
Chapter 1

A Statistical Perspective on Equating Test Scores

Alina A. von Davier

“The fact that statistical methods of inference play so slight a role... reflect[s] the lack of

influence modern statistical methods has so far had on current methods for test equating.”

Rubin (1982, p. 53)

“The equating problem reduces to one of modeling and statistical theory.”

Morris (1982, p. 170)

1.1 Introduction

The comparability of scores across different test forms of a standardized assessment

has been a major focus of educational measurement and the testing industry for

the past 90 years (see Holland, 2007, for a history of linking). This chapter focuses

on the statistical methods available for equating test forms from standardized

educational assessments that report scores at the individual level (see also Dorans,

Moses, & Eignor, Chapter 2 of this volume). The overview here is given in terms of

frameworks1 that emphasize the statistical perspective with respect to the equating

methodologies that have been developed by testing practitioners since the 1920s.

The position taken in this paper is that the purpose of the psychometricians’ work is

to accurately and fairly measure and compare educational skills using multiple test

forms from an educational assessment. Therefore, from this measurement perspec-

tive, equating of test forms is only one necessary step in the measurement process.

Equating is only necessary because a standardized educational assessment uses

1Conceptual frameworks (theoretical frameworks) are a type of intermediate theory that have the

potential to connect to all aspects of inquiry (e.g., problem definition, purpose, literature review,

methodology, data collection and analysis). Conceptual frameworks act like maps that give

coherence to empirical inquiry (“Conceptual Framework,” n.d.).
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numerous test forms that tend to differ in difficulty although they are built to the

same specifications (“nominally parallel test forms,” Lord & Novick, 1968, p. 180).

Hence, equating can be viewed as the process of controlling statistically for the

confounding variable “test form” in the measurement process. If the test develop-

ment process were perfect, then equating would not be necessary. See also Lord’s

(1980) theorem 13.3.1 in Chapter 13. The term linking has slightly different

meanings in the field of educational measurement, and it is used here as (a) a

general term for denoting a relationship between test forms (at the total score level,

at the item parameter level, etc.); (b) as a weaker form of equating; and (c) as a

synonym to the process of placing item response theory (IRT) item parameter

estimates on the same scale, which sometimes is also called IRT calibration. In
this chapter I refer to equating as a strong form of linking and as a subclass of

linking methods (Holland & Dorans, 2006). Test equating can be carried out both

using observed-score equating (OSE) and IRT methods, but the word equating is

most often associated with the raw scores of a test. See Holland and Dorans, Kolen

and Brennan (2004), Dorans et al. (Chapter 2 of this volume), and Yen and

Fitzpatrick (2006) for an extensive view of categories of linking methods.

The process of measuring and comparing competencies in an educational

assessment is described here in ways that integrate various existing approaches.

A discussion of equating as a part of the measurement process is given first. Then

I introduce the idea of applying a testlet or a bifactor model to measure skills and

equate scores. This type of model would capture the test-form effect as a latent

variable with a distribution. This variable, the test-form effect, can be (a) moni-

tored over time to inform on the stability of equating, (b) used as feedback for the

test developers to improve upon the degree of parallelism of test forms, and

(c) used for monitoring the form effect on subgroups. Next, an equating frame-

work for the OSE methods is introduced. I discuss how the search for a theory of

OSE led to the development of a framework that provides a map that gives

coherence to empirical inquiry. A framework for IRT parameter linking is given

by M. von Davier and von Davier (Chapter 14 of this volume), and a practical

perspective on equating methods is given by Dorans et al. in Chapter 2. The last

section of this chapter and the Overview outline the rest of the volume. The

chapters are grouped according to the steps of a measurement process that are

described in the next section.

1.2 The Measurement Model, the Unit of Measurement,

and Equating

Parallels between a generic statistical modeling process and an educational mea-

surement process that includes the equating of test forms are presented in this

section. Subsequently, a link between the equating methodologies and the unit of

measurement is discussed.
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1.2.1 Statistical Modeling and Assumptions

The measurement process in standardized testing, which includes test form equating,

follows the same steps as a typical statistical modeling process. Statistical models

are ideal and simplistic representations of a (complex) reality that aid in the

description and understanding of a specific process or that explain or predict future

outcomes. Statistical modeling is accomplished by first identifying the main vari-

ables and their interactions that explain the particular process. Using a simple

model to describe a complex reality requires making many assumptions that

allow the reality to be simplified. The usual steps in any statistical modeling process

are as follows:

1. Statistical modeling starts with a research question and with a set of data.

2. One of the challenges of statistical modeling is the danger of confounding: The

inferences one makes about one variable based on a model might be confounded

by interactions with other variables that exist in the data and that have not been

explicitly modeled. The confounding trap can be addressed by elegant and

elaborate sampling procedures, data collection designs, and explicit modeling

of the variables.

