for the “infinitesimal” period in the first half of

the 19th century, which led away from the priority of algebraic analysis.

. . 2,2
On the basis of the above-cited comment and on account of cos(ax) ~ 1 — 5~

and sin(ax) ~ ax for “infinitely small” «, Poisson could deduce—at least for a
finite interval [a; b]:
s - h?a?)* for an “infinitely small” o
P 0 otherwise,

b b 2
where h? := % / x2 fi(x)dx — (/ xfi (x)dx)

The sign ~ (not explicitly used by Poisson) is used here to indicate an “infinitely
close” position of one value to another. Poisson [1824,281] seta =: y/4/s, “where
the new variable y can attain finite values.” Taking into account that p ~ 1 and
fab Jf1(x) sin(ax)dx ~ fab f1(x)axdx for @ ~ 0, he concluded that sin ¢ ~ ko« for
o & 0, where k is the expectation of the random variables. As a result of sing ~ ¢
for sin ¢ = 0 it followed that ¢ ~ ko for o = 0.

In this way Poisson obtained for “infinitely large” s on account of (1 — hzs—yz)s
~ e h?y2.
2 [ 202 y dy
Plc—e<S;<c+e)=~ —/ ey cos[(ks—c)—]sm— .(221)
’ T Jo \/— \/_

20 For Poisson’s general preference to infinitesimals see [Schubring 2005, 455 f.].
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For Poisson’s inference from (2.20) to (2.21) further explanations would have been
necessary. The only comment which Poisson gave in this context was in relation to
(2.21):

Strictly speaking, one is allowed to attribute to the variable y only finite values; because

of the exponential factor e*7* however, one can expand the respective integral into the
infinite, without a considerable error [Poisson 1824, 282].

From a rigorous point of view, one can deduce from (2.20) only that, for an arbitrar-
ily large but finite Y,

2 (Y d
Plc—e<S;<c+e)~ E/ ey cos[(ks —C)L] sinﬂ—y—i-
s

0 NG sy

2 [ d
+ - / 0° cos(sp — ca) sin(sa)—a.
Ty o

75
Apparently, for Poisson it was a matter of course, which did not need any special

justification, that

NG

for an “infinitely large” s.
From (2.21) one could infer, with the aid of the relation

o0
d
/Y 0’ cos(sgp — ca) sin(sa)—a ~0
o

1 1 €
—cos[(ks — C)L sin L = cos[(ks —c + Z)L]dz,
y s

Vi s Vs

and consequently

2 _h2y? y ey dy
— e cos[(ks — ¢)—==]sin — —
n/o . )f sy
- b ) (/00 ey’ cos[(ks — ¢ +Z)L]d )dz
s Je \Uo )
that

1 & (ks—c‘2+2.)2 d ’ 22)
e 4h<s Z. .
2ha/Ts J_¢ (
Setting ¢ = ks and € = 2hr /s in (2.22), Poisson finally obtained the result:

Plc—e<S;<c+e)~

2 r
P(ks —2hr/s < S5 < ks + 2hr+/s) ~ 7/ e dr.
T Jo

Poisson’s discussion of sums of non-identically distributed random variables
followed the model just described for identically distributed random variables. For
the validity of his deductions in the general case, Poisson made a further condition
explicit which was equivalent to (2.18).
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2.2.5 Approximation by Series Expansions

The essential goal of Poisson’s paper from 1829 on the CLT was to approximate the
probabilities of a sum of a large number of random variables X,, whose densities
Jn vanish beyond a finite interval [a; b], by a series expansion rather than to derive
a “limiting formula.” By the argument that the product p; () - - - ps(c), where

b 2 b 2
On = (/ fn(x)cos(ax)dx) + (/ Jn(X) sin(ax)dx) )

attained values significantly different from zero for very small « only, Poisson jus-
tified that it was possible to cut off that series expansion after its first terms.

With the abbreviations f: Xfn(X)dx =: ky, fab x? fu(x)dx =: kj,, ..., and the
designations (2.15), Poisson [1829, 8 f.] derived the series expansions

o? at
On COS @y = 1—7k,/, + Ek,/{/—---,

E
on Sing, = ak, —?k;’—i—m .

Because of |k,| < |b| + |al,|k,| < (|b| + |a])?,... these series are conver-
gent. Poisson [1829, 8] expressed the opinion that this convergence guaranteed the
respective left sides being actually represented by the series expansions on the right.
In this way, Laplace’s formal calculations according to his method of approxima-
tion, which in many cases led to divergent series, were substituted by an explicit
discussion of convergence.

By use of the series expansions for p, cos ¢, and p, sin ¢,, series expansions for
R, ¥ (see (2.16)), and for cos(yy —car) in powers of o were accomplished such that,
because of (2.17),

2 o0
P(c—sszfc—i-e):E/ e_“zhs(l—l—a“ls—i—---)x
0

x (cos[(ks — c)a] + o> gs sin[(ks — c)a] + ) sin(eoz)%x.

In this formula &, /1, g, [ denote quantities depending on the moments of the single
random variables; the absolute values of these quantities have upper bounds inde-
pendent of s, as Poisson proved. In particular, k = % and h = % ensued.
On the basis of these considerations Poisson apparently believed to have given an
additional justification for the neglect of those terms which are, after having carried
out the substitution @ =: B/./s, divided by a power of s larger than s'/2. In this
way, the approximation
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w J—
P(c—efSS§c+8)r\8%/ e_ﬂzhCOSWSin%%B+
0
2g © _/32],, . (kS—C),B EIB
e sin ————

+ — sin —
n/s Jo NG NG

was reached [Poisson 1829, 9].

In his 1929 paper, Poisson’s further proceeding was rather complicated. A con-
siderably simplified approach was given in his book [1837,270 f.]: Poisson in (2.23)
setc = ks and ¢ =2y Vs, with the result

B2dp (2.23)

P(ks —2y~vhs < Sy < ks + 2y~hs) ~ %/w e Bh sin(2,3yx/ﬁ)%3. (2.24)

0

Essentially making use of

© 2 a2
/ e ™ cos(ax)dx = /me” 7,

o

Poisson showed that the integral in (2.24) was equal to

2 / ’ e du.
VvrJo
Poisson’s preference for the just-described approach to the CLT by means of

explicit series expansions might have been mainly caused by the fact that this
method gave additional correction terms of the order s~!/2 and less for “large”
(but not infinite) s, and therefore was considered to be more general than the “sim-
ple” approximation by the normal distribution only. For the subsequent development
of the CLT, Poisson’s “infinitistic”” approach seems to have been more influential,
however.

2.3 The Central Limit Theorem After Poisson

During the time after Poisson, two crucial changes occurred in the development of
probability theory. Firstly, probability eventually lost one of its major branches, the
application to moral sciences. Secondly, the movement toward a purely mathemat-
ical view of stochastics, which in a certain sense had already begun with Laplace,
gained momentum. The development of the CLT was connected with both fields, as
we will see in the cases of Cauchy’s and Dirichlet’s contributions.

2.3.1 Toward a New Conception of Mathematics

Both Cauchy and Dirichlet are seen as representatives of a new mathematical
conception emerging after 1800 which was generally accepted during the last third
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of the 19th century. The essentials of this new point of view can be summarized
as follows: A separation of mathematics from its ontological relation to the phys-
ical and moral world was beginning to form, as stated by Kline [1972, 619 f.]. In
[Laugwitz 1999, 187-191] this development is described as a transition from the
consideration of the “contents” to the discussion of the “scope” of “concepts.” The
role of counterexamples in this context changed from irrelevant “curiosities” toward
boundary posts indicating the limits of the specific concepts. Poisson, for example,
still understood his examples of nonconvergence to the normal distribution in the
sense of singular exceptions, which do not occur “in practice.” Without external
criteria, such as applicability, however, mathematics experienced an increased need
to reflect on its internal logical consistency, as pointed out by Mehrtens [1990]. In
this sense, Poisson’s main counterexample would become especially important for
Cauchy’s critique of the method of least squares.

The framework of the growing abstraction of mathematics during the 19th cen-
tury can only be roughly described in this exposition. An excellent survey is given
by Schneider [1981a]. There were changes in the employment of mathematicians
(from 18th-century academies to universities), which helped to promote pure math-
ematics.”! The computational potentialities of analysis seemed to become gradually
exhausted, so a turn to the discussion of analytical fundamentals or even to other,
temporarily neglected disciplines, such as synthetic geometry, became plausible.
The intellectual background was perhaps even more decisive. After the political
upheavals due to the French Revolution, the confidence of the Enlightenment in a
common standard of rationality began to vanish. The commonly accepted unity of
mathematics and good sense began to drift apart (this process is exactly described
by Daston [1988, 370-386], for the field of probability theory). The growing re-
examination of basic definitions after 1800 can be considered as a reaction to the
decline of the idea of self-evident “natural” standards.

The resulting changes toward “mathematical rigor” are not to be confused with
changes in analytical style and methods. As several authors have pointed out since
Lakatos [1966] and Spalt [1981], analytic reasoning during the first half of the 19th
century using the language of infinitesimals was not fundamentally less rigorous
than the application of epsilontic methods.?” The decline of algebraic analysis, how-
ever, was closely connected to the new standards of mathematical rigor. This was
also an essential point in the history of the CLT.

Certainly, the changes described above did not happen overnight. Cauchy and
Dirichlet still worked a good deal in the tradition of problem solving of the 18th
century. In the case of the CLT, however, the “new mathematics” can clearly be
seen in the contributions of both authors.

2l For more material on this topic see [Mehrtens, Bos, & Schneider 1981; Schubring 2005,
Chapt. VII].

22 Especially regarding Cauchy’s work, the discussion is still quite controversial, see Sect. 1.3.
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2.3.2 Changes in the Status of Probability Theory

Several subjects of classical probability were heavily attacked after Laplace’s death.
His personal authority, however, remained unharmed. This criticism was mainly
directed toward applications of probability to human decisions, for example at court
trials. Especially Poisson’s work in this field caused a broad disapproval of the claim
of classical probability for universal applicability, at least in France.?® Daston [1988,
384] has pointed out that, as a consequence, a shift from the focus on the individ-
ual man toward the probability of mass phenomena occurred. Naturally, the CLT
was also an excellent tool for the latter field. A further consequence was that a
more critical awareness replaced the “natural” and often only tacit presuppositions
of classical probability also in “unsuspicious” applications, such as error theory.
In this way, error theory became the discipline of probability being subject to the
most far-reaching mathematization. Some sources showed a rather abstract view of
error theory and gave rise to demanding analytical discussions. This development
was responsible for Cauchy’s “rigorous” proof of the CLT during his dispute with
Bienaymé over the priority of the method of least squares, as we will see below.

