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Applications of Bergman Geometry

In this chapter, results will be presented that arise by combining geometric
arguments with the asymptotic curvature constancy at the boundary (dis-
cussed in the previous chapter) and other aspects of the geometry of the
Bergman metric. The completeness of the Bergman metric of strongly pseu-
doconvex domains (Theorem 3.4.2) fits the whole situation into the framework
of global Riemannian geometry, the basic idea of which is that the global geom-
etry of a complete Riemannian manifold is controlled by curvature. Without
completeness, this property fails entirely (cf. [Gromov 1969]). But, with com-
pleteness in hand, one expects curvature information to control the geometry
in many respects.

4.1 Applications of Stability near the Boundary

The first result to be discussed has to do with small perturbations of the unit
ball in Cn, n ≥ 2. A perturbation of the unit disc in C that is small in the C∞

sense produces a domain that is still biholomorphic to the unit disc, by the
Riemann mapping theorem. But in Cn, n ≥ 2, perturbations of the unit ball
are generically not biholomorphic to the unit ball. This can be seen from
Tanaka-Chern–Moser theory, but it can also be established by using more el-
ementary arguments involving only counting the parameters in biholomor-
phic mappings and in representations of the boundary. There are, at high jet
levels, more parameters in boundary choice than in germs of biholomorphic
mappings. Details of this idea, which goes back to Poincaré, can be found in
[Fefferman 1974] or [Greene/Krantz 1981].

Theorem 4.1.1. There is a neighborhood U of the unit ball in Cn in the C∞

topology on domains such that every Ω ∈ U is either

(1)biholomorphic to the unit ball
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or else

(2)Aut(Ω) has a fixed point, which is to say, there is an x ∈ Ω such that
γ(x) = x for every γ ∈ Aut(Ω).

Proof. To begin with, choose U so that if Ω ∈ U , then Ω is (C∞) strongly
pseudoconvex. By Corollary 3.4.4, Ω is biholomorphic to the unit ball if
Aut(Ω) is noncompact. Now impose on U the additional conditions (via The-
orem 3.6.2) that, if Ω ∈ U , then the Bergman metric has negative sectional
curvatures and that, if Ω ∈ U , then Ω is diffeomorphic to the ball and hence
simply connected. [This latter condition is taken for granted in general by our
discussion of C∞ topology. We reiterate it here for emphasis.]

With U satisfying these conditions, if Ω ∈ U and Ω is not biholomorphic
to the unit ball, then Aut(Ω) is a compact group of isometries of a com-
plete, simply connected manifold of everywhere negative sectional curvature—
first, Ω with its Bergman metric. It is a standard theorem of E. Cartan
(cf. [Klingenberg 1982], for example) that a compact group of isometries of a
complete manifold of nonpositive sectional curvature has a fixed point. [The
fixed point is obtained as the “center of gravity” of the orbit of any arbitrary
point.] ��

The fixed point theorem of E. Cartan that was applied to establish The-
orem 4.1.1 is usually proved using the strict convexity of the square of the
distance function. first, on a complete, simply connected Riemannian mani-
fold with all sectional curvatures nonpositive, the function dis2(·, p0) is C∞,
strongly convex for each point p0 ∈M . Indeed, its second derivative along each
arclength-parameter geodesic is ≥2. This is an aspect of the Hessian compar-
ison ideas developed in a more general context in [Greene/Wu 1977]. [It is also
related to H. Karcher’s proof ([Karcher 1989]; see also, e.g., [Klingenberg 1982],
p. 226 ff) of the Toponogov comparison theorem ([Toponogov 1959]). But there
the inequalities go the other way: nonnegative sectional curvature implies sec-
ond derivatives ≤2.] But in the specific instance at hand, a direct proof by
the second variation Formula is easy and standard.

With this convexity in mind, one establishes the existence of a fixed point
for a compact group G of isometries of M as follows. Choose p0 in M arbitrar-
ily. Define F : M → R by, for each p ∈M , F (p) =

∫
g∈G

dis2(g(p), p0) dg, where
dg is the invariant measure on G. The function F is C∞ and strongly convex;
indeed, its second derivative along each arclength-parameter geodesic is ≥2,
as one sees by differentiation under the integral sign. Moreover, completeness,
the compactness of G, and the triangle inequality combine to show that F
is proper. If p is far from p0, then F (p) is large because p is far from the
compact set {g(p0) : g ∈ G}. So F goes to infinity as p tends to infinity. Thus
F has a unique minimum, say at the point q0. But, because the function F is
G-invariant—F (g(x)) = F (x) for all x ∈M , g ∈ G—this unique minimum is
fixed by the elements of G. [Note that there is no claim that q0 is the unique
fixed point of the G action. A different choice of p0 could potentially yield a
different fixed point, and indeed the G action might have many fixed points.]
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This argument admits a variant in which differentiability is brought less
to the fore. This is a considerable digression, but it will make possible in a
moment an equally considerable generalization of Theorem 4.1.1. In this vari-
ant, one considers, instead of the function F , convex sets associated to the
situation.

Each closed ball cl(B(p0, r)) ≡ {q : dis(q, p0) ≤ r}, p0 ∈M , is convex, be-
cause dis2(·, p0) is a convex function. [The notion of convexity is unambiguous
here since geodesic connections are unique on such manifolds.] Now, if G is
not the one-element group, then, for small r, the set

⋂
g∈G cl(B(g(p0), r)) is

empty. On the other hand, if r is large, then, since G is compact, this inter-
section is definitely nonempty. Thus there is an r0 > 0 such that the inter-
section is empty for r < r0 and nonempty for r > r0. One sees easily that⋂

g∈G cl(B(g(p0), r0)) is nonempty but has empty interior. This set is clearly
G-invariant.

At this point, one can bring into play a familiar “trick” of Riemannian
geometry (cf. [Cheeger/Gromoll 1971]): a closed, convex set with empty inte-
rior (as a subset with possibly nonempty boundary) lies in a totally geodesic
submanifold of M of lower dimension, which dimension can be chosen to be
minimal. The group G acts on this unique, minimal-dimensional submanifold,
so the argument can be repeated. Repetition yields eventually (since dimen-
sion drops at each stage) a compact, G-invariant, totally geodesic submanifold
of M . But, for our particular M , such a submanifold must be a point: This
follows from the strong convexity of dis2(·, q) for any point q chosen arbitrarily
in M . [Detail: If N is a compact, totally geodesic submanifold of M with no
boundary, then, for any q ∈ M , dis2(·, q) has a maximum value on N , say at
x ∈ N . But then dis2(·, q) has a maximum at x along each geodesic through x.
Thus dis2(·, q) is constant along such geodesics, contradicting strong convexity
of dis2(·, q). This contradiction can be averted only if N consists of the point
x alone.] We have gone into this matter in some detail because in fact this
alternative line of reasoning enables Theorem 4.1.1 to be extended consider-
ably. first, L. Lempert has proved the following (personal communication to
the third author).

Theorem 4.1.2 (Lempert). If G is a compact group of automorphisms of a
convex, bounded, open domain Ω (convex in the usual Euclidean sense of the
word), then G has a fixed point.

The proof of this result is obtained by first showing that the balls
in Ω relative to the Kobayashi metric are convex in the Euclidean sense
([Lempert 1981]). Then one can apply the geometric reasoning just discussed.
In more detail: On a strongly convex domain with C6 boundary, consider the
convex sum of two extremal discs for the Kobayashi metric. The sum defines a
holomorphic disc contained in the domain due to convexity. From this follows
the Euclidean convexity of the Kobayashi distance ball for the strongly convex
domain. Then the exhaustion of a bounded convex domain by strongly convex
domains implies the Euclidean convexity for the Kobayashi distance ball for
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general convex domains. To obtain a fixed point of the compact subgroup G,
consider the G-orbit of a point. As before in the Riemannian case, for a posi-
tive number r, the intersection, say Sr, of the closed balls of radius r centered
at a point in the orbit is nonempty for some sufficiently large r. Take the
smallest r for which Sr is nonempty. Then this Sr is convex and has empty
interior. Thus it has dimension strictly less than that of the original domain.
Equip Sr with the restricted Kobayashi distance. Then continue this process
with Sr. This ends with a G-invariant 0-dimensional set which is convex and
hence a single point. This is a fixed point of G.

To put Theorems 4.1.1 and 4.1.2 into context, one needs to know that, in
general, a compact group of automorphisms of a C∞ strongly pseudoconvex
domain can be free of fixed points, even when the domain is homeomorphic
or diffeomorphic to the ball. This is not obvious! Most compact topological
group actions on balls that come to mind are conjugate to linear actions and
hence have fixed points. And, a fortiori, examples of compact automorphism
groups of domains homeomorphic to balls without fixed points are even less
accessible.

Here, however, is a way to produce examples:
There is a finite group, say Γ , acting smoothly on S7 with exactly one fixed

point ([Stein 1976]; see also, for more on the general situation, [Petrie 1982]).
This action can in fact be taken to be real analytic: this possibility is a general
feature, once the existence of such a smooth action is known ([Illman 1994]).
For any such (real analytic) action by Γ , a Γ -invariant Riemannian metric g0
can be found by the usual averaging process. Then the complement in S7 of
every sufficiently small closed g0-ball around the fixed point is real analytically
diffeomorphic to a (standard) ball in R7 on which the finite group Γ acts real
analytically and acts without fixed point. In this way, one obtains a bounded
domain W in R7, diffeomorphic to the ball, such that W is real analytically
acted upon by the finite group, without fixed points, and the closure of W is
contained in a larger bounded domain V to which the group action extends
real analytically, also without fixed points. The domain W (as well as V at
the same time) can be taken to be real analytically equivalent to a standard
ball. In fact, W can be taken to be a standard ball in R7.

By averaging, there is a group-invariant function F : V → R such that F
is real analytic and W = {p ∈ V : F (p) < 1} and such that dF is nowhere
zero on {p ∈ V : F (p) = 1}.

Now each element γ of the finite group Γ extends to be a biholomorphic
map of some neighborhood Vγ of the closure of W in C7 into some open neigh-
borhood of the closure of V . The intersection Ŵ :=

⋂
γ∈Γ Vγ is a neighborhood

in C7 of the closure of W .
Consider the function y2

1 +y2
2 + · · ·+y2

7 on C7, where zj = xj +
√−1yj . By

averaging and shrinking Ŵ if necessary (while still keeping it a neighborhood
of the closure of W ), we obtain a group-invariant C∞ function ϕ : Ŵ → R,
say, such that ϕ ≥ 0 and {p ∈ Ŵ : ϕ(p) = 0} is the set where yj = 0 for all
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j = 1, . . . , 7 and such that ϕ is strictly plurisubharmonic (since y2
1+y2

2+· · ·+y2
7

is). Here, “group-invariant” does not mean that the set Ŵ is invariant under
the action by Γ but only that ϕ(p) = ϕ(γ(p)) for each γ ∈ Γ and each p ∈ Ŵ .

Next, note that we can also average the function

(z1, . . . , z7) �→ F (x1, . . . , x7)

over the Γ -action, when z = (z1, . . . , z7) is in a neighborhood in C7 of the
closure of W . This yields a group-invariant function F̂ on a small enough such
neighborhood in R7 ⊂ C7.

Now consider F̂ + Mϕ, where M is a (large) positive constant to be de-
termined and let

W̃M := {p : F̂ (p) + Mϕ(p) < 1}.

Then W ⊂ W̃M , since F = F̂ < 1 on W and ϕ = 0 on W . Moreover,
for M large enough, W̃M is C∞ strongly pseudoconvex because ϕ is C∞

strictly plurisubharmonic. The nonvanishing of the gradient of F̂ + Mϕ at
the boundary of W̃M is easily checked. Finally, the domain W̃M is group-
invariant—the group Γ acts on it—because the defining function is group-
invariant.