3. A statistical model is proposed and fitted to the data, and the model parameters

are estimated.

4. Assumptions are made about the data generating process. If the model fits the

data to an acceptable degree,2 then inferences are made based on the model.

5. The results are evaluated with respect to (sampling) error and bias. Given that all

statistical models are approximations of reality and that they almost never fit the

data, statisticians have developed indices that attempt to quantify the degree to

which the results are accurate. The bias introduced by the modeling approach is

investigated.

The same sequence of events describes the process of measurement in standar-

dized testing (see also Braun & Holland, 1982). The steps in the measurement

process are as follows:

1. The measurement process starts with two or more test forms built to the same

specifications (nominally parallel test forms), with the research question being

how to measure and compare the skills of the test takers regardless of which

form they took.

2. The challenge in measuring the skills of test takers, who take different forms of

a test, is how to avoid the confounding of differences in form difficulty with

the differences in the ability of the test takers. In order to disentangle the test

forms differences and ability differences, data are collected in specific ways

and assumptions about the data generating process are explicitly incorporated.

2“All models are wrong but some are useful” (Box & Draper, 1987, p. 74).
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See von Davier, Holland, and Thayer (2004b, Chapter 2) and Dorans et al.

(Chapter 2 of this volume) for details on data collection designs.

3. The next step is modeling the data generating process. Data from educational tests

are in most cases noisy and models have been proposed to fit them (log-linear

models, spline functions, IRT models). These models rely on assumptions. The

measurement models that include equating also have underlying assumptions. For

example, in OSE, the model-estimated test-score distributions are linked using an

equipercentile function. The equipercentile function is a mathematical function

composition that requires that the data be continuous, and the test scores usually are

not. Hence, the data need to be continuized. Continuization involves an approxi-

mation approach commonly employed in probability theory and statistical theory.

IRT models make different assumptions from OSE. For example, the estimated

item or ability parameters are linked using a linear transformation assuming the

IRT model fits the data well for each test form. Or, the method called IRT true-
score equating assumes that the relationship between the true-scores holds also for

the observed-scores.

4. Hence, assumptions are made about the data generating process. If the model fits

the data to an acceptable degree, then inferences are made based on the model.

5. Since the parameters of the equating models are sample estimates, the equating

results are subject to sample variability. At the end of the equating procedure

(after several steps of making assumptions), one will quantify the degree of error

cumulated in the process. This is obtained through the use of statistical indices:

standard errors of parameters, standard errors of equating (SEE), standard errors

of equating differences (SEED), as well as other statistical indices such as the

likelihood ratio statistics, Freeman-Tukey residuals, and the Akaike criterion

(Bishop, Fienberg, & Holland, 1975; Bozdogan, 1987). In addition, the potential

bias in the equating results should be evaluated according to different criteria,

such as the historical information available, stability of results over time,

consistency checks when multiple equating methods are available, changes in

demographics, population invariance, and scale drift. One might employ quality

assurance methods or statistical process control methods to monitor the stability

of the reported scores over time—such as cumulative sum charts and time series

analyses (See Li, Li, & von Davier, Chapter 20 of this volume).

The parallel between a generic statistical process and the educational measure-

ment process is illustrated in Figure 1.1. As already mentioned, no model fits the

data perfectly; moreover, many models are very complex and rely on assumptions

that are not easily tested. Therefore, a discussion of the merits of different models

requires investigation of the assumptions that underlie the models and, more

importantly, analysis of the consequences of failure to meet these assumptions.

In very simple data collection equating designs, such as the equivalent-groups

design and the single-group design, the OSE methods assume very little. As Braun

and Holland (1982) noted, the OSE methods are

. . . completely atheoretical in the sense that they are totally free of any conception

(or misconception) of the subject matter of the two tests X and Y . . . . We are only
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preventing from equating a verbal test to a mathematical test by common sense. This is an

inherent problem with observed-score equating. (p. 16)

On the other hand, with the more complex nonequivalent groups with an anchor

test (NEAT) design all OSE methods make more assumptions, some of them

untestable (see Sinharay, Holland, & von Davier, Chapter 17 of this volume; also,

Braun & Holland, 1982). Due to these untestable assumptions, some OSE models

are difficult to evaluate with the data at hand. The IRT model assumptions are

equally demanding and difficult to evaluate.