At several occasions during his work, Laplace had already pointed out the
extreme relevance of his analytic methods of probability theory, especially his meth-
ods for approximating integrals depending on large numbers. Thus, from the ana-
lytical point of view, statements now interpreted as probabilistic limit theorems be-
came appendages of the theory of definite integrals. Based on this idea, Dirichlet
rather frequently gave courses on probability theory during the 1830s and 1840s, in
which he directly referred to Laplacian methods, however with considerable mod-
ifications toward a “new” analytical rigor, from which his “rigorous” proof of the
CLT (discussed in detail below) resulted. In this context, the CLT reached a quality
different from the framework of classical probability theory. It was no longer only
a tool for applications beyond mathematics, but also became a subject within (pure)
mathematics, albeit with a mainly auxiliary character (serving as an illustration of
the theory of definite integrals).

2.3.3 The Rigorization of Laplace’s Idea of Approximation

As we have seen in the discussion of Poisson’s deduction of an approximate normal
distribution for sums of independent random variables, the following basic idea (for
the sake of simplicity described only for identically distributed random variables
with symmetric density function f on [—a;a]) was pursued: The probability P
that a sum of s random variables of this kind has values within [b — ¢;b + ¢] is
(cf. formula (2.12)):

23 There is also a German example: Jakob Fries’s Versuch einer Kritik der Prinzipien der
Wahrscheinlichkeitsrechnung [1842], which was based on Kant’s philosophy, and met with Gauss’s
approval; see [Fischer 2004].
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P = z /oo ( ’ f(x) cos(ax)dx)s cos(bar) sin(coz)d—a.
0 —a o

As expressed in the infinitesimal style of the first half of the 19th century, the power

—a

( ’ f(x) cos(ocx)dx)s

with the “infinitely large” exponent s attains values which differ essentially from
0 only for “infinitely small” «. The whole integrand is, as a function of o, similar
to a bell-shaped function, whose maximum peak becomes sharper and sharper as s
increases. This circumstance gives rise to the conjecture that for “infinitely large”
s the whole range | — co; oo[ of the integral with respect to o can, with only an
“infinitely small” error, be reduced to an “infinitely small” neighborhood of o = 0.
It was exactly the latter point which was used by Poisson (and many of his imitators)
without any detailed justification. But, why should it be impossible for the value of
the integral of an “infinitely” small function to be considerably large if the domain
of integration itself is unbounded? This unsolved problem corresponded, in the end,
to the unjustified neglect of higher terms in the approach via series expansions, and
was most probably responsible for the already described unease (see Sect. 2.1.4)
associated with Laplace’s deduction of the CLT.

A more exact analysis of the CLT, which explicitly referred to the basic idea of
the Laplacian method of approximation, had to show that for r in a specified range
of “infinite smallness” the integral

©re y da

/ ( f(x) cos(ocx)dx) cos(ba) sin(cw) "
r —a

would in fact become “infinitely small” for “infinitely large” values of s. As we

have seen, Poisson’s analysis had already shown that r had to be of an order around

1/./s. Corresponding considerations were to be applied in the general case of non-

identically and non-symmetrically distributed random variables.

Similar ideas led to Cauchy’s sketch of the rigorous proof of a (if still rather spe-
cific) CLT in 1853, and also to Lyapunov’s epochal proof of a very general form of
the theorem in 1900/01. Cauchy had already begun in the 1820s to discuss “func-
tions of great numbers,” such that his work of 1853 was not only connected with
error theory but was also produced in the broader context of his analytical studies.
Dirichlet had, independent of Cauchy and actually even before him, also advanced
similar ideas. He did not, however, publish his results, but only presented them in
his lecture course of 1846.
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2.4 Dirichlet’s Proof of the Central Limit Theorem

Peter Gustav Lejeune Dirichlet (1805-1859) is renowned for his pioneering
contributions to mathematical physics and number theory. In the field of proba-
bility theory, however, one can find only a few brief notices in Dirichlet’s collected
Werke. Actually, during his Berlin period (1828-1855), he quite frequently gave
courses on probability and error theory presenting new and original ideas, as we can
see from unpublished lecture notes (see [Fischer 1994]). In these lecture courses,
Dirichlet’s main concern was not the treatment of probabilistic fundamentals or ap-
plications, but rather the discussion of demanding analytical problems. He consid-
ered these problems as applications of the theory of definite integrals, and therefore
plainly named several of the pertinent courses “Anwendungen der Integralrechnung”
(“applications of integral calculus”). In one of these “Anwendungen”—dedicated
to foundational issues of least squares that served as a 1-hr appendage to a 4-hr
course on definite integrals in 1846°*—one can find a very notable and innovative
approach to a proof of the CLT.

Dirichlet’s analytical style varied between an almost “epsilontic” presentation,
as used in his publications, and a rather intuitive handling of problems, quite often
connected with infinitistic methods. Evidence of this can be found in his lectures or
unpublished drafts (see [Fischer 1994]). The style of Dirichlet’s contribution to the
CLT [1846] seems mainly of the second kind; yet, as we will see, all essential steps
(only sketched out in the original source) can be taken using finitistic considerations
which were within Dirichlet’s scope.

2.4.1 Dirichlet’s Modification of the Laplacian Method
of Approximation

Dirichlet’s main probabilistic interests lay in problems of approximating “functions
of large numbers.” Thus, he actually satisfied Laplace’s hope that such questions
would interest the “geometers” (see the introductional part of the present chapter).
At the same time, one can see in Dirichlet’s activities a shift from the typical objects
of classical probability, concentrating on practical applicability, toward the discus-
sion of the respective analytical methods.

In the 1830s, Dirichlet presented (e.g., [1838, 67 f.]) Laplace’s original deduction
of Stirling’s formula in his lectures. He succeeded at least in deducing the law of
Laplace’s series (2.2), which Cauchy [1844, 68] would still consider to be unknown.
As we have seen in Sect. 2.1.2, Laplace had set

o

Ts+ ) =M [ e3(1+z/s)dz = M/ e
—o0o

—

_2dz

dt,
dt

24 The corresponding lecture notes, written by an unknown author, are undated. From all we know
about Dirichlet’s teaching activities in probability theory, it seems evident, however, that the lecture
notes pertain to Dirichlet’s course in summer semester 1846 [Fischer 1994, 56, 60].
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where 7 is a power series in ¢ and M = e~ *s®. Dirichlet differentiated the equality
e (1 +z/s) =

by ¢ to obtain

dz
Z— = 2t(s + 2).

7 (s +2)
By employing the formula z = kit + kt? + --- with unknown coefficients k;
(z = 0if and only if 7 = 0) in the latter equation and by comparing the coefficients
of powers of ¢, Dirichlet determined the first terms of anl k,t'. In essence, he
developed the recursion formula

n—1

2kn—1 1
ki=+2s, kn=——""-"———"-) kiknt1-i > 2).
1 =2s Gt Dl 2k & +1-i (n=2)

From this, the series expansion

1:3-5---(2n + 1
[(s+ 1) =sTV2e752n 1+Z (’Z+ )a2n+1 ’
s

n>1

where

ai =271 (V25)' " 2k;

follows. (Dirichlet, however, made explicit only the first terms of the latter series
expansion, which can also be deduced by different “modern” methods, see [Copson
1965, 53-57; Fischer 2006].)

In the 1840s, Dirichlet’s interest in Stirling’s formula no longer aimed at for-
mal series expansions, but at a modification of the basic procedure concerning the
Laplacian method of approximation, in exactly the sense which was described in
Sect. 2.3.3 for the case of the CLT. Dirichlet [1841/42,56—61] split the entire integral

/ e ¢ (1 + %)n dz = / ydz =T+ De"n™"

n —n

into the sum

m

—n" n 00
/ ydz—l—/ ydz—l—/ vdz = Iy + I, + I,
—n —nm n

m

where % <m< % Heset y(z) = e_’z(Z), and considering the convergent (!) series
expansion of log y(z) around z = 0 (the abscissa of the maximum of y) he showed

that /1 and /5 tend to O as n increases indefinitely, whereas

I
v 2n

Thus, he obtained the expected result for I'(n + 1) for “infinitely large” n (for more
details see [Fischer 1994, 49 f.]).

—>/ e du = JT.
—00
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2.4.2 The Application of the Discontinuity Factor

In order to adopt his reasoning from the case of Stirling’s formula to the CLT,
Dirichlet first needed an appropriate representation of the exact probabilities for
sums or linear combinations of random variables. As one can see from the devel-
opment of Dirichlet’s ideas, as represented in his lectures of 1838 compared to his
lectures of 1846, Poisson’s discussion of the jump function (2.14) apparently led to
Dirichlet’s general method of calculating integrals over complicated domains with
the aid of “discontinuity factors.”

In his courses on Laplacian error theory as of 1838 and 1846, Dirichlet pro-
posed the central problem of finding an approximate term for the probability P that
the value of the linear combination oy x7 + a2Xx3 + +-- + @, X, was within —A’
and +1/, where A’ = A4/n and A was a given positive constant. More precisely,

X1,X2,...,Xp stood for independent observation errors (n being a large number),
with expectations 0 and with (in general different) symmetric probability densities
f1, f2, ..., fu, vanishing beyond the finite interval [—a; a].

