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Applications of Bergman Geometry

In this chapter, results will be presented that arise by combining geometric
arguments with the asymptotic curvature constancy at the boundary (dis-
cussed in the previous chapter) and other aspects of the geometry of the
Bergman metric. The completeness of the Bergman metric of strongly pseu-
doconvex domains (Theorem 3.4.2) fits the whole situation into the framework
of global Riemannian geometry, the basic idea of which is that the global geom-
etry of a complete Riemannian manifold is controlled by curvature. Without
completeness, this property fails entirely (cf. [Gromov 1969]). But, with com-
pleteness in hand, one expects curvature information to control the geometry
in many respects.

4.1 Applications of Stability near the Boundary

The first result to be discussed has to do with small perturbations of the unit
ball in C", n > 2. A perturbation of the unit disc in C that is small in the C'*°
sense produces a domain that is still biholomorphic to the unit disc, by the
Riemann mapping theorem. But in C", n > 2, perturbations of the unit ball
are generically not biholomorphic to the unit ball. This can be seen from
Tanaka-Chern—Moser theory, but it can also be established by using more el-
ementary arguments involving only counting the parameters in biholomor-
phic mappings and in representations of the boundary. There are, at high jet
levels, more parameters in boundary choice than in germs of biholomorphic
mappings. Details of this idea, which goes back to Poincaré, can be found in
[Fefferman 1974] or [Greene/Krantz 1981].

Theorem 4.1.1. There is a neighborhood U of the unit ball in C™ in the C*°
topology on domains such that every 2 € U is either

(1) biholomorphic to the unit ball
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or else

(2) Aut(£2) has a fized point, which is to say, there is an x € {2 such that
v(z) = x for every v € Aut(£2).

Proof. To begin with, choose U so that if {2 € U, then 2 is (C*) strongly
pseudoconvex. By Corollary 3.4.4, {2 is biholomorphic to the unit ball if
Aut(£2) is noncompact. Now impose on U the additional conditions (via The-
orem 3.6.2) that, if {2 € U, then the Bergman metric has negative sectional
curvatures and that, if 2 € U, then (2 is diffeomorphic to the ball and hence
simply connected. [This latter condition is taken for granted in general by our
discussion of C'™ topology. We reiterate it here for emphasis.]

With U satisfying these conditions, if {2 € U and (2 is not biholomorphic
to the unit ball, then Aut(f2) is a compact group of isometries of a com-
plete, simply connected manifold of everywhere negative sectional curvature—
first, {2 with its Bergman metric. It is a standard theorem of E. Cartan
(cf. [Klingenberg 1982], for example) that a compact group of isometries of a
complete manifold of nonpositive sectional curvature has a fixed point. [The
fixed point is obtained as the “center of gravity” of the orbit of any arbitrary
point.] O

The fixed point theorem of E. Cartan that was applied to establish The-
orem 4.1.1 is usually proved using the strict convexity of the square of the
distance function. first, on a complete, simply connected Riemannian mani-
fold with all sectional curvatures nonpositive, the function disQ(-, po) is C°,
strongly convex for each point pg € M. Indeed, its second derivative along each
arclength-parameter geodesic is >2. This is an aspect of the Hessian compar-
ison ideas developed in a more general context in [Greene/Wu 1977]. [It is also
related to H. Karcher’s proof ([Karcher 1989]; see also, e.g., [Klingenberg 1982],
p. 226 ff') of the Toponogov comparison theorem ([Toponogov 1959]). But there
the inequalities go the other way: nonnegative sectional curvature implies sec-
ond derivatives <2.] But in the specific instance at hand, a direct proof by
the second variation Formula is easy and standard.

With this convexity in mind, one establishes the existence of a fixed point
for a compact group G of isometries of M as follows. Choose py in M arbitrar-
ily. Define F' : M — R by, foreachp € M, F(p) = ngG dis?(g(p), po) dg, where
dg is the invariant measure on G. The function F' is C'* and strongly convex;
indeed, its second derivative along each arclength-parameter geodesic is >2,
as one sees by differentiation under the integral sign. Moreover, completeness,
the compactness of GG, and the triangle inequality combine to show that F
is proper. If p is far from pg, then F(p) is large because p is far from the
compact set {g(pg) : g € G}. So F goes to infinity as p tends to infinity. Thus
F has a unique minimum, say at the point ¢o. But, because the function F' is
G-invariant—F(g(x)) = F(z) for all x € M, g € G—this unique minimum is
fixed by the elements of G. [Note that there is no claim that gq is the unique
fixed point of the G action. A different choice of pg could potentially yield a
different fixed point, and indeed the G action might have many fixed points.]
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This argument admits a variant in which differentiability is brought less
to the fore. This is a considerable digression, but it will make possible in a
moment an equally considerable generalization of Theorem 4.1.1. In this vari-
ant, one considers, instead of the function F, convex sets associated to the
situation.

Each closed ball cl(B(po,r)) = {q : dis(q,po) < r}, po € M, is convex, be-
cause dis?(-, pg) is a convex function. [The notion of convexity is unambiguous
here since geodesic connections are unique on such manifolds.] Now, if G is
not the one-element group, then, for small r, the set (), cl(B(g(po),7)) is
empty. On the other hand, if r is large, then, since G is compact, this inter-
section is definitely nonempty. Thus there is an rg > 0 such that the inter-
section is empty for r < rg and nonempty for r > rg. One sees easily that
ﬂgeG cl(B(g(po),r0)) is nonempty but has empty interior. This set is clearly
G-invariant.

At this point, one can bring into play a familiar “trick” of Riemannian
geometry (cf. [Cheeger/Gromoll 1971]): a closed, convex set with empty inte-
rior (as a subset with possibly nonempty boundary) lies in a totally geodesic
submanifold of M of lower dimension, which dimension can be chosen to be
minimal. The group G acts on this unique, minimal-dimensional submanifold,
so the argument can be repeated. Repetition yields eventually (since dimen-
sion drops at each stage) a compact, G-invariant, totally geodesic submanifold
of M. But, for our particular M, such a submanifold must be a point: This
follows from the strong convexity of dis?(-, ¢) for any point ¢ chosen arbitrarily
in M. [Detail: If N is a compact, totally geodesic submanifold of M with no
boundary, then, for any g € M, dis2(~7 ¢) has a maximum value on N, say at
x € N. But then disQ(-7 ¢) has a maximum at z along each geodesic through x.
Thus dis2(-, q) is constant along such geodesics, contradicting strong convexity
of dis?(-, ¢). This contradiction can be averted only if N consists of the point
x alone.] We have gone into this matter in some detail because in fact this
alternative line of reasoning enables Theorem 4.1.1 to be extended consider-
ably. first, L. Lempert has proved the following (personal communication to
the third author).

Theorem 4.1.2 (Lempert). If G is a compact group of automorphisms of a
convex, bounded, open domain 2 (convex in the usual Euclidean sense of the
word), then G has a fized point.

The proof of this result is obtained by first showing that the balls
in {2 relative to the Kobayashi metric are convex in the Euclidean sense
([Lempert 1981]). Then one can apply the geometric reasoning just discussed.
In more detail: On a strongly convex domain with C® boundary, consider the
convex sum of two extremal discs for the Kobayashi metric. The sum defines a
holomorphic disc contained in the domain due to convexity. From this follows
the Euclidean convexity of the Kobayashi distance ball for the strongly convex
domain. Then the exhaustion of a bounded convex domain by strongly convex
domains implies the Euclidean convexity for the Kobayashi distance ball for
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general convex domains. To obtain a fixed point of the compact subgroup G,
consider the G-orbit of a point. As before in the Riemannian case, for a posi-
tive number r, the intersection, say .S, of the closed balls of radius r centered
at a point in the orbit is nonempty for some sufficiently large r. Take the
smallest r for which S, is nonempty. Then this S, is convex and has empty
interior. Thus it has dimension strictly less than that of the original domain.
Equip S, with the restricted Kobayashi distance. Then continue this process
with S,.. This ends with a G-invariant 0-dimensional set which is convex and
hence a single point. This is a fixed point of G.

To put Theorems 4.1.1 and 4.1.2 into context, one needs to know that, in
general, a compact group of automorphisms of a C'*° strongly pseudoconvex
domain can be free of fixed points, even when the domain is homeomorphic
or diffeomorphic to the ball. This is not obvious! Most compact topological
group actions on balls that come to mind are conjugate to linear actions and
hence have fixed points. And, a fortiori, examples of compact automorphism
groups of domains homeomorphic to balls without fixed points are even less
accessible.

Here, however, is a way to produce examples:

There is a finite group, say I, acting smoothly on S7 with exactly one fixed
point ([Stein 1976]; see also, for more on the general situation, [Petrie 1982]).
This action can in fact be taken to be real analytic: this possibility is a general
feature, once the existence of such a smooth action is known ([Illman 1994]).
For any such (real analytic) action by I', a [-invariant Riemannian metric go
can be found by the usual averaging process. Then the complement in S7 of
every sufficiently small closed gg-ball around the fixed point is real analytically
diffeomorphic to a (standard) ball in R” on which the finite group I" acts real
analytically and acts without fixed point. In this way, one obtains a bounded
domain W in R7, diffeomorphic to the ball, such that W is real analytically
acted upon by the finite group, without fixed points, and the closure of W is
contained in a larger bounded domain V' to which the group action extends
real analytically, also without fixed points. The domain W (as well as V' at
the same time) can be taken to be real analytically equivalent to a standard
ball. In fact, W can be taken to be a standard ball in R”.

By averaging, there is a group-invariant function F : V' — R such that F
is real analytic and W = {p € V: F(p) < 1} and such that dF is nowhere
zeroon {p € V: F(p) = 1}.

Now each element ~y of the finite group I" extends to be a biholomorphic
map of some neighborhood V;, of the closure of W in C” into some open neigh-
borhood of the closure of V. The intersection W := N
in C” of the closure of W.

Consider the function yf +y3 +---+y% on C7, where z; = z;++/—1y;. By
averaging and shrinking W if necessary (while still keeping it a neighborhood

ver V., is a neighborhood

of the closure of W), we obtain a group-invariant C'*° function ¢: W — R,
say, such that ¢ > 0 and {p € W: ¢(p) = 0} is the set where y; = 0 for all
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j =1,...,7and such that ¢ is strictly plurisubharmonic (since y?+y3+- - -+y2
is). Here, “group-invariant” does not mean that the set W is invariant under

the action by I" but only that ¢(p) = ¢(v(p)) for each v € I" and each p € W,
Next, note that we can also average the function

(21, 27) — F(x1,...,27)

over the I'-action, when 2z = (z1,...,27) is in a neighborhood in C” of the
closure of W. This yields a group-invariant function F on a small enough such
neighborhood in Rj cC".