The question with both sets of equating models (OSE and IRT) is whether

the model errors necessarily invalidate the procedures or whether the errors are

sufficiently limited in their consequences so that the equating approaches are

acceptable. This analysis can be difficult to carry out both with IRT and OSE

methods when employing complex designs. IRT does provide more possibilities in

complex linking situations that are sometimes not feasible with OSE (such as in

survey assessments, where the data are collected following a matrix design—where

not all test takers take all items). However, a matrix design and a complex IRT
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Fig. 1.1 The parallel between a generic statistical process and the educational measurement

process. IRT ¼ item response theory; OSE ¼ observed-score equating
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model also involve an increased level of difficulty with respect to verification of

assumptions and an increased reliance on strong assumptions that are needed to

compensate for missing data. The selection of an equating method mainly matters

when the need for equating is strongest (that is, when the forms differ in difficulty)

and all methods produce similar results when the forms and populations are

identical.

1.2.2 Equating and Measurement

The purpose of this section is to identify the unit of measurement in a measurement

process that includes equating of test forms. Then I identify what is to be linked

when the equating of scores is desired, when OSE and IRT methods are employed.

It is assumed that an appropriate data collection design is available for equating

(see Holland & Dorans, 2006). An interesting discussion of similar questions has

been given in Braun and Holland (1982), and Morris (1982).

As Lord and Novick (1968) pointed out, any measurement “begins with a

procedure for identifying elements of the real world with the elements or constructs

of an abstract logical system (a model)” (p. 16). Lord and Novick continued,

To specify this measurement we must do three things: First we must identify the object

being measured, the person, or the experimental unit. Then we must identify the property or

behavior being directly measured.... Finally, we must identify the numerical assignment

rule by which we assign a number to this property of the unit being measured. (p. 16)

Educational testing programs apply ameasurement tool (the test form) to test takers

assumed to be randomly sampled from a population. The assessments measure a

specific skill that can be “the examinee’s responses to the items” (Lord & Novick,

1968, p. 16), a latent skill, or a merely unobserved skill. “Theoretical constructs are

often related to the behavioral domain through observable variables by considering the

latter as measures or indicants of the former” (Lord & Novick, 1968, p. 19). The idea

that ameasurement is something true (“the property or behavior” that the instrument is

supposed to measure) plus an error of measurement is an old concept developed

initially in astronomy and other physical sciences (see Lord&Novick, 1968, p. 31; see

Holland, 2007, for a history of testing and psychometrics). The measurement takes

place indirectly through a number of carefully developed items that comprise the test

form given to a sample of test takers (the random variable with a distribution). The

measurement data can be in the form of arrays of direct responses, such as arrays of 0s

and 1s representing correct or incorrect responses to multiple-choice items, or in some

cases, further aggregated (through adding the number of correct responses) to total

scores and distributions. Kolen, Tong, and Brennan (Chapter 3 of this volume) called

the unit of measurement “raw score:” “Raw scores can be as simple as a sum of the

item scores or be so complicated that they depend on the entire pattern of item

responses.” Regardless of how the scores are obtained, they are the realizations of

the random variable—the testing instrument and form.
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In a standardized educational assessment many test forms are built to the same

specifications, and each of these test forms is a testing instrument. These nominally

parallel test forms (Lord & Novick, 1968, p. 180) usually differ in difficulty,

and therefore, the measurement challenge is how to disentangle the unintended

differences in difficulty among the test forms from the ability of the test takers. In

other words, the role of equating is to insure an accurate measurement of an

underlying skill for a test taker, regardless of what test form has been taken by

this test taker (see Figure 1.1). The method chosen to equate test forms depends on

the model used for measurement.

In assessments where the OSE methods are employed, the item information is

aggregated across the test takers, and the test-score distribution is used as the basis

for equating the test forms. Test forms are random variables with distributions,

and the scores are realizations of these random variables. In (equipercentile) OSE,

the cumulative distributions of the random variables test forms are mapped onto

each other such that the percentiles on one will match the percentiles on the other.

As indicated earlier by quoting Braun and Holland (1982), OSE does not explicitly

require a meaning of the score used (i.e., total observed score, number-correct

score, weighted number-correct score, formula-score). In conclusion, for the OSE

methods, the unit of measurement is the total test score (regardless of how it was

obtained), and the equating is accomplished through matching the two test-score

distributions (either in terms of percentiles or in terms of their means and standard

deviations).

In assessments where IRT-based methods are used for equating, the analysis

starts with data as arrays of 0s and 1s representing correct or incorrect responses to

multiple-choice items for each person.3 Then the measurement of the underlying

skill is obtained through modeling the interaction between the features of the items

and of the persons who take those items. The IRT-based methods rely on a model

for the probability of a correct response to a particular item by a particular person.