Initially, Dirichlet [1838, 142-144] repeated Poisson’s “combinatorial” proce-
dure for the deduction of a formula for the probability that a linear combination of
errors is within a given interval (see Sect. 2.2.2). But then, he presented—unlike
Poisson also for the general case of arbitrary 7 and arbitrary A—the application of
“his” discontinuity factor

2 [ si
_/ sin ¢ cos(k@)dg = { 0 for |k] > 1 (2.25)
0 %

T 1 for—1<k<1,

which he deduced from

/ kD =T k> 0)
. 1 2

using trigonometric addition theorems. To this aim he calculated the probability

PZ/ﬁ@&NMMWde
G

where
G={xeR"'N—-X <aix; 4+ - +ax, <A},

by use of the jump function (2.25), with the result
2 > sin ¢
P=2f [ A fae) T cos @+
T Ji—a;al” Jo @

R anxn)%] dodxy---dx,. (2.26)

Dirichlet [1839a;b;c] published three papers in which the jump function (2.25)
was used for the calculation of specific multiple integrals that were important for
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the determination of space volumes and for potential theory, but he did not men-
tion any applications in probability theory. In his 1846 course, he totally ignored
Poisson’s combinatorial approach, and by applying his discontinuity function he
deduced (2.26) through a consideration of the analogies between probabilities and
space volumes.” From (2.26) Dirichlet [1846, 27] deduced

2 [ sin(\ a .
P:E/ sm((’fgo) fl(.Xl)eal)Cl(l’«/jldxl... fﬂ(xn)ea”x”wﬁdxnd(p
0 —a 5
2  sin(A a
_2 / SVIG) [ costanxio)dy, -
T Jo P »

a

e Jn(xn) cos(anxn@)dxpde. (2.27)
—a

The interchange of the order of integration was not discussed. In his paper [1839c],
however, Dirichlet—without referring to probabilistic applications—pointed out the
need for a proof of such interchanges. He suggested multiplying the integrands
with factors such as e™"%. For r > 0 the absolute “convergence” of the modi-
fied integrals would be guaranteed (and, thus, the interchangeability of the order
of integration). For both multiple integrals, the one before and the other after the
interchange, one had finally to examine the limit r — 0. Actually, this method is
practical in the case of the probabilities of linear combinations of mutually indepen-
dent random variables if one assumes for the densities of these variables certain—
not very drastic—conditions, from which the absolute integrability of the function
= % f[_a;a] f1(x1) -+ fu(xn) cos[(c1x1 ++ -+ cnxn)@ldxy - - - dxy, over [0; oo[
follows for fixed cy, .. ., ¢,. The hypotheses regarding the density functions, which
Dirichlet supposed more or less tacitly, are in fact sufficient for this condition.?®

2.4.3 Dirichlet’s Proof

Dirichlet’s discussion of the asymptotic distribution of linear combinations of
observational errors can be reconstructed in the sense of a rigorous proof of the
CLT, even from today’s point of view.

2 Glaisher [1872a, 195; 1872b, 98] was perhaps the first—of course without being directly influ-
enced by Dirichlet—to publish the use of Dirichlet’s factor in exactly the same way as Dirichlet
had presented it in his 1846 lecture course. [Cauchy 1853d], as it seems without knowledge of
Dirichlet’s prior contributions, had already given a very similar consideration, see Sect. 2.5.2.

26 For an account of post-Weierstrassian era on the problem of interchanging the order of integra-
tion in applying Dirichlet’s factor, see [David 1909].
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2.4.3.1 Tacit Assumptions and Proposition

As described above, Dirichlet discussed linear combinations a1 x; + -« -+ + o, X, of
random errors. The densities of these errors were not only considered to be symmet-
ric and concentrated on a fixed interval, but also to be smooth (in the sense of the
existence of continuous derivatives) and unimodal, as it appears from a picture in the
lecture notes [1846, 21]. The latter assumption was, however, not absolutely neces-
sary for Dirichlet’s deductions. As we will see, Dirichlet tacitly presupposed that
the sequence of the oy, had a positive lower bound (named « by me) and a positive
upper bound (A), and that all variances of the random errors should be uniformly
bounded away from 0 (by a positive lower bound to which I refer as k). Such tacit as-
sumptions were natural within error theory. For a rigorous completion of Dirichlet’s
line of proof in the case of non-identically distributed observation errors, one has to
additionally assume a certain uniformity in the shape of all the density functions,
such as, for example, the existence of an upper bound C such that | f,/ (x)| < C for
all x € [—a;a] and all v. (From this condition one can already deduce the existence
of the above-mentioned constant k.)

Expressed as a “modern” limit assertion, the main result of Dirichlet’s lecture
course on error theory in 1846 was

Alr

" 2 2
P|=Avn < Xy < AVn | — — e " ds

-0 (n— 00),

where

Even if the transcriber of the lecture notes did apparently not render all arguments
entirely correctly, the basic ideas for a rigorous proof of this limit can be clearly
discerned. At least in the special case of identically distributed errors a complete
argumentation can be reached with such methods that Dirichlet himself used.”’

2.4.3.2 Dirichlet’s Discussion of the Limit

Analogous to his derivation of Stirling’s formula, Dirichlet split the integral (2.27)
with respect to ¢ into three parts

2 [ 2 (4 2 [
—/ ...dgo—i——/ ...d(p—i——/ ...de = p+q1+qa,
T Jo T Js TJa

where § and A depend on # in such a way that
§yn—0, 8Jn—o00 (n— 00) (2.28)

27 For an edition of the original source see Appendix.
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and
A o n?  with an arbitrary, but fixed y > 0. (2.29)

Dirichlet represented the product T1(¢) of the integrals

a

gv(p) = Sv(xy) cos(atyxy@)dx,

—a
by

a
M(p) = e~ Zhede’eR@ g, = %/ 22 f,(2)dz. (2.30)

—a
It was not explained in the lecture notes [Dirichlet 1846] that for general densities
fy this representation with real R(¢) is only valid for sufficiently small ¢, and
therefore only in the first of the three integrals for small 8. Since g, (¢) > 0 for
0 < ¢ < 547, R(p) exists for at least all ¢ € [0; 57—]. Dirichlet perhaps supposed
unimodal densities f which diminish sufficiently fast with growing absolute values
of the argument; then the term ff 2 J(x) cos(agpx)dx is positive for all o and all ¢.
As we will see below, however, it actually suffices that (2.30) holds for a small

interval of ¢-values.
In order to justify the asymptotic disappearance of

n

R(p) = Z (log( ’ Jo(xy) cos(avxvgo)dxv) + kvaﬁqoz)

v=1 —a

in the first integral, Dirichlet expanded each logarithmic term into a power series of
@ (in each case he explicitly took into account only the first nontrivial power of ¢),
and thus obtained for 0 < ¢ < § an estimate equivalent to the form

|R(¢)| < nL8* + nM8® + - - . (2.31)

L, M, ... designate the absolute values of the largest coefficients of ¢4, ¢°, ...
among all expansions of the individual logarithmic terms, and are therefore con-
stants depending only on the functions f, and the multipliers «, . Dirichlet did not
discuss the exact form of these constants. On the basis of (2.31) and (2.28) Dirichlet
concluded that R(¢) could be neglected in the first integral

§ o § .
2/ MH(@)&M) = Z/ Me—zmwemmd@
T Jo [ T Jo %

as n — oo. For a complete justification (see [Fischer 2000, sect. 2.3.1]) of Dirich-
let’s hints, one can show, with the aid of the elementary inequalities

2
cosz >1——,
2

22 z*

cosz <1——+ —,

2 24
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log(z) < z,
1
log(1—-z)>-z-2z2 (0<z< 5),

and by considering the above-mentioned “tacit presuppositions,” that
a*
[R()| <nLé* (L =—-4%). (2.32)

In the integral p, Dirichlet now made the substitution of variables ¥ = +/ng. The
upper bound 8 4/n of the domain of integration of the new integral became equal to
oo as n — oo because of (2.28). Thus, for a “large” number of observations the
relation

2 i A, > kv a%

~ / A gyt gy
T Jo v

followed. This relation can be rigorously deduced from the inequalities (which were

not explicitly stated by Dirichlet):

/3ﬁ Sin(Ay) _y2 Shved - /5ﬁ SN g2 Zhvad gy i "
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(based on (2.32)) and
/°° sin(Ayr) e Zk;ag J
syn Y

w‘ < %/OOO e VR gy =1 Cy(n).

From (2.28) one sees that the right sides of these inequalities tend to 0 as n — ococ.
Finally, Dirichlet [1846, 30] concluded by use of well-known integral formulae

that
2 Alr $2
N — e’ ds.
P ﬁ/o

The justification that g; and g, tend to O as n increases, is only hinted at in
the lecture notes [Dirichlet 1846, 30 f.], and seems to go as follows: g,(¢) =
ff 2 Jv(x) cos(ay@x)dx is strictly monotonic decreasing in the interval—dependent
on v (1)—I0; &,], and thus g, (po) > |gv ()| for all gy € [0;&,] and all ¢ > @o.?
From this, Dirichlet concluded (loosely translated) that there must exist a , > 0
such that for all g € [0; §,,] and all ¢ > ¢ also I1(pe) > |I1(¢p)| holds. Apparently,
the possible dependence of the &, on v, and thus of the §, on n, was not taken into
consideration, and it was supposed that, for a sufficiently large n, the § according to
(2.28) would be smaller than §,, and therefore

2 We have g/(¢) < 0 in a neighborhood of ¢ = 0 and |g,(¢)| < 1 for ¢ > 0. Moreover,
gv(p) — 0 for ¢ — o0, as one can deduce after partial integration, see below. Finally, the
asserted behavior of g, follows from its continuity with respect to all ¢ > 0.
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ITI(p)| < TI(§) Yo >§ (2.33)

would apply. However, because 6, might tend to O even faster than § as n — oo,
(2.33) only holds if a certain uniformity in the shape of the factors g, (¢) of I1(p)
as functions of ¢ is presupposed. (Actually, this can be deduced from the “tacit as-
sumptions,” though, as it seems, only by methods which were not known to Dirich-
let, see [Fischer 2000, Sect. 2.3.1].) From (2.33) one gets for sufficiently large n

] < / #|sin@ne)
8 %

By definition [1(§) = e~ Lhkve3s?eR0) gpg therefore, using the “tacit assumptions™:

(¢)de| < AVnATI(S).

g1| < A/nAeke*8RE) —. ) Cy(n).

If one sets § = 3 , as suggested by Dirichlet [1846, 29] as an example of a possible
8 in accordance with (2.28), the right side tends to 0 as n increases.
In order to justify that

g2 = (p)de

TJa

2 [ sin( /)
o5

can also be neglected for “infinite” n, Dirichlet used the relation

4 2 sin 4 sin

/ cos(ay@x) fo (x)dx = M _/ va/(x)dx,
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which can be derived by partial integration. (For the existence of continuous deriva-

tives of the densities see the “tacit assumptions.”) From that, Dirichlet concluded

n
that |IT(¢)| must be smaller than (%) with a constant ¢ independent of 7, which is
only true under the “tacit assumptions.” Dirichlet’s reasoning can be completed as

(4

n
follows: From the estimate |I1(¢)| < (5) one gets

1 (c)" cy\n 1
lg2| < / - (_) do = (—) — =: Cq(n).
a ¢ \g AV n
From the hypothesis (2.29) on the growth of A, the latter term tends to 0 as n — oo.

