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Functional Analysis

In this chapter we survey the main theorems of functional analysis that deal
with Banach spaces, including the Hahn–Banach, Baire Category, Uniform
Boundedness, Open Mapping, and Closed Graph Theorems. References for
additional information on this material (and sources for many of the proofs
that we give) include the texts by Conway [Con90], Folland [Fol99], and Rudin
[Rud91].

2.1 The Hahn–Banach Theorem and Its Implications

Orthogonality played an essential role in many of the proofs for Hilbert spaces
that appeared in Sections 1.5 and 1.6. The analysis of general Banach spaces
is much more difficult because there need not be any notion of orthogonality
in a Banach space. The Hahn–Banach Theorem is a fundamental result for
Banach spaces that allows us to do some things in Banach spaces that at
first glance seem to be impossible without having the tools that orthogonality
provides.

The abstract form of the Hahn–Banach Theorem is a statement about
extension of linear functionals. We state a form that applies to both real and
complex vector spaces.

Theorem 2.1 (Hahn–Banach Theorem). Let X be a vector space over F
and let ρ be a seminorm on X. If M is a subspace of X and λ : M → F is a
linear functional on M satisfying

|〈x, λ〉| ≤ ρ(x), x ∈M,

then there exists a linear functional Λ: X → F such that

Λ|M = λ and |〈x,Λ〉| ≤ ρ(x), x ∈ X. ♦
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The proof of the Hahn–Banach Theorem takes some preparation, and
therefore we will omit it (see [Con90] for a proof). The most important point
to note is that the extension Λ obeys the same bound that is satisfied by λ,
but does so on the entire space X and not just on the subspace M.

In practice, it is usually not the Hahn–Banach Theorem itself but rather
one of its many corollaries that is applied. Therefore we will concentrate in
this section on these implications. Since these corollaries are so important,
when invoking any one of them it is customary to write “by the Hahn–Banach
Theorem” instead of “by a corollary to the Hahn–Banach Theorem.”

Our first corollary states that any bounded linear functional on a sub-
space M of a normed space X has an extension to the entire space whose
operator norm on X equals the operator norm on M. This is easy to prove
when the space is a Hilbert space (see Exercise 2.1), but it is far from obvious
that such an extension should be possible on non-inner product spaces.

Corollary 2.2 (Hahn–Banach). Let X be a normed linear space and M a
subspace of X. If λ ∈M∗, then there exists Λ ∈ X∗ such that

Λ|M = λ and ‖Λ‖X∗ = ‖λ‖M∗ .

Proof. Set ρ(x) = ‖λ‖M∗ ‖x‖X for x ∈ X. Note that ρ is defined on all of X,
and is a seminorm on X (in fact, it is a norm if λ 6= 0). Further,

∀x ∈M, |〈x, λ〉| ≤ ‖x‖X ‖λ‖M∗ = ρ(x).

Hence Theorem 2.1 implies that there exists a linear functional Λ: X → F
such that Λ|M = λ (which implies ‖Λ‖X∗ ≥ ‖λ‖M∗) and

∀x ∈ X, |〈x,Λ〉| ≤ ρ(x) = ‖λ‖M∗ ‖x‖X ,

which implies that ‖Λ‖X∗ ≤ ‖λ‖M∗ . ⊓⊔

Given a normed space X and given x∗ ∈ X∗, the operator norm of x∗ is

‖x∗‖X∗ = sup
x∈X, ‖x‖X=1

|〈x, x∗〉|.

Thus, we obtain the operator norm of x∗ on X∗ by “looking back” at its action
on X. The next corollary provides a complementary viewpoint: The norm of
x ∈ X can be obtained by “looking forward” to its action on X∗. Again, this
is easy to prove directly for Hilbert spaces (see Theorem 1.37), but is a much
more subtle fact for generic Banach spaces.

Corollary 2.3 (Hahn–Banach). Let X be a Banach space. Then for each
x ∈ X we have

‖x‖X = sup
x∗∈X∗, ‖x∗‖X∗=1

|〈x, x∗〉|. (2.1)

Further, the supremum is achieved.
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Proof. Fix x ∈ X, and let α denote the supremum on the right-hand side of
equation (2.1). Since |〈x, x∗〉| ≤ ‖x‖X ‖x∗‖X∗ , we have α ≤ ‖x‖X .