When M again is large enough, the group action on W̃M is without fixed
point. For, otherwise a limiting argument would produce a fixed point for the
group action on W , since, as M → +∞, the domains W̃M collapse to W .

This construction is of course quite general. It would apply to any finite
group acting smoothly on a sphere with exactly one fixed point: the specific
reference to S7 is only an historical tribute to [Stein 1976]. Indeed, one could
similarly deal with compact groups in general acting smooth on a sphere with
one fixed point. Note also that the domain W̃M cannot be biholomorphic to
the ball, since every finite (or indeed compact) subgroup of automorphism
group of the ball has a fixed point. Thus Aut (W̃M ) is a compact group (see
Corollary 3.4.4) acting without fixed points on W̃M .

Now we explore results from the paper [Greene/Krantz 1981] that are
based on Theorem 3.5.1, on the stability of Bergman metric curvature near
the boundary of a C∞ strongly pseudoconvex domain.

The following lemma will be pivotal to the considerations in this subsection.

Lemma 4.1.3. Let Ω0 be a fixed strongly pseudoconvex domain with C∞

boundary that is not biholomorphic to the ball. Then there are a neighbor-
hood U of Ω0 in the C∞ topology on domains, a number δ > 0, and a point
p ∈ Ω0 such that if Ω ∈ U then p ∈ Ω and

dis(f(p), ∂Ω) ≥ δ

for all f ∈ Aut (Ω).
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Proof. According to Theorem 4.2.2, the holomorphic sectional curvature of
the Bergman metric of Ω0 is not constant. (Theorem 4.2.2 will be proved later
by an argument independent of the present Lemma 4.1.3.) In particular, there
is a constant λ > 0, a point p ∈ Ω0 and a J-invariant 2-plane P such that the
sectional curvature κ(P ) of the Bergman metric of Ω0 at p satisfies∣∣∣κ(P ) +

4
n + 1

∣∣∣ > λ.

From the stability result Theorem 3.5.2, there is a neighborhood U1 of Ω0 in
the C∞ topology on domains such that p ∈ Ω if Ω ∈ U1 and∣∣∣κΩ(P ) +

4
n + 1

∣∣∣ > λ

2

for all Ω ∈ U1, where κ(P ) = the sectional curvature of the 2-plane P at
p for the Bergman metric of Ω. By Theorem 3.5.1, there is a C∞ neighbor-
hood U2 of Ω0 and a constant δ > 0 such that if Ω ∈ U2, if q ∈ Ω with
dis (q,Cn \Ω) < δ, and if Q is a J-invariant 2-plane at q, then∣∣∣κΩ(Q) +

4
n + 1

∣∣∣ > λ

2
.

Now sectional curvature is invariant under isometries, and hence sectional cur-
vatures of a Bergman metric are invariant under biholomorphic maps. More-
over, (the differentials of) biholomorphic maps take J-invariant 2-planes to
J-invariant 2-planes. It follows that if Ω ∈ U1 ∩ U2, then the orbit of the
point p under Aut (Ω) contains no points x with dis (x, ∂Ω) < δ. ��

Let Ω ⊆ Cn be a domain. We say that Ω is rigid if Aut (Ω) = {id}. In
other words, Ω is rigid if the only biholomorphic mapping of Ω to itself is the
identity mapping.

Theorem 4.1.4. Let Ω0 be a smoothly bounded, strongly pseudoconvex do-
main that is rigid. Then any sufficiently small C∞ perturbation of Ω0 is also
rigid. In other words, the set of rigid, strongly pseudoconvex domains in Cn

with smooth boundary is open in the C∞ topology of domains.

Remark. It follows from [Burns/Shnider/Wells 1978] (which uses the theory of
Tanaka/Chern/Moser invariants [Chern/Moser 1974], [Tanaka 1965]) that the
collection of all smoothly bounded, rigid, strongly pseudoconvex domains is
dense in the collection of all smoothly bounded, strongly pseudoconvex do-
mains. Actually, this density can be established without the use of invariant
theory, just by parameter counting, by using systematically that the number of
parameters at a given jet level for a hypersurface is larger than the number
of parameters for local biholomorphic maps, as already discussed. Coupled
with the result of the theorem, this implies that the collection of smoothly
bounded strongly pseudoconvex domains with nontrivial automorphism group
is residual—in the sense of the Baire category theory. The rigid domains are
an open dense set (in the C∞ topology on domains). Rigidity is “generic.”
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Proof of Theorem 4.1.4. The proof will be by contradiction: Suppose there is
a sequence {Ωj}∞j=1 of C∞ strongly pseudoconvex domains converging in the
C∞ topology to a C∞ strongly pseudoconvex domain Ω0 with Aut (Ω0) = {id}
but such that, for each j ≥ 1, Aut (Ωj) 	= {id}. Observe that if αj : Ωj → Ωj

is a sequence of holomorphic mappings then, by standard normal families
arguments, there is a subsequential limit mapping α0 : Ω0 → cl(Ω0). Choose,
for each j, αj ∈ Aut (Ωj), αj 	= idΩj

.
The domain Ω0 is certainly not biholomorphic to the ball. So Lemma 4.1.3

tells us that there is a point p ∈ Ω0 and a number δ > 0 such that the points
{αj(p)} lie in {z ∈ Ωj : dis(z, ∂Ωj) > δ} for all sufficiently large j. In partic-
ular, we can be sure that {αj(p)} lie in {z ∈ Ω0 : dis(z, ∂Ω0) > δ} as long as
j is sufficiently large. As a result, the mapping α0 : Ω0 → cl(Ω0) must itself
be an automorphism. (See Theorem 1.3.4.)

Since Aut (Ω0) = {id}, we conclude that α0 = id. In order for us to
obtain a contradiction, it suffices to show that the sequence {αj} could have
been selected to be bounded away from the identity, for all large j, on some
compact subset of Ω0. In so constructing the sequence αj , we will (discarding
a finite number of domains and mappings if necessary) take p ∈ Ωj and
dis(p, ∂Ωj) > δ for all j.

We first claim that there is an ε > 0 such that, if the orbit of p under
Aut (Ωj) is contained in the Bergman metric ball on Ωj of size ε around p, then
there is a fixed point of Aut (Ωj) contained in this ball. To prove this claim,
notice that the group Aut (Ωj) will be compact if the orbit of p is bounded in
the Bergman metric; and if the orbit of p is contained in a sufficiently small
ball about p, then that compact orbit will also have a unique Riemannian
center of mass in the ball, which will be a fixed point of the group action. The
required smallness of this ball is stable under C∞ perturbation of the metric,
hence under C∞ perturbation of the domain. Hence that smallness can be
chosen uniformly in j. This stability and consequent uniformity comes from
the C∞ interior stability of the Bergman metric and the usual conditions for
existence of a unique Riemannian center of mass (cf. [Grove/Karcher 1973]).

Now, suppose that it is not possible to select αj ∈ Aut (Ωj) which are
bounded away from the identity on the Euclidean ball of radius δ/4 around p.
Passing to a subsequence if necessary, we may assume that Aut (Ωj) restricted
to this ball converges to the identity. Then, as we have previously noted, for
all large j there will be a fixed point—call it pj—for Aut (Ωj) with pj in the
Bergman metric ball of radius ε about p. [Here we are assuming, without loss
of generality, that the Bergman metric balls of radius 2ε around p for the
Bergman metrics of the Ωj are all contained in the Euclidean ball of radius
δ/4 about p.]

Thus, for all large j, Aut (Ωj) is isomorphic to a subgroup Hj of the
unitary group via the mapping α �→ dα|pj

, as usual. Now here is the crux of the
argument: since the unitary group does not contain arbitrarily small nontrivial
subgroups, there is a positive constant η > 0 such that, for each sufficiently
large j, there is an element βj ∈ Aut (Ωj) with the distance of dβj

∣∣
pj

to
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the identity exceeding η (where distance is relative to some fixed bi-invariant
metric on the unitary group). But this fact, together with the facts that the
Bergman metrics of the Ωj converge C∞ to that of Ω0 uniformly on the
Euclidean ball of radius 3δ/8 about p and that the pj lie in the fixed compact
closed ball of Euclidean radius δ/4 about p, implies that the action of the
elements βj does not converge to the identity on the Euclidean ball about p
of radius 3δ/8. This contradiction completes the proof. ��

A similar, but simpler, argument establishes the following result. We refer
the reader to [Greene/Krantz 1981] for the details.

Theorem 4.1.5. Each biholomorphic equivalence class is closed in the C∞

topology on the set of C∞ strongly pseudoconvex domains.

4.2 Bergman Representative Coordinates

The Bergman kernel function gives rise not only to the Bergman metric, as
already discussed, but also to some special local holomorphic coordinate sys-
tems which play a significant role in the study of biholomorphic mappings and
in particular will be heavily used here. These local coordinate systems, known
as Bergman representative coordinates, share certain properties with the
geodesic normal coordinates of Riemannian geometry. In particular, biholo-
morphic mappings are linear when expressed in representative coordinates,
in analogy with isometries being linear in geodesic normal coordinates. But
geodesic normal coordinates are never holomorphic unless the (Kähler) met-
ric is flat, that is, locally isometric to Cn, while the Bergman representative
coordinates are holomorphic in all cases where they are defined.

As we shall see, the Bergman representative coordinates provide a natu-
ral way to analyze, among other things, smoothness to the boundary of bi-
holomorphic mappings. But this possibility was overlooked for some time by
the mathematical community as a whole. Bergman himself suggested this use
for representative coordinates at the 1975 AMS Summer Institute on Several
ComplexVariables inWilliamstown,Massachusetts.This suggestionwas treated
with respect by the several hundred people who heard it there, as befitted
Bergman’s venerable age and his stature in the field. But the remark was almost,
it seems, completely misunderstood. This is somewhat surprising in view of the
great interest at that time in simplifying the latter part of Fefferman’s then new
paper [Fefferman 1974], in which the asymptotic expansion for the Bergman
kernel obtained in the first part is shown by an intricate argument involving
geodesics to imply boundary smoothness. As we shall see below, Bergman’s
suggested use of representative coordinates was exactly a propos: these coordi-
nates provide precisely the right tool to obviate the analysis of geodesics and
to go directly to smoothness to the boundary. [The later paper [Webster 1979]
gives one method for implementing Bergman’s idea, though without attribu-
tion to Bergman and hence, one supposes, independently.]
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Bergman’s representative coordinates are also involved in the proof of Lu
Qi-Keng’s theorem (Theorem 4.2.2) on bounded domains with Bergman met-
rics of constant holomorphic sectional curvature. This result will be stated in
detail and proved in the present section.

We turn first to the definition of Bergman representative coordinates.
Let Ω be a bounded domain in Cn and let q be a point of Ω. The “diagonal”

Bergman kernel KΩ(q, q) is of course real and positive so that there is a
neighborhood of q such that, for all z, w in the neighborhood, KΩ(z, w) 	= 0.
Then for all z, w in that neighborhood, we define

bj(z) = bj,q(z) =
∂

∂wj
log

K(z, w)
K(w,w)

∣∣∣∣
w=q

.

It is actually certain constant-coefficient linear combinations of these that will
be the ultimate “Bergman representative coordinates,” but we begin with the
functions just defined. Note that these coordinates are well defined, indepen-
dent of the choice of logarithmic “branches.” Each bj(z) is clearly a holomor-
phic function of z.

Notice that some restriction on z to be in a neighborhood of q may be
actually necessary, since it may be that KΩ(z, w) vanishes for some pairs
(z, w) ∈ Ω ×Ω.1 In any event, the mapping

z �−→ (
b1(z), . . . , bn(z)

) ∈ Cn

is defined and holomorphic in a neighborhood of the point q. Note also that
(b1(q), . . . , bn(q)) = (0, . . . , 0).

