Chapter 1
A Statistical Perspective on Equating Test Scores

Alina A. von Davier

“The fact that statistical methods of inference play so slight a role... reflect[s] the lack of
influence modern statistical methods has so far had on current methods for test equating.”
Rubin (1982, p. 53)

“The equating problem reduces to one of modeling and statistical theory.”
Morris (1982, p. 170)

1.1 Introduction

The comparability of scores across different test forms of a standardized assessment
has been a major focus of educational measurement and the testing industry for
the past 90 years (see Holland, 2007, for a history of linking). This chapter focuses
on the statistical methods available for equating test forms from standardized
educational assessments that report scores at the individual level (see also Dorans,
Moses, & Eignor, Chapter 2 of this volume). The overview here is given in terms of
frameworks' that emphasize the statistical perspective with respect to the equating
methodologies that have been developed by testing practitioners since the 1920s.
The position taken in this paper is that the purpose of the psychometricians’ work is
to accurately and fairly measure and compare educational skills using multiple test
forms from an educational assessment. Therefore, from this measurement perspec-
tive, equating of test forms is only one necessary step in the measurement process.
Equating is only necessary because a standardized educational assessment uses

'Conceptual frameworks (theoretical frameworks) are a type of intermediate theory that have the
potential to connect to all aspects of inquiry (e.g., problem definition, purpose, literature review,
methodology, data collection and analysis). Conceptual frameworks act like maps that give
coherence to empirical inquiry (“Conceptual Framework,” n.d.).
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numerous test forms that tend to differ in difficulty although they are built to the
same specifications (“nominally parallel test forms,” Lord & Novick, 1968, p. 180).
Hence, equating can be viewed as the process of controlling statistically for the
confounding variable “test form” in the measurement process. If the test develop-
ment process were perfect, then equating would not be necessary. See also Lord’s
(1980) theorem 13.3.1 in Chapter 13. The term linking has slightly different
meanings in the field of educational measurement, and it is used here as (a) a
general term for denoting a relationship between test forms (at the total score level,
at the item parameter level, etc.); (b) as a weaker form of equating; and (c) as a
synonym to the process of placing item response theory (IRT) item parameter
estimates on the same scale, which sometimes is also called IRT calibration. In
this chapter I refer to equating as a strong form of linking and as a subclass of
linking methods (Holland & Dorans, 2006). Test equating can be carried out both
using observed-score equating (OSE) and IRT methods, but the word equating is
most often associated with the raw scores of a test. See Holland and Dorans, Kolen
and Brennan (2004), Dorans et al. (Chapter 2 of this volume), and Yen and
Fitzpatrick (2006) for an extensive view of categories of linking methods.

The process of measuring and comparing competencies in an educational
assessment is described here in ways that integrate various existing approaches.
A discussion of equating as a part of the measurement process is given first. Then
I introduce the idea of applying a testlet or a bifactor model to measure skills and
equate scores. This type of model would capture the test-form effect as a latent
variable with a distribution. This variable, the test-form effect, can be (a) moni-
tored over time to inform on the stability of equating, (b) used as feedback for the
test developers to improve upon the degree of parallelism of test forms, and
(c) used for monitoring the form effect on subgroups. Next, an equating frame-
work for the OSE methods is introduced. I discuss how the search for a theory of
OSE led to the development of a framework that provides a map that gives
coherence to empirical inquiry. A framework for IRT parameter linking is given
by M. von Davier and von Davier (Chapter 14 of this volume), and a practical
perspective on equating methods is given by Dorans et al. in Chapter 2. The last
section of this chapter and the Overview outline the rest of the volume. The
chapters are grouped according to the steps of a measurement process that are
described in the next section.

1.2 The Measurement Model, the Unit of Measurement,
and Equating

Parallels between a generic statistical modeling process and an educational mea-
surement process that includes the equating of test forms are presented in this
section. Subsequently, a link between the equating methodologies and the unit of
measurement is discussed.
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1.2.1 Statistical Modeling and Assumptions

The measurement process in standardized testing, which includes test form equating,
follows the same steps as a typical statistical modeling process. Statistical models
are ideal and simplistic representations of a (complex) reality that aid in the
description and understanding of a specific process or that explain or predict future
outcomes. Statistical modeling is accomplished by first identifying the main vari-
ables and their interactions that explain the particular process. Using a simple
model to describe a complex reality requires making many assumptions that
allow the reality to be simplified. The usual steps in any statistical modeling process
are as follows:

1. Statistical modeling starts with a research question and with a set of data.

2. One of the challenges of statistical modeling is the danger of confounding: The
inferences one makes about one variable based on a model might be confounded
by interactions with other variables that exist in the data and that have not been
explicitly modeled. The confounding trap can be addressed by elegant and
elaborate sampling procedures, data collection designs, and explicit modeling
of the variables.