Now consider F' + My, where M is a (large) positive constant to be de-
termined and let

Wir = {p: F(p) + Mep(p) < 1}.

Then W C WM, since ' = F < 1on W and ¢ = 0 on W. Moreover,
for M large enough, Wy, is C° strongly pseudoconvex because ¢ is C°°
strictly plurisubharmonic. The nonvanishing of the gradient of F' + My at
the boundary of W), is easily checked. Finally, the domain W}, is group-
invariant—the group I" acts on it—because the defining function is group-
invariant. .

When M again is large enough, the group action on W), is without fixed
point. For, otherwise a limiting argument would produce a fixed point for the
group action on W, since, as M — +o0, the domains Wy, collapse to W.

This construction is of course quite general. It would apply to any finite
group acting smoothly on a sphere with exactly one fixed point: the specific
reference to S is only an historical tribute to [Stein 1976]. Indeed, one could
similarly deal with compact groups in general acting smooth on a sphere with
one fixed point. Note also that the domain Wj; cannot be biholomorphic to
the ball, since every finite (or indeed compact) subgroup of automorphism
group of the ball has a fixed point. Thus Aut (WM) is a compact group (see
Corollary 3.4.4) acting without fixed points on WM.

Now we explore results from the paper [Greene/Krantz 1981] that are
based on Theorem 3.5.1, on the stability of Bergman metric curvature near
the boundary of a C*° strongly pseudoconvex domain.

The following lemma will be pivotal to the considerations in this subsection.

Lemma 4.1.3. Let 2y be a fized strongly pseudoconver domain with C*°
boundary that is not biholomorphic to the ball. Then there are a neighbor-
hood U of 2y in the C> topology on domains, a number § > 0, and a point
p € {29 such that if 2 € U then p € 2 and

dis(f(p),092) = &

for all f € Aut (£2).
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Proof. According to Theorem 4.2.2, the holomorphic sectional curvature of
the Bergman metric of {2y is not constant. (Theorem 4.2.2 will be proved later
by an argument independent of the present Lemma 4.1.3.) In particular, there
is a constant A > 0, a point p € {2y and a J-invariant 2-plane P such that the
sectional curvature k(P) of the Bergman metric of {2y at p satisfies

4
n+1

From the stability result Theorem 3.5.2, there is a neighborhood U; of 2y in
the C'*° topology on domains such that p € 2 if 2 € U4 and

‘/{(P) + ’ > A

P _ = -2
‘mz( )+n >

for all 2 € Uy, where k(P) = the sectional curvature of the 2-plane P at
p for the Bergman metric of 2. By Theorem 3.5.1, there is a C'*° neighbor-
hood Uy of 29 and a constant & > 0 such that if 2 € Us, if ¢ € 2 with
dis (¢,C"\ 2) < 4, and if Q is a J-invariant 2-plane at ¢, then

K)Q(Q)‘i’ni > —.

Now sectional curvature is invariant under isometries, and hence sectional cur-
vatures of a Bergman metric are invariant under biholomorphic maps. More-
over, (the differentials of) biholomorphic maps take J-invariant 2-planes to
J-invariant 2-planes. It follows that if 2 € U; N Us, then the orbit of the
point p under Aut (£2) contains no points & with dis (z,02) <. O

Let 2 C C™ be a domain. We say that (2 is rigid if Aut (£2) = {id}. In
other words, {2 is rigid if the only biholomorphic mapping of {2 to itself is the
identity mapping.

Theorem 4.1.4. Let 2y be a smoothly bounded, strongly pseudoconvex do-
main that is rigid. Then any sufficiently small C*° perturbation of 2y is also
rigid. In other words, the set of rigid, strongly pseudoconvexr domains in C™
with smooth boundary is open in the C° topology of domains.

Remark. Tt follows from [Burns/Shnider/Wells 1978] (which uses the theory of
Tanaka/Chern/Moser invariants [Chern/Moser 1974], [Tanaka 1965]) that the
collection of all smoothly bounded, rigid, strongly pseudoconvex domains is
dense in the collection of all smoothly bounded, strongly pseudoconvex do-
mains. Actually, this density can be established without the use of invariant
theory, just by parameter counting, by using systematically that the number of
parameters at a given jet level for a hypersurface is larger than the number
of parameters for local biholomorphic maps, as already discussed. Coupled
with the result of the theorem, this implies that the collection of smoothly
bounded strongly pseudoconvex domains with nontrivial automorphism group
is residual—in the sense of the Baire category theory. The rigid domains are
an open dense set (in the C*° topology on domains). Rigidity is “generic.”
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Proof of Theorem 4.1.4. The proof will be by contradiction: Suppose there is
a sequence {{2; };”;1 of C'*° strongly pseudoconvex domains converging in the
C* topology to a C* strongly pseudoconvex domain 2y with Aut (£2) = {id}
but such that, for each j > 1, Aut (£2;) # {id}. Observe that if a; : £2; — §2;
is a sequence of holomorphic mappings then, by standard normal families
arguments, there is a subsequential limit mapping «p : 29 — cl(£2g). Choose,
for each j, aj € Aut (£2;), a; # idg;.

The domain (2 is certainly not biholomorphic to the ball. So Lemma 4.1.3
tells us that there is a point p € £y and a number § > 0 such that the points
{a(p)} lie in {z € 2; : dis(z,092;) > ¢} for all sufficiently large j. In partic-
ular, we can be sure that {a;(p)} lie in {z € 2 : dis(z,0(2) > 0} as long as
j is sufficiently large. As a result, the mapping g : 290 — cl(£2p) must itself
be an automorphism. (See Theorem 1.3.4.)

Since Aut (£2p) = {id}, we conclude that ay = id. In order for us to
obtain a contradiction, it suffices to show that the sequence {a;} could have
been selected to be bounded away from the identity, for all large j, on some
compact subset of 2. In so constructing the sequence «;, we will (discarding
a finite number of domains and mappings if necessary) take p € (2; and
dis(p, 042;) > 6 for all j.

We first claim that there is an € > 0 such that, if the orbit of p under
Aut (£2;) is contained in the Bergman metric ball on 2; of size € around p, then
there is a fixed point of Aut (£2;) contained in this ball. To prove this claim,
notice that the group Aut (§2;) will be compact if the orbit of p is bounded in
the Bergman metric; and if the orbit of p is contained in a sufficiently small
ball about p, then that compact orbit will also have a unique Riemannian
center of mass in the ball, which will be a fixed point of the group action. The
required smallness of this ball is stable under C*° perturbation of the metric,
hence under C*° perturbation of the domain. Hence that smallness can be
chosen uniformly in j. This stability and consequent uniformity comes from
the C'*° interior stability of the Bergman metric and the usual conditions for
existence of a unique Riemannian center of mass (cf. [Grove/Karcher 1973]).

Now, suppose that it is not possible to select a; € Aut (£2;) which are
bounded away from the identity on the Euclidean ball of radius §/4 around p.
Passing to a subsequence if necessary, we may assume that Aut ({2;) restricted
to this ball converges to the identity. Then, as we have previously noted, for
all large j there will be a fixed point—call it p;—for Aut (£2;) with p; in the
Bergman metric ball of radius € about p. [Here we are assuming, without loss
of generality, that the Bergman metric balls of radius 2e around p for the
Bergman metrics of the (2; are all contained in the Euclidean ball of radius
d/4 about p.]

Thus, for all large j, Aut(f2;) is isomorphic to a subgroup H; of the
unitary group via the mapping a +— da/,,, as usual. Now here is the crux of the
argument: since the unitary group does not contain arbitrarily small nontrivial
subgroups, there is a positive constant n > 0 such that, for each sufficiently
large j, there is an element §; € Aut (f2;) with the distance of dﬂj|pj to
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the identity exceeding n (where distance is relative to some fixed bi-invariant
metric on the unitary group). But this fact, together with the facts that the
Bergman metrics of the 2; converge C'° to that of 2y uniformly on the
Euclidean ball of radius 30/8 about p and that the p; lie in the fixed compact
closed ball of Euclidean radius §/4 about p, implies that the action of the
elements 3; does not converge to the identity on the Euclidean ball about p
of radius 36/8. This contradiction completes the proof. O

A similar, but simpler, argument establishes the following result. We refer
the reader to [Greene/Krantz 1981] for the details.

Theorem 4.1.5. Fach biholomorphic equivalence class is closed in the C*
topology on the set of C*° strongly pseudoconver domains.

4.2 Bergman Representative Coordinates

The Bergman kernel function gives rise not only to the Bergman metric, as
already discussed, but also to some special local holomorphic coordinate sys-
tems which play a significant role in the study of biholomorphic mappings and
in particular will be heavily used here. These local coordinate systems, known
as Bergman representative coordinates, share certain properties with the
geodesic normal coordinates of Riemannian geometry. In particular, biholo-
morphic mappings are linear when expressed in representative coordinates,
in analogy with isometries being linear in geodesic normal coordinates. But
geodesic normal coordinates are never holomorphic unless the (Kéhler) met-
ric is flat, that is, locally isometric to C™, while the Bergman representative
coordinates are holomorphic in all cases where they are defined.

As we shall see, the Bergman representative coordinates provide a natu-
ral way to analyze, among other things, smoothness to the boundary of bi-
holomorphic mappings. But this possibility was overlooked for some time by
the mathematical community as a whole. Bergman himself suggested this use
for representative coordinates at the 1975 AMS Summer Institute on Several
Complex Variables in Williamstown, Massachusetts. This suggestion was treated
with respect by the several hundred people who heard it there, as befitted
Bergman’s venerable age and his stature in the field. But the remark was almost,
it seems, completely misunderstood. This is somewhat surprising in view of the
great interest at that time in simplifying the latter part of Fefferman’s then new
paper [Fefferman 1974], in which the asymptotic expansion for the Bergman
kernel obtained in the first part is shown by an intricate argument involving
geodesics to imply boundary smoothness. As we shall see below, Bergman’s
suggested use of representative coordinates was exactly a propos: these coordi-
nates provide precisely the right tool to obviate the analysis of geodesics and
to go directly to smoothness to the boundary. [The later paper [Webster 1979)
gives one method for implementing Bergman’s idea, though without attribu-
tion to Bergman and hence, one supposes, independently.]



4.2 Bergman Representative Coordinates 107

Bergman’s representative coordinates are also involved in the proof of Lu
Qi-Keng’s theorem (Theorem 4.2.2) on bounded domains with Bergman met-
rics of constant holomorphic sectional curvature. This result will be stated in
detail and proved in the present section.

We turn first to the definition of Bergman representative coordinates.