Let M = span{x}, and define λ : M → F by 〈cx, λ〉 = c ‖x‖X . Then
λ ∈ M∗ and ‖λ‖M∗ = 1. Corollary 2.2 therefore implies that there exists
some Λ ∈ X∗ with Λ|M = λ and ‖Λ‖X∗ = ‖λ‖M∗ = 1. In particular, since
x ∈ M, we have α ≥ |〈x,Λ〉| = |〈x, λ〉| = ‖x‖X , and therefore the supremum
in equation (2.1) is achieved. ⊓⊔

Now we can give one of the most powerful and often-used implications of
the Hahn–Banach Theorem. It states that we can find a bounded linear func-
tional that separates a point from a closed subspace of a normed space. This is
easy to prove constructively for the case of a Hilbert space (see Exercise 2.2),
but it is quite amazing that we can do this in arbitrary normed spaces.

Corollary 2.4 (Hahn–Banach). Let X be a normed linear space. Suppose
that:

(a) M is a closed subspace of X,

(b) x0 ∈ X\M, and

(c) d = dist(x0,M) = inf
{
‖x0 −m‖ : m ∈M

}
.

Then there exists Λ ∈ X∗ such that

〈x0,Λ〉 = 1, Λ|M = 0, and ‖Λ‖X∗ =
1

d
.

Proof. Note that d > 0 since M is closed. Define M1 = span{M,x0}. Then
each x ∈M1 can be written as x = mx + txx0 for some mx ∈M and tx ∈ F,
and since x0 /∈ M, this representation is unique (verify!). Define λ : M1 → F
by 〈x, λ〉 = tx. Then λ is linear, λ|M = 0, and 〈x0, λ〉 = 1.

If x ∈M1 and tx 6= 0, then we have mx/tx ∈M, so

‖x‖ = ‖txx0 +mx‖X = |tx|
∥∥∥x0 −

(−mx

tx

)∥∥∥
X
≥ |tx| d.

If tx = 0 (so x ∈M), this is still true. Hence, |〈x, λ〉| = |tx| ≤ ‖x‖X/d for all
x ∈M1. Therefore λ is continuous on M1, and ‖λ‖M∗

1
≤ 1/d.

On the other hand, there exist vectorsmn ∈M such that ‖x0−mn‖X → d.
Since λ vanishes on M, we therefore have

1 = 〈x0, λ〉 = 〈x0 −mn, λ〉 ≤ ‖x0 −mn‖X ‖λ‖M∗

1
→ d ‖λ‖M∗

1
.

Therefore ‖λ‖M∗

1
≥ 1/d.

Applying Corollary 2.2, there exists a Λ ∈ X∗ such that Λ|M1
= λ and

‖Λ‖X∗ = ‖λ‖M∗

1
. This functional Λ has all of the required properties. ⊓⊔

Unlike the preceding corollaries, the next corollary is usually not given a
special name, but we will have occasion to use it often (compare Lemma 1.44
for the case of Hilbert spaces).
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Corollary 2.5. Let X be a Banach space. Then {xn} ⊆ X is complete if and
only if the following statement holds:

x∗ ∈ X∗ and 〈xn, x∗〉 = 0 for every n =⇒ x∗ = 0.

Proof. ⇒. Suppose that {xn} is complete, i.e., span{xn} = X. Suppose that
x∗ ∈ X∗ satisfies 〈xn, x∗〉 = 0 for every n. Since x∗ is linear, we therefore have

〈x, x∗〉 = 0 for every x =
∑N

n=1 cnxn ∈ span{xn}. However, x∗ is continuous,

so this implies 〈x, x∗〉 = 0 for every x ∈ span{xn} = X. Hence x∗ is the zero
functional.

⇐. Suppose that the only x∗ ∈ X∗ satisfying 〈xn, x∗〉 = 0 for every n is
x∗ = 0. Define Z = span{xn}, and suppose that Z 6= X. Then we can find an
element y ∈ X such that y /∈ Z. Since Z is a closed subset of X, we therefore
have d = dist(y, Z) > 0. By the Hahn–Banach Theorem (Corollary 2.4), there
exists a functional Λ ∈ X∗ satisfying 〈y,Λ〉 = 1 6= 0 and 〈z,Λ〉 = 0 for every
z ∈ Z. However, this implies that 〈xn,Λ〉 = 0 for every n. By hypothesis,
Λ must then be the zero functional, contradicting the fact that 〈y,Λ〉 6= 0.
Hence, we must have Z = X, so {xn} is complete in X. ⊓⊔

Exercises

2.1. Let M be a subspace of a Hilbert space H and fix λ ∈M. Show directly
that there exists some Λ ∈ H such that 〈x,Λ〉 = 〈x, λ〉 for all x ∈ M and
‖Λ‖ = ‖λ‖.