3. A statistical model is proposed and fitted to the data, and the model parameters
are estimated.

4. Assumptions are made about the data generating process. If the model fits the
data to an acceptable degree,” then inferences are made based on the model.

5. The results are evaluated with respect to (sampling) error and bias. Given that all
statistical models are approximations of reality and that they almost never fit the
data, statisticians have developed indices that attempt to quantify the degree to
which the results are accurate. The bias introduced by the modeling approach is
investigated.

The same sequence of events describes the process of measurement in standar-
dized testing (see also Braun & Holland, 1982). The steps in the measurement
process are as follows:

1. The measurement process starts with two or more test forms built to the same
specifications (nominally parallel test forms), with the research question being
how to measure and compare the skills of the test takers regardless of which
form they took.

2. The challenge in measuring the skills of test takers, who take different forms of
a test, is how to avoid the confounding of differences in form difficulty with
the differences in the ability of the test takers. In order to disentangle the test
forms differences and ability differences, data are collected in specific ways
and assumptions about the data generating process are explicitly incorporated.

2«All models are wrong but some are useful” (Box & Draper, 1987, p. 74).
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See von Davier, Holland, and Thayer (2004b, Chapter 2) and Dorans et al.
(Chapter 2 of this volume) for details on data collection designs.

. The next step is modeling the data generating process. Data from educational tests
are in most cases noisy and models have been proposed to fit them (log-linear
models, spline functions, IRT models). These models rely on assumptions. The
measurement models that include equating also have underlying assumptions. For
example, in OSE, the model-estimated test-score distributions are linked using an
equipercentile function. The equipercentile function is a mathematical function
composition that requires that the data be continuous, and the test scores usually are
not. Hence, the data need to be continuized. Continuization involves an approxi-
mation approach commonly employed in probability theory and statistical theory.
IRT models make different assumptions from OSE. For example, the estimated
item or ability parameters are linked using a linear transformation assuming the
IRT model fits the data well for each test form. Or, the method called IRT true-
score equating assumes that the relationship between the true-scores holds also for
the observed-scores.

. Hence, assumptions are made about the data generating process. If the model fits
the data to an acceptable degree, then inferences are made based on the model.
. Since the parameters of the equating models are sample estimates, the equating
results are subject to sample variability. At the end of the equating procedure
(after several steps of making assumptions), one will quantify the degree of error
cumulated in the process. This is obtained through the use of statistical indices:
standard errors of parameters, standard errors of equating (SEE), standard errors
of equating differences (SEED), as well as other statistical indices such as the
likelihood ratio statistics, Freeman-Tukey residuals, and the Akaike criterion
(Bishop, Fienberg, & Holland, 1975; Bozdogan, 1987). In addition, the potential
bias in the equating results should be evaluated according to different criteria,
such as the historical information available, stability of results over time,
consistency checks when multiple equating methods are available, changes in
demographics, population invariance, and scale drift. One might employ quality
assurance methods or statistical process control methods to monitor the stability
of the reported scores over time—such as cumulative sum charts and time series
analyses (See Li, Li, & von Davier, Chapter 20 of this volume).

The parallel between a generic statistical process and the educational measure-

ment process is illustrated in Figure 1.1. As already mentioned, no model fits the
data perfectly; moreover, many models are very complex and rely on assumptions
that are not easily tested. Therefore, a discussion of the merits of different models
requires investigation of the assumptions that underlie the models and, more
importantly, analysis of the consequences of failure to meet these assumptions.

In very simple data collection equating designs, such as the equivalent-groups

design and the single-group design, the OSE methods assume very little. As Braun
and Holland (1982) noted, the OSE methods are

. completely atheoretical in the sense that they are totally free of any conception
(or misconception) of the subject matter of the two tests X and ¥ ... . We are only
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Fig. 1.1 The parallel between a generic statistical process and the educational measurement
process. IRT = item response theory; OSE = observed-score equating

preventing from equating a verbal test to a mathematical test by common sense. This is an
inherent problem with observed-score equating. (p. 16)

On the other hand, with the more complex nonequivalent groups with an anchor
test (NEAT) design all OSE methods make more assumptions, some of them
untestable (see Sinharay, Holland, & von Davier, Chapter 17 of this volume; also,
Braun & Holland, 1982). Due to these untestable assumptions, some OSE models
are difficult to evaluate with the data at hand. The IRT model assumptions are
equally demanding and difficult to evaluate.