Let £2 be a bounded domain in C™ and let g be a point of {2. The “diagonal”
Bergman kernel K(q,q) is of course real and positive so that there is a
neighborhood of ¢ such that, for all z, w in the neighborhood, Kq(z,w) # 0.
Then for all z, w in that neighborhood, we define

0 K(z,w)
bi(z) =b;,(2) = — log ———=
i (%) j.q(2) ow, gK(w,w) oy
It is actually certain constant-coefficient linear combinations of these that will
be the ultimate “Bergman representative coordinates,” but we begin with the
functions just defined. Note that these coordinates are well defined, indepen-
dent of the choice of logarithmic “branches.” Each b;(z) is clearly a holomor-
phic function of z.
Notice that some restriction on z to be in a neighborhood of ¢ may be
actually necessary, since it may be that K (z,w) vanishes for some pairs
(z,w) € 2 x 2.! In any event, the mapping

z— (b1(2),...,b,(2)) € C"

is defined and holomorphic in a neighborhood of the point ¢. Note also that
(b1(@)s- .+ ba(0)) = (0, ..., 0).

We are hoping to use these functions, and later certain special linear com-
binations of them, as holomorphic local coordinates in a neighborhood of q.
By the holomorphic inverse function theorem, these functions give local coor-
dinates if the holomorphic Jacobian

0ob;
det (J)
02k / jk=1,...n
is nonzero at q.

But in fact the nonvanishing of this determinant at ¢ is an immediate
consequence of a fact that we have established already, first, that the Bergman
metric is positive definite. To see this relationship, notice that

ob; 0 5}
Dil = 2 Zgk
azk z=q azk (aw] o8 (Z7w)) Z=w=q
2
= = log K (z, 2) .

'The point w is involved only very near ¢, but variation of z over all of £2 might
lead to zeros of K (z,w). In fact the zeros of K (z,w) do actually arise, even when
£2 is required to be topologically a ball; see, e.g., [Boas 1986].
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This last term is of course the Hermitian inner product <%, B%j>|q with
respect to the Bergman metric. Thus the expression

b,

is the determinant of the inner product matrix of a positive definite Hermitian
inner product. Hence this determinant is positive and, in particular, nonzero.

The utility of the new coordinates in studying biholomorphic mappings
comes from the following lemma.

q

Lemma 4.2.1. Let 21 and {25 be two bounded domains in C™ with q; € {4
and go € $25. Denote by bi,... b. the Bergman coordinates as defined near
q1 in §21 (using the Bergman kernel for 1) and b3, ... b2 the Bergman co-
ordinates defined in the same way near q in 25 (using the Bergman kernel
for £25). Suppose that there is a biholomorphic mapping F : 1 — (25 with
F(q1) = q2. Then the function defined near 0 € C™ by

(aq,...,q,) — the b?>-coordinates of the F-image of the point

of 21 with b-coordinates (as,...,a,)
is a C-linear transformation.

In short form, we say that biholomorphic mappings are linear when ex-
pressed in the Bergman representative coordinates 7.

Proof of the lemma. To avoid confusion, we write (21, ..., z,) and (w1, ..., wy,)
for the C"-coordinates in 1 and (Z1,...,Z,) and (Wy,...,W,,) for the C"-
coordinates in {25. In addition, we write K for Ko, and Ky for K,. Now
observe that, for each j =1,...,n,

9 Ka(F().Fw) 0 Kizw)
ow; 8 Ky(Fw), F(w))  ow; ° Ki(w,w)’

The reason for this identity is
Ky(F(2), F(w)) _ Ki(z,w)
KQ(F(IU)7F(1U)) Kl(w7w)
X (a holomorphic function of w).

x (a holomorphic function of z)

This last follows from the transformation law—the factors that are conjugate
holomorphic in w cancel out, since they are the same in numerator and de-
nominator. Thus we obtain (from the complex chain rule) that

¢ 0 Ki(z,w)

1 de
%) = 5% 8 K (o, w)

w=q1

9 log Ka(F(2), F(w)) — log Ka(F(w), F(w))

3wj

w=4q1

oF" 0 Ko (F(2), W)

aw; oWy o Ky (W, W)

b

‘W_F(m)
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where F* is the k-th coordinate of F (w1, ...,ws). But this last expression is
exactly
k
OF
Z EmR bi(F (2))
k U)] w=q1
Hence

Since the Jacobian matrix (9F*/0w;) of F is invertible at ¢, it follows that
the b7 (F(w)) are linear functions of the b}(z) coordinates, as required. O

The lemma is sufficiently surprising to justify looking at an explicit ex-
ample. Let 2, = (2 = the unit disc in C. Set ¢; = a in the disc, and take
g2 = 0. Define

zZ—a

F(z)= A

1—az

for some complex A of unit modulus. Then the b'-coordinates at ¢ = a are
the evaluation at w = a of

0 1/(1—-zw)* 0 _ _
—Z w
(1 — 2w * 1-— ww)
Therefore

1 _ z . a
b<2)_2<lza 1aa>

=g (et

[ z—a 2
" \l—-az/) 1—aa

To get b?-coordinates, we do the same calculations, but evaluate at 0 to obtain

b2 (2) = 22.

Thus the biholomorphic map F takes the point z with b'-coordinate o (equal-
ing 2(z—a)/[(1—az)(1—aa)]) to the point with z-coordinate A\(z —a)/(1—az)
and hence with b?-coordinate 2\(z — a)/(1 — az) = (1 — @a)\ - b'(2).

The mapping is indeed linear. The computationally inclined reader is in-
vited now to see how the b'-, b?>-coordinate setup enables one to regener-
ate the formula for the automorphisms (found in Section 3.3) of the ball
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in C" that take, e.g., (a,0,...,0) to (0,...,0); one need only be armed
with the knowledge that the Bergman kernel for the unit ball in C™ is
en(1—2z -E)’(”“). Of course, in practice, we used these biholomorphic map-
pings originally to actually compute the Bergman kernel, but it is still a matter
of some interest to watch this regeneration of the maps in action.

The coordinates we have been discussing can be pushed one step further
towards being truly “canonical,” that is, dependent only on the complex struc-
ture. Let g € £2 and let Vi, ..., V,, denote holomorphic vector fields defined in
an open neighborhood of ¢ satisfying

1ot =k
<Vj’v’“>’q{o if j £ k.

Then for each fixed z € 2, we define

Ly K.Q(va)
= V.1 L S
ﬁ] J ) Kg(w,w)

w=q

[Hence the Vjs act as differential operators only on the w-variables.] The
proof that (by,...,b,) defines a coordinate system at ¢ can be easily modified
to show that this map z — (51(2),...,0.(2)) is a well-defined holomorphic
coordinate system at gq. _

Again, given a biholomorphic mapping F : 2 — (2 and the respec-
tive Bergman representative coordinate systems (f51,...,0,) at ¢ € 2 and
(517 .. ,En) at F(q) € (~27 the map F takes expression in these coordinate
systems as follows: there is a nonsingular complex matrix A;; such that

Bj = Z AjiBr.
=1

There are further properties. At the “center” ¢, the S-coordinate vector fields
are orthonormal relative to the Bergman metric. (The same holds, of course,
for B-coordinates at F(q).) It is these coordinates that we shall hereinafter
call the Bergman representative coordinates of {2 at q. It of course remains true
that biholomorphic mappings are linear in these coordinates. But in addition
they are unitary linear mappings!?

Notice that these coordinates themselves are unique up to a unitary rota-
tion. Generally, one could not expect any further canonical aspect than that:
Since unitary rotations act as biholomorphic maps on the unit ball, one cannot
expect coordinates that are canonical beyond up-to-a-unitary-rotation. The
Bergman representative coordinates are as canonical as holomorphic coordi-
nates could be.

20n the other hand, the ordinary holomorphic (but nonbiholomorphic) mappings
do not show any particular characteristic property in this coordinate system.
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The Bergman representative coordinates are, as already noted, in some
ways similar to geodesic normal coordinates, but with the additional property
of being holomorphic. Further extraordinary properties will develop as we
continue our discussion. Note, meanwhile, that the whole concept of repre-
sentative coordinates extends essentially automatically to complex manifolds
for which the Bergman metric construction for (n,0) forms already discussed
above yields a positive definite metric. The construction can still be done lo-
cally, using general local holomorphic coordinates, and it remains true that
the Bergman coordinates linearize holomorphic mappings. And again, the
coordinates can be made more nearly canonical by using a basis for the dif-
ferentiation that is orthonormal relative to the Bergman metric. A new point
arises in that the quotient K (z,w)/K (w,w) is not defined as such: it becomes
defined only after a local coordinate choice around w and separately around z,
if 2z is far from w. This turns out not to matter: this whole matter is discussed
further in Chapter 11.

Our first application of Bergman representative coordinates is to the proof
of a remarkable theorem of Lu Qi-Keng on domains with a Bergman metric
of constant holomorphic sectional curvature.

Theorem 4.2.2 (Lu Qi-Keng). If 2 is a bounded domain in C", the Berg-
man metric of which is complete and has constant holomorphic sectional cur-
vature, then §2 is biholomorphic to the unit ball.

Notice that this result is certainly specific to the Bergman metric. For
example, the annulus { € C: 1 < |[¢| < R}, R > 1, admits a complete metric
of constant (holomorphic) sectional curvature (see Section 2.3). But it is not
even homeomorphic to the unit disc, much less biholomorphic to it.

This theorem has a complex manifold generalization: this is presented in
Chapter 11.

Proof of Theorem 4.2.2. We first observe that the holomorphic sectional cur-
vature, say c, must be negative. For, if ¢ were positive, then (2 would be
a complete Riemannian manifold with all sectional curvatures greater than
or equal to ¢/4 > 0 (see Section 3.5).> Hence {2 would be compact by stan-
dard Riemannian geometry. [This is Myers’s theorem: A complete Riemannian
manifold with sectional curvature everywhere >¢ > 0 has diameter <7 /\/e
and is hence compact (cf. e.g., [Petersen 2006]).]

If ¢ were zero, then the universal cover of {2 would be a complete, simply
connected Kéahler manifold of sectional curvature 0 and hence would be bi-
holomorphically isometric to C™. But then, since {2 is bounded, the covering
map into {2 would be constant by Liouville’s theorem. This would contradict
surjectivity of the covering map (to say the least!).