2.2. Suppose that M is a closed subspace of a Hilbert space H, x0 ∈ H\M,
and d = dist(x0,M). Show directly that there exists a µ ∈ H such that
〈x0, µ〉 = 1, 〈x, µ〉 = 0 for all x ∈M, and ‖µ‖ = 1/d.

2.3. Let X be a normed space. Show that if X∗ is separable then X is sepa-
rable, but the converse can fail.

2.4. The Weierstrass Approximation Theorem implies that {xk}k≥0 is com-
plete in C[0, 1]. Show that {x2k}k≥0 is also complete in C[0, 1].

2.5. Given a subset A of a normed space X, define its orthogonal complement
A⊥ ⊆ X∗ by

A⊥ =
{
µ ∈ X∗ : 〈x, µ〉 = 0 for all x ∈ A

}
.

Prove that A⊥ is a closed subspace of X∗, and explain how this relates to
Corollary 2.5.

2.6. Let S be a subspace of a normed space X, and show that its closure S is
given by

S =
⋂{

ker(µ) : µ ∈ X∗ and S ⊆ ker(µ)
}
.
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2.2 Reflexivity

Given a normed space X, its dual space X∗ is a Banach space, so we can
consider the dual of the dual space, which we denote by X∗∗. The next result
shows that there is a natural isometry that maps X into X∗∗.

Theorem 2.6. Let X be a normed linear space. Given x ∈ X, define
π(x) : X∗ → F by

〈
x∗, π(x)

〉
= 〈x, x∗〉, x∗ ∈ X∗.

Then π(x) is a bounded linear functional on X∗, and has operator norm

‖π(x)‖X∗∗ = ‖x‖X .
Consequently, the mapping

π : X → X∗∗

x 7→ π(x),

is a linear isometry of X into X∗∗.

Proof. By definition of the operator norm,

‖π(x)‖X∗∗ = sup
x∗∈X∗, ‖x∗‖X∗=1

|〈x∗, π(x)〉|.

On the other hand, by the Hahn–Banach Theorem in the form of Corollary 2.3,

‖x‖ = sup
x∗∈X∗, ‖x∗‖X∗=1

|〈x, x∗〉|.

Since 〈x, x∗〉 = 〈x∗, π(x)〉, the result follows. ⊓⊔
Definition 2.7 (Natural Embedding of X into X∗∗). Let X be a normed
space.

(a) The mapping π : X → X∗∗ defined in Theorem 2.6 is called the natural
embedding or the canonical embedding of X into X∗∗.

(b) If the natural embedding of X into X∗∗ is surjective, then we say that X
is reflexive. ♦
Note that in order for X to be called reflexive, the natural embedding

must be a surjective isometry. There exist Banach spaces X such that X is
isometrically isomorphic to X∗∗ even though X is not reflexive [Jam51].

By the Riesz Representation Theorem (Theorem 1.75), every Hilbert space
is reflexive.

Exercise 2.7 asks for a proof that ℓp is reflexive for each 1 < p < ∞.
However, ℓ1 and ℓ∞ are not reflexive. Another nonreflexive example is the
space c0, since by Exercise 1.75 we have c0

∗∗ ∼= (ℓ1)∗ ∼= ℓ∞. The space c0
is one of the few easily exhibited nonreflexive separable spaces whose dual is
separable.

It is likewise true that Lp(E) is reflexive when 1 < p < ∞, but not for
p = 1 or p =∞.
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Exercises

2.7. Show that ℓp is reflexive for each 1 < p <∞.

2.8. Let X be a Banach space. Show that if X is separable but X∗ is not,
then X is not reflexive. Use this to show that ℓ1 is a proper subspace of (ℓ∞)∗.

2.3 Adjoints of Operators on Banach Spaces

The duality between Banach spaces and their dual spaces allows us to define
the “dual” of a bounded linear operator on Banach spaces.

Let X and Y be Banach spaces, and let T : X → Y be a bounded linear
operator. Fix ν ∈ Y ∗, and define a functional µ : X → F by

〈x, µ〉 = 〈Tx, ν〉, x ∈ X.