Assuming the model fits the data, the adjustment for differences between the two

test forms is accomplished through linking the item (or ability) parameters. In a

subsequent step, this linking might be applied to raw test scores, and therefore,

achieve equating of scores, or it might be directly applied to scale scores (Yen,

1986). Hence, for IRT-based methods, the unit of measurement is the probability

that a person answers an item correctly (item by person’s skill) and the adjustment

for form differences is done through a linear transformation of the item parameters

or of the parameters of the distribution of the underlying skill.

The appeal of the IRT models lies within the psychometric theory: IRT models

are mathematical models of a test to infer the ability of a test taker and to classify

the test takers according to their ability. Linking the item parameters to adjust for

form differences is inherent to the IRT model. In contrast, as Braun and Holland

(1982) pointed out, the OSE methods are atheoretical.

3There are models for accomplishing the same things with tests using polytomously scored items.
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The measurement and equating models that use a total test score as a unit

of measurement and match the percentiles of test-score distributions, and models

that use the item–person interaction as a unit of measurement and link item

or person parameters, do have similarities; sometimes they overlap or build on

each other. This volume offers an account of several methods of this sort (see

the following chapters: Karabatsos & Walker, Chapter 11; Chen, Livingston, &

Holland, Chapter 12; van der Linden, Chapter 13; Glas & Béguin, Chapter 18).

In my opinion, the value of thinking of equating as a part of a complex

measurement process lies in the multitude of possibilities that become available

to the researcher. These possibilities may include applying existing models from

(or developing new models in) other areas of psychology, econometrics, statistics,

or even from other parts of psychometrics. That is, borrowing or developing new

measurement models in a very different framework than educational measurement

that could also achieve equating becomes easier to conceptualize in a broader

framework. In the next section I give an example of such a cross-contamination

of ideas.

1.3 Measurement of Skills and Equating of Test Scores

Using a Testlet Model

At least three models have been developed to account for the effects of specific

groups of items or testlets that might be included in an assessment. These item

bundles may refer to the same passage, or the same test material, and the responses

to the items from the testlets might not be independent given the ability, and

therefore, the assumption of unidimensionality of the IRT model might be violated.

One way to account for the testlet effect is to incorporate specific dimensions in

addition to the general underlying dimension of the IRT model. Three such models

are the bifactor model (Gibbons & Hedeker, 1992), the second-order factor model

(Rijmen, 2009b), and the testlet model (Bradlow, Wainer, & Wang, 1999). The last

two models were shown to be formally equivalent in Rijmen, and therefore, I will

briefly discuss only the bifactor and second-order model here.

In the bifactor model (Gibbons & Hedeker, 1992), each item measures a general

dimension and one of K specific dimensions. Typically, all dimensions are assumed

to be independent. Here I will use a less general restriction: These dimensions are

assumed to be independent given the general dimension. Figure 1.2 shows a

bifactor model with the conditional independence restriction using a directed

acyclic graph for four sets of items y1 to y4, the general ability yg, and the specific

testlets’ effects, y1 to y4.
A second-order model also includes separate testlet effects. Figure 1.3 illustrates

a second-order model with the same conditional independence restriction. In a

second-order model, each testlet has a separate dimension. As in the bifacor

model, the specific testlet effects are assumed to be conditionally independent,
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given the general ability. In this model the general ability is indirectly measured by

the items, through the specific testlet factors. In Figure 1.3 this is represented

through the absence of directed edges between the general ability yg and the specific
testlets’ effects, y1 to y4.

Now assume that each of the y1 to y4 actually denote a test form in Figures 1.2 and

1.3. Assume that these test forms are nominally equivalent forms that need to be

equated. Assume for simplicity reasons that each of the four forms represented in

Figures 1.2 and 1.3 does not include any testlets. Under these assumptions, each of the

three models, the bifactor, the second-order, or the testlet model, can be applied as the

measurement model for a single-group data collection design, where the same test

takers took all four test forms. Other data collection designs can be eventually

considered (see Rijmen, 2009a, where the model was applied to a matrix design

from the Progress in International Reading Literacy Study). This assumption is

made here only to simplify the parallels between the concurrent unidimensional IRT

Fig. 1.2 Directed acyclic graph of the bifactor model. From Three Multidimensional Models for
Testlet Based Tests, by F. Rijmen, 2009b, Princeton, NJ: ETS, p. 2. Copyright 2009 ETS.