3This follows by the formula for Riemannian sectional curvature in case the
holomorphic sectional curvature is constant. See Section 3.6 for the negative case:
the positive case is the same up to the sign change.
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It remains to discuss the case ¢ < 0. If g is the Bergman metric of 2
(with constant negative holomorphic sectional curvature c¢), then the metric

_c(nt1)

g:= 1

g

has constant (negative) holomorphic sectional curvature —4/(n + 1) (cf. the
remarks on scaling by constant factors at the end of Subsection 3.3.1). Thus
the simply connected covering space 2 of 0 with the pullback g of the
metric g is a complete simply connected Ké&hler manifold with constant
holomorphic sectional curvature —4/(n + 1). By standard K&hler geome-
try (cf. [Kobayashi/Nomizu 1963]), ({2, §) is biholomorphically isometric to
B™ with its Bergman metric. Thus we obtain a holomorphic covering map
F : B™ — (2 which is locally isometric for the Bergman metric on B™ and g
on {2, respectively.

To prove the theorem, we need only show that F' is in fact injective.

For this let ¢ = F'(0). Since F' is a covering map, it is locally invertible.
first, there exists an open neighborhood U of ¢ and a neighborhood V of 0
such that F|y : V' — U is a biholomorphism. Denote by Hy the inverse of F|y .

With z,w € U, let

Ko(z,w) = KBn (]:I()(Z)7 Ho(w))

Then
2

8Zj82k

log Ko(2,2) = g;5 = A gaji

by the condition on F above, where A = —%. This implies that

2 2

0
1 _— =
2,0 og Ko(z, 2) 8zj82k/\10g Ko(z,2) =0

for every z € U, and furthermore that

log Ko(z,w) — Aog Ko(z,w) = ¢(z) 4+ ¢(w)

for every z,w € U, for some holomorphic function ¢ : U — C. Actually for
this one may need to replace U by a smaller, simply connected neighborhood;
but that can be done without loss of generality, here and in what follows.
Consequently one obtains

Kq(z,w)

et AN R A
Ko(w,w)

0 9]
—log——"—= — —\lo
8@ & Ko(w,w) 8@ &
for every z,w € U.
This last gives rise to the direct computation with Bergman’s representa-
tive coordinate systems b' : V' — C" and b? : U — C". As in the introduction
for Bergman’s representative coordinate systems, one obtains that
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Ho(¢) = (Flv)™' = (b))t o Ao b*(() (%)

for every ¢ € U. Here, of course, A is the linear map represented by the matrix
with the (4, k)-th entry

NTy
8zj 0

Now look at the expressions in (x). The map b' is in fact a constant
multiple of the Euclidean coordinate system. Therefore it extends to all of C"
holomorphically, needless to say. So does the linear map A. The map ¢ — b%(()
extends to a holomorphic mapping of {2\ Z,, where

Zy={C€ 2| Kn(¢ q) =0}.

Since K (-, ¢) is a holomorphic function on 2 with K(q,¢) # 0, the set Z,
is an analytic variety whose complex codimension in {2 is 1. Hence £2\ Z, is
a connected, dense, and open subset of {2. Therefore, using the expression of
Hy in (%), the map Hy extends to a holomorphic mapping of 2\ Z, into C".
Let H denote this extension.

Now, let X := F~1(Z,). Then one immediately sees that

X ={2€B" | Kqo(F(2),q) = 0}.

Since K (F(0),q) = Kq(q,q) # 0, we see that X is again a complex analytic
subvariety of B™ with complex codimension 1. Thus B™ \ X is a connected,
dense, and open subset of B". Furthermore, H o F' : B\ X — C" is holo-
morphic with H o F(z) = z for every z € V, as H = Hp on V. This means
that H o F(z) = z for every z € B™ \ X. Now, for every ¢ € 2\ Z,, choose
2 € B™ such that F(z) = ¢. Then

H(C) = H(F(z)) = =

This implies that H(2\ Z,) C B™.

We see that H is holomorphic on 2\ Z,. The removable singularity theorem
for bounded holomorphic maps (the Riemann extension theorem) yields that
H extends to a holomorphic mapping of {2 into C". Since H continues to play
the role of left inverse of F', it follows easily that F' has to be injective. This
completes the proof. O

It is worthwhile to look back to see the exact role of completeness in this
proof. Completeness in fact played no role in the construction of the local
inverse which turned out to be a global, one-sided inverse. But completeness
was used to get the holomorphic, locally isometric covering map from B to {2
in the first place. Without completeness, one would have only a locally defined
covering map, and the subsequent arguments would not apply to inverting this
map, it not being defined on all of B.
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4.3 Equivariant Embedding and Concrete Realization
of Abstract Complex Structures

Suppose that (2 is a bounded domain in C” that contains the origin 0. There
may be (nonidentity) elements of Aut ({2) that act on (2 as the restrictions
to {2 of unitary linear transformations of C", that is, as elements of U(n).
The set of such elements of Aut (£2) is clearly the set of restrictions to {2 of
those elements « of U(n) such that «(£2) = £2. If every element of the isotropy
group Ip = {f € Aut (£2) : f(0) = 0} arises in this fashion, then we say that
2 is equivariantly embedded in C™ at 0.

In this case, the mapping of Iy into U(n) defined by f — df|o, with f € Iy,
is an injective, continuous isomorphism of Iy into a compact subgroup of U (n),
with each element of this subgroup mapping {2 to itself. Thus the isomorphism
of Corollary 1.3.7 becomes a concrete matter: the group of differentials, al-
ways isomorphic for any bounded 2 to the isotropy at a point, is literally the
group of mappings itself. The obvious examples of this kind of behavior are
balls and polydiscs centered at the origin. In fact, by Corollary 1.3.2, any com-
plete circular domain has this equivariant embedding property. The following
surprising result gives in effect an equivariant “re-embedding” of any domain
close to the ball.

Theorem 4.3.1 (Greene—Krantz). There is a neighborhood U, in the C>
topology on domains, of the unit ball in C™ such that, for every £2 € U, there is
a biholomorphic map F' : 2 — C™ with F(0) = 0 and with F({2) equivariantly
embedded at 0.

In the case n = 1, this result expresses the familiar fact (the Riemann
mapping theorem) that a domain that is C*° close to the disc is biholomorphic
to the disc via a biholomorphic mapping taking 0 to 0. The disc itself is of
course equivariantly embedding at 0. But, for n > 2, the theorem is startling,
just because the Riemann mapping theorem fails entirely even for domains C'*>°
close to the ball. In general, {2 will definitely not be biholomorphic to the ball;
also F(£2) will be not the ball but some other domain that somehow exhibits
the “abstract” symmetries of {2 around 0 as concrete geometric symmetries
of F(£2) that extend to be unitary rotations of C™ itself.

Proof of Theorem 4.3.1. It has already been observed that the expression
of an automorphism in Bergman representative coordinates (around a point
and its image) is a unitary linear transformation. Thus, taking F' to be the
Bergman representative coordinate map at 0 of {2 will do the job for the theo-
rem, provided that the Bergman representative map is defined on all of {2 and
is injective and nonsingular everywhere. These properties are not automatic;
for example, for general bounded domains {2, K, (z,w) can have zeros even in
cases where (2 is homeomorphic to the ball ([Boas 1986]). However, it turns
out that the Bergman representative coordinate map Fp, : 2 — C™ at 0 € (2
is in fact an everywhere-defined holomorphic diffeomorphism onto a bounded,
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open set in C” for all {2 that are sufficiently close in the C'**° sense to the unit
ball B™.

To establish this last fact, note first that Fg» is indeed a diffeomorphism.
Indeed, it is the identity map of the ball to the ball (up to a dilation constant).
This one checks by direct calculation. In particular, Fg» extends to be a
diffeomorphism of the closed ball cl(B™) into C", in the sense that it extends
to the closure to be an injective C°° map with everywhere nonzero (real)
Jacobian determinant.

The next step of the proof is to recall from basic differential topology
(cf. [Munkres 1966]) that the property of being a diffeomorphism of a compact
manifold-with-boundary into a Euclidean space is stable in the C! topology.
In particular, a C*° mapping of the closed unit ball that is C' close to the
identity will be such a diffeomorphism.

In our case, we are interested in a C'>° mapping, the mapping via Bergman
representative coordinates, not of the ball but of a domain {2 that is C*° close
to the ball. But, following the usual terminology of differential topology, we
say that a map F : cl(£2) — C" is C'* (or C*°) close to a map G : cl(B") — C"
if there is a diffeomorphism H : cl(B™) — cl(£2), H itself close to the identity,
with F' o H close to the map G on B™. Then it remains true that if I is
C" close to a diffeomorphism in this sense, then it is itself a diffeomorphism
(of cl(£2)) into C™.

Thus the question of F' : {2 — C™ being a diffeomorphism can be dealt
with by showing that F' extends C*° to cl(§2) and that F : cl(£2) — C" is C*
close to the G on B™ in the sense indicated.

At first sight this might seem difficult to establish: There are two direct ap-
proaches to the Bergman kernel. One is by its definition via the “reproducing
property”, that inner product with K(z,w) gives the value at w for elements
of A2(2). The other is the formula for K (z,w) in terms of an orthonormal ba-
sis for A%(§2). But neither of these seems amenable to producing information
on the behavior of K (z,w) with w fixed, z approaching the boundary. Interior
behavior is more reasonably expected to be stable. (See Theorem 3.5.3, as well
as Theorem 10.1.4.) But it turns out that the behavior of Ko (z,w), with w
fixed in {2, and z going to the boundary, can be effectively analyzed via the
solution of the 9 problem as follows.

With w € {2 fixed, let r be a positive number that is less than the distance
of w to C™\ 2. Choose a nonnegative function p : C" — R with p(z) depending
on ||z]| only, and with p(z) = 0 if ||z|| > r and finally with [, p(2) dV(z) = 1.
Then by the mean value property for each f € A%({2) this formula holds:

f(w) = /Q F(2)plz - w) dV(2).

In particular, the reproducing (Bergman) kernel K (z, w) with defining property

fw) = /ﬂ fRmw) dV(z)
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is the L? projection of p(z —w) onto A%(§2), with z being the variable and w
fixed. This projection can be thought of as obtained via the solution of a @
problem. first, let u be the solution (in L?(2)) of du(z) = d(p(z — w)) which
is orthogonal in L%(£2) to A%(£2). Then K(z,w) = p(z — w) — u(z).

The solutions of Ju = f, where df = 0, with u orthogonal in L?(£2) to
AZ%(£2), are of course the standard topics in the study of the d-Neumann prob-
lem. In particular, in our case, when {2 is C*° close to B and hence strongly
pseudoconvex, the indicated solution u of u(z) = d(p(z —w)) is C* on cl({2).
This is the usual smoothness-to-the-boundary result ([Folland/Kohn 1972]):
note that d(p(z—w)) is compactly supported in {2 and hence is itself obviously
smooth on cl({2).