We are hoping to use these functions, and later certain special linear com-
binations of them, as holomorphic local coordinates in a neighborhood of q.
By the holomorphic inverse function theorem, these functions give local coor-
dinates if the holomorphic Jacobian

det
(
∂bj

∂zk

)
j,k=1,...,n

is nonzero at q.
But in fact the nonvanishing of this determinant at q is an immediate

consequence of a fact that we have established already, first, that the Bergman
metric is positive definite. To see this relationship, notice that

∂bj

∂zk

∣∣∣∣
z=q

=
∂

∂zk

(
∂

∂wj
logK(z, w)

)∣∣∣∣
z=w=q

=
∂2

∂zk∂zj
logK(z, z)

∣∣∣∣
z=q

.

1The point w is involved only very near q, but variation of z over all of Ω might
lead to zeros of K(z, w). In fact the zeros of KΩ(z, w) do actually arise, even when
Ω is required to be topologically a ball; see, e.g., [Boas 1986].



108 4 Applications of Bergman Geometry

This last term is of course the Hermitian inner product
〈

∂
∂zk

, ∂
∂zj

〉∣∣
q

with
respect to the Bergman metric. Thus the expression

det
(
∂bj

∂zk

)∣∣∣∣
q

is the determinant of the inner product matrix of a positive definite Hermitian
inner product. Hence this determinant is positive and, in particular, nonzero.

The utility of the new coordinates in studying biholomorphic mappings
comes from the following lemma.

Lemma 4.2.1. Let Ω1 and Ω2 be two bounded domains in Cn with q1 ∈ Ω1
and q2 ∈ Ω2. Denote by b11, . . . , b

1
n the Bergman coordinates as defined near

q1 in Ω1 (using the Bergman kernel for Ω1) and b21, . . . , b
2
n the Bergman co-

ordinates defined in the same way near q2 in Ω2 (using the Bergman kernel
for Ω2). Suppose that there is a biholomorphic mapping F : Ω1 → Ω2 with
F (q1) = q2. Then the function defined near 0 ∈ Cn by

(α1, . . . , αn) �−→ the b2-coordinates of the F -image of the point
of Ω1 with b1-coordinates (α1, . . . , αn)

is a C-linear transformation.

In short form, we say that biholomorphic mappings are linear when ex-
pressed in the Bergman representative coordinates bj .

Proof of the lemma. Toavoid confusion,wewrite (z1, . . . , zn) and (w1, . . . , wn)
for the Cn-coordinates in Ω1 and (Z1, . . . , Zn) and (W1, . . . ,Wn) for the Cn-
coordinates in Ω2. In addition, we write K1 for KΩ1 and K2 for KΩ2 . Now
observe that, for each j = 1, . . . , n,

∂

∂wj
log

K2(F (z), F (w))
K2(F (w), F (w))

=
∂

∂wj
log

K1(z, w)
K1(w,w)

.

The reason for this identity is

K2(F (z), F (w))
K2(F (w), F (w))

=
K1(z, w)
K1(w,w)

× (a holomorphic function of z)

×(a holomorphic function of w).

This last follows from the transformation law—the factors that are conjugate
holomorphic in w cancel out, since they are the same in numerator and de-
nominator. Thus we obtain (from the complex chain rule) that

b1j (z)
def=

∂

∂wj
log

K1(z, w)
K1(w,w)

∣∣∣∣
w=q1

=
∂

∂wj
logK2(F (z), F (w))− logK2(F (w), F (w))

∣∣∣∣∣
w=q1

=
∑

k

[
∂F

k

∂wj
· ∂

∂W k

· log
K2(F (z),W )
K2(W,W )

] ∣∣∣∣∣
W=F (q1)

,
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where F k is the k-th coordinate of F (w1, . . . , wk). But this last expression is
exactly

∑
k

∂F
k

∂wj

∣∣∣∣
w=q1

· b2k(F (z)).

Hence

b1j (z) =
∑

k

∂F
k

∂wj

∣∣∣∣
w=q1

· b2k(F (z)).

Since the Jacobian matrix (∂F k/∂wj) of F is invertible at q, it follows that
the b2k(F (w)) are linear functions of the b1j (z) coordinates, as required. ��

The lemma is sufficiently surprising to justify looking at an explicit ex-
ample. Let Ω1 = Ω2 = the unit disc in C. Set q1 = a in the disc, and take
q2 = 0. Define

F (z) = λ · z − a

1− az

for some complex λ of unit modulus. Then the b1-coordinates at q = a are
the evaluation at w = a of

∂

∂w
log

1/(1− zw)2

1/(1− ww)2
= −2

∂

∂w
[log(1− zw)− log(1− ww)]

= −2
( −z

1− zw
+

w

1− ww

)
.

Therefore

b1(z) = 2
(

z

1− za
− a

1− aa

)
= 2

(
z − zaa− a + zaa

(1− za)(1− aa)

)
=
(

z − a

1− az

)
· 2
1− aa

.

To get b2-coordinates, we do the same calculations, but evaluate at 0 to obtain

b2(z) = 2z.

Thus the biholomorphic map F takes the point z with b1-coordinate α (equal-
ing 2(z−a)/[(1−az)(1−aa)]) to the point with z-coordinate λ(z−a)/(1−az)
and hence with b2-coordinate 2λ(z − a)/(1− az) = (1− aa)λ · b1(z).

The mapping is indeed linear. The computationally inclined reader is in-
vited now to see how the b1-, b2-coordinate setup enables one to regener-
ate the formula for the automorphisms (found in Section 3.3) of the ball
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in Cn that take, e.g., (a, 0, . . . , 0) to (0, . . . , 0); one need only be armed
with the knowledge that the Bergman kernel for the unit ball in Cn is
cn(1− z ·w)−(n+1). Of course, in practice, we used these biholomorphic map-
pings originally to actually compute the Bergman kernel, but it is still a matter
of some interest to watch this regeneration of the maps in action.

The coordinates we have been discussing can be pushed one step further
towards being truly “canonical,” that is, dependent only on the complex struc-
ture. Let q ∈ Ω and let V1, . . . , Vn denote holomorphic vector fields defined in
an open neighborhood of q satisfying

〈
Vj , Vk

〉∣∣∣
q

=

{
1 if j = k

0 if j 	= k.

Then for each fixed z ∈ Ω, we define

βj = Vj log
KΩ(z, w)
KΩ(w,w)

∣∣∣
w=q

.

[Hence the Vjs act as differential operators only on the w-variables.] The
proof that (b1, . . . , bn) defines a coordinate system at q can be easily modified
to show that this map z �→ (β1(z), . . . , βn(z)) is a well-defined holomorphic
coordinate system at q.

Again, given a biholomorphic mapping F : Ω → Ω̃ and the respec-
tive Bergman representative coordinate systems (β1, . . . , βn) at q ∈ Ω and
(β̃1, . . . , β̃n) at F (q) ∈ Ω̃, the map F takes expression in these coordinate
systems as follows: there is a nonsingular complex matrix Ajk such that

β̃j =
n∑

k=1

Ajkβk.

There are further properties. At the “center” q, the β-coordinate vector fields
are orthonormal relative to the Bergman metric. (The same holds, of course,
for β̃-coordinates at F (q).) It is these coordinates that we shall hereinafter
call the Bergman representative coordinates of Ω at q. It of course remains true
that biholomorphic mappings are linear in these coordinates. But in addition
they are unitary linear mappings!2

Notice that these coordinates themselves are unique up to a unitary rota-
tion. Generally, one could not expect any further canonical aspect than that:
Since unitary rotations act as biholomorphic maps on the unit ball, one cannot
expect coordinates that are canonical beyond up-to-a-unitary-rotation. The
Bergman representative coordinates are as canonical as holomorphic coordi-
nates could be.

2On the other hand, the ordinary holomorphic (but nonbiholomorphic) mappings
do not show any particular characteristic property in this coordinate system.
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The Bergman representative coordinates are, as already noted, in some
ways similar to geodesic normal coordinates, but with the additional property
of being holomorphic. Further extraordinary properties will develop as we
continue our discussion. Note, meanwhile, that the whole concept of repre-
sentative coordinates extends essentially automatically to complex manifolds
for which the Bergman metric construction for (n, 0) forms already discussed
above yields a positive definite metric. The construction can still be done lo-
cally, using general local holomorphic coordinates, and it remains true that
the Bergman coordinates linearize holomorphic mappings. And again, the
coordinates can be made more nearly canonical by using a basis for the dif-
ferentiation that is orthonormal relative to the Bergman metric. A new point
arises in that the quotient K(z, w)/K(w,w) is not defined as such: it becomes
defined only after a local coordinate choice around w and separately around z,
if z is far from w. This turns out not to matter: this whole matter is discussed
further in Chapter 11.

Our first application of Bergman representative coordinates is to the proof
of a remarkable theorem of Lu Qi-Keng on domains with a Bergman metric
of constant holomorphic sectional curvature.

Theorem 4.2.2 (Lu Qi-Keng). If Ω is a bounded domain in Cn, the Berg-
man metric of which is complete and has constant holomorphic sectional cur-
vature, then Ω is biholomorphic to the unit ball.

Notice that this result is certainly specific to the Bergman metric. For
example, the annulus {ζ ∈ C : 1 < |ζ| < R}, R > 1, admits a complete metric
of constant (holomorphic) sectional curvature (see Section 2.3). But it is not
even homeomorphic to the unit disc, much less biholomorphic to it.

This theorem has a complex manifold generalization: this is presented in
Chapter 11.

Proof of Theorem 4.2.2. We first observe that the holomorphic sectional cur-
vature, say c, must be negative. For, if c were positive, then Ω would be
a complete Riemannian manifold with all sectional curvatures greater than
or equal to c/4 > 0 (see Section 3.5).3 Hence Ω would be compact by stan-
dard Riemannian geometry. [This is Myers’s theorem: A complete Riemannian
manifold with sectional curvature everywhere ≥ε > 0 has diameter ≤π/√ε
and is hence compact (cf. e.g., [Petersen 2006]).]

If c were zero, then the universal cover of Ω would be a complete, simply
connected Kähler manifold of sectional curvature 0 and hence would be bi-
holomorphically isometric to Cn. But then, since Ω is bounded, the covering
map into Ω would be constant by Liouville’s theorem. This would contradict
surjectivity of the covering map (to say the least!).

3This follows by the formula for Riemannian sectional curvature in case the
holomorphic sectional curvature is constant. See Section 3.6 for the negative case:
the positive case is the same up to the sign change.
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It remains to discuss the case c < 0. If gΩ is the Bergman metric of Ω
(with constant negative holomorphic sectional curvature c), then the metric

g := −c(n + 1)
4

gΩ

has constant (negative) holomorphic sectional curvature −4/(n + 1) (cf. the
remarks on scaling by constant factors at the end of Subsection 3.3.1). Thus
the simply connected covering space Ω̂ of Ω with the pullback ĝ of the
metric g is a complete simply connected Kähler manifold with constant
holomorphic sectional curvature −4/(n + 1). By standard Kähler geome-
try (cf. [Kobayashi/Nomizu 1963]), (Ω̂, ĝ) is biholomorphically isometric to
Bn with its Bergman metric. Thus we obtain a holomorphic covering map
F : Bn → Ω which is locally isometric for the Bergman metric on Bn and g
on Ω, respectively.

To prove the theorem, we need only show that F is in fact injective.
For this let q = F (0). Since F is a covering map, it is locally invertible.

first, there exists an open neighborhood U of q and a neighborhood V of 0
such that F |V : V → U is a biholomorphism. Denote by H0 the inverse of F |V .

With z, w ∈ U , let

K0(z, w) := KBn(H0(z), H0(w)).