On the basis of the inequalities stated above, we can reconstruct Dirichlet’s result
by the inequality

" 2 Alr 2
P|-Avn < Xy <An | — —= e ds

< ACy(n) + C2(n) + AC5(n) + Ca(n),

which is valid for sufficiently large . Presupposing
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—1/24¢ 1
d=n , O<ex< T

the bounds C;, C,, C3, C4 have the respective asymptotic orders
Ci(n) = O(n™ '), Ca(n) = O(n™®), C3(n) = o(n™"), Ca(n) = o(n™"),

where p is an arbitrary positive constant. From this, we can see that Dirichlet’s
method gives an estimate for the error of approximation that is far from the optimal
one as developed by modern methods. It was, however, not Dirichlet’s intention at
all to find a “very good” approximation error for the normal distribution. Appar-
ently, he wanted to show that his modification of the Laplacian method of approxi-
mation could also be applied to the problem of probabilities of linear combinations
of random errors. In this sense, the central CLT for Dirichlet served chiefly as an
illustration of special analytical techniques and was less a problem which he treated
in its own right.

2.5 Cauchy’s Bound for the Error of Approximation

Augustin Louis Cauchy (1789-1857) provided fundamental contributions to a great
number of mathematical subjects and essentially determined the development of
mathematics during the 19th century. On probability theory in the narrow sense,
Cauchy only published a few papers, in 1853, printed in the Comptes rendus, which
referred to his dispute with Irénée Jules Bienaymé (1796-1878) over the Lapla-
cian foundation of the method of least squares. In this scientific controversy, which
occurred during the months of June, July, and August in the summer of 1853 at
the Paris Academy, Bienaymé defended the Laplacian error theory, whose basic
ideas were repeatedly criticized by Cauchy.?’ Cauchy’s last article in a total of eight
papers contains an interesting discussion of the approximate normal distribution of
linear combinations of random errors. Basically, his line of analytical argumentation
is similar to Dirichlet’s and employs methods which are still being used in the mod-
ern treatment of the CLT. His (rather narrow) conditions are in essence the same as
Dirichlet’s.

2.5.1 The Cauchy-Bienaymé Dispute

From a historian’s point of view, Cauchy’s and Bienaymé’s interest in treating
stochastic problems in an almost purely mathematical manner, indicating a shift
from classical toward mathematical probability, is especially important. However,

2 For more details on this dispute see [Heyde & Seneta 1977] and [Fischer 2000, 76-97].
Bienaymé’s contributions are, as listed in the Bibliography, [Bienaymé 1853a] to [Bienaymé
1853e], Cauchy’s contributions are [Cauchy 1853a] to [Cauchy 1853h].
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Cauchy’s position of only accepting arguments within mathematics for a discussion
of the error theoretic foundations (which became more and more adamant during
the controversy), met with Bienaymé’s opposition, who still demanded the critical
“good sense” assessment of those problems.

The political and private connections of both opponents might have been espe-
cially important for the background of their scientific quarrel. As a consequence of
the revolution of July 1830, which brought Louis-Philippe, the “king of the people,”
to power, Cauchy, being a supporter of the overthrown Charles X Bourbon, had to
give up his positions in higher education and go into exile.>* From 1833 to 1838 he
was in charge of the education of Charles’s eldest son in Prague. After the comple-
tion of his duties there, he went back to Paris and resumed work at the Academy.
After the revolution of February 1848, which, for a brief period, reestablished the re-
public, he was able to return to teaching at the university. With the seizure of power
by Napoleon III in 1851, Cauchy’s official position remained unchanged. As a sup-
porter of the house of Bourbon, however, he did not look on this political change
especially enthusiasted.

In 1820 Bienaymé®! set out on a brilliant career in government finance which re-
mained entirely unscathed by the 1830 revolution. Whereas the revolution of 1848
had brought some advantages to Cauchy, Bienaymé had to resign from his posi-
tions. Consequently he delved into more scientific endeavors. Bienaymé, in contrast
to Cauchy, sympathized with Napoleon III, and after his seizure of power regained
a certain influence on the country’s financial politics.

Apart from differences in their political views, Cauchy and Bienaymé seem to
have had personal misgivings as well. As suggested by [Heyde & Seneta 1977,
13], these could have originated for one thing from different religious beliefs—
Cauchy was a fanatic Catholic, and Bienaymé tended toward agnosticism. Furtherly,
Bienaymé cultivated a close friendship with Antoine Auguste Cournot,*> who was
very influential in science back then, while Cournot and Cauchy were bitter enemies.

Bienaymé presented his essay on foundational problems of least squares (see
Sect. 2.1.5.2) in 1852 at the Paris Academy. His good reception there contributed
significantly to his election as an ordinary member of the Academy soon thereafter.
It is only natural that Bienaymé would have been very interested in contributing
to discussions on “his field,” error calculus, at Academy conventions. He found a
suitable opportunity when Cauchy once again presented his method of interpolation
(introduced already in 1835); Cauchy suggested that this method be applied instead
of least squares even in those cases which had not yet been taken into consideration
when his procedure of interpolation was introduced.

In presenting his method in 1835, Cauchy began with the following problem: He
assumed that a function y (x) could be expanded into a convergent series of the form

30 For biographical details on Cauchy see [Belhoste 1991].

3! For biographical details see [Heyde & Seneta 1977].

32 Regarding probability theory, Cournot became especially prominent by his elementary treatise
[Cournot 1843], in which a clear distinction was made between the subjective and the objective
notion of probability.



54 2 The Central Limit Theorem from Laplace to Cauchy
y(x) = au(x) + bv(x) + cw(x) +---

with given functions u(x), v(x), w(x), ..., but unknown coefficients a, b, c,....
Assigned to the given abscissae xi,xz,...,X, were observed function val-
ues yi,¥2,..., ¥Yn, which were, however, subject to the observation errors
€1,€2,...,€,. Cauchy searched for a method of “interpolation” with which one
could jointly 1) assess, with regard to the order of magnitude of the observational
errors, how many series terms had to be calculated to obtain a sufficiently exact
approximation of the true function value for each arbitrary x, and 2) calculate those
series terms in an easy way. Cauchy [1835/37, 8-16] presented a procedure by
which the coefficients a, b, c, ... could be approximated by a method that allowed
one to calculate the coefficients with a simple correction from the ones already
determined, if the number of the coefficients was increased by 1. From the error
theoretic point of view, Cauchy’s reasoning was based on the idea of minimizing
the maximal possible error in each single stage of his procedure.

Cauchy’s method of interpolation can be considered as a procedure for determin-
ing compromise solutions @1, az, ... of the overdetermined system

yi =aup +axup +---+auy +-- (@ =1,...,n)

with the given u;;, (according to the function values u(x;), v(x;),...) and y; (the
observations afflicted by errors), where, however, the number r < n of the @; needed
is not known at the beginning. Yet it was obvious that Cauchy’s procedure could
also be applied to the case of overdetermined systems of linear equations with a
fixed number r of variables.

Around 1840, Cauchy began to show increased interest in astronomy and es-
pecially in perturbation theory. Belhoste [1991, 205 f.] sees a connection with
Cauchy’s election to the “Bureau des Longitudes” in 1839, which had to be revoked
because, being a royalist, Cauchy had refused to show any kind of allegiance to
the “king of the people” Louis-Philippe. The works of astronomers Hervé Faye,
Urbain Jean Joseph Leverrier (whose investigations in perturbation theory led to the
discovery of Neptune in 1846), and Antoine Francois Yvon-Villarceau were influ-
enced by Cauchy, and in turn stimulated some contributions by him. The problem
of comparing observations and results obtained by perturbation theory kept Cauchy
busy for most of the second half of 1847, when he issued a series of papers, and
led him back to his own method of interpolation. Now, he [1847a] wanted to see
this method also applied to overdetermined systems of linear equations with an
a priori fixed number of unknowns. One can assume that this problem was being
repeatedly discussed by the astronomy-prone members of the Academy. Cauchy
[1847b] referred to a paper published by Villarceau in 1845 (this paper was not
further specified) because approximation methods had apparently been used in it,
analogous to his method of interpolation. Around 1849, Villarceau used Cauchy’s
method in extensive calculations of approximations of various orbit parameters
[Heyde & Seneta 1977, 74]. Cauchy [1853a, 36] quoted a remark made by Faye
on the usefulness of his interpolation procedure (the corresponding paper of Faye’s
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cannot be bibliographically determined). So, when declaring himself to be partial to
the method of least squares and against the method of interpolation, Bienaymé met
not only with opposition from Cauchy, but from a whole group of astronomers.

2.5.2 Cauchy’s Exceptional Laws of Error

Cauchy’s initial line of argument was to minimize the maximum possible errors
of approximation. Thus, he used a typical interpolation justification, which practi-
cally did not touch probability at all. Bienaymé [1853a, 5; 10], on the other hand,
criticized this lack of probabilistic argumentation: Errors of observation are subject
to chance. Thus, in order to fit the parameters to the observations, those methods
should be preferred that can be analyzed and justified by stochastic considerations.
In this way, Bienaymé emphasized the universal claim of classical probability being
responsible for all fields in which complete knowledge of causes and laws could not
be obtained. In response to this criticism, Cauchy began his probabilistic research.
According to Schneider [1987a,200 f.], Cauchy did not disapprove probability com-
pletely, but was only willing to accept probabilistic results which could be justified
within mathematics. For Cauchy, the usual reasoning of classical probability, based
on the unity of good sense and mathematics, had become obsolete. In the case of
error theory, Laplace had claimed that the method of least squares should be pre-
ferred “in any case.” Now, Cauchy set out to ridicule this claim by using Laplace’s
(and Bienaymé’s) own probabilistic methods, although from a strictly mathematical
point of view.
Like Laplace, Cauchy considered the system of n “approximative” equations

ax +bjyy+---+gv+hw==~k (j=1,....n)

with m “unknowns” x, y,...,v,w and n observed values k1, k>, ..., k,. Cauchy
approximated the “unknown” x by 7227’: 1 Ajkj, where the multipliers A1, ..., A,
had the additional property
n n n
D oXjaj=1.) Ajbj=0.....) Ajh; =0. (2.34)
j=1 j=1 j=1

From the “exact” equations
ajx—i—bjy—i—————i—gjv—i—hjw ij — € (j = 1,...,1’!),

where the €; represent the observational errors, it followed that

n n n n n n
Z/Xjajx—i—ZAjbjy—i-————i-Z)ngjv—i-Z)ujhjw: Z/\jkj—Z)tjéj.
j=1 j=1 j=1 j=1 j=1 j=1
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On account of (2.34) the estimate X was distorted by the “error” x —x = Z;’= 1 AjEj .
Cauchy restricted his discussion to the determination of X as being representative of
all of the other variables. For the errors €; he presupposed a common symmetrical
density f(x), concentrated on the interval [—«; k] with ¥k < oo. For those densities
Cauchy coined the term “indice de probabilité.” Taking up the Laplacian character-
ization of the “most advantageous value,” he demanded that

n
p=P(x—-X|<v)="P |Z)Ljej|§v = max (2.35)
Jj=1

forall v > 0.