Of course this method of finding K(z,w) applies when (2 = B in particu-
lar. Thus the kind of C! closeness of Kq(z,w) to Kp(z,w) that we are looking
for can be considered from the viewpoint of the stability of the solution for
the 0-Neumann problem under variation of the domain on which the solution
is occurring. This stability seems eminently plausible. Indeed, it is assumed
without further comment in Kohn’s classic work on the d-Neumann problem
[Folland/Kohn 1972], where it is used to deduce the Newlander—Nirenberg the-
orem on integrable almost complex structures. But a completely explicit dis-
cussion of the stability issue can be found in [Greene/Krantz 1981], as part of
the general discussion of the stability of the nondiagonal Bergman kernel and
of the asymptotic expansion of the diagonal kernel function at the boundary.

There it is shown that, if {2 is sufficiently C*° close to a fixed, strongly
pseudoconvex domain (2, and if a (0,1) form w on cl(£2) with dw = 0 is
sufficiently C* close to a (fixed) (0,1) form wy on cl(§2y) with dwy = 0, then
the 9-Neumann solution of Ju = w on 2 is C* close on cl(£2) (i.e., in a given
C™ neighborhood of ) to the d-Neumann solution of dug = wy on cl(2y). This
is established via a detailed study of the standard proof of the regularity of
the -Neumann problem.

This result implies the needed C'! stability of Bergman representative co-
ordinates to show that the Bergman map F : {2 — C" via representative
coordinates is a diffeomorphism. For (2 close to the unit ball and w close
to 0, the (0,1) form dp(p(z — w)), w fixed, J calculated relative to z, is C™
close to dpn(p(2)) if w is sufficiently close to 0. Our previous observation
on the relationship between the 0 solution and the Bergman kernel implies
that K (z,w) is uniformly C* close to Kpn(z,w) for £2 which is C*° close
to B™ and w in some fixed neighborhood of 0. Since Kp(z,w) is conjugate
holomorphic in w, Cauchy estimates give that

3}
is uniformly close to e log Kpn (w, w)

0
e log Ko (w, w)

w=0 w=0
and that
ilo Ko(z,w) is C* close to i10 Kpn(z,w) on cl({2)
ow eRas w=0 ow RS w=0 .
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Thus the Bergman representative coordinate map Fp for £2 at 0 is C' close
to the Bergman representative coordinate map for the ball B™, which is the
identity (up to a constant factor). Thus the Bergman representative coordinate
map Fy, is a holomorphic diffeomorphism of cl(£2) into C", and the proof of
the theorem is complete. O

The stability of the -Neumann solution under perturbation of the bound-
ary of a strongly pseudoconvex bounded domain is a special case of a more
general situation: Suppose that 2o Udf2 is a C*° manifold-with-boundary
and that Jy is an almost complex structure that is C'°° on 2y U3df2, and
integrable on (2. In this situation, it makes sense to take as an hypothesis
that 92y is strongly pseudoconvex (cf. [Folland/Kohn 1972])—assume now
that 92 is indeed C'*° strongly pseudoconvex. Suppose also that 29U d£2y
is given a C'°° Hermitian metric. Then, if f is a C'°*° function on 29U 0f2y,
we may conclude that there is a unique function u : 2y — C with du = 9f
on 2 and with u orthogonal to A%(§2) (in the inner product relative to the
given Hermitian metric). Also u is C™ on 25 U 3£2. [One can in fact so solve
Ou = w, where w is a (0, 1) form satisfying dw = 0 and with w having 0 har-
monic representative. But the special situation where w = Jf, as indicated,
suffices for our purposes, the harmonic representative being 0 following auto-
matically in this instance.]

This setup has, as shown in [Greene/Krantz 1981] (and implied already
in [Folland/Kohn 1972]), a stability similar to the stability associated to the
stability under perturbation of a strongly pseudoconvex domain in C" already
discussed. first, let J be another almost complex structure on 29U d(2y and
let f be a C* function on 2yUdJf2y and J an almost complex structure
tensor that is C'°° close to Jy. If now f is C°° close to fy on 20 UdS,
then the O-Neumann solution of dyu = 0 f is C* close to the -Neumann
solution of 9 ,ug = 0, fo, provided that the 9 solution is determined for a
J-Hermitian metric which is C'*° close to the given Jp-Hermitian metric on
20U 0(2y. This latter condition can always be arranged by setting h = the
J-symmetrization of hy, i.e.,

(ho(,+) 4+ ho (J(), J(+))) -

DN =

(-, ) =

One could add into this picture the C'*° perturbation of {29 U 02, itself,
but this would not actually increase the generality, since such a perturbation
could be absorbed into perturbation of Jy and fj.

This more abstract form of J-stability has an important application: it
yields a proof of the perturbation result of Hamilton asserting that all pertur-
bations of the complex structure of a bounded, strongly pseudoconvex domain
can be realized by embedding ([Hamilton 1977]). This result was originally es-
tablished by Hamilton using the Nash—Moser implicit function theorem. But
the proof based on O-stability in [Greene/Krantz 1981] is easier and more
natural, and is also rather brief.
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Theorem 4.3.2 ([Hamilton 1977]; cf. [Greene/Krantz 1981]). If {2y is
a C*° bounded domain in C™ with strongly pseudoconvex boundary and if J
is an almost complex structure defined and C*° on cl(£2y) which is integrable
on 2y and C™ close to the almost complex structure Jo of C™ on 2y U 0f2,
then there is a domain 2, C* close to {2y in the C*° topology on domains,
such that (£2,J) is biholomorphic to (2, Jy).

In particular, every “abstract” perturbation of the ball is realized by a
perturbation of the ball as a geometric object in C”.

Proof of Theorem 4.3.2. Let f1,..., f, be the coordinate functions on {2, i.e.,
fj(z) = the z; coordinate function in C" evaluated at the point z.

Then gjofj = 0 for each j = 1,...,n. If J is C* close to Jy, then 5ij is
C> small on 2. The stable O estimates then give that, if 5]/&]’ = ayfj and
u; is the 0 ;-Neumann solution of this equation, then each uj is C' small in
particular. [Here we use the construction described earlier for the automatic
manufacture of a stably varying Hermitian metric for ({29, J).] In particular,
the n-tuple of functions f; — u;, j = 1,...,n, gives a mapping which is C*
close on 20U0(2) to the mapping given by the f;s themselves, first the identity
injection of £2y into C". In particular, the f; —u;, 7 = 1,...,n, are coordinates
of a diffeomorphism of £2)U0{2y onto an open set with smooth boundary in C",
by the C! stability of diffeomorphisms.

But the function f; — uj, each j, is J-holomorphic since d,;(f; — u;) =
dsf; —0yuj=0o0n 2. O

The idea of this last proof was originally proposed by M. Kuranishi and com-
municated to the first author (Greene) by J. Eells (private communication).

The uniqueness of the 9-Neumann solution, once a Hermitian metric is
chosen, together with the proof method just used, makes possible an equiv-
ariant extension of Hamilton’s embedding theorem. This result generalizes
Theorem 4.3.1 to cases where equivariant embedding via Bergman represen-
tative coordinates cannot in general be obtained.

Theorem 4.3.3 ([Greene/Krantz 1982]). Suppose that 2y is a C>
strongly pseudoconvex domain in C" and that G is a compact subgroup of
Aut (£20). Suppose further that £2y is equivariantly embedded for G in the sense
that G acts on {2y as the restrictions of holomorphic isometries of C™. Let J be
an almost complex structure on 20U0S2y which is integrable on 2y and is C*
close to the C™ complex structure Jo on 200082 and let I' : Gx 2y — 2y be a
G-action on £2y which is J-holomorphic and C'*° close to the original G-action
on $2y. Then there is a diffeomorphism F : 25U 082y — C™ such that:

(1) The mapping F is holomorphic as a map from (£29,J) to (C™, Jy).

(2) The mapping F is C* close to the injection of {2y into C™.

(3) The mapping F ol o F~1 which is the G-action on F(£2), is the restric-
tion to F(£2) of a G-action on C"™ by holomorphic isometries of C™.
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(4) The G-action on C" given in (8) is C™ close to the original G-action on
C™ attached to that equivariant embedding of 2.

Proof (outline). Let hg be the C" Hermitian metric restricted to {2 so that
hg is invariant under the original G-action, say Iy x 2o — C", on (2. Since
I' is C*° close to this original G-action, the average h of hy with respect to
the I'-action is C° close to hg. Note that this is also C° close to hg since I
is C*° close to an action isometric for hg. Observe further that h may not be
J-Hermitian, even though I" acts by J-holomorphic maps, since hg is likely
not J-Hermitian. but the J-symmetrization of h already discussed, call it h,
18 J-Hermitian, and it is C'*° close to hg since J is C'*° close to Jy. This metric
h is thus I'-invariant, J-Hermitian, and C'*° close to hg.

Now let fi,..., fn be the coordinate functions on 2y so that G acts lin-
early on them, if we choose a suitable new origin in C" (a compact group
of isometries of C™ has a fixed point and we choose such a fixed point as
origin). Let u; be the O-Neumann solution of a]uj = a;fj determined by the
I'-invariant metric h. Since I" acts almost linearly on the f;s, the mapping I’
acts almost linearly on the u; s as well, because the 9 solution process is
I'-invariant. So I" acts almost linearly on the holomorphic functions f; — u;
which, moreover, determine an embedding of 2y U 92.

A standard process of making an almost-linear action linear, which will
preserve J-holomorphicity, completes the construction of the desired equivari-
ant J-holomorphic embedding. [The process involves replacing the functions
F; = f; — u; by functions, which are C* close, defined by

)

(Fi(2)..... Fu(2)) = /G Lo(g™%, (Fi(g2), ... Falg2)) dg,

where [, is the invariant (Haar) integral with total measure 1.]* O

4.4 Semicontinuity of Automorphism Groups

Symmetry is easily destroyed but not so easily created. To make the straight
crooked requires only an arbitrarily small effort, while to make the crooked
straight requires a definite action.

These intuitions, that symmetry is unstable but an increase in symmetry
requires a substantial change, holds with precision in a variety of circum-
stances. The goal of this section is a result of this type for the automorphism
groups of C'*° strongly pseudoconvex domains. This result will depend for its

4The reader unfamiliar with this process of converting close-to-linear to actually
linear actions by way of re-embedding might find it instructive to consider the exam-
ple in which G is the two-element group {1, g} and F(g(z)) is close to —F(z). Then
the map F defined by z — [1/2](F(z)— F(g(2))) satisfies precisely ﬁ(g(z)) = —F(2)
so that G acts linearly indeed on the F embedding, which really is an embedding
since F' is in fact close to F'.
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proof on a theorem similar in spirit concerning compact Riemannian mani-
folds ([Ebin 1968]).