The question with both sets of equating models (OSE and IRT) is whether
the model errors necessarily invalidate the procedures or whether the errors are
sufficiently limited in their consequences so that the equating approaches are
acceptable. This analysis can be difficult to carry out both with IRT and OSE
methods when employing complex designs. IRT does provide more possibilities in
complex linking situations that are sometimes not feasible with OSE (such as in
survey assessments, where the data are collected following a matrix design—where
not all test takers take all items). However, a matrix design and a complex IRT
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model also involve an increased level of difficulty with respect to verification of
assumptions and an increased reliance on strong assumptions that are needed to
compensate for missing data. The selection of an equating method mainly matters
when the need for equating is strongest (that is, when the forms differ in difficulty)
and all methods produce similar results when the forms and populations are
identical.

1.2.2 Equating and Measurement

The purpose of this section is to identify the unit of measurement in a measurement
process that includes equating of test forms. Then I identify what is to be linked
when the equating of scores is desired, when OSE and IRT methods are employed.
It is assumed that an appropriate data collection design is available for equating
(see Holland & Dorans, 2006). An interesting discussion of similar questions has
been given in Braun and Holland (1982), and Morris (1982).

As Lord and Novick (1968) pointed out, any measurement ‘“begins with a
procedure for identifying elements of the real world with the elements or constructs
of an abstract logical system (a model)” (p. 16). Lord and Novick continued,

To specify this measurement we must do three things: First we must identify the object
being measured, the person, or the experimental unit. Then we must identify the property or
behavior being directly measured.... Finally, we must identify the numerical assignment
rule by which we assign a number to this property of the unit being measured. (p. 16)

Educational testing programs apply a measurement tool (the test form) to test takers
assumed to be randomly sampled from a population. The assessments measure a
specific skill that can be “the examinee’s responses to the items” (Lord & Novick,
1968, p. 16), a latent skill, or a merely unobserved skill. “Theoretical constructs are
often related to the behavioral domain through observable variables by considering the
latter as measures or indicants of the former” (Lord & Novick, 1968, p. 19). The idea
that a measurement is something true (“‘the property or behavior” that the instrument is
supposed to measure) plus an error of measurement is an old concept developed
initially in astronomy and other physical sciences (see Lord & Novick, 1968, p. 31; see
Holland, 2007, for a history of testing and psychometrics). The measurement takes
place indirectly through a number of carefully developed items that comprise the test
form given to a sample of test takers (the random variable with a distribution). The
measurement data can be in the form of arrays of direct responses, such as arrays of Os
and 1s representing correct or incorrect responses to multiple-choice items, or in some
cases, further aggregated (through adding the number of correct responses) to total
scores and distributions. Kolen, Tong, and Brennan (Chapter 3 of this volume) called
the unit of measurement “raw score:” “Raw scores can be as simple as a sum of the
item scores or be so complicated that they depend on the entire pattern of item
responses.” Regardless of how the scores are obtained, they are the realizations of
the random variable—the testing instrument and form.
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In a standardized educational assessment many test forms are built to the same
specifications, and each of these test forms is a testing instrument. These nominally
parallel test forms (Lord & Novick, 1968, p. 180) usually differ in difficulty,
and therefore, the measurement challenge is how to disentangle the unintended
differences in difficulty among the test forms from the ability of the test takers. In
other words, the role of equating is to insure an accurate measurement of an
underlying skill for a test taker, regardless of what test form has been taken by
this test taker (see Figure 1.1). The method chosen to equate test forms depends on
the model used for measurement.

In assessments where the OSE methods are employed, the item information is
aggregated across the test takers, and the test-score distribution is used as the basis
for equating the test forms. Test forms are random variables with distributions,
and the scores are realizations of these random variables. In (equipercentile) OSE,
the cumulative distributions of the random variables test forms are mapped onto
each other such that the percentiles on one will match the percentiles on the other.
As indicated earlier by quoting Braun and Holland (1982), OSE does not explicitly
require a meaning of the score used (i.e., total observed score, number-correct
score, weighted number-correct score, formula-score). In conclusion, for the OSE
methods, the unit of measurement is the total test score (regardless of how it was
obtained), and the equating is accomplished through matching the two test-score
distributions (either in terms of percentiles or in terms of their means and standard
deviations).