In his discussion of this condition, Cauchy made systematic use of the (now so-
called) characteristic function, which he named “fonction auxiliaire.” If g(x) was
the “indice de probabilité” of an error with values within [k1; «3], then the “fonction
auxiliaire” related to it was defined by

p(x) = / 2e_izxg(z)dz (i=v-1).

Repeating arguments of his proof [1818; 1827, note VI] of the Fourier inversion
formula,* he [1853d; 1853¢] showed that for symmetrical densities f, defined as
above, and their characteristic functions

o(x) = Z/OK f(z) cos(xz)dz

33 The designation “indice de probabilité” is used, for example, in [Cauchy 1853f, 106], the des-
ignation “fonction auxiliaire” in [Cauchy 1853h, 125]. In a slightly different form compared with
Cauchy’s use, in modern probability theory the characteristic function of a random variable X is
defined by Eet'*? instead of Ee™X?. For symmetrically distributed random variables with zero
means (which case was predominantly considered by Cauchy) both terms coincide.

3* Fourier, Poisson, and Cauchy around 1820 (more or less independently) published very sim-
ilar versions of the inversion formula [Laugwitz 1990, 30-34]. An early form, which remained,
however, unpublished, had been presented by Fourier already in 1807 [Grattan-Guinness & Ravetz
1972]. The complex version of the formula

s 1 ¢ e iu(t—x)
f(x) —61_1)120%/_6 /_Oo f(t)e dtdu

for functions f(x) continuous in x (precise properties of those functions were not explained for the
time being) is essentially due to Cauchy. In the collection of Gauss’s private papers (“Nachlass”)
an unpublished note (written presumably before 1813) on a complex version, with title “Schones
Theorem der Wahrscheinlichkeitsrechnung” (“beautiful theorem of probability calculus”) [Gauss
1900, 88 f.] was found as well. From Gauss’s remarks one can see that he derived his formulae on
the basis of orthogonality relations like (2.3), by considering Fourier series with periods tending to
infinity. One may suppose that Gauss was inspired to these observations by reading Laplace’s TAP.
For surveys of the history of the Fourier inversion formula during the 19th century, see [Burckhardt
1914, 1085-1097] (up to ca. 1850) and [Pringsheim 1907] (for the time 1850-1900). An outline of
the entire development up to ca. 1940 is given by Cooke [2005].
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the equation

1 o0
fx) = p / ¢(z) cos(xz)dz (2.36)
0
holds. For the characteristic function @ of the linear combination A1€1 +- -+ A, €5,
where each of the mutually independent errors €1, . . . , €, obeys the law f, Cauchy
derived:
D(x) = p(A1x) - @(Ap). (2.37)

From a modern point of view, Cauchy’s proof [1853d, 86] for the latter identity
was unnecessarily complicated, as it was not based on the now common conception
of characteristic function as expectation. Instead, Cauchy used, in a rather intricate
way, the jump function, very similar to Dirichlet’s,

1 [ r? 0 (r—sx)i 1 for x€la;b|
1 ()i _ ;
o /_Oo/ ent drds %o for x ¢ [a: b],

which he derived by a (rather formal) use of the Fourier inversion formula.*® Hinting
at this jump function, Cauchy [1853e, 96] also stated

2 /‘X’ sin(fv)
pP=_ )
0

®(0)do, (2.38)

where @(0) was defined as above (see (2.37)).
Cauchy [1853e, 98-101] gave a plausible justification that condition (2.35) is
met if and only if k = oo and

o(x) = eH" (2.39)

with positive constants ¢ and N (see [Heyde & Seneta 1977, 82-85]). Cauchy’s
arguments for the “only if”” were not sound.
From (2.37) to (2.39) it followed that

b z /oo e_ceN S AN sin(@v)de

T Jo 0
[Cauchy 1853e, 102]. Independent of v, p is maximized if Zj’:l |4,V under the
constraint (2.34), is minimized. This implies, as Cauchy [1853e, 102 f.] showed, in
the case for which a single element x is to be determined (b; = --- = g; = h; =0),
that the condition

-1
n
)&j = sign(aj)|aj|ﬁ (Z |ar|N}!1)

r=1

335 Jump functions played an important role in Cauchy’s analytical work. As a means for integration
he used this device not until 1853, however. See [Burckhardt 1914, 963; 1320-1324] for a general
account on the use of jump functions during the first half of the 19th century.
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holds for p being maximal. Only for the case N = 2 are the A; the least square
multipliers. Cauchy did not observe that only for exponents N with N < 2 the
function ¢(x) in (2.39) was the characteristic function of a probability distribution.
On the contrary, he assigned to the case N = oo an essential importance. As Cauchy
[1853e, 103 f.] argued, this case corresponded to his own method of interpolation
with multipliers A; = +1.

With the aid of the inversion formula (2.36) Cauchy was able to determine the
specific law of error corresponding to the constants ¢ and N in two special cases:
For N = 2 one gets the Gaussian law of error, and for N = 1 one gets the density

k 1 1
1=t (=a):

Poisson (see Sect. 2.2.3.1) had already shown that the sum of independent identi-
cally distributed random variables with this density does not satisfy the CLT.

The main result of the article [Cauchy 1853e] was the fact that laws of error
which are different from the Gaussian error law can lead to systems of multipliers
entirely different from the least squares multipliers if Laplace’s criterion for the
“most advantageous value” is taken as a basis. Thus, from a purely mathematical
point of view such as Cauchy’s, the method of least squares was not distinguished
from other fitting methods, but was in principle only one possible method among
many equivalent methods.

Naturally, Cauchy knew that observation errors are bounded. Laplace had shown
that linear combinations of identically distributed bounded errors were normally
distributed in the asymptotic sense, and, on this basis, one could expect that the
method of least squares would produce fitting values rather close to the “optimal”
possible fitting values (assuming a large number of observations). But, what asser-
tion concerning the method of least squares had been actually proven by Laplace?
As Schneider [1998] has pointed out, it was Laplace’s style to avoid formulations
that permitted a refutation of his arguments. Phrases like “Preference should (!)
thus be given [to the method of least squares],” or, “if we have a very great num-
ber of observations,” without a closer specification of “how great,” could hardly
be disproved. For a mathematical refutation of Laplace’s assertions, Cauchy had
to transform Laplace’s application-oriented propositions into mathematical claims.
But this thrusted Cauchy into the dilemma that the presentation of some imprac-
tical counterexamples could hardly compromise Laplace’s position, as Bienaymé
immediately pointed out. Yet there was still Laplace’s deduction of the approximate
normal distribution, which no longer met the analytical standards of the mid-19th
century, and did not produce an adequate and exact estimate of the deviation of the
approximative distribution from the actual one. As we have seen (Sect. 2.1.5.2), the
sore point in Laplace’s argument was the assumption of a very substantial proximity
(strictly speaking even of equality) of both distributions. Making precisely this point
to the subject of discussion, Cauchy could argue that Laplace had not examined his
approximations with sufficient scrutiny.
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Cauchy [1853f] indeed gave a first discussion on the approximate normal dis-
tribution for linear combinations of errors, however without exactly discussing the
quality of approximation. His account essentially endorsed Laplace’s foundation of
least squares. Still, Cauchy announced further critical examinations.

In [1853g] he actually presented several “candidates” for the failure of a suffi-
ciently close proximity between approximate and exact distribution. One example
referred to bounded errors, however with a density close to the above-mentioned
“Cauchy-density” fr. Another referred to cases in which large deviations concern-
ing the order of magnitude among the least square multipliers A; occurred. From the
point of view of common practice of observation and measurement, however, both
examples seemed to be far-fetched, as Bienaymé would shortly point out.

2.5.3 Bienaymé’s Arguments

Bienaymés reply to Cauchy’s arguments is mainly contained in the “Considérations
a I’appui de la découverte de Laplace sur la loi de probabilité dans la méthode des
moindres carrés” [Bienaymé 1853e]. This article consists of four parts: In the first,
one can find a general defense of the principles of Laplacian probability theory. The
second part contains a discussion of the importance of the “mean of the squares of
the differences of the errors and their mean value” which, in modern terminology,
is simply the variance of observational errors. Through this discussion, Bienaymé
confirmed his preference for least squares. In the third part, Bienaymé deduced the
inequality which is now named after him and Chebyshev, however not aiming at
the (now common) discussion of a weak law of large numbers, but for the sake
of giving an additional intuitive argument for the superiority of least squares in the
case of a large number of observations. Finally, the practical irrelevance of Cauchy’s
exceptional laws was discussed by Bienaymé in the fourth part.

The first part of Bienaymés considerations is well described by Heyde & Seneta
[1977, 87 f.] and by Schneider [1987a, 208-210]. Here, Bienaymé pointed out the
statistical importance of large samples, and, in the same context, the importance of
Laplace’s CLT. This exposition was connected with the refusal of small samples
because of their insignificance, at least implicitly.

This refusal was discussed in more detail in the second part. Bienyaymé gave a
plausibility consideration in order to show that for linear combinations Z’;:l hje;
of independent identically distributed observational errors (each with only a finite
number of possible values) the asymptotic relation

2
W\'/E (Z(thj —Ehjej)) " ~ COHSt.ZE(hjej —E/’ljej)z (2.40)

is valid for each natural m (the constant “const.” depending on m). In this context,
Bienaymé criticized Gauss’s remark [Gauss 1823, 6 f.] that the variance was not
distinguished as a precision measure from other central moments of even order.
Gauss had made this statement in the context of an arbitrary number of observational
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errors. Bienaymé, however, was apparently convinced that only the case of “large
numbers” was worthy of consideration. Because in this case all central moments of
even order of the deviation ) _ hje; between the true and the estimated value could be
reduced to the variance Vare; h? by virtue of (2.40), he maintained that “nothing
is simpler, than to recognize that one has to render the sum of the squares of the
factors h; a minimum” [Bienaymé 1853e, 319].

Bienaymé’s arguments in the second part were complemented by a discussion of
Laplace’s criterion (2.9) for the “most advantageous value.” Bienaymé, applying a
rather simple procedure (equivalent to the modern textbook proof of the Bienaymé—
Chebyshev inequality), calculated the “form™ of the probability of the deviation
between the true and the estimated value in the case of identically distributed obser-

vational errors with zero means and the common variance o2:

P()Zhjej‘ <t 202) =1—%Zh2,

where 0 and f are positive “constants” less than 1, depending on the error law and
the factors /;. From this estimation, Bienaymé plausibly argued that Laplace’s cri-
terion is met if h2 becomes a minimum, which condition leads to the method
of least squares. For a more exact discussion, however, Bienaymé, somewhat ma-
liciously, referred to the article [Cauchy 1853f], in which a first reexamination of
Laplace’s normal approximation was given (still without suitable limits for the
approximation error).