Theorem 4.4.1 (Ebin). If (M, go) is a C*° compact Riemannian manifold,
then there is a neighborhood G of gy in the C*° topology on C*° Riemannian
metrics such that: If g € G then there is a diffeomorphism F : M — M (C
close to the identity) such that the set

{FoozoF_1 s a: M — M is an isometryforg}
is a subset of, and hence a subgroup of
{B: B:M— M is an isometry for go}.

In particular, the group of isometries of M relative to g is isomorphic to a
subgroup of the group of isometries of gg.

Ebin’s original proof of the theorem just stated involved infinite-
dimensional manifolds and the construction of “slices” in the Lie group sense
for the action of the diffeomorphism group on the manifold M. However, the
result can in fact be established by finite-dimensional methods and ordinary
Lie group theory. We outline the argument now.

Let

V4 = the finite-dimensional linear span of all eigenfunctions of the

Laplacian for gogwith eigenvalues < A.

[We use here the differential geometer’s Laplacian —3_ ;0% /dx7 at the center
of a geodesic normal coordinate system, so that the spectrum of the Lapla-
cian is nonnegative.] If we equip V4 with the standard L? inner product on
functions determined by the measure M for gg, then the compact group of
isometries for gy acts on V4 orthogonally. Moreover, if we choose an orthonor-
mal basis fi,..., fx for Vy, then the map Ey : M — RY defined by

M >pw (fi(p),.-- fn(p))

is an embedding if A is chosen sufficiently large. This is an historic theorem
of S. Bochner ([Bochner 1937], cf. [Greene/Wu 1975a] and [Greene/Wu 1975b]
for a contemporary context and the noncompact manifold situation). With
A so chosen, the embedding Ej is equivariant in the sense that there is an
injective homomorphism Hy : [Isometry group of go] — O(N) such that, for
each isometry « of gop and p € M, Hy(a) applied to Ey(p) equals Eg(a(p)).

Now assume further that A is not in the spectrum of the Laplacian Ag of
go: this choice of course is possible consistently with the sufficient largeness
of A of the previous paragraph, since the spectrum of Ag is discrete. With
A thus chosen, both sufficiently large and not in the spectrum of Ay, there
is a “spectral stability” property of the equivariant embedding situation as
follows.
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Let g;, j = 1,2,3,... be a sequence of C"* Riemannian metrics converg-
ing to go in the C* topology. Let V4 j = (the span of the eigenfunctions for
the g;-Laplacian A; with eigenvalues < A). Then, for all j sufficiently large,
the dimension of the finite-dimensional vector space V4 ; = the dimension N
of the space V, defined earlier. Moreover, again for each j sufficiently large,
there is a basis (f{, ..., f%) for V4 ;, orthogonal with respect to the g;-measure
on M. These bases can be chosen so that, for each fixed k£ € {1,..., N}, the
function f{, j =1,2,3,... converges to the function fj in the C* topology.
This “spectral stability” result is part of the perturbation theory of linear op-
erators; it is proved in detail in Kato’s well-known book [Kato 1966] on that
subject. [At first sight, these spectral stability results seem not only appeal-
ing but almost obvious, since the eigenfunctions of A; are competitors, after
suitable correction, for the minimization of Dirichlet integrals—the Rayleigh
method—that gives eigenfunctions of A. But subtleties arise in any attempt to
reason in the opposite direction, to control the eigenfunctions of A; from those
of A. These difficulties are treated in [Kato 1966] by the method of resolvents.|

From this we obtain embeddings E; : M — R, for each j sufficiently
large, which are equivariant for the isometry group of g;. Moreover, the E;’s
as constructed converge to Ey in the C*° topology.

Let Gy (the isometry group of gg) be equal to the subgroup of O(N)
obtained by the equivariant embedding Fy, and G; = the subgroup arising in
the same way from the isometry group of g; and the equivariant embedding £;.

Now, for any sequence {c; : M — M} such that «; is an isometry of g;
for each j = 1,2,3,..., there is a subsequence {¢;, } which converges in the
C*° topology to an isometry of gg: this follows from a standard normal fam-
ilies argument. [Convergence to a go-distance-preserving map is immediate,
and the limit must be a C* isometry for gy by the Myers—Steenrod theo-
rem [Myers/Steenrod 1939]. That the convergence is then in the C* topology
is a matter of standard differential geometry, using the facts that the isome-
tries are determined by a single point image and differential at that point and
that geodesics, which are preserved, depend C*° on the metric.] Thus, com-
bining this with the C'*° convergence of the F; to Ej, we obtain the following.

If U is a neighborhood in O(N) of Gy, then G; C U for all j sufficiently
large. By a standard result in Lie group theory ([Montgomery/Zippin 1942]),
G; is isomorphic to a subgroup of Gy for each j sufficiently large, and this
isomorphism is given by conjugation by an element A; of O(N). Here the A;’s
can be taken to converge to the identity. Modifying the £;’s themselves by con-
jugation, we can assume that the A;’s are equal to the identity and G; C Gy.
Since E; and Ey are equivariant embeddings into O(N), the desired diffeo-
morphism of M to M (to conjugate isometries of g; into isometries of gy) can
be obtained by sending p € M to the RV -closest point to E;(p) in Eo(M). O

The possibility of averaging over compact groups gives a useful corollary
about group actions as such. For the statement of the corollary, we say that a
sequence of C*° group actions G; x M — M sub-converges in the C* topology
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to an action Go x M — M if every sequence a; of Gj-action elements has a
subsequence o, which converges in the C'°° topology to a G-action element.

Corollary 4.4.2. If G; x M — M s a sequence of actions on a compact
manifold M by compact Lie groups G; and if the Gj-actions sub-converge
in the C'*° topology to a compact Lie group action Gy x M — M, then for
all j sufficiently large, there is a diffeomorphism F; : M — M such that the
conjugation by F; of the Gj-action is a subgroup of the Gy-action. Moreover,
the F; may be chosen to converge to the identity map of M in the C* topology.

This corollary follows from the proof of Ebin’s theorem (Theorem 4.4.1)
by averaging a fixed Riemannian metric over the group actions to produce
G j-invariant metrics g; converging in C°° topology to a G-invariant met-
ric go.

Generically, that is for a dense open set of metrics, the isometry group is
in fact the identity alone (see [Ebin 1968]). Our interest here, however, is in
the metrics which have a nontrivial isometry group.

The main goal of this section is to prove the statement analogous to Ebin’s
theorem (Theorem 4.4.1) for C*°, strongly pseudoconvex domains.

Theorem 4.4.3 ([Greene/Krantz 1982a]). If 2y is a bounded, C,
strongly pseudoconvex domain in C™ that is not biholomorphic to the ball,
then there is a neighborhood U of £2q in the C™ topology (on bounded domains
with C* boundary) such that, if 2 € U, then there is a real diffeomorphism
F: 2 — £y such that F' is C™ close to the identity and

{FoaoF ' :ae Aut(2)} C Aut(f2).
In particular, Aut(§2) is isomorphic to a subgroup of Aut({2).

The essential idea of the proof of this theorem is to note, from Lu Qi-
Keng’s theorem (Theorem 4.2.2), that the Bergman metric of {2y does not
have constant holomorphic sectional curvature, while at the same time the
holomorphic sectional curvature is asymptotically constant at the boundary.
So far, this is just a recapitulation of the curvature proof of Bun Wong’s the-
orem (Corollary 3.4.4, Theorem 9.2.1). Noting further that these curvature
estimates are stable under C'°° perturbations of {2y, one expects to find that
the smooth extension to the closure cl(£2p) of Aut ({2y), guaranteed by Fef-
ferman’s result on smoothness to the boundary ([Fefferman 1974]) will also
be stable under perturbation of 0f2y in the following sense: If {2 is C'*° close
to 2y, then Aut (£2) on cl(£2) is C° close to Aut (£29) on cl({2y) in the sense
that each element of Aut (£2) belongs to some pre-chosen C'* neighborhood of
Aut (£2) on cl(£2). Of course cl(§2y) is a compact manifold with boundary so
that Ebin’s theorem (Theorem 4.4.1) as just stated and proved (for manifolds
without boundary) does not apply as such. But, by passing to the “metric
double” and introducing suitable automorphism-invariant metrics, we can ap-
ply Ebin’s theorem on manifolds without boundary. We now turn to a more
detailed version of the outline just given.
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The detailed proof will be based on two propositions:

Proposition 4.4.4. If 2y is a C*° strongly pseudoconver domain and if {2y
s mot biholomorphic to the ball, then there are a point p in {2y, a compact set
Ky C 2y, and a C* neighborhood V of {2y in the C'*° topology on domains
such that, if 2 € V, then £2 D KoU{p} and the Aut (£2)-orbit of p lies in K.

This proposition has already been in effect established and is restated here
only for convenience and clarity.

Proposition 4.4.5. If {2y is a C*° strongly pseudoconvex domain not biholo-
morphic to the unit ball then, for each £ = 1,2, ..., there are a C* neighbor-
hood V of £2y and a positive constant Cy such that, for each 2 €V and each
f € Aut (12), the Euclidean derivatives of order < £ of f at points p € {2 have
absolute value < CYy.

For brevity, we shall summarize this last statement by saying that

The derivatives of order < ¢ of elements in Aut (£2) are stably uni-
formly bounded.

(where “stably” refers to variation of {2 near {2y and “uniformly” refers to
variation over the points of the domain (2).

This proposition, which is in effect a stable version of the smoothness-to-
the-boundary theorem by Fefferman, will be established later.

Armed with these propositions, we can now establish the following lemma
of normal families type.

Lemma 4.4.6. If £2;, j = 1,2,..., converge in the C* topology to {2y (with
£y being C*°, strongly pseudoconvex, and not biholomorphic to the ball), and
if g; € Aut (£2;), then there are subsequences $2;, , gj,, k =1,2,..., such that
gj, converges in the C™ topology to an element gy € Aut (£2).

See the definition in Section 3.5 for C'°° topology on the collection of
domains in C". Hereinafter, we write G; = Aut (£2;) and Gy = Aut (£2y). The
lemma then says in effect that, for j large, the action of each element of G
is close to the action of an element of Gy.

Proof of the lemma. Fix a point p and a compact set Ky as in Proposition
4.4.4. Then, for j large, g;(p) € Ko C 2;. By normal families, there is a
subsequence g;, which converges uniformly on each compact subset of (2,
and the limit of this subsequence is an element gy of G (this follows from a
straightforward modification of Theorem 1.3.4). Proposition 4.4.5 then implies
the C'*° convergence of {g;, } on cl(£2;,) (respectively to go on cl(£2)).