That is, µ = ν ◦ T. Then µ is linear since T and ν are linear. Further,

|〈x, µ〉| = |〈Tx, ν〉| ≤ ‖Tx‖Y ‖ν‖Y ∗ ≤ ‖T ‖ ‖x‖X ‖ν‖Y ∗ ,

so

‖µ‖X∗ = sup
‖x‖X=1

|〈x, µ〉| ≤ ‖T ‖ ‖ν‖Y ∗ < ∞. (2.2)

Hence µ is bounded, so µ ∈ X∗. Thus, for each ν ∈ Y ∗ we have defined a
functional µ ∈ X∗, so we can define an operator T ∗ : Y ∗ → X∗ by setting
T ∗ν = µ. This mapping T ∗ is linear, and by equation (2.2) we have

‖T ∗ν‖X∗ = ‖µ‖X∗ ≤ ‖T ‖ ‖ν‖Y ∗ .

Taking the supremum over all unit vectors ν ∈ Y ∗, we conclude that T ∗ is
bounded and ‖T ∗‖ ≤ ‖T ‖.

We can use the Hahn–Banach Theorem to show that ‖T ∗‖ = ‖T ‖. Choose
any x ∈ X with ‖x‖X = 1. By Corollary 2.3,

‖Tx‖Y = sup
‖ν‖Y ∗=1

|〈Tx, ν〉|, (2.3)

and this supremum is achieved. Let ν ∈ Y ∗ be any particular functional with
unit norm that achieves the supremum in equation (2.3). Then we have

‖Tx‖Y = |〈Tx, ν〉| = |〈x, T ∗ν〉|
≤ ‖x‖X ‖T ∗ν‖X∗

≤ ‖x‖X ‖T ∗‖ ‖ν‖Y ∗

= ‖x‖X ‖T ∗‖.
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Since this is true for every unit vector x ∈ X, we conclude that ‖T ‖ ≤ ‖T ∗‖.
In summary, given T ∈ B(X,Y ), we have constructed an operator T ∗ ∈

B(Y ∗, X∗) that satisfies

∀x ∈ X, ∀ ν ∈ Y ∗,
〈
Tx, ν

〉
=
〈
x, T ∗ν

〉
. (2.4)

According to Exercise 2.9, there is a unique such operator, and we call it the
adjoint of T.

Definition 2.8 (Adjoint). Given T ∈ B(X,Y ), the unique operator T ∗ ∈
B(Y ∗, X∗) satisfying equation (2.4) is called the adjoint of T. ♦

Example 2.9. Let E ⊆ R be Lebesgue measurable, choose 1 ≤ p < ∞, and
fix m ∈ L∞(R). Let Tm : Lp(R) → Lp(R) be the operation of pointwise
multiplication of f by m, i.e., Tmf = fm for f ∈ Lp(R). Exercise 1.67
shows that Tm is bounded and has operator norm ‖Tm‖ = ‖m‖L∞. Therefore,

T ∗
m : Lp

′

(E)→ Lp
′

(E) is the unique operator that satisfies

〈f, T ∗
mg〉 = 〈Tmf, g〉 = 〈fm, g〉 =

∫

E

f(t)m(t) g(t) dt = 〈f, gm〉

for f ∈ Lp(E) and g ∈ Lp(E)∗ = Lp
′

(E). Therefore T ∗
mg = gm, so T ∗

m is also
multiplication by the function m. Technically, however, Tm and T ∗

m are not
the same operator, since Tm maps Lp(E) into itself, while T ∗

m maps Lp
′

(E)
into itself. ♦

Exercises

2.9. Let X, Y be Banach spaces. Given T ∈ B(X,Y ), show that there is a
unique operator T ∗ ∈ B(Y ∗, X∗) that satisfies equation (2.4).

2.10. Let X be a Banach space. Given µ ∈ X∗ = B(X,F), explicitly describe
its adjoint µ∗.

2.11. Let M be a closed subspace M of a normed space X, and fix L ∈ B(X).
We say that M is invariant under L if L(M) ⊆ M. Show that if M ⊆ X is
invariant under L, thenM⊥ is invariant under L∗, whereM⊥ is the orthogonal
complement defined in Exercise 2.5.