Reprinted with permission

Fig. 1.3 Directed acyclic graph of the second-order model. From Three Multidimensional Models
for Testlet Based Tests, by F. Rijmen, 2009b, Princeton, NJ: ETS, p. 5. Copyright 2009 ETS.

Reprinted with permission
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calibration and linking, and equating of scores on one side, and the concurrent

calibration with a testlet model, and equating of scores on the other side. Once the

concurrent calibration of items has been achieved, and the items, test forms, and ability

parameters have been estimated using one of the testlet models mentioned here, then

equating of scores can be achieved through the general ability yg using the method

called IRT true-score equating, or using themethod called IRTOSE, or using the local

equating method (van der Linden, Chapter 13 of this volume).

Obviously, the length of the test forms, the sample size, the specifics of the data

collection design, the degree of correlation between the various dimensions, each

can be a challenge for fitting successfully a complex model such as any of the testlet

models mentioned above. This will be the topic of future research.

In my opinion, the advantage of using a testlet or test-form model for linking and

equating lies in the estimate of the test-form effect. As a practitioner, I can see the

advantages of monitoring the distribution of the test-form effect over time to

support reporting stable equating results and of providing meaningful feedback to

the test developers. This feature might be of particular interest for assessments with

an almost continuous administration mode. For assessments with numerous admin-

istrations one could apply the statistical process control charts to several variables

(the means of the general-ability and the form-effect dimensions estimates over

time together with a standard deviation band). If differential test-form functioning

is of concern, then these specific test-form variables can be monitored for the

subgroups of interest. The testlet model applied to test forms also can be extended

to incorporate testlets inside each form, as in a hierarchical model.

Another example of a cross-contamination of ideas is presented in Rock (1982).

In his paper, “Equating Using Confirmatory Factor Analysis,” Rock showed how to

use maximum-likelihood factor analysis procedures to estimate the equating para-

meters, under the assumption that the components of the vector of the test scores

have a multivariate normal distribution.

Next, a mathematical framework that includes all OSE methods is described.

The OSE framework follows the measurement model described in Figure 1.1 and

follows the description of the OSE methods as equating approaches that match the

test score distributions.

1.4 An OSE Framework

In this section, a framework for the OSE methods is introduced. The advantages of a

single framework that includes all OSE methods are (a) a formal level of cohesive-

ness, (b) a modular structure that leads to one software package for all methods, and

(c) the facilitation of development and comparison of new equating models. This

framework is referred as the OSE framework. This framework follows the line of

argument from the previous two sections.
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Identifying a framework that connects the methods used in observed-score

equating practice is part of the continuous search for a theory of equating (see

also Holland & Hoskens, 2003; von Davier, in press). This equating framework

together with Dorans and Holland’s five requirements of an equating procedure

(Dorans & Holland, 2000), is the closest to a theory that is available for observed-

score equating.

The OSE framework outlined here consists of the five steps in the OSE process

as described in von Davier et al. (2004a) for the kernel equating and includes an

explicit description of the relationship between the observed-score equipercentile and

linear equating functions. Moreover, the framework described here shows concep-

tual similarities with the mathematical framework introduced in Braun and Holland

(1982). Next, the notation and the OSE framework are presented.

In the following exposition, it is assumed that an appropriate data collection

design is available for measuring skills on a standardized educational assessment,

where equating of test scores is needed. The two nominally parallel test forms to be

equated are assumed to be well constructed and equally reliable. As in Figure 1.1,

the research question is how to measure accurately and fairly the educational skills

of the test takers who took these two nominally parallel test forms. The two test

forms to be equated are denoted here by X and Y; the same notation is also used for

the test scores as random variables with distributions. Score distributions are usually
discrete, so to describe them, both their possible values and the associated prob-

abilities of these possible values are given. The possible values for the random

variables X and Y are denoted by xj (with j ¼ 1, . . . , J) and yk (with k ¼ 1, . . . , K),
respectively. As mentioned earlier, for the OSEmethods, the unit of measurement is

the test score, and the equating is accomplished by matching the two test score

distributions (either in terms of percentiles or in terms of their means and standard

deviations). In the simple case of total-number-correct scoring, the possible values

for X are consecutive integers, such as x1 ¼ 0, x2 ¼ 1, etc. In other cases, the

possible values can be negative or have fractional parts—as it is the case of

unrounded formula scores or ability estimates frommodels that use IRT.We assume

in the following that the unit of measurement is the total number correct score.