For a discussion of Cauchy’s exceptional laws, Bienaymé confined himself to the
examination of the now so-called “Cauchy distribution” with the density

1

Jile) = 1+ k2e2

This restriction was probably due to the fact that this density was the only one which
could be given explicitly by an algebraic formula. However, it also seems that Bien-
aymé treated this density as representative of all exceptional laws. He argued first,
with the aid of a table of [ “ , J1(x)dx for several values a, that, presupposing this er-
ror law, the probabilities of very large values were so high that no reasonable person
would use a corresponding observation instrument. Second, Bienaymé advanced the
argument that in the case of direct observations the probability of a certain deviation
between the true value and the arithmetic mean would not depend on the number
of observations, in contrast to all experiences of observational practice.*® Bienaymé

36 Bienaymé [1853e, 323] only noticed that it would be “very easy” to show this. The probably
easiest way is the following: Let y; = x +¢; (j = 1,...,n), and let p(x) = ¢~ be the char-
acteristic function of each single error ej Then the characteristic function @(z) of the difference

Z

o= (o (3)) = () = o0
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did not fail to remark that Poisson had already realized—in contrast to Cauchy, as it
seemed—the practical irrelevance of the error laws f.

Bienaymé [1853e, 324] also discussed Cauchy’s example of multipliers which
considerably deviate in their respective orders of magnitude. He emphasized that
such cases were far from any “well-planned and careful” application of the method
of least squares.

Bienaymé’s comments constitute a mix of purely mathematical arguments and
reflection upon these arguments within the framework of the practice of observation.
If Cauchy tried to transpose Laplace’s statements into purely mathematical claims,
then Bienaymé conversely tried to transform Cauchy’s mathematical considerations
into concrete situations of observation. In doing this, both mathematicians executed
a separation of mathematics and its applications which had remained foreign to
Laplace’s classical probability. Bienaymé, however, did not share Cauchy’s attitude
of attributing the same value to any stochastic model which could be mathematically
derived, but instead insisted on an assessment of any implication by “good sense.”

2.5.4 Cauchy’s Version of the Central Limit Theorem

In his last contribution to the scientific discussion with Bienaymé on least squares,
Cauchy [1853h] established explicit upper bounds for the error of a normal approx-
imation to the distribution of a linear combination Z'}=1 Aje; of identically dis-
tributed independent errors €; with a symmetric density f vanishing for arguments
beyond the compact interval [—«;«]. He additionally required that the A; should
have “the order of magnitude” of % or less, and that ) /\3 =: A should be of the

order % For a precise formulation of the first requirement, we have to assume that
there exist positive constants « and § independent of n, such that forall j =1,...,n
thereis a y(j) > 1 with

a<n"D)x;] < B. (2.41)

Cauchy [1853h] only gave a sketch of proof (some details are discussed in the
next section) that, for v > 0 with the notation ¢ := f(f x2 f(x)dx,

n v
2 2/ cA _92
Pl-v< Aiei <v | —— e " do
jZ=:1 JsJ ﬁ o
< Ci(n) + Ca(n,v) + C3(n), (2.42)

but at least he made the formulae for the bounds C;, C5, and C3 explicit, which are
valid for sufficiently large » and which tend to O as n increases.

In his doctoral thesis, Ivan Vladislavovich Sleshinskii [1892] gave detailed
deductions for the constants Cy, C,, and C3, and he corrected apparent misprints
in Cauchy’s formulae (see [Heyde & Seneta 1977, 94-96] and [Seneta 1984, 48—

50]), with the following result: Let @ = n%” 0<é< %); then



62 2 The Central Limit Theorem from Laplace to Cauchy

1 1 rA®?
Ci=—e " withif = -—— 2.43
1E oy oM 21+ rA202 (243)
2h/3 Ov [OXIVES

Cy(n,v) = ——1 — 14+ —1, 2.44

»(n, V) - Og(ﬁ+ + 3 ) (2.44)
where

2 A2
A:=max(|A],...,|Ax]); h:= max (<e‘ltc‘M2@4’c2 —1,1—¢ i—eaZo? ) ,
and
e—cA@2

There are minor differences with regard to C, and C3 between Cauchy’s original
formulae and Sleshinskii’s.

The quantity C, has the minor flaw that it is not independent of v; it grows
for fixed n together with v. However, presupposing (2.41), and considering that
|€j| <k, one can deduce

P(IY hel<v) =1 ifv= B (2.46)
Since C, is monotonically increasing as a function of v, one gets

n 2 %
Plv=Yhg <v|- —/2” e db| < C1(n) + Ca(n, Bic) + C3(n)
Z i Jy

for v < Bk. On the other hand, for v > Bk, (2.46) yields

n v
2 [3/a 2 [
PlvsY dg<v|—=["eas 5—/ﬂ e d0=:Cy(n).
j=1 Vo VRl

Now, because A must be of the order of magnitude %, C4(n) tends to 0 independent
of v. Altogether, it follows that for any v € R,

n v
2 NG
P —vak,-ejfv - = Ae_92d9
= v Jo

= Ci(n) + Ca(n, Px) + C3(n) + Ca(n),
where the right side tends to 0 independent of v.
Apparently, the convergence of C; to 0 as n — oo (v fixed) is the slowest among

all of the “constants,” because C, = O <n1f§ ZS). Thus, the order of magnitude of

Cauchy’s upper bounds was rather close to the optimal asymptotic order, which is,
in the case at hand, and according to Harald Cramér [1928], equal to O(%).
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From today’s point of view Cauchy’s account can be interpreted as the more or
less rigorous proof of the finite version of a CLT for linear combinations of inde-
pendent identically distributed random variables. In fact, a “modern” CLT can be
inferred from Cauchy’s version by considering a sequence of independent random
variables X, distributed like Cauchy’s observational errors, and by setting A; = %,
v = JLE (a>0),c= %Vaer. Then, by virtue of (2.42),

2 (37
VT Jo

< Ci(n) + Ca(n,

n

Pl-avn=<> X;<an|- e dx
j=1

a

Jn

Though Sleshinskii gave more precise explanations in comparison to Cauchy, he did
not substantially go beyond the latter’s ideas, and, in particular, he did not succeed
in weakening Cauchy’s still rather restrictive assumptions. Like Cauchy, Sleshinskii
was primarily interested in solving an—although quite abstract—problem of error
theory. Therefore, we may actually follow Freudenthal [1970-76, 142] in champi-
oning Cauchy for the “first rigorous proof” of the CLT, we must not forget, however,
that his goals were quite different from those of modern probability theory.

)+ C3(n) >0 (n — o).

2.5.5 Cauchy’s Idea of Proof

There was a rule that only brief articles were accepted for publication in the Comptes
rendus, and thus, Cauchy [1853h] had to restrict his presentation to a description of
the major steps of his reasoning. The basic ideas, however, can be clearly discerned
from his account. In particular, the deduction of (2.42) was based on Cauchy’s use
of characteristic functions and his modification of the Laplacian method of approx-
imation, which he had already dealt with in several articles published in the 1840s
[Cauchy 1844; 1845; 1849]. In [1849, 138-140], for example, Cauchy discussed the
asymptotic behavior (as n — 00) of the integral
S = L " (Z(roe(l’o*‘(")ﬁ))n do,
21 J_¢

where Z(z) is an analytic function whose derivative has the property Z’(roe?0 V-1 )
=0, and whose modulus |Z (roe(p0+‘/’)ﬁ)| attains its maximum at ¢ = 0. Cauchy
split the entire integral S into a “major” part with a domain of integration close to the
maximum and, in comparison with this part, very small remaining parts which van-
ish as n — oco. Thus, he developed asymptotic methods similar to those of Dirichlet,
who, on the other hand, had not published his contributions.

Proving his version of the CLT, Cauchy [1853h, 125 f.] first summarized the
most important properties of the “fonction auxiliaire” p(6) = 2 f(;c f(e) cos(Oe)de
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for the error law f(¢), and in this context he repeated the fundamental relation

“ 2 sm(@v)
—v <Y g v = E/ @(0) do, (2.47)
; 0

D(0) = ¢(A10) - - 9(An0).

Basically resuming his approach of [1853f], Cauchy from ¢(0) = 1 and |¢(0)| < 1

for & > 0 concluded that |

2
[p(&)]° = m

(p(8) > 0 for 6 > 0). He briefly justified that p(8) has a positive lower bound r,
such that

[p(0)]* < (2.48)

T 14r6?

2
For this justification he needed the estimate “p(co) > [%] ,” which was, as

we can see from a similar consideration in [1853f, 107], most likely obtained by
partial integration under the tacit presupposition that f possessed a continuous
derivative.”’

Finally, he [1853h, 126] referred to a consideration in [Cauchy 1853f, 107 f.]
(based on the mean value theorem of differential calculus as applied to sin(z) and
log(1 — z)) that for sufficiently small 6 > 0:

0(0) = 1—/0K (ZSIHG—) f(e)de = e~ 02

0c\> o 1 «
1—(7) <Z<1—c92 (c:/0 x2 f(x)dx).

By virtue of these estimates, Cauchy’s further proceeding [1853h, 127-129]
corresponded to his above-mentioned modification of the Laplacian method of
approximation as applied to the integral (2.47). The integrand @ (0) =5~ “i“(ve) of this in-
tegral attains 1ts absolute max1mum at @ = 0. For ® of an “order greater than /7 but
smaller than n3” (e.g.,® =n2 3+ ,0<8< 4) and for sufficiently large n, Cauchy es-
tablished the following 1nequaht1es for the grade of accuracy regarding the approx-
imation of the integrand by a bell-shaped function in the neighborhood of 6 = 0:

z/@q)(@)sin(ev)de_z/@e_mezsin(ev)d
T Jo 0 T Jo 0

with

0| < Ca(n,v),

37 By partial integration one gets ¢() =
= | [y f/(x)sin(0x)dx]| the inequality p(f) >

. If we set n(0)
- 01—2 ensues. By taking into ac-

5 (i) sin(0k)— f(); 7 (x) sin(0.x)dx

P S
4(f () +n)°
count the relation limy— oo () = 0 (which for Cauchy most probably was a matter of course)
the asserted estimate can be followed.
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and

2 (3Vea 2 (¢ in(®
E/Ozn e_gzde_E/o e—c“‘?leIl(o#d@ < C3(n).