Then

∂2

∂zj∂z̄k
logK0(z, z) = gjk̄ = λ gΩjk̄

by the condition on F above, where λ = − c(n+1)
4 . This implies that

∂2

∂zj∂z̄k
logK0(z, z)− ∂2

∂zj∂z̄k
λ logKΩ(z, z) = 0

for every z ∈ U , and furthermore that

logK0(z, w)− λ logKΩ(z, w) = ϕ(z) + ϕ(w)

for every z, w ∈ U , for some holomorphic function ϕ : U → C. Actually for
this one may need to replace U by a smaller, simply connected neighborhood;
but that can be done without loss of generality, here and in what follows.
Consequently one obtains

∂

∂w̄j
log

K0(z, w)
K0(w,w)

− ∂

∂w̄j
λ log

KΩ(z, w)
KΩ(w,w)

= 0

for every z, w ∈ U .
This last gives rise to the direct computation with Bergman’s representa-

tive coordinate systems b1 : V → Cn and b2 : U → Cn. As in the introduction
for Bergman’s representative coordinate systems, one obtains that
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H0(ζ) = (F |V )−1 = (b1)−1 ◦A ◦ b2(ζ) (�)

for every ζ ∈ U . Here, of course, A is the linear map represented by the matrix
with the (j, k)-th entry

λ
∂Fk

∂zj

∣∣∣
0
.

Now look at the expressions in (�). The map b1 is in fact a constant
multiple of the Euclidean coordinate system. Therefore it extends to all of Cn

holomorphically, needless to say. So does the linear map A. The map ζ → b2(ζ)
extends to a holomorphic mapping of Ω \ Zq, where

Zq = {ζ ∈ Ω | KΩ(ζ, q) = 0}.

Since KΩ(·, q) is a holomorphic function on Ω with KΩ(q, q) 	= 0, the set Zq

is an analytic variety whose complex codimension in Ω is 1. Hence Ω \ Zq is
a connected, dense, and open subset of Ω. Therefore, using the expression of
H0 in (�), the map H0 extends to a holomorphic mapping of Ω \ Zq into Cn.
Let H denote this extension.

Now, let X := F−1(Zq). Then one immediately sees that

X = {z ∈ Bn | KΩ(F (z), q) = 0}.

Since KΩ(F (0), q) = KΩ(q, q) 	= 0, we see that X is again a complex analytic
subvariety of Bn with complex codimension 1. Thus Bn \X is a connected,
dense, and open subset of Bn. Furthermore, H ◦ F : Bn \ X → Cn is holo-
morphic with H ◦ F (z) = z for every z ∈ V , as H = H0 on V . This means
that H ◦ F (z) = z for every z ∈ Bn \X. Now, for every ζ ∈ Ω \ Zq, choose
x ∈ Bn such that F (x) = ζ. Then

H(ζ) = H(F (x)) = x.

This implies that H(Ω \ Zq) ⊂ Bn.
We see that H is holomorphic on Ω\Zq. The removable singularity theorem

for bounded holomorphic maps (the Riemann extension theorem) yields that
H extends to a holomorphic mapping of Ω into Cn. Since H continues to play
the role of left inverse of F , it follows easily that F has to be injective. This
completes the proof. ��

It is worthwhile to look back to see the exact role of completeness in this
proof. Completeness in fact played no role in the construction of the local
inverse which turned out to be a global, one-sided inverse. But completeness
was used to get the holomorphic, locally isometric covering map from B to Ω
in the first place. Without completeness, one would have only a locally defined
covering map, and the subsequent arguments would not apply to inverting this
map, it not being defined on all of B.
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4.3 Equivariant Embedding and Concrete Realization
of Abstract Complex Structures

Suppose that Ω is a bounded domain in Cn that contains the origin 0. There
may be (nonidentity) elements of Aut (Ω) that act on Ω as the restrictions
to Ω of unitary linear transformations of Cn, that is, as elements of U(n).
The set of such elements of Aut (Ω) is clearly the set of restrictions to Ω of
those elements α of U(n) such that α(Ω) = Ω. If every element of the isotropy
group I0 = {f ∈ Aut (Ω) : f(0) = 0} arises in this fashion, then we say that
Ω is equivariantly embedded in Cn at 0.

In this case, the mapping of I0 into U(n) defined by f �→ df |0, with f ∈ I0,
is an injective, continuous isomorphism of I0 into a compact subgroup of U(n),
with each element of this subgroup mapping Ω to itself. Thus the isomorphism
of Corollary 1.3.7 becomes a concrete matter: the group of differentials, al-
ways isomorphic for any bounded Ω to the isotropy at a point, is literally the
group of mappings itself. The obvious examples of this kind of behavior are
balls and polydiscs centered at the origin. In fact, by Corollary 1.3.2, any com-
plete circular domain has this equivariant embedding property. The following
surprising result gives in effect an equivariant “re-embedding” of any domain
close to the ball.

Theorem 4.3.1 (Greene–Krantz). There is a neighborhood U , in the C∞

topology on domains, of the unit ball in Cn such that, for every Ω ∈ U , there is
a biholomorphic map F : Ω → Cn with F (0) = 0 and with F (Ω) equivariantly
embedded at 0.

In the case n = 1, this result expresses the familiar fact (the Riemann
mapping theorem) that a domain that is C∞ close to the disc is biholomorphic
to the disc via a biholomorphic mapping taking 0 to 0. The disc itself is of
course equivariantly embedding at 0. But, for n ≥ 2, the theorem is startling,
just because the Riemann mapping theorem fails entirely even for domains C∞

close to the ball. In general, Ω will definitely not be biholomorphic to the ball;
also F (Ω) will be not the ball but some other domain that somehow exhibits
the “abstract” symmetries of Ω around 0 as concrete geometric symmetries
of F (Ω) that extend to be unitary rotations of Cn itself.

Proof of Theorem 4.3.1. It has already been observed that the expression
of an automorphism in Bergman representative coordinates (around a point
and its image) is a unitary linear transformation. Thus, taking F to be the
Bergman representative coordinate map at 0 of Ω will do the job for the theo-
rem, provided that the Bergman representative map is defined on all of Ω and
is injective and nonsingular everywhere. These properties are not automatic;
for example, for general bounded domains Ω, KΩ(z, w) can have zeros even in
cases where Ω is homeomorphic to the ball ([Boas 1986]). However, it turns
out that the Bergman representative coordinate map FΩ : Ω → Cn at 0 ∈ Ω
is in fact an everywhere-defined holomorphic diffeomorphism onto a bounded,
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open set in Cn for all Ω that are sufficiently close in the C∞ sense to the unit
ball Bn.

To establish this last fact, note first that FBn is indeed a diffeomorphism.
Indeed, it is the identity map of the ball to the ball (up to a dilation constant).
This one checks by direct calculation. In particular, FBn extends to be a
diffeomorphism of the closed ball cl(Bn) into Cn, in the sense that it extends
to the closure to be an injective C∞ map with everywhere nonzero (real)
Jacobian determinant.

The next step of the proof is to recall from basic differential topology
(cf. [Munkres 1966]) that the property of being a diffeomorphism of a compact
manifold-with-boundary into a Euclidean space is stable in the C1 topology.
In particular, a C∞ mapping of the closed unit ball that is C1 close to the
identity will be such a diffeomorphism.

In our case, we are interested in a C∞ mapping, the mapping via Bergman
representative coordinates, not of the ball but of a domain Ω that is C∞ close
to the ball. But, following the usual terminology of differential topology, we
say that a map F : cl(Ω)→ Cn is C1 (or C∞) close to a map G : cl(Bn)→ Cn

if there is a diffeomorphism H : cl(Bn)→ cl(Ω), H itself close to the identity,
with F ◦ H close to the map G on Bn. Then it remains true that if F is
C1 close to a diffeomorphism in this sense, then it is itself a diffeomorphism
(of cl(Ω)) into Cn.

Thus the question of F : Ω → Cn being a diffeomorphism can be dealt
with by showing that F extends C∞ to cl(Ω) and that F : cl(Ω)→ Cn is C1

close to the G on Bn in the sense indicated.
At first sight this might seem difficult to establish: There are two direct ap-

proaches to the Bergman kernel. One is by its definition via the “reproducing
property”, that inner product with K(z, w) gives the value at w for elements
of A2(Ω). The other is the formula for K(z, w) in terms of an orthonormal ba-
sis for A2(Ω). But neither of these seems amenable to producing information
on the behavior of K(z, w) with w fixed, z approaching the boundary. Interior
behavior is more reasonably expected to be stable. (See Theorem 3.5.3, as well
as Theorem 10.1.4.) But it turns out that the behavior of KΩ(z, w), with w
fixed in Ω, and z going to the boundary, can be effectively analyzed via the
solution of the ∂ problem as follows.

With w ∈ Ω fixed, let r be a positive number that is less than the distance
of w to Cn\Ω. Choose a nonnegative function ρ : Cn → R with ρ(z) depending
on ‖z‖ only, and with ρ(z) = 0 if ‖z‖ ≥ r and finally with

∫
Cn ρ(z) dV (z) = 1.

Then by the mean value property for each f ∈ A2(Ω) this formula holds:

f(w) =
∫

Ω

f(z)ρ(z − w) dV (z).

In particular, the reproducing (Bergman) kernel K(z, w) with defining property

f(w) =
∫

Ω

f(z)K(z, w) dV (z)
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is the L2 projection of ρ(z −w) onto A2(Ω), with z being the variable and w
fixed. This projection can be thought of as obtained via the solution of a ∂
problem. first, let u be the solution (in L2(Ω)) of ∂u(z) = ∂(ρ(z − w)) which
is orthogonal in L2(Ω) to A2(Ω). Then K(z, w) = ρ(z − w)− u(z).

The solutions of ∂u = f , where ∂f = 0, with u orthogonal in L2(Ω) to
A2(Ω), are of course the standard topics in the study of the ∂-Neumann prob-
lem. In particular, in our case, when Ω is C∞ close to B and hence strongly
pseudoconvex, the indicated solution u of ∂u(z) = ∂(ρ(z−w)) is C∞ on cl(Ω).
This is the usual smoothness-to-the-boundary result ([Folland/Kohn 1972]):
note that ∂(ρ(z−w)) is compactly supported in Ω and hence is itself obviously
smooth on cl(Ω).

Of course this method of finding K(z, w) applies when Ω = B in particu-
lar. Thus the kind of C1 closeness of KΩ(z, w) to KB(z, w) that we are looking
for can be considered from the viewpoint of the stability of the solution for
the ∂-Neumann problem under variation of the domain on which the solution
is occurring. This stability seems eminently plausible. Indeed, it is assumed
without further comment in Kohn’s classic work on the ∂-Neumann problem
[Folland/Kohn 1972], where it is used to deduce the Newlander–Nirenberg the-
orem on integrable almost complex structures. But a completely explicit dis-
cussion of the stability issue can be found in [Greene/Krantz 1981], as part of
the general discussion of the stability of the nondiagonal Bergman kernel and
of the asymptotic expansion of the diagonal kernel function at the boundary.

There it is shown that, if Ω is sufficiently C∞ close to a fixed, strongly
pseudoconvex domain Ω0, and if a (0, 1) form ω on cl(Ω) with ∂ω = 0 is
sufficiently C∞ close to a (fixed) (0, 1) form ω0 on cl(Ω0) with ∂ω0 = 0, then
the ∂-Neumann solution of ∂u = ω on Ω is C∞ close on cl(Ω) (i.e., in a given
C∞ neighborhood of) to the ∂-Neumann solution of ∂u0 = ω0 on cl(Ω0). This
is established via a detailed study of the standard proof of the regularity of
the ∂-Neumann problem.