Most OSE functions (in particular the nonlinear ones) depend on the score

probability distributions on a target population, called T here. The vectors of the

score probabilities are denoted by r and s on T:

r ¼ r1; . . . ; rJð Þ; and s ¼ s1; . . . ; sKð Þ: (1.1)

and each rj and sk are defined by

rj ¼ PfX ¼ xjjTg and sk ¼ PfY ¼ ykjTg: (1.2)

The score probabilities for X are associated with the X raw scores, {xj}, and
those for Y are associated with the Y raw scores, {yk}. The steps of the OSE
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framework describe the equating process and are covered in detail in the following

subsections.

1.4.1 Step 1: Presmoothing

It is customary to presmooth the data to remove some of the sampling noise if the

samples are below 20,000. The score probabilities are either estimated through

various procedures such as fitting log-linear models to the observed-score test

probabilities or by estimating them using the sample frequencies if the samples

are large; either way, they are subsequently collected as part of a row vector, û.

A description of log-linear model presmoothing is not given here because (a) it is

richly documented in the literature (Holland & Thayer, 1987, 1989, 2000; Moses &

Holland, 2008); (b) it is an equating step that is already widely followed and

understood by practitioners of equating; and (c) in theory (and consistent with the

goals of this paper), it can be achieved using other methods and models that easily

can be made to match the OSE framework.

1.4.2 Step 2: Estimating the Score Probabilities

The estimated marginal score probabilities r̂ and ŝ are actually computed (explicitly

or not) using the design function (DF) described below. The estimated equating

function can be written to express the influence of the data collection design as

êyðxÞ ¼ ey x;DFðûÞ½ �: (1.3)

Equivalently, it can be written as

êyðxÞ ¼ eyðx; r̂; ŝÞ; (1.4)

where u is generic notation for the data vector that reflects the way the data are

collected and û denotes its estimate.

For example, if the data are collected from an equivalent-groups design, then the

data are in the form of two univariate distributions; in this case the design function

is the identity function and u ¼ (r, s). If the data are collected following a single-

group design, where the same group of test takers takes both test forms X and Y,
then u is the vector whose components are the joint probabilities from the bivariate

distribution. In this case, the design function is a linear function that computes the

marginal probabilities r and s from this bivariate distribution. The design function

becomes more complex as the various equating methods for the NEAT design

become more complex, but the results of its application to vector u are always the

score probability vectors, r and s on T.
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1.4.3 Step 3: Continuization

There are different ways to continuize the discrete score distributions. In the case of

kernel equating (Gaussian, uniform, logistic), the kernel functions are the added

continuous random variables to the original discrete variable. I am describing the

kernel method of continuization because it also includes the linear interpolation.

The traditional equipercentile equating function uses a piecewise linear function as

the new continuous distribution. This also can be expressed as in Equations 1.5 and

1.6, with V being a uniform kernel (see Holland & Thayer, 1989, and Lee & von

Davier, Chapter 10 of this volume).

Consider X(hX) as a continuous transformation of X such that

X hXð Þ ¼ aX X þ hXVð Þ þ 1�aXð ÞmXT ; (1.5)

where

a2X ¼ s2XT
s2XT þ s2Vh

2
X

(1.6)

and hX is the bandwidth controlling the degree of smoothness. In Equation 1.5, V is

a continuous (kernel) distribution with variance s2V and mean 0. The mean and the

variance of X on T are denoted by mXT and s2XT , respectively. The role of aX in

Equation 1.5 is to insure that the first two moments of the transformed random

variable X(hX) are the same as the first two moments of the original discrete variable

X. When hX is large, the distribution of X(hX) approximates the distribution of V;
when hX is small, X(hX) approximates X, but as a continuous function. In von Davier
et al. (2004a), V follows a standard normal distribution (that is, a Gaussian kernel,

with mean 0 and variance 1), which is why the terms Gaussian kernel equating and
kernel equating are sometime used interchangeably. However, Lee and von Davier

(2008; also see Chapter 10 of this volume) discussed the use of alternative kernels

for equating, and in their approach V is a generic continuous distribution. The Y
distribution is continuized in a similar way.