In order to estimate the “tail,” Cauchy derived

2 sm(QU)
'n /@ o) 220

The constants Cy, C,, C3 are already quoted in (2.43), (2.44), (2.45), respectively.

< Cy (n)

2.5.6 The End of the Controversy

Cauchy [1853h, 130] wrote that for “very large values” of n (the total number of
errors) there would be “une grande approximation” between exact and approximate
probability. He stated:

The various formulae that we have just written down also permit us to assess, by reducing

them to their true significance, the advantages of the employment of the one or the other
system of factors, and consequently of the one or the other method.

Cauchy’s “formulae,” in particular those concerning the upper bounds C;, C,, Cs,
were indeed appropriate, at least in cases of “large numbers” of observations, for
confirming the closeness of the actual distribution of a linear combination of errors
to the corresponding normal distribution, and therefore for confirming the superior-
ity of the method of least squares. One could rarely use them for a rejection of least
squares, however.

At the end of his article, Cauchy announced that he would return to the issue,
but he did never resume his probabilistic studies. There does not exist any explicit
evidence as to why he did not continue his discussion of the method of least squares.
Beginning with Sleshinskii [1892], the common opinion has been established that
Cauchy had come so close to Laplace’s (and Bienaymé’s) position with his asymp-
totic result that a continuation of the dispute did not appear advisible (see [Heyde &
Seneta 1977, 96; Stigler 1974/1999]).

A closer examination, however, shows that Cauchy’s result was not even properly
suited—at least from the practical point of view of error theory—for a really sound
justification of the Laplacian approach. As we have seen above, Cauchy’s bounds
for the difference of the actual and the normal probability distribution were quite
appropriate in an asymptotic sense. In many cases of practical importance, however,
his bounds were scarcely usable.

In the case of direct observations, for example, the equations of condition are

)C:kj—éj (j=1,...,n).

The least square multipliers are identical with % If the errors obey a uniform density
within the interval [—1; 1], then for @ > ,/n the constant r in (2.48) (which is only
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important for x > @) can be assumed to be r = 0.9 if n > 10.38 According to
[Sleshinskii 1892, 255], Cauchy’s estimates can be applied if

482 8k2B2
n > max S;i;i
a?’ ra?
and
24/2n n
<0< —,

ar P

where [—«; «] is the support of the error density f, and «, B are according to (2.41).
In our case we can choose « = B = 1, and the first of the latter conditions is sat-
isfied foralln > 9. Forn = 10, v = 0.1, and r = 0.9 the sum C; + C, + C3
(dependent on a ® which has still to meet Sleshinskii’s second condition) is at its
minimum (for ® ~ 9.43) approximately equal to 0.288. In the case at hand, the
probability P(—v < Y Aje; < v) with A; = % can be directly calculated by use
of the formula (2.1), which was already derived by Laplace in the 1770s. The exact
value of this probability is (for n = 10, v = 0.1) equal to 0.41096, whereas the
approximation by the normal distribution gives the value 0.4161. Similar calcula-
tions for other v show that, already for n = 10, the difference between the exact and
the approximate value is less than 1/100. If n > 10, for a comparison with the case of
10 observations we have to use values of v which decrease in the ratio /10/#n. For
n=20,v = 0.1-4/0.5, and r = 0.9 the minimum sum C; 4+ C5 + C3 is roughly 0.16
(® =~ 13.4); forn = 100, v = 0.1 - m, and r = 0.9 the minimum sum is still
about 6/100 (® = 33.2). A critical numerical discussion of this kind was certainly
within Cauchy’s reach, and his above-quoted reference to the “true significance” of
his “formulae” might point in this direction.

Thus, within the framework of observational practice, by applying Cauchy’s
bounds one was able to confirm Laplace’s point of view only if a really large num-
ber of observations appeared. Certainly, a great many observations were occasion-
ally available in the context of astronomical problems. Bessel [1818, 18-21], in his
comparison of the frequency distributions of the residuals of direct observations on
the one hand, and normal distributions on the other, had used two series with 300
observations each, and one with 470.% Alexis Bouvard had considered approxi-
mately 130 equations of condition for Jupiter and another 130 for Saturn in his deter-
mination of the orbit elements of these planets. This work was described by Laplace
[1812/20/86, 516] as an “immense travail.’** In most cases, however, the number
of observations was far below 100. Gauss [1811], for example, determined his “im-
provements” of elliptical elements of Pallas from only 11 equations of condition.

38 Tn our special case the “fonction auxiliaire” is ¢(z) = L‘:'* For z2 > 10 the estimate w >
Z%, and thus, [p(2)]* < m is valid.

3 See [Stigler 1986, 204; Hald 1998, 361-363].
40 For a summary of Bouvard’s work see [Bouvard 1821].
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There exists a brief report [Cauchy 1853g’] in the Comptes rendus referring to
Cauchy’s remarks on Bienaymé’s defense [1853e] (see Sect. 2.5.3) of Laplace’s
approach to least squares. Concerning Laplace’s analytical methods, we read:

The analysis by which he [Laplace] has established the properties of the method of least
squares uses series expansions whose convergence is not proven. M. Cauchy has replaced
this analysis by exact and rigorous formulae.

Thus, we can see that Cauchy clearly stressed his “new” analytical rigor as an
exceptional merit as opposed to Laplace’s style of reasoning. But, from the prac-
tical point of view of error theory, he neither succeeded in improving Laplace’s
analysis by establishing sufficiently close bounds for the error of approximation,
nor did he succeed in giving convincing counterexamples concerning the method
of least squares. We should not forget that Cauchy’s main interest was originally
to give an effective procedure for astronomical calculations (see Sect. 2.5.1). Thus,
his turn toward an “abstract” point of view which scarcely considered questions like
general applicability or computational simplicity was—in a certain sense—contrary
to his original aims. From a purely mathematical point of view, however, Cauchy’s
contribution even enforced the Laplacian preference to least squares in the case of
bounded errors. Naturally, Cauchy could not exclude the possibility of bounds more
appropriate than his own (which in fact can be derived by modern methods). Bien-
aymé, however, whose analytical abilities were likewise at a respectable level, was
unable to give an exact mathematical argument in favor of Laplace’s position. On
the contrary, by showing that (in modern terminology) the estimator obtained from
any system of multipliers (if these are of an order of magnitude inversely propor-
tional to the number of observations) converges stochastically to the true value, he
showed at the same time, that the method of least squares could be, presupposing a
“very large” number of observations, only slightly superior (according to Laplace’s
criterion) to other methods. Thus, the end of the scientific controversy was not so
much determined by Cauchy’s hypothetic fear of coming too close to Bienaymé’s
position, but rather by a situation in which neither of the two scientists was able to
make further substantial contributions. In this sense, the dispute ended in a tie.

2.5.7 Conclusion: Steps Toward Modern Probability

Laplace’s version of the CLT served mainly as a tool of “good sense” and therefore
its importance was primarily determined by a field beyond mathematics. Around
the mid-19th century, due to the contributions of Dirichlet and Cauchy, the CLT
became part of mathematics in the narrow sense. In Dirichlet’s work, it served
as an illustration of special analytical techniques, whereas Cauchy used it for his
approach to an error theory which was mainly determined by purely mathemati-
cal goals. In adjusting Laplacian approximation techniques to an analytical style
different from algebraic analysis, they contributed to the development of new
standards within analysis. Poisson, with his contributions to the CLT, however
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still according to the principles of classical probability, considerably influenced
Dirichlet’s and Cauchy’s work through his innovative analytical techniques and
through his discussion of the validity of normal approximations.

On the one hand, in Dirichlet’s and Cauchy’s contributions the CLT obtained a
substantial intramathematical role. In Cauchy’s work, it was connected with a rather
abstract and therefore almost “modern” perspective of error theory. On the other
hand, it had not yet reached an entirely independent status within mathematics.
In particular, general statements independent of the original context of applications
were still lacking. Full autonomy, according to Mehrtens [1990] an essential char-
acteristic of the modernization of mathematics, was not reached for the CLT until
Lyapunov published his epochal work on the “Theorem of Laplace” in 1900/1901.
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Appendix: Original Text of Dirichlet’s Proof of the Central
Limit Theorem According to Lecture Notes from 1846

The following text is a transcription*' of pages 25 to 31 of the lecture notes
[Dirichlet 1846] (for closer bibliographic details see References and [Fischer
1994]). To the greatest extent possible, the original wording is reproduced to
the letter, and the original punctuation is kept as well. As a rule, “mistakes” are
therefore not due to misprints. The original page numbers are also referred to.

Seite 25

...,,Es moge sich bei einer bestimmten Gattung von Beob. das Fehlergesetz von
Beob. zur Beob. beliebig dndern, dabei aber doch, was ja immer erreicht wer-
den kann, indem man nur das grofite als Norm nimmt, sdmtliche Fehlergesetze
f1(x1), f2(x2), f3(x3) ... fu(xn) zw. festen Grenzen +a enthalten sein, man
soll bestimmen wie gro3 die Wahrscheinlichk. ist, dal wenn man die Fehler
der einzelnen Beobachtungen xi,x»,x3... mit den respectiven Constanten
a1,02, a3 ... multiplizirt, die Productsumme zw. gegebenen Grinzen g und h
liege; dafl man also habe:*

g <oyxp 40Xy 44 opxy <h

Zur Losung dieser Aufgabe bemerken wir, daB in Folge des Vorhergegangenen die
Probabilititen, daf der erste Fehler zwischen

Seite 26
den Grenzen x1 u. x1 + 0x1, der zweite zw. den Grenzen x, u. x» + dx,, der n't®
zw. den Grenzen x, u. x, + dx, liege, ausgedriickt sind durch

J1(x1)0x1, f2(x2)0x2 ... fu(xn)0xp

fiir die GroBe der Probabilitit, dal diese Fehler zw. den Grenzen g und /A enthalten
sind, hat man die Ausdriicke:

h h h
oxy, 0xs ... 0 (X)) 05
/g J1(x1)0x; /g J2(x2)0x2 /g Jn(xn)0x

und die zusammengesetzte Wahrscheinlichk., dafl diese Grenzen bei allen
gleichzeitig Statt finden, ist gleich dem Vielfachen Integrale:

I[-]] gh Fr000) fax2) -+ fCon) 10 -+~ Dy

Zur Discussion dieses Integrals, wollen wir fiirs erste den Anfangsp. von dem aus
man die Grenzen g und % zehlt in den P. # verlegen. Es wird dann wenn man

41 Courtesy of Institut fiir Geschichte der Naturwissenschaften, Universitiat Miinchen, Professor
M. Folkerts.
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g = —A setzt offenbar 4 = +A, und unsere Ungleichung geht tiber in

—A <oa1x1 +axxy + o apx, < A

1
oder —1< X(alxl +azxy 4+ -+ apx,) < +1

Wir wenden nun das bekannte Verfahren eines Multiplicators an. Man hat nemlich

/‘X’Sin(p v
dp = —
o ¢ 2

oder wenn man /¢ st ¢ schreibt:

2 (% sinl/
_/ sin <pa¢:i1
Tt Jo %

je nachdem [ eine positive oder negative Constante vorstellt. Mittelst dieses Inte-
grals kann man nun leicht sich den gewiinschten Multiplicator verschaffen. Es ist
nemlich:

2 [ si 2 (1 *sin(1+k 1 [*°sin(l1 —k
_/ sin g coskpip = 2 %_/ sin(1 + k)g 9o+ _/ sin( )1 o
o ¢ n(2Jo @ 2 Jo @

woraus man mit Hilfe des vorhergehenden Integrales erhilt:

Seite 27

2 / * sin g { 0 fiir k > 1 absolut genommen
coskpdp =
0

p 1”7 —1<k<]l.