2.12. Suppose that M is a closed subspace of a Banach space X. Let
ǫ : M → X be the embedding map, i.e., ǫ(x) = x for x ∈ M. Show that
ǫ∗ : X∗ →M∗ is the restriction map, i.e., if µ ∈ X∗, then ǫ∗µ = µ|M .
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2.4 Adjoints of Operators on Hilbert Spaces

Since Hilbert spaces are Banach spaces, if H, K are Hilbert spaces and
T ∈ B(H,K), then there exists a unique adjoint operator T ∗ ∈ B(K∗, H∗).
However, since Hilbert spaces are self-dual, we can regard the adjoint as be-
longing to B(K,H). In particular, if K = H then T and T ∗ both belong to
B(H). This makes adjoints of operators on Hilbert spaces quite special, and
so we study them in more detail in this section.

Because of the conflict between our bilinear form notation 〈x, x∗〉 for func-
tionals x∗ acting on elements x and the inner product 〈x, y〉, which is antilinear
as a function of y, the definition of adjoints on Hilbert spaces differs slightly
from the definition on Banach spaces. We defined the adjoint using the bilin-
ear form notation, but when dealing with a space that we know is a Hilbert
space, it is usually more convenient to employ that space’s inner product.
Therefore, we define the adjoint of an operator on a Hilbert space as follows.

Definition 2.10 (Adjoint). Let H and K be Hilbert spaces. Let 〈·, ·〉H
denote the inner product on H, and 〈·, ·〉K the inner product on K. If
A ∈ B(H,K), then the adjoint of A is the unique operator A∗ ∈ B(K,H)
satisfying

∀x ∈ H, ∀ y ∈ K, 〈Ax, y〉K = 〈x,A∗y〉H . ♦
Comparing Definitions 2.8 and 2.10, we see that there is an ambiguity in

the definition of an adjoint. We use the convention that if X, Y are Banach
spaces then the adjoint of T ∈ B(X,Y ) is defined by Definition 2.8, while if
we know that H, K are Hilbert spaces then the adjoint of A ∈ B(H,K) is
defined by Definition 2.10.

Example 2.11. Consider again the mapping Tm discussed in Example 2.9, but
now consider the particular case p = 2. Since L2(E) is a Hilbert space, we
define T ∗

m to be the unique operator that, for f, g ∈ L2(E), satisfies

〈f, T ∗
mg〉 = 〈Tmf, g〉 = 〈fm, g〉 =

∫

E

f(t)m(t) g(t) dt

=

∫

E

f(t) g(t)m(t) dt = 〈f, gm〉.

Therefore T ∗
mg = gm, i.e., T ∗

m is multiplication by the function m. ♦
Thus, we see that Definitions 2.8 and 2.10 differ in how they define the

adjoint. Fortunately, this is not a significant problem in practice.

Example 2.12. Consider the finite-dimensional Hilbert spaces H = Cn and
K = Cm. A linear operator A : Cn → Cm is given by multiplication by
an m × n matrix A, which we identify with the operator A. The Hilbert
space adjoint of A corresponds to multiplication by the conjugate transpose

or Hermitian matrix A∗ = AT, while the Banach space adjoint corresponds
to multiplication by the transpose matrix AT (see Exercise 2.13). ♦
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The next result summarizes some of the properties of adjoints on Hilbert
spaces (see Exercise 2.16).

Theorem 2.13. Let H, K, L be Hilbert spaces, and fix A ∈ B(H,K) and
B ∈ B(K,L).

(a) (A∗)∗ = A.

(b) (BA)∗ = A∗B∗.

(c) ker(A) = range(A∗)⊥.

(d) ker(A)⊥ = range(A∗).

(e) A is injective if and only if range(A∗) is dense in H.

(f) ‖A‖ = ‖A∗‖ = ‖A∗A‖1/2 = ‖AA∗‖1/2. ♦

We now make some definitions specifically for the case of adjoints of op-
erators that map a Hilbert space into itself.

Definition 2.14. LetH be a Hilbert space, and letA, B : H → H be bounded
linear operators.

(a) A is self-adjoint or Hermitian if A = A∗. By definition,

A is self-adjoint ⇐⇒ ∀x, y ∈ H, 〈Ax, y〉 = 〈x,Ay〉.

(b) A is positive, denoted A ≥ 0, if A is self-adjoint and 〈Ax, x〉 is real with
〈Ax, x〉 ≥ 0 for every x ∈ H.