In assessments where IRT-based methods are used for equating, the analysis
starts with data as arrays of Os and 1s representing correct or incorrect responses to
multiple-choice items for each person.’ Then the measurement of the underlying
skill is obtained through modeling the interaction between the features of the items
and of the persons who take those items. The IRT-based methods rely on a model
for the probability of a correct response to a particular item by a particular person.
Assuming the model fits the data, the adjustment for differences between the two
test forms is accomplished through linking the item (or ability) parameters. In a
subsequent step, this linking might be applied to raw test scores, and therefore,
achieve equating of scores, or it might be directly applied to scale scores (Yen,
1986). Hence, for IRT-based methods, the unit of measurement is the probability
that a person answers an item correctly (item by person’s skill) and the adjustment
for form differences is done through a linear transformation of the item parameters
or of the parameters of the distribution of the underlying skill.

The appeal of the IRT models lies within the psychometric theory: IRT models
are mathematical models of a test to infer the ability of a test taker and to classify
the test takers according to their ability. Linking the item parameters to adjust for
form differences is inherent to the IRT model. In contrast, as Braun and Holland
(1982) pointed out, the OSE methods are atheoretical.

3There are models for accomplishing the same things with tests using polytomously scored items.
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The measurement and equating models that use a total test score as a unit
of measurement and match the percentiles of test-score distributions, and models
that use the item—person interaction as a unit of measurement and link item
or person parameters, do have similarities; sometimes they overlap or build on
each other. This volume offers an account of several methods of this sort (see
the following chapters: Karabatsos & Walker, Chapter 11; Chen, Livingston, &
Holland, Chapter 12; van der Linden, Chapter 13; Glas & Béguin, Chapter 18).

In my opinion, the value of thinking of equating as a part of a complex
measurement process lies in the multitude of possibilities that become available
to the researcher. These possibilities may include applying existing models from
(or developing new models in) other areas of psychology, econometrics, statistics,
or even from other parts of psychometrics. That is, borrowing or developing new
measurement models in a very different framework than educational measurement
that could also achieve equating becomes easier to conceptualize in a broader
framework. In the next section I give an example of such a cross-contamination
of ideas.

1.3 Measurement of Skills and Equating of Test Scores
Using a Testlet Model

At least three models have been developed to account for the effects of specific
groups of items or testlets that might be included in an assessment. These item
bundles may refer to the same passage, or the same test material, and the responses
to the items from the testlets might not be independent given the ability, and
therefore, the assumption of unidimensionality of the IRT model might be violated.
One way to account for the testlet effect is to incorporate specific dimensions in
addition to the general underlying dimension of the IRT model. Three such models
are the bifactor model (Gibbons & Hedeker, 1992), the second-order factor model
(Rijmen, 2009b), and the testlet model (Bradlow, Wainer, & Wang, 1999). The last
two models were shown to be formally equivalent in Rijmen, and therefore, I will
briefly discuss only the bifactor and second-order model here.

In the bifactor model (Gibbons & Hedeker, 1992), each item measures a general
dimension and one of K specific dimensions. Typically, all dimensions are assumed
to be independent. Here I will use a less general restriction: These dimensions are
assumed to be independent given the general dimension. Figure 1.2 shows a
bifactor model with the conditional independence restriction using a directed
acyclic graph for four sets of items y to y,, the general ability 0,, and the specific
testlets’ effects, 0, to 0.

A second-order model also includes separate testlet effects. Figure 1.3 illustrates
a second-order model with the same conditional independence restriction. In a
second-order model, each testlet has a separate dimension. As in the bifacor
model, the specific testlet effects are assumed to be conditionally independent,
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Fig. 1.2 Directed acyclic graph of the bifactor model. From Three Multidimensional Models for
Testlet Based Tests, by F. Rijmen, 2009b, Princeton, NJ: ETS, p. 2. Copyright 2009 ETS.
Reprinted with permission

T

Fig. 1.3 Directed acyclic graph of the second-order model. From Three Multidimensional Models
for Testlet Based Tests, by F. Rijmen, 2009b, Princeton, NJ: ETS, p. 5. Copyright 2009 ETS.
Reprinted with permission

given the general ability. In this model the general ability is indirectly measured by
the items, through the specific testlet factors. In Figure 1.3 this is represented
through the absence of directed edges between the general ability 8, and the specific
testlets’ effects, 0, to 0,.