One important property of the OSE framework that was developed for kernel

equating functions (Gaussian or other kernels) is that by manipulating the band-

widths for the new distributions one can obtain a family of equating functions that

includes linear equating (when the bandwidths are large) and equipercentile equat-

ing (when the bandwidths are small) as special cases. The choice of bandwidth

balances the closeness of the continuous distribution to the data and the smoothness

of the new continuous function. The continuized function X(hX) can be evaluated or
diagnosed by comparing its moments to the moments of the discrete score distribu-

tion, in this case, of X. Other OSE methods employ different strategies to continuize

the distributions (see Haberman, Chapter 8 of this volume; Wang, Chapter 9 of this

volume).
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1.4.4 Step 4: Computing the Equating Function

Once the discrete distribution functions have been transformed into continuous

cumulative distribution functions (CDFs), the observed-score equipercentile equating

function that equates X to Y is computed as

êyðxÞ ¼ ey½x;DFðûÞ� ¼ GTc
�1½FTcðx; r̂Þ; ŝ�; (1.7)

where GTc is the continuized cumulative distribution function of Y on the target

population T and FTc is the continuized cumulative distribution function of X on T.
The equating function eY in Equation 1.7 can have different formulas (linear or

nonlinear, for example). In a NEAT design, it can take the form of chained

equating, poststratification equating, Levine equating, and so on.

1.4.5 Step 5: Evaluating the Equating Results and Computing
Accuracy Measures

The equating function can be evaluated by comparing the moments of the equated

scores distribution êyðxÞ to the moments of the targeted discrete-score distribution,

in this case, of Y. See von Davier et al. (2004b, Chapter 4) for a diagnostic measure,

called the percent relative error, that compares the moments of the distributions of

the equated scores to the moments of the reference distribution. Other commonly

used diagnostic measures involve accuracy measures (see below) and historical

information available about the equating results from previous administrations of

forms of the assessment. One might employ quality assurance methods or statistical

process control methods to monitor the stability of the reported scores over time—

such as cumulative sum charts, time series analyses, and so on (see Li et al., Chapter

20 of this volume).

The standard error of equating (SEE) and the standard error of equating differ-

ence (SEED) are described next. von Davier et al. (2004b) applied the delta method
(Kendall & Stuart, 1977; Rao, 1973) to obtain both the SEE and the SEED. The

delta method was applied to the function from Equation 1.7 that depends on the

parameter vectors r and s on T. According to the delta method, the analytical

expression of the asymptotic variance of the equating function is given by

Var½êyðxÞ� ¼ Varfey½x;DFðûÞ�g � JeyJDFŜJ
t

DFJ
t
ey
; (1.8)

where Ŝ is the estimated asymptotic variance of the vectors r and s after pre-

smoothing; Jey is the Jacobian vector of ey, that is, the vector of the first derivatives
of ey (x; r, s) with respect to each component of r and s; and JDF is the Jacobian

matrix of DF, that is, the matrix of the first derivatives of the design function with

respect to each component of vector u.
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The asymptotic SEE for ey(x) is the square root of the asymptotic variance in

Equation 1.8, and it depends on three factors that correspond to the data collection

and manipulation steps carried out so far: (a) presmoothing (using a log-linear

model, for example) through estimating the r and s and their estimated covariance

matrix Ŝ; (b) the data collection design through the JDF, and (c) the combination of

continuization and the mathematical form of the equating function from Step 4

(computing the equating function) in the OSE framework.

Moreover, the formula given in Equation 1.8 makes obvious the modular

character of the OSE framework (and implicitly, of the software package developed

for the OSE framework): If one chooses a different log-linear model, then the only

thing that will change in the formula given in Equation 1.8 is Ŝ. If one changes

the data collection design, the only thing that will change in the formula given

in Equation 1.8 is JDF. Finally, if one changes the equating method (linear or

nonlinear, chained versus frequency estimation, etc.), the only piece that will

change in Equation 1.8 is Jey .

Hence, the formula of the estimated asymptotic variance of the equating function

from Equation 1.8, that is,

OSE framework � JeyJDFŜJ
t

DFJ
t
ey
; (1.9)

could be seen simplistically as the formal representation of the OSE framework.

In addition to the five steps in the equating process described above that are

synthesized in Equation 1.9, the OSE framework includes an explicit description of

the relationship between the observed-score equipercentile and linear equating

functions, which is described below.

1.4.6 The Relation Between Linear and Equipercentile
Equating Functions

von Davier et al. (2004a, b) argued that all OSE functions from X to Y on T can be

regarded as equipercentile equating functions that have the form shown in Equa-

tions 1.7 and 1.10:

EquiXY T xð Þ ¼ G�1
Tc FTcðxÞ½ �; (1.10)

where FTc(x) and GTc(y) are continuous forms of the CDFs of X and Y on T, and

y ¼ G�1
Tc ðpÞ is the inverse function of p ¼ GTc(y). Different assumptions about

FTc(x) and GTc(y) lead to different versions of EquiXY T(x), and, therefore, to
different OSE functions (e.g., chained equating, frequency estimation, etc.).