This result implies the needed C1 stability of Bergman representative co-
ordinates to show that the Bergman map F : Ω → Cn via representative
coordinates is a diffeomorphism. For Ω close to the unit ball and w close
to 0, the (0, 1) form ∂Ω(ρ(z − w)), w fixed, ∂ calculated relative to z, is C∞

close to ∂Bn(ρ(z)) if w is sufficiently close to 0. Our previous observation
on the relationship between the ∂ solution and the Bergman kernel implies
that KΩ(z, w) is uniformly C∞ close to KBn(z, w) for Ω which is C∞ close
to Bn and w in some fixed neighborhood of 0. Since KΩ(z, w) is conjugate
holomorphic in w, Cauchy estimates give that

∂

∂w
logKΩ(w,w)

∣∣∣∣
w=0

is uniformly close to
∂

∂w
logKBn(w,w)

∣∣∣∣
w=0

and that

∂

∂w
logKΩ(z, w)

∣∣∣∣
w=0

is C∞ close to
∂

∂w
logKBn(z, w)

∣∣∣∣
w=0

on cl(Ω).
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Thus the Bergman representative coordinate map FΩ for Ω at 0 is C1 close
to the Bergman representative coordinate map for the ball Bn, which is the
identity (up to a constant factor). Thus the Bergman representative coordinate
map FΩ is a holomorphic diffeomorphism of cl(Ω) into Cn, and the proof of
the theorem is complete. ��

The stability of the ∂-Neumann solution under perturbation of the bound-
ary of a strongly pseudoconvex bounded domain is a special case of a more
general situation: Suppose that Ω0 ∪ ∂Ω0 is a C∞ manifold-with-boundary
and that J0 is an almost complex structure that is C∞ on Ω0 ∪ ∂Ω0 and
integrable on Ω0. In this situation, it makes sense to take as an hypothesis
that ∂Ω0 is strongly pseudoconvex (cf. [Folland/Kohn 1972])—assume now
that ∂Ω0 is indeed C∞ strongly pseudoconvex. Suppose also that Ω0 ∪ ∂Ω0
is given a C∞ Hermitian metric. Then, if f is a C∞ function on Ω0 ∪ ∂Ω0,
we may conclude that there is a unique function u : Ω0 → C with ∂u = ∂f
on Ω and with u orthogonal to A2(Ω) (in the inner product relative to the
given Hermitian metric). Also u is C∞ on Ω0 ∪ ∂Ω0. [One can in fact so solve
∂u = ω, where ω is a (0, 1) form satisfying ∂ω = 0 and with ω having 0 har-
monic representative. But the special situation where ω = ∂f , as indicated,
suffices for our purposes, the harmonic representative being 0 following auto-
matically in this instance.]

This setup has, as shown in [Greene/Krantz 1981] (and implied already
in [Folland/Kohn 1972]), a stability similar to the stability associated to the
stability under perturbation of a strongly pseudoconvex domain in Cn already
discussed. first, let J be another almost complex structure on Ω0 ∪ ∂Ω0 and
let f be a C∞ function on Ω0 ∪ ∂Ω0 and J an almost complex structure
tensor that is C∞ close to J0. If now f is C∞ close to f0 on Ω0 ∪ ∂Ω0,
then the ∂-Neumann solution of ∂Ju = ∂Jf is C∞ close to the ∂-Neumann
solution of ∂J0u0 = ∂J0f0, provided that the ∂J solution is determined for a
J-Hermitian metric which is C∞ close to the given J0-Hermitian metric on
Ω0 ∪ ∂Ω0. This latter condition can always be arranged by setting h = the
J-symmetrization of h0, i.e.,

h(·, ··) =
1
2

(h0(·, ··) + h0 (J(·), J(··))) .

One could add into this picture the C∞ perturbation of Ω0 ∪ ∂Ω0 itself,
but this would not actually increase the generality, since such a perturbation
could be absorbed into perturbation of J0 and f0.

This more abstract form of ∂-stability has an important application: it
yields a proof of the perturbation result of Hamilton asserting that all pertur-
bations of the complex structure of a bounded, strongly pseudoconvex domain
can be realized by embedding ([Hamilton 1977]). This result was originally es-
tablished by Hamilton using the Nash–Moser implicit function theorem. But
the proof based on ∂-stability in [Greene/Krantz 1981] is easier and more
natural, and is also rather brief.
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Theorem 4.3.2 ([Hamilton 1977]; cf. [Greene/Krantz 1981]). If Ω0 is
a C∞ bounded domain in Cn with strongly pseudoconvex boundary and if J
is an almost complex structure defined and C∞ on cl(Ω0) which is integrable
on Ω0 and C∞ close to the almost complex structure J0 of Cn on Ω0 ∪ ∂Ω0,
then there is a domain Ω, C∞ close to Ω0 in the C∞ topology on domains,
such that (Ω0, J) is biholomorphic to (Ω, J0).

In particular, every “abstract” perturbation of the ball is realized by a
perturbation of the ball as a geometric object in Cn.

Proof of Theorem 4.3.2. Let f1, . . . , fn be the coordinate functions on Ω0, i.e.,

fj(z) = the zj coordinate function in Cn evaluated at the point z.

Then ∂J0fj ≡ 0 for each j = 1, . . . , n. If J is C∞ close to J0, then ∂Jfj is
C∞ small on Ω0. The stable ∂ estimates then give that, if ∂Juj = ∂Jfj and
uj is the ∂J -Neumann solution of this equation, then each uj is C1 small in
particular. [Here we use the construction described earlier for the automatic
manufacture of a stably varying Hermitian metric for (Ω0, J).] In particular,
the n-tuple of functions fj − uj , j = 1, . . . , n, gives a mapping which is C1

close on Ω0∪∂Ω0 to the mapping given by the fjs themselves, first the identity
injection of Ω0 into Cn. In particular, the fj−uj , j = 1, . . . , n, are coordinates
of a diffeomorphism of Ω0∪∂Ω0 onto an open set with smooth boundary in Cn,
by the C1 stability of diffeomorphisms.

But the function fj − uj , each j, is J-holomorphic since ∂J(fj − uj) =
∂Jfj − ∂Juj ≡ 0 on Ω0. ��
The idea of this last proof was originally proposed by M. Kuranishi and com-
municated to the first author (Greene) by J. Eells (private communication).

The uniqueness of the ∂-Neumann solution, once a Hermitian metric is
chosen, together with the proof method just used, makes possible an equiv-
ariant extension of Hamilton’s embedding theorem. This result generalizes
Theorem 4.3.1 to cases where equivariant embedding via Bergman represen-
tative coordinates cannot in general be obtained.

Theorem 4.3.3 ([Greene/Krantz 1982]). Suppose that Ω0 is a C∞

strongly pseudoconvex domain in Cn and that G is a compact subgroup of
Aut (Ω0). Suppose further that Ω0 is equivariantly embedded for G in the sense
that G acts on Ω0 as the restrictions of holomorphic isometries of Cn. Let J be
an almost complex structure on Ω0∪∂Ω0 which is integrable on Ω0 and is C∞

close to the Cn complex structure J0 on Ω0∪∂Ω0 and let Γ : G×Ω0 → Ω0 be a
G-action on Ω0 which is J-holomorphic and C∞ close to the original G-action
on Ω0. Then there is a diffeomorphism F : Ω0 ∪ ∂Ω0 → Cn such that:

(1) The mapping F is holomorphic as a map from (Ω0, J) to (Cn, J0).
(2) The mapping F is C∞ close to the injection of Ω0 into Cn.
(3) The mapping F ◦Γ ◦F−1, which is the G-action on F (Ω0), is the restric-

tion to F (Ω0) of a G-action on Cn by holomorphic isometries of Cn.
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(4) The G-action on Cn given in (3) is C∞ close to the original G-action on
Cn attached to that equivariant embedding of Ω0.

Proof (outline). Let h0 be the Cn Hermitian metric restricted to Ω0 so that
h0 is invariant under the original G-action, say Γ0 × Ω0 → Cn, on Ω0. Since
Γ is C∞ close to this original G-action, the average ĥ of h0 with respect to
the Γ -action is C∞ close to h0. Note that this is also C∞ close to h0 since Γ
is C∞ close to an action isometric for h0. Observe further that ĥ may not be
J-Hermitian, even though Γ acts by J-holomorphic maps, since h0 is likely
not J-Hermitian. but the J-symmetrization of ĥ already discussed, call it h,
is J-Hermitian, and it is C∞ close to h0 since J is C∞ close to J0. This metric
h is thus Γ -invariant, J-Hermitian, and C∞ close to h0.

Now let f1, . . . , fn be the coordinate functions on Ω0 so that G acts lin-
early on them, if we choose a suitable new origin in Cn (a compact group
of isometries of Cn has a fixed point and we choose such a fixed point as
origin). Let uj be the ∂-Neumann solution of ∂Juj = ∂Jfj determined by the
Γ -invariant metric h. Since Γ acts almost linearly on the fjs, the mapping Γ
acts almost linearly on the uj s as well, because the ∂J solution process is
Γ -invariant. So Γ acts almost linearly on the holomorphic functions fj − uj

which, moreover, determine an embedding of Ω0 ∪ ∂Ω0.
A standard process of making an almost-linear action linear, which will

preserve J-holomorphicity, completes the construction of the desired equivari-
ant J-holomorphic embedding. [The process involves replacing the functions
Fj = fj − uj by functions, which are C∞ close, defined by(

F̂1(z), . . . , F̂n(z)
)

=
∫

G

Γ0
(
g−1, (F1(gz), . . . , Fn(gz))

)
dg,

where
∫

G
is the invariant (Haar) integral with total measure 1.]4 ��

4.4 Semicontinuity of Automorphism Groups

Symmetry is easily destroyed but not so easily created. To make the straight
crooked requires only an arbitrarily small effort, while to make the crooked
straight requires a definite action.

These intuitions, that symmetry is unstable but an increase in symmetry
requires a substantial change, holds with precision in a variety of circum-
stances. The goal of this section is a result of this type for the automorphism
groups of C∞ strongly pseudoconvex domains. This result will depend for its

4The reader unfamiliar with this process of converting close-to-linear to actually
linear actions by way of re-embedding might find it instructive to consider the exam-
ple in which G is the two-element group {1, g} and F (g(z)) is close to −F (z). Then
the map F̂ defined by z �→ [1/2](F (z)−F (g(z))) satisfies precisely F̂ (g(z)) = −F (z)
so that G acts linearly indeed on the F̂ embedding, which really is an embedding
since F̂ is in fact close to F .
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proof on a theorem similar in spirit concerning compact Riemannian mani-
folds ([Ebin 1968]).

Theorem 4.4.1 (Ebin). If (M, g0) is a C∞ compact Riemannian manifold,
then there is a neighborhood G of g0 in the C∞ topology on C∞ Riemannian
metrics such that: If g ∈ G then there is a diffeomorphism F : M → M (C∞

close to the identity) such that the set{
F ◦ α ◦ F−1 : α : M →M is an isometry for g

}
is a subset of, and hence a subgroup of

{β : β : M →M is an isometry for g0} .
In particular, the group of isometries of M relative to g is isomorphic to a
subgroup of the group of isometries of g0.

Ebin’s original proof of the theorem just stated involved infinite-
dimensional manifolds and the construction of “slices” in the Lie group sense
for the action of the diffeomorphism group on the manifold M . However, the
result can in fact be established by finite-dimensional methods and ordinary
Lie group theory. We outline the argument now.

Let

VΛ = the finite-dimensional linear span of all eigenfunctions of the
Laplacian for g0with eigenvalues < Λ.