Now assume that each of the y, to y, actually denote a test form in Figures 1.2 and
1.3. Assume that these test forms are nominally equivalent forms that need to be
equated. Assume for simplicity reasons that each of the four forms represented in
Figures 1.2 and 1.3 does not include any testlets. Under these assumptions, each of the
three models, the bifactor, the second-order, or the testlet model, can be applied as the
measurement model for a single-group data collection design, where the same test
takers took all four test forms. Other data collection designs can be eventually
considered (see Rijmen, 2009a, where the model was applied to a matrix design
from the Progress in International Reading Literacy Study). This assumption is
made here only to simplify the parallels between the concurrent unidimensional IRT
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calibration and linking, and equating of scores on one side, and the concurrent
calibration with a testlet model, and equating of scores on the other side. Once the
concurrent calibration of items has been achieved, and the items, test forms, and ability
parameters have been estimated using one of the testlet models mentioned here, then
equating of scores can be achieved through the general ability 0g using the method
called IRT true-score equating, or using the method called IRT OSE, or using the local
equating method (van der Linden, Chapter 13 of this volume).

Obviously, the length of the test forms, the sample size, the specifics of the data
collection design, the degree of correlation between the various dimensions, each
can be a challenge for fitting successfully a complex model such as any of the testlet
models mentioned above. This will be the topic of future research.

In my opinion, the advantage of using a testlet or test-form model for linking and
equating lies in the estimate of the test-form effect. As a practitioner, I can see the
advantages of monitoring the distribution of the test-form effect over time to
support reporting stable equating results and of providing meaningful feedback to
the test developers. This feature might be of particular interest for assessments with
an almost continuous administration mode. For assessments with numerous admin-
istrations one could apply the statistical process control charts to several variables
(the means of the general-ability and the form-effect dimensions estimates over
time together with a standard deviation band). If differential test-form functioning
is of concern, then these specific test-form variables can be monitored for the
subgroups of interest. The testlet model applied to test forms also can be extended
to incorporate testlets inside each form, as in a hierarchical model.

Another example of a cross-contamination of ideas is presented in Rock (1982).
In his paper, “Equating Using Confirmatory Factor Analysis,” Rock showed how to
use maximum-likelihood factor analysis procedures to estimate the equating para-
meters, under the assumption that the components of the vector of the test scores
have a multivariate normal distribution.

Next, a mathematical framework that includes all OSE methods is described.
The OSE framework follows the measurement model described in Figure 1.1 and
follows the description of the OSE methods as equating approaches that match the
test score distributions.

1.4 An OSE Framework

In this section, a framework for the OSE methods is introduced. The advantages of a
single framework that includes all OSE methods are (a) a formal level of cohesive-
ness, (b) a modular structure that leads to one software package for all methods, and
(c) the facilitation of development and comparison of new equating models. This
framework is referred as the OSE framework. This framework follows the line of
argument from the previous two sections.
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Identifying a framework that connects the methods used in observed-score
equating practice is part of the continuous search for a theory of equating (see
also Holland & Hoskens, 2003; von Davier, in press). This equating framework
together with Dorans and Holland’s five requirements of an equating procedure
(Dorans & Holland, 2000), is the closest to a theory that is available for observed-
score equating.

The OSE framework outlined here consists of the five steps in the OSE process
as described in von Davier et al. (2004a) for the kernel equating and includes an
explicit description of the relationship between the observed-score equipercentile and
linear equating functions. Moreover, the framework described here shows concep-
tual similarities with the mathematical framework introduced in Braun and Holland
(1982). Next, the notation and the OSE framework are presented.

In the following exposition, it is assumed that an appropriate data collection
design is available for measuring skills on a standardized educational assessment,
where equating of test scores is needed. The two nominally parallel test forms to be
equated are assumed to be well constructed and equally reliable. As in Figure 1.1,
the research question is how to measure accurately and fairly the educational skills
of the test takers who took these two nominally parallel test forms. The two test
forms to be equated are denoted here by X and Y; the same notation is also used for
the test scores as random variables with distributions. Score distributions are usually
discrete, so to describe them, both their possible values and the associated prob-
abilities of these possible values are given. The possible values for the random
variables X and Y are denoted by x; (withj =1,...,J) and y; (withk =1, ..., K),
respectively. As mentioned earlier, for the OSE methods, the unit of measurement is
the test score, and the equating is accomplished by matching the two test score
distributions (either in terms of percentiles or in terms of their means and standard
deviations). In the simple case of total-number-correct scoring, the possible values
for X are consecutive integers, such as x; = 0, x, = 1, etc. In other cases, the
possible values can be negative or have fractional parts—as it is the case of
unrounded formula scores or ability estimates from models that use IRT. We assume
in the following that the unit of measurement is the total number correct score.