Let mXT, mYT, sXT, and sYT denote the means and standard deviations of X and Y
on T that are computed from FTc(x) and GTc(y), as in mXT ¼ R

xdFTcðxÞ, and so on.
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In general, any linear equating function is formed from the first two moments of X
and Y on T as

LinXY T xð Þ ¼ mYT þ ðsYT=sXTÞðx� mXTÞ: (1.11)

The linear equating function in Equation 1.11 that uses the first two moments

computed from FTc(x) and GTc(y) will be said to be compatible with EquiXY T(x) in
Equation 1.10. The compatible version of LinXY T(x) appears in the theorem below

(see von Davier et al. 2004a, for the proof of the theorem). The theorem connects

the equipercentile function, EquiXY T(x), in Equation 1.10 to its compatible linear

equating function, LinXY T(x), in Equation 1.11.

Theorem. For any population, T, if FTc(x) and GTc(y) are continuous CDFs, and
F0 and G0 are the standardized CDFs that determine the shapes of FTc(x) and
GTc(y), that is, both F0 and G0 have mean 0 and variance 1 and

FTc xð Þ ¼ F0

x� mXT
sXT

� �
and GTc yð Þ ¼ G0

y� mYT
sYT

� �
; (1.12)

then

EquiXY T xð Þ ¼ G�1
Tc FTcðxÞ½ � ¼ LinXY T xð Þ þ R xð Þ; (1.13)

where the remainder term;R xð Þ; is equal to sYTr
x� mXT
sXT

� �
; (1.14)

and r(z) is the function

r zð Þ ¼ G�1
0 F0ðzÞ½ � � z: (1.15)

When FTc(x) and GTc(y) have the same shape, it follows that r(z) ¼ 0 in Equation
1.15 for all z, so that the remainder in Equation 1.13 satisfies R(x) ¼ 0, and thus
EquiXY T(x) ¼ LinXY T(x).

It is important to recognize that, for the various methods used in the NEAT

design, it is not always true that the means and standard deviations of X and Y used

to compute LinXY T(x) are the same as those from FTc(x) and GTc(y) that are used in
Equation 1.8 to form EquiXY T(x). The compatibility of a linear and equipercentile

equating function depends on both the equating method employed and how the

continuization process for obtaining FTc(x) and GTc(y) is carried out. The compati-

bility of linear and nonlinear equating functions does hold for the kernel equating

methods but does not hold for all classes of equating methods, as discussed in

von Davier, Fournier-Zajack, and Holland (2007). For example, the traditional

method of continuization by linear interpolation (Kolen & Brennan, 2004) does

not reproduce the variance of the underlying discrete distribution. The piecewise
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linear continuous CDF that the linear interpolation method produces is only guar-

anteed to reproduce the mean of the discrete distribution that underlies it. The

variance of the continuized CDF is larger than that of the underlying discrete

distribution by 1/12 (Holland & Thayer, 1989). Moreover, the four moments of X
and Y on T that are implicitly used by the chained linear or the Tucker linear method

are not necessarily the same, nor are they the same as those of the continuized CDFs

of frequency estimation or the chained equipercentile methods.

In conclusion, the OSE framework includes the five steps of the equating

practice formally described in Equation 1.9 and incorporates both the linear and

nonlinear equating functions together with a description of their relationship. The

theorem above, which shows that the linear and equipercentile equating methods

are related, emphasizes the generalizability of the framework. It was shown that the

OSE framework is a statistical modeling framework as described in Figure 1.1,

where the unit of measurement is the test score and the equating of scores is

accomplished via distribution matching.

1.5 Discussion and Outline of the Book

This chapter reviews the existing measurement and equating models for (one-

dimensional) tests that measure the same construct. The intention is to have the

reader conceptually anchor the new models and approaches presented in the

following chapters of the volume into the frameworks outlined in this introduction.

The measurement model presented in Figure 1.1 is the basis for the structure of

this volume. In order to reflect the steps in the measurement model as described in

Figure 1.1, the book has three parts: (a) Research Questions and Data Collection
Designs, (b) Measurement and Equating Models, and (c) Evaluation. The chapters
have been grouped to reflect the match between the research methodologies of their

focus and each of the steps in the measurement process. The classification of the

chapters in these three parts is, of course, approximate; each of the components of

the measurement process is addressed in every paper.

Author Note: Many thanks go tomy colleagues Paul Holland, Jim Carlson, Shelby Haberman, Dan

Eignor, Dianne Henderson-Montero, and Kim Fryer for their detailed reviews and comments on the

material that led to this chapter. Any opinions expressed in this chapter are those of the author and

not necessarily of Educational Testing Service.
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