In Folge unserer Ungleichheitsbedingung —1 < %(alxl 4+ aaxy + o apxy) < 1
kann man mit diesem Integral das zu untersuchende durch Multiplication verbinden,
wodurch man erhalt:

%/////_Z /Ooofl(xl)fz(xz)'“fn(xn)Si;(p X

x cos(opx1 + apx2 + ---anxn)§8<p8x18x28m e

Nun ist bekanntlich: +/—1 ffu sin W(p&p = 0 und hieraus und dem
obigen Ausdrucke wird durch Addition:

%//// /—Z /Ooofl(xl)fz(xz)“'fn(xn)Sir(;(p X

xe@ X1 Feax2tanxm) $V=1g . gy g dg
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Setzt man A¢’ = ¢, und liBt man nach geschehener Subst die Accente wieder weg,
so erhilt man:

%/////_Z /0°° fl(xl)fz(xz)"'fn(xn)Sin:(p X

Xe(ﬂtlxl+¢¥1X1~"aan)(p«/—laxl

0X3 -+ 0x, 0@

was man offenbar auch in folgender Form schreiben kann:

z/ slnl(p % f(x)ealxl(pﬁax) ( fz(XZ)eazxszjlaxz)
T Jo (4 —a —a

( afn(xn)eanxn(ﬂx/?laxn)§ 8§0 (1)

Wir miissen uns nun fiirs erste mit der Discussion des Integrales

/a f(x)e‘mpﬁax = /a f(x)cos(axp)ix + V-1 ’ f(x) sin(axp)dx

a

= f(x)cos(axp)idx = ’ f(x)cos Bxox ap =f

beschiftigen. Dasselbe erreicht fiir 8 = 0 sein Max, wo es dann, da f(x) als
Ausdruck einer Wahrscheinlichk., nie negativ werden kann, aus lauter positiven
Elementen besteht. Die Reihe

2.2

/wf@M%&&: aﬂm&-“; /ﬁﬁﬂmm+”.

—a —a

Seite 28

in der « eine gegebene endliche Constante bezeichnet, convergirt fiir sehr kleine
Werthe von ¢, so schnell, daf} fast der ganze Werth des Integrales in den beiden
ersten Gliedern der Reihe enthalten ist, wodurch bewirkt wird, dafl der ganze Werth
unseres Integralproduktes sich im Anfange concentrirt. Setzt man zur Abkiirzung

1 a
—/ X2 f(xy)0x, = ky
2 )

wo k,, eine Constante bezeichnet, die sich nur fiir die betreffenden Beobachtungen,
von deren Fehlergesetz es abhéngt, veridndert, so erhilt man wegen der Relation

" fpax =1

fiir einen Factor obigen Doppelintegrales den Ausdruck:
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1 —kyaZp? + -

Nimmt man den Neper’schen Logarithmus, so bekommt man, wenn man dieselben
in Reihen auflost:

log nat(1 — kya2@? +---) = —k,a2¢? + - --

wo man fiir v die Zahlen 1,2,3,...n zu setzen hat, und die so erhaltenen Aus-
driicke sodann alle zu addiren. Geht man dann von den Logarithmen wieder zu den
Zahlen tiber, so erhilt man einen Ausdruck fiir das oben behandelte Produkt aus
Integralfactoren. Man hat aber hiebei auch dafiir zu sorgen, daf} die weggelassenen
Glieder der Reihe absolut klein seien, nicht blos klein im VerhéltniBe zum ersten
Gliede. Denn in einer Exponentialgrofe e*t# = e“ef, wie sie hier auftritt, darf
man offenbar nur dann den zweiten Theil 8 des Exponenten vernachlissigen, wenn
es eine absolut verschwindende GroBe ist.
Wenn man nun unsere n Gleichungen

log nat(1 — kya2@2 + ---) = —kya2e? + lp* 4 ---

Seite 29

summirt, so wird die Summe der Glieder der vierten Ordnung immer < nl<p4 sein,
wenn man nemlich mit / den groBten vorhandenen Entwicklungscoeff bezeich-
net, und also eine gewisse Constante sein wird in Beziehung auf ¢, und » als der
Index der einzelnen Beobachtungen als eine immer wachsende Grof3e gedacht wer-
den muf3. Nach dem oben Gesagten muf3 nun unser Bestreben immer dahin gehen,
dal die Summe der hoheren Entwicklungskoeff immer eine absolut kleine Zahl
bleibt, und die3 bewerkstelligen wir dadurch dal wir in dem willkiirlich einge-
fiihrten Integrale mit der Variablen ¢ diese letztere blos soweit wachsen lassen, dafl
das Produkt 782, wo § einen Zustand von @ bezeichnet, immer wie grof3 auch n wer-
den moge, sich der Grenze Null nédhert. Dann reduzirt sich in vorstehender Formel
das Product der Co... auf die Summe ihrer ersten Entwicklungsglieder, und man
erhilt statt unserer Formel (1) sogleich:

¢+ - dp=p+q

v=n v=n
2 /5 —0? ¥ kvai sin)u,oa 2 /°° —¢? X kvai sin Ay
€ v= e v=
0 TJs

n

wo also § durch die Bedingung bestimmt wird, daB § ¥/n fiir ein zunehmendes
n immer kleiner und kleiner wird. Beschiftigen wir uns zuerst mit dem ersten
Integrale
S .
p= %/ e_szkvaEMa(p
T Jo %

so wir fiir ¢ = % sogleich:
A
2 [V o vaer SNy
= [T e Ay
T Jo 14
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Nach unserer Bedingung soll nun § ¥/n bestindig abnehmen, womit aber durchaus
nicht gesagt ist, daB dies auch mit § /5 der Fall sein miisse, welches im Gegentheil
sogar immer grofler werden kann, wie dief3 z.B. fiir die Annahme § = % statt
findet. Bestimmen wir nun

Seite 30
das § so, daB fiir ein zunehmendes n das Product § ¥/n immer abnimmt, §./n aber
wichst, so erhalten wir fiir eine sehr gro8e Anzahl von Beobachtungen offenbar:

2 /°° _szkva% sin Ay
p = — c n
0 4

T
wobei noch zu bemerken ist, daB man hier, wie auch geschehen ist, auch das A
mit wachsendem n zunehmen muf}, indem offenbar die Wahrscheinlichkeit, daf} bei
unendlich vielen Beobachtungen der Fehler zw. gegebenen festen Grenzen liege,
Null ist. Wir setzen deshalb A./n statt A. Nun ist aber zur Vereinfachung dieses
Resultates bekanntlich:

oy

00 22
/ ec’e cos)uparp—ﬁe 4c2
0 2c
A 00 00 :
A
/ EM/ ec?¢? cos A@dg :/ A ('0890 = \/_ e 4128s
0 0 0 %

2¢
der /ooe 202 s1n)L<p \/_/
0

und hiemit wird: N
B %/2 R g,
T Jo

v=n

als Ausdruck der Wahrscheinlichk. da die GroBe > o, x), zw. den Gréiinzen 21 Jn
v=1

enthalten sei, oder daf} sei

—An < Zavxv < An
v=1

wenn n immer grofer wird. Es ist hiedurch allein schon diese Wahrscheinlichkeit
ausgedriickt, weil das zweite Integral

g= / o0 Thuod SMAP 5
§ 1

sich unaufhorlich der Null nédhert. Diese Behauptung erweist man folgender mafien.
Wir haben bei der Form (1) bemerkt, daf} 2 an f(x) cos(apx)dx fir ax =c ein
absolutes Maximum und = 1 sei
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Seite 31

und niemals mehr unter den spiter eintreten Maximis ein diesen an Grofle gleich
kommendes sich befinde. Man kann sich nun das Intervall so klein denken, daf3
die Funktion innerhalb deBselben nicht allein bestindig abnimmt, sondern auch
noch grofler bleibt, als sie spiter irgendwo noch werden kann, a fortiori also das
Product aller dieser analog gebildeten Functionen, und man kann diesen Zustand
der Ungleichheit durch Verkleinerung des Intervalles von O bis § soweit treiben,
als verlangt wird, woraus unsere Behauptung folgt. Strenger 148t sie sich aber auf
folgende Weise rechtfertigen. Man zerlege das Integral [ 800 in die Summe zweier

andren || 3A + [ Aoo, so wird immer im ersteren die Function am Anfange grofer sein,
als irgendwo spiter. Es wird also das Integral kleiner sein, als die Differenz der
Grenzen A — §, also um so mehr kleiner als der Anfangswerth der Function, und es
nihert sich deswegen, wenn man das A einer positiven Potenz von n proportional
nimmt, der Werth des Productes der Grenze Null. Was nun noch das zweite Integral
betrifft, so hat man durch partielle Integration:

/ cos(apx) fxdx = S0@PD) Ly / SIn@9X) 1119

agp

ap
/ " cos(ap) f(x)ix = 200 Ly / ©sin@ex) oo
—a %1% —a (4%

wo wir also jetzt auch noch annehmen miilen, daf f(x) innerhalb der Integral-
grinzen endlich bleibt, welche Annahme durch die Natur der Fehlercurve vollkom-
men gerechtfertigt ist. Die Zihler beider Ausdriicke schwanken immer zw. gewissen

Grenzen hin und her, und der Werth des Integrales wird daher kleiner als (%, und

folglich der Werth des Productes n solcher Integrale < wL" welcher sich also mit

wachsendem ¢ der Null nihert.
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