[We use here the differential geometer’s Laplacian −∑j ∂
2/∂x2

j at the center
of a geodesic normal coordinate system, so that the spectrum of the Lapla-
cian is nonnegative.] If we equip VΛ with the standard L2 inner product on
functions determined by the measure M for g0, then the compact group of
isometries for g0 acts on VΛ orthogonally. Moreover, if we choose an orthonor-
mal basis f1, . . . , fN for VΛ, then the map E0 : M → RN defined by

M � p �→ (f1(p), . . . fN (p))

is an embedding if Λ is chosen sufficiently large. This is an historic theorem
of S. Bochner ([Bochner 1937], cf. [Greene/Wu 1975a] and [Greene/Wu 1975b]
for a contemporary context and the noncompact manifold situation). With
Λ so chosen, the embedding E0 is equivariant in the sense that there is an
injective homomorphism H0 : [Isometry group of g0] → O(N) such that, for
each isometry α of g0 and p ∈M , H0(α) applied to E0(p) equals E0(α(p)).

Now assume further that Λ is not in the spectrum of the Laplacian Δ0 of
g0: this choice of course is possible consistently with the sufficient largeness
of Λ of the previous paragraph, since the spectrum of Δ0 is discrete. With
Λ thus chosen, both sufficiently large and not in the spectrum of Δ0, there
is a “spectral stability” property of the equivariant embedding situation as
follows.
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Let gj , j = 1, 2, 3, . . . be a sequence of C∞ Riemannian metrics converg-
ing to g0 in the C∞ topology. Let VΛ,j = (the span of the eigenfunctions for
the gj-Laplacian Δj with eigenvalues < Λ). Then, for all j sufficiently large,
the dimension of the finite-dimensional vector space VΛ,j = the dimension N
of the space VΛ defined earlier. Moreover, again for each j sufficiently large,
there is a basis (f j

1 , . . . , f
j
N ) for VΛ,j , orthogonal with respect to the gj-measure

on M . These bases can be chosen so that, for each fixed k ∈ {1, . . . , N}, the
function f j

k , j = 1, 2, 3, . . . converges to the function fk in the C∞ topology.
This “spectral stability” result is part of the perturbation theory of linear op-
erators; it is proved in detail in Kato’s well-known book [Kato 1966] on that
subject. [At first sight, these spectral stability results seem not only appeal-
ing but almost obvious, since the eigenfunctions of Δj are competitors, after
suitable correction, for the minimization of Dirichlet integrals—the Rayleigh
method—that gives eigenfunctions of Δ. But subtleties arise in any attempt to
reason in the opposite direction, to control the eigenfunctions of Δj from those
of Δ. These difficulties are treated in [Kato 1966] by the method of resolvents.]

From this we obtain embeddings Ej : M → RN , for each j sufficiently
large, which are equivariant for the isometry group of gj . Moreover, the Ej ’s
as constructed converge to E0 in the C∞ topology.

Let G0 (the isometry group of g0) be equal to the subgroup of O(N)
obtained by the equivariant embedding E0, and Gj = the subgroup arising in
the same way from the isometry group of gj and the equivariant embedding Ej .

Now, for any sequence {αj : M → M} such that αj is an isometry of gj

for each j = 1, 2, 3, . . ., there is a subsequence {αjk
} which converges in the

C∞ topology to an isometry of g0: this follows from a standard normal fam-
ilies argument. [Convergence to a g0-distance-preserving map is immediate,
and the limit must be a C∞ isometry for g0 by the Myers–Steenrod theo-
rem [Myers/Steenrod 1939]. That the convergence is then in the C∞ topology
is a matter of standard differential geometry, using the facts that the isome-
tries are determined by a single point image and differential at that point and
that geodesics, which are preserved, depend C∞ on the metric.] Thus, com-
bining this with the C∞ convergence of the Ej to E0, we obtain the following.

If U is a neighborhood in O(N) of G0, then Gj ⊂ U for all j sufficiently
large. By a standard result in Lie group theory ([Montgomery/Zippin 1942]),
Gj is isomorphic to a subgroup of G0 for each j sufficiently large, and this
isomorphism is given by conjugation by an element Aj of O(N). Here the Aj ’s
can be taken to converge to the identity. Modifying the Ej ’s themselves by con-
jugation, we can assume that the Aj ’s are equal to the identity and Gj ⊂ G0.
Since Ej and E0 are equivariant embeddings into O(N), the desired diffeo-
morphism of M to M (to conjugate isometries of gj into isometries of g0) can
be obtained by sending p ∈M to the RN -closest point to Ej(p) in E0(M). ��

The possibility of averaging over compact groups gives a useful corollary
about group actions as such. For the statement of the corollary, we say that a
sequence of C∞ group actions Gj×M →M sub-converges in the C∞ topology
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to an action G0 ×M → M if every sequence αj of Gj-action elements has a
subsequence αjk

which converges in the C∞ topology to a G0-action element.

Corollary 4.4.2. If Gj × M → M is a sequence of actions on a compact
manifold M by compact Lie groups Gj and if the Gj-actions sub-converge
in the C∞ topology to a compact Lie group action G0 ×M → M , then for
all j sufficiently large, there is a diffeomorphism Fj : M → M such that the
conjugation by Fj of the Gj-action is a subgroup of the G0-action. Moreover,
the Fj may be chosen to converge to the identity map of M in the C∞ topology.

This corollary follows from the proof of Ebin’s theorem (Theorem 4.4.1)
by averaging a fixed Riemannian metric over the group actions to produce
Gj-invariant metrics gj converging in C∞ topology to a G0-invariant met-
ric g0.

Generically, that is for a dense open set of metrics, the isometry group is
in fact the identity alone (see [Ebin 1968]). Our interest here, however, is in
the metrics which have a nontrivial isometry group.

The main goal of this section is to prove the statement analogous to Ebin’s
theorem (Theorem 4.4.1) for C∞, strongly pseudoconvex domains.

Theorem 4.4.3 ([Greene/Krantz 1982a]). If Ω0 is a bounded, C∞,
strongly pseudoconvex domain in Cn that is not biholomorphic to the ball,
then there is a neighborhood U of Ω0 in the C∞ topology (on bounded domains
with C∞ boundary) such that, if Ω ∈ U , then there is a real diffeomorphism
F : Ω → Ω0 such that F is C∞ close to the identity and{

F ◦ α ◦ F−1 : α ∈ Aut(Ω)
} ⊂ Aut (Ω0).

In particular, Aut(Ω) is isomorphic to a subgroup of Aut(Ω0).

The essential idea of the proof of this theorem is to note, from Lu Qi-
Keng’s theorem (Theorem 4.2.2), that the Bergman metric of Ω0 does not
have constant holomorphic sectional curvature, while at the same time the
holomorphic sectional curvature is asymptotically constant at the boundary.
So far, this is just a recapitulation of the curvature proof of Bun Wong’s the-
orem (Corollary 3.4.4, Theorem 9.2.1). Noting further that these curvature
estimates are stable under C∞ perturbations of ∂Ω0, one expects to find that
the smooth extension to the closure cl(Ω0) of Aut (Ω0), guaranteed by Fef-
ferman’s result on smoothness to the boundary ([Fefferman 1974]) will also
be stable under perturbation of ∂Ω0 in the following sense: If Ω is C∞ close
to Ω0, then Aut (Ω) on cl(Ω) is C∞ close to Aut (Ω0) on cl(Ω0) in the sense
that each element of Aut (Ω) belongs to some pre-chosen C∞ neighborhood of
Aut (Ω) on cl(Ω0). Of course cl(Ω0) is a compact manifold with boundary so
that Ebin’s theorem (Theorem 4.4.1) as just stated and proved (for manifolds
without boundary) does not apply as such. But, by passing to the “metric
double” and introducing suitable automorphism-invariant metrics, we can ap-
ply Ebin’s theorem on manifolds without boundary. We now turn to a more
detailed version of the outline just given.
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The detailed proof will be based on two propositions:

Proposition 4.4.4. If Ω0 is a C∞ strongly pseudoconvex domain and if Ω0
is not biholomorphic to the ball, then there are a point p in Ω0, a compact set
K0 ⊂ Ω0, and a C∞ neighborhood V of Ω0 in the C∞ topology on domains
such that, if Ω ∈ V, then Ω ⊃ K0 ∪{p} and the Aut (Ω)-orbit of p lies in K0.

This proposition has already been in effect established and is restated here
only for convenience and clarity.

Proposition 4.4.5. If Ω0 is a C∞ strongly pseudoconvex domain not biholo-
morphic to the unit ball then, for each � = 1, 2, . . . , there are a C∞ neighbor-
hood V of Ω0 and a positive constant C� such that, for each Ω ∈ V and each
f ∈ Aut (Ω), the Euclidean derivatives of order ≤ � of f at points p ∈ Ω have
absolute value ≤ C�.

For brevity, we shall summarize this last statement by saying that

The derivatives of order ≤ � of elements in Aut (Ω) are stably uni-
formly bounded.

(where “stably” refers to variation of Ω near Ω0 and “uniformly” refers to
variation over the points of the domain Ω).

This proposition, which is in effect a stable version of the smoothness-to-
the-boundary theorem by Fefferman, will be established later.

Armed with these propositions, we can now establish the following lemma
of normal families type.

Lemma 4.4.6. If Ωj, j = 1, 2, . . . , converge in the C∞ topology to Ω0 (with
Ω0 being C∞, strongly pseudoconvex, and not biholomorphic to the ball), and
if gj ∈ Aut (Ωj), then there are subsequences Ωjk

, gjk
, k = 1, 2, . . . , such that

gjk
converges in the C∞ topology to an element g0 ∈ Aut (Ω0).

See the definition in Section 3.5 for C∞ topology on the collection of
domains in Cn. Hereinafter, we write Gj = Aut (Ωj) and G0 = Aut (Ω0). The
lemma then says in effect that, for j large, the action of each element of Gj

is close to the action of an element of G0.

Proof of the lemma. Fix a point p and a compact set K0 as in Proposition
4.4.4. Then, for j large, gj(p) ∈ K0 ⊂ Ωj . By normal families, there is a
subsequence gjk

which converges uniformly on each compact subset of Ω0,
and the limit of this subsequence is an element g0 of G0 (this follows from a
straightforward modification of Theorem 1.3.4). Proposition 4.4.5 then implies
the C∞ convergence of {gjk

} on cl(Ωjk
) (respectively to g0 on cl(Ω0)).

To check this last assertion in detail, it suffices to show that {gjk
} on cl(Ωjk

)
is a Cauchy sequence in the C�+1 norm for each fixed � = 1, 2, . . . . For this,
suppose that ε > 0 is given. Choose a compact set K ⊂ Ω0 such that, for
all Ω which are C∞ close enough to Ω0 and x ∈ ∂Ω, there is a polygonal
arc in Ω, of length not exceeding ε/[3C�+1], from some point s ∈ K to the
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point x. [Here C�+1 is the constant from Proposition 4.4.5.] The possibility of
choosing K in this fashion is elementary: Simply let the set K be the ε/[4C�]
normal “push-in” of Ω0.

Now choose k0 so large that (from Cauchy estimates), gjk1
−g0 and gjk2

−g0

have C�-norm on K bounded above by ε/3 if k1, k2 ≥ k0. For such k1, k2, the
C�-norm of the difference gjk1

− gjk2
is ≤ ε on cl(Ωk1), cl(Ωk2) provided that

k1, k2 are also required to be so large that Ωk1 , Ωk2 are sufficiently C∞ close
to Ω0 and hence to each other. ��
Lemma 4.4.7. There is a neighborhood V of Ω0 in the C∞ topology on do-
mains and a family gΩ, Ω ∈ V, with gΩ a C∞ Riemannian metric on cl(Ω)
such that, (1) if Aut (Ω) acts isometrically on gΩ and (2) if {Ωj} is a se-
quence in V converging C∞ to Ω0, then {gΩj} converges C∞ to gΩ0 .