Most OSE functions (in particular the nonlinear ones) depend on the score
probability distributions on a target population, called T here. The vectors of the
score probabilities are denoted by r and s on T:

l':(l'l,...7l”J), ands:(sl,...,s;(). (11)
and each 7; and s are defined by
rj=P{X =xj|T}and sy = P{Y = »|T}. (1.2)

The score probabilities for X are associated with the X raw scores, {x;}, and
those for Y are associated with the Y raw scores, {y;}. The steps of the OSE
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framework describe the equating process and are covered in detail in the following
subsections.

1.4.1 Step 1: Presmoothing

It is customary to presmooth the data to remove some of the sampling noise if the
samples are below 20,000. The score probabilities are either estimated through
various procedures such as fitting log-linear models to the observed-score test
probabilities or by estimating them using the sample frequencies if the samples
are large; either way, they are subsequently collected as part of a row vector, 0.
A description of log-linear model presmoothing is not given here because (a) it is
richly documented in the literature (Holland & Thayer, 1987, 1989, 2000; Moses &
Holland, 2008); (b) it is an equating step that is already widely followed and
understood by practitioners of equating; and (c) in theory (and consistent with the
goals of this paper), it can be achieved using other methods and models that easily
can be made to match the OSE framework.

1.4.2 Step 2: Estimating the Score Probabilities

The estimated marginal score probabilities I and § are actually computed (explicitly
or not) using the design function (DF) described below. The estimated equating
function can be written to express the influence of the data collection design as

éy(x) = ey[x; DF(1)]. (1.3)
Equivalently, it can be written as
&y(x) = ey(x;F,8), (1.4)

where u is generic notation for the data vector that reflects the way the data are
collected and G denotes its estimate.

For example, if the data are collected from an equivalent-groups design, then the
data are in the form of two univariate distributions; in this case the design function
is the identity function and u = (r, s). If the data are collected following a single-
group design, where the same group of test takers takes both test forms X and Y,
then u is the vector whose components are the joint probabilities from the bivariate
distribution. In this case, the design function is a linear function that computes the
marginal probabilities r and s from this bivariate distribution. The design function
becomes more complex as the various equating methods for the NEAT design
become more complex, but the results of its application to vector u are always the
score probability vectors, r and s on T.
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1.4.3 Step 3: Continuization

There are different ways to continuize the discrete score distributions. In the case of
kernel equating (Gaussian, uniform, logistic), the kernel functions are the added
continuous random variables to the original discrete variable. I am describing the
kernel method of continuization because it also includes the linear interpolation.
The traditional equipercentile equating function uses a piecewise linear function as
the new continuous distribution. This also can be expressed as in Equations 1.5 and
1.6, with V being a uniform kernel (see Holland & Thayer, 1989, and Lee & von
Davier, Chapter 10 of this volume).
Consider X(hy) as a continuous transformation of X such that

X(hx) = Clx(X + hxv) + (1 —ax),uXT, (15)
where
2
AR ¢ M 1.6
W Gy o o

and &y is the bandwidth controlling the degree of smoothness. In Equation 1.5, V'is
a continuous (kernel) distribution with variance a%, and mean 0. The mean and the
variance of X on T are denoted by uyy and 0)2”, respectively. The role of ay in
Equation 1.5 is to insure that the first two moments of the transformed random
variable X(hy) are the same as the first two moments of the original discrete variable
X. When hy is large, the distribution of X(hy) approximates the distribution of V;
when /iy is small, X(hy) approximates X, but as a continuous function. In von Davier
et al. (2004a), V follows a standard normal distribution (that is, a Gaussian kernel,
with mean 0 and variance 1), which is why the terms Gaussian kernel equating and
kernel equating are sometime used interchangeably. However, Lee and von Davier
(2008; also see Chapter 10 of this volume) discussed the use of alternative kernels
for equating, and in their approach V is a generic continuous distribution. The Y
distribution is continuized in a similar way.