To check this last assertion in detail, it suffices to show that {g;, } on cl(£2;,)
is a Cauchy sequence in the C**! norm for each fixed ¢ = 1,2, .... For this,
suppose that € > 0 is given. Choose a compact set K C {2y such that, for
all 2 which are C'*° close enough to 2y and x € 942, there is a polygonal
arc in §2, of length not exceeding €/[3Cy41], from some point s € K to the
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point z. [Here Cyy1 is the constant from Proposition 4.4.5.] The possibility of
choosing K in this fashion is elementary: Simply let the set K be the €/[4CY]
normal “push-in” of 2.

Now choose kg so large that (from Cauchy estimates), 9j, —90 and gj, . —go
have C*-norm on K bounded above by ¢/3 if ky, ko > ko. For such ki, ko, the
C*-norm of the difference Gjx, — Gix, 18 < € on cl($2, ), cl(§2;,) provided that
k1, ko are also required to be so large that (2, , {2, are sufficiently C* close
to {29 and hence to each other. 0O

Lemma 4.4.7. There is a neighborhood V of {2y in the C'*° topology on do-
mains and a family go, 2 € V, with go a C* Riemannian metric on cl(§2)
such that, (1) if Aut (£2) acts isometrically on go and (2) if {£2;} is a se-
quence in V converging C™ to (2, then {gq,} converges C™ to go,.

Proof. Set gg, equal to the average with respect to Aut (£2y) of the Euclidean
metric on cl(£2y). For each 2 # (2, choose diffeomorphisms Fy, : cl(£2) —
cl(£2p) such that Fy, converges as 2 tends to {2 in the C* topology. Set g,
equal to the average over the compact (for V small enough) group Aut (£2)
of the pullback metric Ff,gq,. By Lemma 4.4.6, each element of Aut ({2) acts
nearly isometrically on Fgq,, in the C* sense of “nearly,” on cl(£2). This is
because gg, is Aut (£2p)-invariant and each element of Aut (£2) is C*° close to
an element of Aut (£2). The conclusion of the lemma concerning convergence
follows. O

Lemma 4.4.8. The metrics g in Lemma 4.4.7 can be chosen to be product
metrics near the boundary.

Here “the product metric” near the boundary of {2 means precisely that,
for each boundary point z of cl({2), there is a real local coordinate system
(z1,22,...,22,) in a neighborhood of z with

the boundary cl(£2) \ {2 equaling {(x1,x2,...,22,-1,0)};
the points of {2 in the neighborhood of z satisfying x2, < 0 (and vice

versa);
e the metric in the given neighborhood having at (21, s, ..., 22,) the form
dm%n + (a positive definite quadratic formin dzy,dxs, ..., dxrs,_1

with coefficients depending only on (x1, zo, ... ,xgn_l)).

Proof of the lemma. An Aut (£2) product metric of this sort at and near the
boundary is easily obtained using the map

002 x [0,0) — 2
defined by
(b,t) = exp,(tN),

where N is the inward-pointing normal at b relative to the previous gp-metric
and exp,, is the go-exponential map. Choose ¢ so small that the map is a
diffeomorphism and define the metric by declaring this diffeomorphism to be
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isometric for (the metric on 92)+dt?. This construction is Aut (£2)-invariant.
Using an Aut (£2)-invariant partition of unity to make a transition to the
previous g, will provide all properties: the partition of unity function is taken
to depend only on the t variable. O

The proof of Theorem 4.4.3 can now be completed as follows: With the
metrics gp chosen as in Lemma 4.4.8, in particular as product metrics near
the boundary, we form compact Riemannian manifolds ({2, gq) by taking (2
to be the manifold “double” of {2 and gy, to be the natural metric on ﬁ, equal
to g on each copy of {2 and fitting together to form a C'*° metric across the
(one copy of) 92 on account of the product metric. Let G, be the group
generated by Aut (£2) and the interchange operation I, that interchanges the
two copies of 2 that are “glued” to form Q2. We now apply Ebin’s theorem
(Theorem 4.4.1) to deduce that the isometry group of (2 is diffeomorphism-
conjugate (via a diffeomorphism close to the identity) to a subgroup Hy, of the
isometry group of fZO. Now, by our previous analysis via normal families, Hg
lies in a small neighborhood of G, in the isometry group of (2. This isometry
group is a compact Lie group and G, is a compact, hence closed, subgroup
and Hg is also compact and therefore closed. Standard Lie group theory
yields that Hy; is conjugate to a subgroup of G o by way of an isometry of {2y
close to the identity. Thus the diffeomorphism conjugation together with this
second conjugation gives a close-to-the-identity diffeomorphism F' : 2 — (2
conjugating G'5 to Gﬁo'

Now G 5, contains Iq,. Also, the only possible fixed points of an element
of G 5 that is not preserving each copy of {2 are lying in 0f2. It follows that
F' in fact maps 9f2 diffeomorphically to 92, and thus F', being close to the
identity, maps {2 to £29. As a result,

F|C1(Q) :cl(82) — cl(£2y)
is the conjugating diffeomorphism called for in the theorem. 0O

The reader with a mind towards maximum generality will have noticed
that complex analysis really played no role in the latter part of this proof. In
particular, the proof technique gives rise to the following results.

Theorem 4.4.9 (Ebin’s Theorem for Manifolds with Boundary). If
(M, go) is a compact, C*° Riemannian manifold with boundary, then there is
a neighborhood U of gy in the C* topology on Riemannian metrics such that,
for each g € U, there is a diffeomorphism F : M — M (which can be chosen
to be C* close to the identity) such that, for each g-isometry f : M — M,
the mapping F~' o f o F is a go-isometry.

Theorem 4.4.10. If G is a compact subgroup of the diffeomorphism group
of a compact manifold (possibly with boundary), then there is a neighborhood
V of Gy in the C*° topology on the diffeomorphism group such that every
compact subgroup G of the diffeomorphism group, with G C V), is conjugate to
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a subgroup of Gy via a diffeomorphism (which may be taken C>° close to the
identity).

The proofs of these results are obtained by extracting suitable portions of
the proof of Theorem 4.4.3.

4.5 Obtaining a Stable Extension

Let K be a compact subset of (2y. Let ¢ be a positive integer. The Cauchy
estimates then imply that there is a constant C' > 0 such that

|Via(z)| < C

for all & € Aut (£2y) and all z € K. Thus the essential point in establishing
Proposition 4.4.4 is to consider points near the boundary of 2.

Lemma 4.5.1. Let € > 0 be a positive number. Then
inf{dis(a(q),00) : « € Aut (£29), q € 0, dis(q,0820) > €}
is a positive number. [Here, as usual, dis denotes Euclidean distance.]

Proof. Suppose the contrary. Then there are a sequence {¢;} of points in 2
with dis(gj, 02p) > € and a sequence of automorphisms a; € Aut (2y) with
lim dis(ej(g;),042) = 0.
J—0o0
The sequence {c;} is a normal family. By reasoning that has already been
explained in detail, there is a subsequence {c;, } that converges normally to
an automorphism «g € Aut (). Passing again to a subsequence, we may
assume that {g;, } converges to a point g € £2p.

But clearly dis(go, 0£20) > €, so qo actually lies in (2 itself. As a result,
ao(qo) is in 2. But ag(qo) is the limit of the sequence «j,(g;,) and also
limy, o0 dis(evj, (g5, ), 0829) = 0. In conclusion, dis(ao(qo), 9929) = 0 (since the
distance function is continuous). This last statement contradicts the fact that
ao(qo) lies in the interior of (2. That is a contradiction. O

Lemma 4.5.2. If € is a positive number, then there is a 6 > 0 such that
sup{dis(a(q),02y) : a« € Aut (£29),q € (2, dis(q,082) < 0} < e.

Proof. The proof is similar to that of the last lemma, with a normal families
argument now being applied to the inverses of the automorphisms. The details
are left to the reader. O

Lemma 4.5.3. Let {2y be a strongly pseudoconver domain with C*° boundary.
Fiz a point py € 0§2y. Then there are numbers e,n > 0 such that if z,w € 2,
dis(z,w) < €, and dis(w,py) < €, then |Kp,(z,w)| > n.
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Proof. This is an immediate consequence of the Fefferman asymptotic expan-
sion (3.4) in Section 3.4. The details are again left to the reader. O

In the next lemma Jg(z) denotes the complex Jacobian determinant of
the mapping @ at the point z.

Lemma 4.5.4. If {2y is a smoothly bounded, strongly pseudoconver domain
in C", then there is a constant C' > 0 such that

sup{|Ja(2)| : o € Aut (§20),z € 2} < C
and
inf{|J.(2)] : @ € Aut (), 2 € 20} > C%.

Proof. The first estimate follows from the second by applying the result to o 1.
So we concentrate on the second.

Suppose that no such C exists. Then there are a sequence of auto-
morphisms «a; € Aut(f2) and a sequence of points ¢; € 2y such that
lim; .o Ja;(q;) = 0. Passing to a subsequence if necessary, we may assume
that the ¢; converge to a point gy € (2.

We claim that gy € 0f2y. For, if it were the case that gy € (2, then Lemma
4.5.1 tells us that {«;(g;)} is bounded away from 0f2. Hence, by the Cauchy
estimates, {|jaj_1(ozj (gj))|} is bounded as j — +oo. This last is impossible
since ja;1(aj(qj)) =1/Ja,(q;) and lim J,, (¢;) = 0.

So qo € 0f2y, and there are, by Lemma 4.5.3, positive numbers € and 7
such that |Kq,(z,w)| > n if z,w € 2y are within distance 7 of go. Therefore
|K o, (q0,70)| > n for any ro € 2y with dis(qo, 79) < €. Choose a fixed such ry.
It follow from Lemma 4.5.1 that liminf;_, . dis(c;(ro),029) > 0. Then, by
the Cauchy estimates, it follows that limsup;_, ., [Ja,(r0)| is finite. But we
also know that limsup;_ ., [Kqo,(a;(g;), a;(ro))| is finite.

Now Ko,(gj:m0) = Ja,;(d5)Ta, (o) Koy (a;(g;), a;(ro)). Since limj o
Ja,;(qj) = 0, the finiteness of the two limits-suprema just established now
implies that lim K, (g;,70) = 0. But lim; . Kq,(g;,70) = K0,(go0,70) # 0.
This contradiction completes the proof of the lemma. O

Lemma 4.5.5. If {2y is a bounded strongly pseudoconver domain in C™ with
C™ boundary, then there exist e, > 0 such that: If w € 2y and dis(w,d82y) <
€ and if z € 29 and dis(z,w) < [3/2])dis(w, (), then |Kqo,(z,w)| > n and
|det(0b; 1/02;)| > n, where the determinant is that of the complex Jacobian
of the Bergman representative coordinate map (b1 - .., bpw) at w.