Proof. Set gΩ0 equal to the average with respect to Aut (Ω0) of the Euclidean
metric on cl(Ω0). For each Ω 	= Ω0, choose diffeomorphisms FΩ : cl(Ω) →
cl(Ω0) such that FΩ converges as Ω tends to Ω0 in the C∞ topology. Set gΩ

equal to the average over the compact (for V small enough) group Aut (Ω)
of the pullback metric F ∗

ΩgΩ0 . By Lemma 4.4.6, each element of Aut (Ω) acts
nearly isometrically on F ∗

ΩgΩ0 , in the C∞ sense of “nearly,” on cl(Ω). This is
because gΩ0 is Aut (Ω0)-invariant and each element of Aut (Ω) is C∞ close to
an element of Aut (Ω0). The conclusion of the lemma concerning convergence
follows. ��
Lemma 4.4.8. The metrics gΩ in Lemma 4.4.7 can be chosen to be product
metrics near the boundary.

Here “the product metric” near the boundary of Ω means precisely that,
for each boundary point x of cl(Ω), there is a real local coordinate system
(x1, x2, . . . , x2n) in a neighborhood of x with

• the boundary cl(Ω) \Ω equaling {(x1, x2, . . . , x2n−1, 0)};
• the points of Ω in the neighborhood of x satisfying x2n < 0 (and vice

versa);
• the metric in the given neighborhood having at (x1, x2, . . . , x2n) the form

dx2
2n +

(
a positive definite quadratic formin dx1, dx2, . . . , dx2n−1

with coefficients depending only on (x1, x2, . . . , x2n−1)
)
.

Proof of the lemma. An Aut (Ω) product metric of this sort at and near the
boundary is easily obtained using the map

∂Ω × [0, δ)→ Ω

defined by

(b, t) �→ expp(tN),

where N is the inward-pointing normal at b relative to the previous gΩ-metric
and expp is the gΩ-exponential map. Choose δ so small that the map is a
diffeomorphism and define the metric by declaring this diffeomorphism to be
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isometric for (the metric on ∂Ω)+dt2. This construction is Aut (Ω)-invariant.
Using an Aut (Ω)-invariant partition of unity to make a transition to the
previous gΩ will provide all properties: the partition of unity function is taken
to depend only on the t variable. ��

The proof of Theorem 4.4.3 can now be completed as follows: With the
metrics gΩ chosen as in Lemma 4.4.8, in particular as product metrics near
the boundary, we form compact Riemannian manifolds (Ω̂, ĝΩ) by taking Ω̂

to be the manifold “double” of Ω and ĝΩ to be the natural metric on Ω̂, equal
to gΩ on each copy of Ω and fitting together to form a C∞ metric across the
(one copy of) ∂Ω on account of the product metric. Let GΩ be the group
generated by Aut (Ω) and the interchange operation IΩ that interchanges the
two copies of Ω that are “glued” to form Ω̂. We now apply Ebin’s theorem
(Theorem 4.4.1) to deduce that the isometry group of Ω̂ is diffeomorphism-
conjugate (via a diffeomorphism close to the identity) to a subgroup HΩ of the
isometry group of Ω̂0. Now, by our previous analysis via normal families, HΩ

lies in a small neighborhood of GΩ0 in the isometry group of Ω̂0. This isometry
group is a compact Lie group and GΩ0 is a compact, hence closed, subgroup
and HΩ is also compact and therefore closed. Standard Lie group theory
yields that HΩ is conjugate to a subgroup of G

̂Ω0
by way of an isometry of Ω̂0

close to the identity. Thus the diffeomorphism conjugation together with this
second conjugation gives a close-to-the-identity diffeomorphism F : Ω → Ω0
conjugating G

̂Ω to G
̂Ω0

.
Now G

̂Ω0
contains IΩ0 . Also, the only possible fixed points of an element

of G
̂Ω that is not preserving each copy of Ω are lying in ∂Ω. It follows that

F in fact maps ∂Ω diffeomorphically to ∂Ω, and thus F , being close to the
identity, maps Ω to Ω0. As a result,

F
∣∣
cl(Ω) : cl(Ω)→ cl(Ω0)

is the conjugating diffeomorphism called for in the theorem. ��

The reader with a mind towards maximum generality will have noticed
that complex analysis really played no role in the latter part of this proof. In
particular, the proof technique gives rise to the following results.

Theorem 4.4.9 (Ebin’s Theorem for Manifolds with Boundary). If
(M, g0) is a compact, C∞ Riemannian manifold with boundary, then there is
a neighborhood U of g0 in the C∞ topology on Riemannian metrics such that,
for each g ∈ U , there is a diffeomorphism F : M → M (which can be chosen
to be C∞ close to the identity) such that, for each g-isometry f : M → M ,
the mapping F−1 ◦ f ◦ F is a g0-isometry.

Theorem 4.4.10. If G0 is a compact subgroup of the diffeomorphism group
of a compact manifold (possibly with boundary), then there is a neighborhood
V of G0 in the C∞ topology on the diffeomorphism group such that every
compact subgroup G of the diffeomorphism group, with G ⊂ V, is conjugate to
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a subgroup of G0 via a diffeomorphism (which may be taken C∞ close to the
identity).

The proofs of these results are obtained by extracting suitable portions of
the proof of Theorem 4.4.3.

4.5 Obtaining a Stable Extension

Let K be a compact subset of Ω0. Let � be a positive integer. The Cauchy
estimates then imply that there is a constant C > 0 such that∣∣∇jα(z)

∣∣ ≤ C

for all α ∈ Aut (Ω0) and all z ∈ K. Thus the essential point in establishing
Proposition 4.4.4 is to consider points near the boundary of Ω0.

Lemma 4.5.1. Let ε > 0 be a positive number. Then

inf{dis(α(q), ∂Ω0) : α ∈ Aut (Ω0), q ∈ Ω0, dis(q, ∂Ω0) ≥ ε}
is a positive number. [Here, as usual, dis denotes Euclidean distance.]

Proof. Suppose the contrary. Then there are a sequence {qj} of points in Ω0
with dis(qj , ∂Ω0) ≥ ε and a sequence of automorphisms αj ∈ Aut (Ω0) with

lim
j→∞

dis(αj(qj), ∂Ω0) = 0.

The sequence {αj} is a normal family. By reasoning that has already been
explained in detail, there is a subsequence {αjk

} that converges normally to
an automorphism α0 ∈ Aut (Ω0). Passing again to a subsequence, we may
assume that {qjk

} converges to a point q0 ∈ Ω0.
But clearly dis(q0, ∂Ω0) ≥ ε, so q0 actually lies in Ω0 itself. As a result,

α0(q0) is in Ω0. But α0(q0) is the limit of the sequence αjk
(qjk

) and also
limk→∞ dis(αjk

(qjk
), ∂Ω0) = 0. In conclusion, dis(α0(q0), ∂Ω0) = 0 (since the

distance function is continuous). This last statement contradicts the fact that
α0(q0) lies in the interior of Ω0. That is a contradiction. ��
Lemma 4.5.2. If ε is a positive number, then there is a δ > 0 such that

sup{dis(α(q), ∂Ω0) : α ∈ Aut (Ω0), q ∈ Ω0, dis(q, ∂Ω0) ≤ δ} < ε.

Proof. The proof is similar to that of the last lemma, with a normal families
argument now being applied to the inverses of the automorphisms. The details
are left to the reader. ��
Lemma 4.5.3. Let Ω0 be a strongly pseudoconvex domain with C∞ boundary.
Fix a point p0 ∈ ∂Ω0. Then there are numbers ε, η > 0 such that if z, w ∈ Ω0,
dis(z, w) < ε, and dis(w, p0) < ε, then |KΩ0(z, w)| ≥ η.
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Proof. This is an immediate consequence of the Fefferman asymptotic expan-
sion (3.4) in Section 3.4. The details are again left to the reader. ��

In the next lemma JΦ(z) denotes the complex Jacobian determinant of
the mapping Φ at the point z.

Lemma 4.5.4. If Ω0 is a smoothly bounded, strongly pseudoconvex domain
in Cn, then there is a constant C > 0 such that

sup{|Jα(z)| : α ∈ Aut (Ω0), z ∈ Ω0} ≤ C

and

inf{|Jα(z)| : α ∈ Aut (Ω0), z ∈ Ω0} ≥ C−1.

Proof. The first estimate follows from the second by applying the result to α−1.
So we concentrate on the second.

Suppose that no such C exists. Then there are a sequence of auto-
morphisms αj ∈ Aut (Ω0) and a sequence of points qj ∈ Ω0 such that
limj→∞ Jαj

(qj) = 0. Passing to a subsequence if necessary, we may assume
that the qj converge to a point q0 ∈ Ω0.

We claim that q0 ∈ ∂Ω0. For, if it were the case that q0 ∈ Ω0, then Lemma
4.5.1 tells us that {αj(qj)} is bounded away from ∂Ω0. Hence, by the Cauchy
estimates, {|Jα−1

j
(αj(qj))|} is bounded as j → +∞. This last is impossible

since Jα−1
j

(αj(qj)) = 1/Jαj
(qj) and limJαj

(qj) = 0.
So q0 ∈ ∂Ω0, and there are, by Lemma 4.5.3, positive numbers ε and η

such that |KΩ0(z, w)| ≥ η if z, w ∈ Ω0 are within distance η of q0. Therefore
|KΩ0(q0, r0)| ≥ η for any r0 ∈ Ω0 with dis(q0, r0) < ε. Choose a fixed such r0.
It follow from Lemma 4.5.1 that lim infj→∞ dis(αj(r0), ∂Ω0) > 0. Then, by
the Cauchy estimates, it follows that lim supj→∞ |Jαj (r0)| is finite. But we
also know that lim supj→∞ |KΩ0(αj(qj), αj(r0))| is finite.

Now KΩ0(qj , r0) = Jαj
(qj)Jαj

(r0)KΩ0(αj(qj), αj(r0)). Since limj→∞
Jαj

(qj) = 0, the finiteness of the two limits-suprema just established now
implies that limKΩ0(qj , r0) = 0. But limj→∞ KΩ0(qj , r0) = KΩ0(q0, r0) 	= 0.
This contradiction completes the proof of the lemma. ��

Lemma 4.5.5. If Ω0 is a bounded strongly pseudoconvex domain in Cn with
C∞ boundary, then there exist ε, η > 0 such that: If w ∈ Ω0 and dis(w, ∂Ω0) <
ε and if z ∈ Ω0 and dis(z, w) < [3/2]dis(w, ∂Ω0), then |KΩ0(z, w)| ≥ η and
|det(∂bi,w/∂zj)| ≥ η, where the determinant is that of the complex Jacobian
of the Bergman representative coordinate map (b1,w, . . . , bn,w) at w.

Proof. The basic bound |KΩ0(z, w)| ≥ η can be deduced from Lemma 4.5.3
by a compactness argument. For the moment, it guarantees that the functions
bi,w(z) are in fact defined for the z-values in question.
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In order to study the Jacobian determinant det(∂bi,w/∂zj), notice first that

∂

∂zj
bi,w =

∂2

∂zj∂wi

[
log

KΩ0(z, w)
KΩ0(w,w)

]
=

∂2

∂zj∂wi
[log(KΩ0(z, w)],

because the expression KΩ0(w,w) has no z-dependence. Thus the relevant
quantities can be calculated by substituting the asymptotic expansion for
KΩ0(z, w) into the formula given. The following version of this substitution,
and the subsequent calculations, is motivated by the somewhat simpler cal-
culation when Ω0 is the unit ball.

In order to calculate the boundary behavior of det[∂bi,w/∂zj ] for a gen-
eral strongly pseudoconvex domain Ω0, and thus to complete the proof of
Lemma 4.5.5, we shall use some standard notation as follows.

• ψ : Cn → R is a C∞ function such that Ω0 = {z ∈ Cn : ψ(z) > 0} and ∇ψ
is nonzero at every point of ∂Ω0,

• X(z, w) represents the “Levi polynomial” of ψ, first,

X(z, w) := ψ(w) +
n∑

j=1

∂ψ

∂wj

∣∣∣
w

(zj − wj)

+
1
2

n∑
j,k=1

∂2ψ

∂wj∂wk

∣∣∣
w

(zj − wj)(zk − wk),

and
• δ(w) := dis(w, ∂Ω0).