One important property of the OSE framework that was developed for kernel
equating functions (Gaussian or other kernels) is that by manipulating the band-
widths for the new distributions one can obtain a family of equating functions that
includes linear equating (when the bandwidths are large) and equipercentile equat-
ing (when the bandwidths are small) as special cases. The choice of bandwidth
balances the closeness of the continuous distribution to the data and the smoothness
of the new continuous function. The continuized function X(4y) can be evaluated or
diagnosed by comparing its moments to the moments of the discrete score distribu-
tion, in this case, of X. Other OSE methods employ different strategies to continuize
the distributions (see Haberman, Chapter 8 of this volume; Wang, Chapter 9 of this
volume).
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1.4.4 Step 4: Computing the Equating Function

Once the discrete distribution functions have been transformed into continuous
cumulative distribution functions (CDFs), the observed-score equipercentile equating
function that equates X to Y is computed as

éy(x) = ey[x; DF(01)] = Gre '[Fre(x; #); 8], 1.7)

where Gr. is the continuized cumulative distribution function of Y on the target
population T and Fr.. is the continuized cumulative distribution function of X on T.
The equating function ey in Equation 1.7 can have different formulas (linear or
nonlinear, for example). In a NEAT design, it can take the form of chained
equating, poststratification equating, Levine equating, and so on.

1.4.5 Step 5: Evaluating the Equating Results and Computing
Accuracy Measures

The equating function can be evaluated by comparing the moments of the equated
scores distribution é,(x) to the moments of the targeted discrete-score distribution,
in this case, of Y. See von Davier et al. (2004b, Chapter 4) for a diagnostic measure,
called the percent relative error, that compares the moments of the distributions of
the equated scores to the moments of the reference distribution. Other commonly
used diagnostic measures involve accuracy measures (see below) and historical
information available about the equating results from previous administrations of
forms of the assessment. One might employ quality assurance methods or statistical
process control methods to monitor the stability of the reported scores over time—
such as cumulative sum charts, time series analyses, and so on (see Li et al., Chapter
20 of this volume).

The standard error of equating (SEE) and the standard error of equating differ-
ence (SEED) are described next. von Davier et al. (2004b) applied the delta method
(Kendall & Stuart, 1977; Rao, 1973) to obtain both the SEE and the SEED. The
delta method was applied to the function from Equation 1.7 that depends on the
parameter vectors r and s on 7. According to the delta method, the analytical
expression of the asymptotic variance of the equating function is given by

Var[é, (x)] = Var{e,[; DF()]} ~ Jo JprSJpeJ., | (1.8)

where 3 is the estimated asymptotic variance of the vectors r and s after pre-
smoothing; J e is the Jacobian vector of e,, that is, the vector of the first derivatives
of e, (x; r, s) with respect to each component of r and s; and Jpg is the Jacobian
matrix of DF, that is, the matrix of the first derivatives of the design function with
respect to each component of vector u.



1 A Statistical Perspective on Equating Test Scores 15

The asymptotic SEE for e,(x) is the square root of the asymptotic variance in
Equation 1.8, and it depends on three factors that correspond to the data collection
and manipulation steps carried out so far: (a) presmoothing (using a log-linear
model, for example) through estimating the r and s and their estimated covariance
matrix ﬁ); (b) the data collection design through the Jp, and (c) the combination of
continuization and the mathematical form of the equating function from Step 4
(computing the equating function) in the OSE framework.

Moreover, the formula given in Equation 1.8 makes obvious the modular
character of the OSE framework (and implicitly, of the software package developed
for the OSE framework): If one chooses a different log-linear model, then the only
thing that will change in the formula given in Equation 1.8 is 3. If one changes
the data collection design, the only thing that will change in the formula given
in Equation 1.8 is Jpg. Finally, if one changes the equating method (linear or
nonlinear, chained versus frequency estimation, etc.), the only piece that will
change in Equation 1.8 is J,, .

Hence, the formula of the estimated asymptotic variance of the equating function
from Equation 1.8, that is,

OSE framework ~ JE}.JDFEJ;)FJZ}_7 (1.9)

could be seen simplistically as the formal representation of the OSE framework.

In addition to the five steps in the equating process described above that are
synthesized in Equation 1.9, the OSE framework includes an explicit description of
the relationship between the observed-score equipercentile and linear equating
functions, which is described below.

1.4.6 The Relation Between Linear and Equipercentile
Equating Functions

von Davier et al. (2004a, b) argued that all OSE functions from X to Y on T can be
regarded as equipercentile equating functions that have the form shown in Equa-
tions 1.7 and 1.10:

Equiyy 7(x) = G7, [Fre(x)], (1.10)

where Fr.(x) and G7.(y) are continuous forms of the CDFs of X and Y on T, and
y= G;CI (p) is the inverse function of p = Gr.(y). Different assumptions about
Fr.(x) and G7.(y) lead to different versions of Equiyy 7(x), and, therefore, to
different OSE functions (e.g., chained equating, frequency estimation, etc.).