Proof. The basic bound |Kp,(z,w)| > n can be deduced from Lemma 4.5.3
by a compactness argument. For the moment, it guarantees that the functions
b; w(z) are in fact defined for the z-values in question.
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In order to study the Jacobian determinant det(9b; .,/0%;), notice first that

0 0? { Ko, (z,w) ]
—biw = — | log
Oz 0z;0w; Koy (w, w)
2
~ 5 gr oo, (2. )

because the expression K, (w,w) has no z-dependence. Thus the relevant
quantities can be calculated by substituting the asymptotic expansion for
K, (z,w) into the formula given. The following version of this substitution,
and the subsequent calculations, is motivated by the somewhat simpler cal-
culation when {2y is the unit ball.

In order to calculate the boundary behavior of det[db; ,,/0z;] for a gen-
eral strongly pseudoconvex domain {2y, and thus to complete the proof of
Lemma 4.5.5, we shall use some standard notation as follows.

e ¢ :C"— RisaC™ function such that 20 = {z € C": ¢(z) > 0} and V¢
is nonzero at every point of 92,
e X (z,w) represents the “Levi polynomial” of 4, first,

(2 — w;)

and
o J(w) :=dis(w, 0().

Let pg € 0f2. For the moment, we restrict ourselves to the situation that
z,w € {2 satisfy:

|w —po| < €
and

|z —w| < gé(w)

Note that this implies |z — pg| < 3e. Choose € sufficiently small so that, by a
complex affine linear change of the coordinates in C",

d
po = (0,...,0); aim:l’
o o 0 .
aim:aim:aim:o’ i>2
and
9%y _{1 ifi=j
Ow;i0w; |, |0 iG]
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where i = 1,...,n. (first, ¥(w) = Re wy — |wi|?* — ... — |wy,|*+ higher order
terms.)

A term which has its absolute value not exceeding C'9" for some constant C',
as & — 0, will be written < ¢§". A term which is uniformly comparable in
absolute value to 6" (i.e., which has absolute value < C§” and > C~1§" for
some positive constant C') as 6 — 0 will be written ~ ¢". And, if the limit (as
d — 0) of the term divided by ¢ is 1, then the term will be written 2 4.

With this notation and § = §(w):

L ¢p(w) = (20) = (=Re w);

oY __ 1 .
2. dw, 2 + (55)’

3. 2L = (20), i>2.

Therefore, for such w and z in 2y with |z — w| < 36(w), we see that

X (2,w)| = (26) + 5 (21— w1) + (S0°)

(=6)] ~ 35— [(<5°)

v

%

1
~|(=20)] — [(<6%)]
2|0 = 1(S6%)]
In particular, X (z,w) = (~¢) (the bound above is obvious).

The determinant det(9%b;,,/0z;0w;) becomes, upon substitution of the
expansion

X*(”“)(z,w)[go(z,w) + X(”+1)(z,w) @z, w) log X (z,w)]

for Ko, (z,w),

2

(=1)"(n+1)"det (log X (z,w))

8@-8@
2 n
—(n+ 1)*1%8@ log (i + X"z, w)@log X (z,w)) .
Now
2 2
0 log X (z,w) = X* X OXOX S X2

6,2]‘(9@2‘ . 82’](‘9@1 B @8@1

Thus, up to a nonvanishing absolute constant factor, the determinant to be
evaluated is

oxox ox
(9Zj(9@i 821]' ow;
2 n
log(p + X" Glog X) . (4.5.2)

4,5=1

X~2"det | X

_ 1) 1x2.
(’ﬂ+ ) 6@8@
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The terms in the determinant can be easily checked to have the following
order-of-magnitude behavior:

2

82’]‘6@@

X? log(p + X" @log X) = ($0°)
[since ¢(po, po) # 0]. Also,

02X

— (<682 e
0w~ S0 A
0*X
0z;0w; X+(N5 ) ( 6)’ t=1,...,n
0X 0X
921 o, ~ Y
0X 0X
0z Ow; (Né)’ v 7& 1
0X 0X
— = (< P41
bz, 0w~ 0 IF
0X 0X
i — (< 2 . .
82]- 8@1 (N(S )’ ? 7é 17] 7é 1.
Thus the entire expression (4.5.2) becomes
[(~1) (<6) - - (<0)T
(S0)  (~9)
(N 6)—2ndet ( ) ' ( )
: (<0%) g
L(<6) (~0)]

[The diagonal entries are of size (~0) except the (1, 1)-entry; the off-diagonal
entries except the first row and the first column are of size (<62).] Thus, the
determinant of the Jacobian of the Bergman representative coordinate map
at w pq is of (~d(w)~ (D),

It is time to establish Lemma 4.5.5. By compactness of 92, one can choose
finitely many boundary points and associated e-balls around them and corre-
sponding ws from each ball to end up with an e-neighborhood of the boundary
02 for which the Jacobian determinant of the Bergman representative coor-
dinate map is bounded away from zero. 0O

Proof of Proposition 4.4.5. Now we give (at long last) the proof of Proposi-
tion 4.4.5. The basic idea is to exploit the fact that, in Bergman representative
coordinates, an automorphism is given by a linear map. Thus estimation of its
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derivatives can be accomplished by estimating (1) its differential and (2) the
relationship between representative coordinates and Euclidean coordinates.

Now the proof proceeds by contradiction. If the conclusion is false, then
there are

(i) a sequence of domains (2, converging in the C° topology to a limit
domain (2g;
(ii) a sequence {a, : 2, — 2, } of automorphisms;

and

(ili) a sequence of points {p, € 2,} and a Euclidean differential operator
9 J1 b J2 9 Jn
D=|— — ] == 1,5 Jk >0,
<az1> <azz> <a> T

lim |Day,(p,)| = +oc.

with

Passing to a subsequence, we may assume that the sequences {p,} and
{a,(p,)} converge to points pg, gy € cl(§2y), respectively. We also may assume
that both {a,} and {a; 1}, respectively, converge uniformly on compact sub-
sets of {2y to an automorphism «g of {2y and its inverse o L respectively (the
possibility of establishing this last assertion was treated in Section 4.1 as well
as in [Greene/Krantz 1981]). Now repeat the reasoning used in the proof of
Lemma 4.5.4 to show that py € 9f29. The same reasoning implies (because
the inverse sequence {a; '} converges to ag ') that qo is also in 2.

Select, by Lemma 4.5.5, a point wy € 2y with these properties:

(A) Kq,(po,wo) # 0;
(B) If dy(z) = the Jacobian determinant det(abj’wo/f)‘zk)t, Lk=1,...n,
then
liminf |do(z)| > 0.

zZ—DPo

[Here bj ., are the Bergman representative coordinate functions that we
introduced earlier.]

Because K, (-, wp) extends to be a C* function on the set
{z € cl(£2y): dis(z,w) < 2dis(w0,890)} ,

property (A) implies that the Bergman representative coordinate functions
bjw, have C™ extensions to a neighborhood of py in cl(£2). Property (B)
is thus equivalent to the assertion that do(pg) # 0. In particular, there is a
number € > 0 such that the functions b; ., 7 = 1,...,n, form a C"° coordinate
system (holomorphic in £25) on

cl(20) N {z € C" : dis(z,po) < €}.
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[Notice that we are not claiming that the functions b;., are holomorphic
across 0f2y; rather, these functions extend to be C'°° across 92 in the sense
that their real and imaginary parts are C* as real functions. In general they
will only be holomorphic on (2 itself.]

By Lemma 4.5.5, the Bergman representative coordinate functions b;:wo,
for 2,,j=1,...,n,and v=1,2,...,00, on

cl(2,)N{z € C" : dis(z,po) < €}
converge in the C'*° sense to the b; ,, on
cl(£20) N{z € C" : dis(z,po) < €}.

In particular, for all v sufficiently large, the functions b7, . j =1,...,n form
a C*° coordinate system on

cl(20) N {z € C" : dis(z,pg) < €}.

Let 2 C C™ be a bounded domain, « : 2 — {2 be an automorphism with
Euclidean components (asq, ..., ay), and J,(z) denote the Jacobian determi-
nant of a at z. Recall the following transformation formulas:

Ko(z,w) = Jo(w) - Ta(2) - Ko(a(z), a(w)), (1)
- 804@
bjw(z) = — || beaw)(a(2)), (2)
> (Gur)| teecw

N C)

a(z)

. 8O‘m ) 8b£,a(w)
w azk 2 azm
8bl,o¢(w) )

Zm

Bbj’w) B = (8044)
( oz )|, é,mZ:1 ow;
0b;
det | 2%
¢ ( 8zk )
Formula (1) is the standard transformation formula for the Bergman kernel;
formulas (2) and (3) follow from (1) by differentiation; and formula (4) can
by derived from (2) by using a little algebra.

The next observation is that det(abj7a0(w0)/6zk)|wo # 0. To prove this
assertion, notice that, by Lemma 4.5.5, the determinant equals

(4)

S

(@) Ja(z) - det (

z a(z)

lim det(0bY ,, (u,)/02k) |

v—00 ay(py)’

this expression in turn equals, by formula (4),

lim (Ja, (w0)) ™ - (Tor, (b)) - det (905, /022 |, -

V— 00
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Since, by Lemma 4.5.4, the expression |74, | is bounded above on cl(§2,) (uni-
formly in v) and since
Obj w
= det (6‘7 0)
Pv “k

lim det (%)
V—00 8zk
it follows that indeed det (6bj7a0(wo)/8zk) ‘qo £ 0.

From the nonvanishing of this last determinant, it follows that the func-
tions b; o (wy) form a C°° coordinate system in some neighborhood in cl(£2y) of
qo- In particular, there is a positive number 7 such that these functions form
a C* coordinate system on cl(£29) N {z € C™ : dis(z,qo) < n}. Lemma 4.5.5
then implies that, for all sufficiently large v, the functions b;.’ﬂ(wo) form a C'*®

# 0,

Po

coordinate system on cl(£2p) N {z € C™ : dis(z, vp) < n}; moreover, this coor-
dinate system converges in the C'>° topology to the coordinate system b; q (w,)
on cl(2y) N{z € C" : dis(z, qo) < n}.

For any v sufficiently large, dis(p,, po) < € and dis(a(p, ), go) < 1. Thus, for
all sufficiently large v, the mapping «,, in a neighborhood of p, is completely
determined—in wp-Bergman coordinates (of §2,) going to ay (wg)-Bergman
coordinates (of §2,)—by formula (3). This mapping is linear with bounded
differential. But, since both wg-Bergman coordinates (of §2,) and «, (wo)-
Bergman coordinates of (2, are converging in the C* topology to C*° coordi-
nate systems (independent of v), it follows by the chain rule that the Euclidean
derivatives of each fixed order «, at «,(p,) are bounded above uniformly in
v as v — oo. This contradiction completes the proof of Proposition 4.4.5. O
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