Let p0 ∈ ∂Ω0. For the moment, we restrict ourselves to the situation that
z, w ∈ Ω satisfy:

|w − p0| < ε

and

|z − w| < 3
2
δ(w).

Note that this implies |z − p0| ≤ 3ε. Choose ε sufficiently small so that, by a
complex affine linear change of the coordinates in Cn,

p0 = (0, . . . , 0);
∂ψ

∂x1

∣∣∣∣
p0

= 1,

∂ψ

∂y1

∣∣∣∣
p0

=
∂ψ

∂yi

∣∣∣∣
p0

=
∂ψ

∂xi

∣∣∣∣
p0

= 0, i ≥ 2,

and

∂2ψ

∂wi∂wj

∣∣∣∣
w=p0

=

{
−1 if i = j

0 if i 	= j
,
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where i = 1, . . . , n. (first, ψ(w) = Re w1 − |w1|2 − . . . − |wn|2+ higher order
terms.)

A term which has its absolute value not exceeding Cδr for some constant C,
as δ → 0, will be written � δr. A term which is uniformly comparable in
absolute value to δr (i.e., which has absolute value ≤ Cδr and ≥ C−1δr for
some positive constant C) as δ → 0 will be written ∼ δr. And, if the limit (as
δ → 0) of the term divided by δ is 1, then the term will be written ∼= δ.

With this notation and δ = δ(w):

1. ψ(w) = (∼=δ) = (∼=Re w1);
2. ∂ψ

∂w1
= 1

2 + (�δ);

3. ∂ψ
∂wi

= (�δ), i ≥ 2.

Therefore, for such w and z in Ω0 with |z − w| < 3
2δ(w), we see that

|X(z, w)| = |(∼=δ) +
1
2
(z1 − w1) + (�δ2)|

≥ |(∼=δ)| − 3
4
δ − |(�δ2)|

≥ 1
4
|(∼=δ)| − |(�δ2)|.

In particular, X(z, w) = (∼δ) (the bound above is obvious).
The determinant det(∂2bi,w/∂zj∂wi) becomes, upon substitution of the

expansion

X−(n+1)(z, w)[ϕ(z, w) + X(n+1)(z, w) · ϕ̃(z, w) logX(z, w)]

for KΩ0(z, w),

(−1)n(n + 1)ndet
[

∂2

∂zj∂wi
(logX(z, w))

−(n + 1)−1 ∂2

∂zj∂wi
log(ϕ + Xn+1(z, w)ϕ̃ logX(z, w))

]n

i,j=1
.

Now

∂2

∂zj∂wi
logX(z, w) = X−1 · ∂2X

∂zj∂wi
− ∂X

∂zj

∂X

∂wi
·X−2.

Thus, up to a nonvanishing absolute constant factor, the determinant to be
evaluated is

X−2ndet
[
X · ∂2X

∂zj∂wi
− ∂X

∂zj

∂X

∂wi

− (n + 1)−1X2 · ∂2

∂zj∂wi
log(ϕ + Xn+1ϕ̃ logX)

]n

i,j=1
. (4.5.2)
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The terms in the determinant can be easily checked to have the following
order-of-magnitude behavior:

X2 ∂2

∂zj∂wi
log(ϕ + Xn+1ϕ̃ logX) = (�δ2)

[since ϕ(p0, p0) 	= 0]. Also,

X
∂2X

∂zj∂wi
= (�δ2), i 	= j

X
∂2X

∂zi∂wi
= −X + (�δ2) = (∼δ), i = 1, . . . , n

∂X

∂z1

∂X

∂w1
= (∼1)

∂X

∂z1

∂X

∂wi
= (�δ), i 	= 1

∂X

∂zj

∂X

∂w1
= (�δ), j 	= 1

∂X

∂zj

∂X

∂wi
= (�δ2), i 	= 1, j 	= 1.

Thus the entire expression (4.5.2) becomes

(∼ δ)−2ndet

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∼1) (�δ) · · · · · · · · · (�δ)
(�δ) (∼δ)

... (∼δ) (�δ2)

...
. . .

... (�δ2)
. . .

(�δ) (∼δ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[The diagonal entries are of size (∼δ) except the (1, 1)-entry; the off-diagonal
entries except the first row and the first column are of size (�δ2).] Thus, the
determinant of the Jacobian of the Bergman representative coordinate map
at w p0 is of (∼δ(w)−(n+1)).

It is time to establish Lemma 4.5.5. By compactness of ∂Ω0, one can choose
finitely many boundary points and associated ε-balls around them and corre-
sponding ws from each ball to end up with an ε-neighborhood of the boundary
∂Ω0 for which the Jacobian determinant of the Bergman representative coor-
dinate map is bounded away from zero. ��
Proof of Proposition 4.4.5. Now we give (at long last) the proof of Proposi-
tion 4.4.5. The basic idea is to exploit the fact that, in Bergman representative
coordinates, an automorphism is given by a linear map. Thus estimation of its
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derivatives can be accomplished by estimating (1) its differential and (2) the
relationship between representative coordinates and Euclidean coordinates.

Now the proof proceeds by contradiction. If the conclusion is false, then
there are

(i) a sequence of domains Ων converging in the C∞ topology to a limit
domain Ω0;

(ii) a sequence {αν : Ων → Ων} of automorphisms;

and

(iii) a sequence of points {pν ∈ Ων} and a Euclidean differential operator

D =
(

∂

∂z1

)j1 ( ∂

∂z2

)j2

· · ·
(

∂

∂zn

)jn

, j1, . . . , jk > 0,

with

lim
ν→∞ |Dαν(pν)| = +∞.

Passing to a subsequence, we may assume that the sequences {pν} and
{αν(pν)} converge to points p0, q0 ∈ cl(Ω0), respectively. We also may assume
that both {αν} and {α−1

ν }, respectively, converge uniformly on compact sub-
sets of Ω0 to an automorphism α0 of Ω0 and its inverse α−1

0 , respectively (the
possibility of establishing this last assertion was treated in Section 4.1 as well
as in [Greene/Krantz 1981]). Now repeat the reasoning used in the proof of
Lemma 4.5.4 to show that p0 ∈ ∂Ω0. The same reasoning implies (because
the inverse sequence {α−1

ν } converges to α−1
0 ) that q0 is also in ∂Ω0.

Select, by Lemma 4.5.5, a point w0 ∈ Ω0 with these properties:

(A) KΩ0(p0, w0) 	= 0;
(B) If d0(z) = the Jacobian determinant det(∂bj,w0/∂zk)

∣∣
z
, j, k = 1, . . . , n,

then

lim inf
z→p0

|d0(z)| > 0.

[Here bj,w0 are the Bergman representative coordinate functions that we
introduced earlier.]

Because KΩ0(·, w0) extends to be a C∞ function on the set{
z ∈ cl(Ω0) : dis(z, w) <

3
2
dis(w0, ∂Ω0)

}
,

property (A) implies that the Bergman representative coordinate functions
bj,w0 have C∞ extensions to a neighborhood of p0 in cl(Ω0). Property (B)
is thus equivalent to the assertion that d0(p0) 	= 0. In particular, there is a
number ε > 0 such that the functions bj,w0 , j = 1, . . . , n, form a C∞ coordinate
system (holomorphic in Ω0) on

cl(Ω0) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}.
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[Notice that we are not claiming that the functions bj,w0 are holomorphic
across ∂Ω0; rather, these functions extend to be C∞ across ∂Ω0 in the sense
that their real and imaginary parts are C∞ as real functions. In general they
will only be holomorphic on Ω0 itself.]

By Lemma 4.5.5, the Bergman representative coordinate functions bν
j,w0

,
for Ων , j = 1, . . . , n, and ν = 1, 2, . . . ,∞, on

cl(Ων) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}

converge in the C∞ sense to the bj,w0 on

cl(Ω0) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}.

In particular, for all ν sufficiently large, the functions bν
j,w0

, j = 1, . . . , n form
a C∞ coordinate system on

cl(Ω0) ∩ {z ∈ Cn : dis(z, p0) ≤ ε}.

Let Ω ⊆ Cn be a bounded domain, α : Ω → Ω be an automorphism with
Euclidean components (α1, . . . , αn), and Jα(z) denote the Jacobian determi-
nant of α at z. Recall the following transformation formulas:

KΩ(z, w) = Jα(w) · Jα(z) ·KΩ(α(z), α(w)), (1)

bj,w(z) =
n∑

�=1

(
∂α�

∂wj

)∣∣∣∣
w

b�,α(w)(α(z)), (2)

(
∂bj,w

∂zk

) ∣∣∣∣
z

=
n∑

�,m=1

(
∂α�

∂wj

)∣∣∣∣
w

·
(
∂αm

∂zk

) ∣∣∣∣
z

·
(
∂b�,α(w)

∂zm

) ∣∣∣∣
α(z)

, (3)

det
(
∂bj,w

∂zk

) ∣∣∣∣
z

= Jα(w) · Jα(z) · det
(
∂b�,α(w)

∂zm

) ∣∣∣∣
α(z)

. (4)

Formula (1) is the standard transformation formula for the Bergman kernel;
formulas (2) and (3) follow from (1) by differentiation; and formula (4) can
by derived from (2) by using a little algebra.

The next observation is that det(∂bj,α0(w0)/∂zk)
∣∣
w0
	= 0. To prove this

assertion, notice that, by Lemma 4.5.5, the determinant equals

lim
ν→∞ det(∂bν

j,αν(w0)/∂zk)
∣∣
αν(pν);

this expression in turn equals, by formula (4),

lim
ν→∞

(Jαν
(w0)

)−1 · (Jαν
(pν)

)−1 · det
(
∂bν

j,w0
/∂zk

)∣∣
pν
.
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Since, by Lemma 4.5.4, the expression |Jαν | is bounded above on cl(Ων) (uni-
formly in ν) and since

lim
ν→∞ det

(
∂bν

j,w0

∂zk

)∣∣∣∣
pν

= det
(
∂bj,w0

∂zk

)∣∣∣∣
p0

	= 0,

it follows that indeed det
(
∂bj,α0(w0)/∂zk

)∣∣
q0
	= 0.

From the nonvanishing of this last determinant, it follows that the func-
tions bj,α(w0) form a C∞ coordinate system in some neighborhood in cl(Ω0) of
q0. In particular, there is a positive number η such that these functions form
a C∞ coordinate system on cl(Ω0) ∩ {z ∈ Cn : dis(z, q0) ≤ η}. Lemma 4.5.5
then implies that, for all sufficiently large ν, the functions bν

j,α(w0) form a C∞

coordinate system on cl(Ω0) ∩ {z ∈ Cn : dis(z, ν0) ≤ η}; moreover, this coor-
dinate system converges in the C∞ topology to the coordinate system bj,α(w0)
on cl(Ω0) ∩ {z ∈ Cn : dis(z, q0) ≤ η}.

For any ν sufficiently large, dis(pν , p0) ≤ ε and dis(α(pν), q0) ≤ η. Thus, for
all sufficiently large ν, the mapping αν in a neighborhood of pν is completely
determined—in w0-Bergman coordinates (of Ων) going to αν(w0)-Bergman
coordinates (of Ων)—by formula (3). This mapping is linear with bounded
differential. But, since both w0-Bergman coordinates (of Ων) and αν(w0)-
Bergman coordinates of Ων are converging in the C∞ topology to C∞ coordi-
nate systems (independent of ν), it follows by the chain rule that the Euclidean
derivatives of each fixed order αν at αν(pν) are bounded above uniformly in
ν as ν →∞. This contradiction completes the proof of Proposition 4.4.5. ��
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