Let uxr, tyr, oxr, and oy denote the means and standard deviations of X and Y
on T that are computed from Fr.(x) and Gr.(y), as in py; = f xdFr.(x), and so on.
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In general, any linear equating function is formed from the first two moments of X
and Yon T as

Lingy 7(x) = pyr + (oyr/oxr)(x — pxr). (1.11)

The linear equating function in Equation 1.11 that uses the first two moments
computed from Fy.(x) and G7.(y) will be said to be compatible with Equixy 7(x) in
Equation 1.10. The compatible version of Linyy 7(x) appears in the theorem below
(see von Davier et al. 2004a, for the proof of the theorem). The theorem connects
the equipercentile function, Equiyy 7(x), in Equation 1.10 to its compatible linear
equating function, Linyy 7(x), in Equation 1.11.

Theorem. For any population, T, if Fr.(x) and G.(y) are continuous CDF's, and
Fo and G, are the standardized CDFs that determine the shapes of Fr.(x) and
Gr(y), that is, both Fy and Gy have mean 0 and variance 1 and

Fre(x) = Fo (ﬂ) and Gr.(y) = Go (y - “”>, (1.12)
OxT oyr
then
Equiyy 7(x) = Gy} [Fr.(x)] = Lingy 7(x) + R(x), (1.13)
where the remainder term,R(x), is equal to oyrr (x — uXT) , (1.14)
oxT

and r(z) is the function
r(z) = Gy '[Fo(2)] — = (1.15)

When Fr.(x) and Gr.(y) have the same shape, it follows that r(z) = 0 in Equation
1.15 for all z, so that the remainder in Equation 1.13 satisfies R(x) = 0, and thus

Equixy 7(x) = Lingy 7(x).

It is important to recognize that, for the various methods used in the NEAT
design, it is not always true that the means and standard deviations of X and Y used
to compute Linyy 7(x) are the same as those from F.(x) and G7.(y) that are used in
Equation 1.8 to form Equiyy 7(x). The compatibility of a linear and equipercentile
equating function depends on both the equating method employed and how the
continuization process for obtaining F7.(x) and Gr.(y) is carried out. The compati-
bility of linear and nonlinear equating functions does hold for the kernel equating
methods but does not hold for all classes of equating methods, as discussed in
von Davier, Fournier-Zajack, and Holland (2007). For example, the traditional
method of continuization by linear interpolation (Kolen & Brennan, 2004) does
not reproduce the variance of the underlying discrete distribution. The piecewise
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linear continuous CDF that the linear interpolation method produces is only guar-
anteed to reproduce the mean of the discrete distribution that underlies it. The
variance of the continuized CDF is larger than that of the underlying discrete
distribution by 1/12 (Holland & Thayer, 1989). Moreover, the four moments of X
and Y on T that are implicitly used by the chained linear or the Tucker linear method
are not necessarily the same, nor are they the same as those of the continuized CDFs
of frequency estimation or the chained equipercentile methods.

In conclusion, the OSE framework includes the five steps of the equating
practice formally described in Equation 1.9 and incorporates both the linear and
nonlinear equating functions together with a description of their relationship. The
theorem above, which shows that the linear and equipercentile equating methods
are related, emphasizes the generalizability of the framework. It was shown that the
OSE framework is a statistical modeling framework as described in Figure 1.1,
where the unit of measurement is the test score and the equating of scores is
accomplished via distribution matching.

1.5 Discussion and Outline of the Book

This chapter reviews the existing measurement and equating models for (one-
dimensional) tests that measure the same construct. The intention is to have the
reader conceptually anchor the new models and approaches presented in the
following chapters of the volume into the frameworks outlined in this introduction.

The measurement model presented in Figure 1.1 is the basis for the structure of
this volume. In order to reflect the steps in the measurement model as described in
Figure 1.1, the book has three parts: (a) Research Questions and Data Collection
Designs, (b) Measurement and Equating Models, and (c) Evaluation. The chapters
have been grouped to reflect the match between the research methodologies of their
focus and each of the steps in the measurement process. The classification of the
chapters in these three parts is, of course, approximate; each of the components of
the measurement process is addressed in every paper.

Author Note: Many thanks go to my colleagues Paul Holland, Jim Carlson, Shelby Haberman, Dan
Eignor, Dianne Henderson-Montero, and Kim Fryer for their detailed reviews and comments on the
material that led to this chapter. Any opinions expressed in this chapter are those of the author and
not necessarily of Educational Testing Service.
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