(c) A is positive definite or strictly positive, denoted A > 0, if A is self-adjoint
and 〈Ax, x〉 is real with 〈Ax, x〉 > 0 for every x 6= 0.

(d) We write A ≥ B if A−B ≥ 0, and A > B if A−B > 0. ♦

We will need the following results for self-adjoint and positive operators.

Theorem 2.15. If A ∈ B(H) is self-adjoint, then

‖A‖ = sup
‖x‖=1

|〈Ax, x〉|.

Proof. Let us take F = C; the proof for real scalars is similar. Set M =
sup‖x‖=1 |〈Ax, x〉|. By the Cauchy–Bunyakovski–Schwarz Inequality and the
definition of operator norm, we have M ≤ ‖A‖.

Choose any unit vectors x, y ∈ H. Then, by expanding the inner products,
canceling terms, and using the fact that A = A∗, we see that

〈
A(x + y), x+ y

〉
−
〈
A(x− y), x− y

〉
= 2 〈Ax, y〉+ 2 〈Ay, x〉
= 2 〈Ax, y〉+ 2 〈y,Ax〉
= 4 Re(〈Ax, y〉).
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Applying the definition of M and using the Parallelogram Law, it follows that

4 Re(〈Ax, y〉) ≤ |〈A(x + y), x+ y〉|+ |〈A(x − y), x− y〉|
≤ M ‖x+ y‖2 +M ‖x− y‖2

= 2M
(
‖x‖2 + ‖y‖2

)
= 4M.

That is, Re(〈Ax, y〉) ≤ M for every choice of unit vectors x and y. Write
|〈Ax, y〉| = α 〈Ax, y〉 where α ∈ C satisfies |α| = 1. Then ᾱy is another unit
vector, so

|〈Ax, y〉| = α〈Ax, y〉 = 〈Ax, ᾱy〉 ≤ M.

Using Lemma 1.36(c), we therefore have

‖Ax‖ = sup
‖y‖=1

|〈Ax, y〉| ≤ M.

Since this is true for every unit vector x, we conclude that ‖A‖ ≤M. ⊓⊔

As a corollary, we obtain the following useful fact for self-adjoint operators.

Corollary 2.16. Let H be a Hilbert space. If A ∈ B(H) is self-adjoint and
〈Ax, x〉 = 0 for every x ∈ H, then A = 0. ♦

Although we will not prove it, it can be shown that if H is a complex
Hilbert space, then A ∈ B(H) is self-adjoint if and only if 〈Ax, x〉 is real for
every x ∈ H. Hence for complex Hilbert spaces, the hypothesis in Corollary
2.16 that A is self-adjoint is redundant.

We end this section by proving that every positive operator A on a Hilbert
space has a square root. That is, there exists a positive operator S such that
S2 = A. The idea of the proof is that if a is a real number with 0 < a < 1 and
if (1− t)2 = a, then t = 1

2 (1−a)+ 1
2 t

2 and the iteration tn+1 = 1
2 (1−a)+ 1

2 t
2
n

converges to t. We make an operator analogue of this recursion. To prove
convergence, we need the following lemma, which will be useful to us again in
Chapter 8.

Lemma 2.17. If T : H → H is a positive operator on a Hilbert space H, then

∀x, y ∈ H, |〈Tx, y〉|2 ≤ 〈Tx, x〉 〈Ty, y〉.

Proof. By definition of a positive operator, 〈Tx, x〉 ≥ 0 for every x ∈ H.
Therefore (x, y) = 〈Tx, y〉 defines a semi-inner product on H, and |||x||| =
(x, x)1/2 is a seminorm on H. In general, (·, ·) need not be an inner prod-
uct (this happens if and only if T is positive definite). Still, the Cauchy–
Bunyakovski–Schwarz Inequality holds for semi-inner products by Exercise
1.34, so we have

|〈Tx, y〉|2 = |(x, y)|2 ≤ |||x|||2 |||y|||2 = (x, x) (y, y) = 〈Tx, x〉 〈Ty, y〉. ⊓⊔
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Theorem 2.18. If A ∈ B(H) is a positive operator on a Hilbert space H,
then there exists a positive operator A1/2 ∈ B(H) such that A1/2A1/2 = A.
Moreover, A1/2 commutes with A and with all operators that commute with A.

Proof. We present some parts of the proof and assign the remainder as Exer-
cise 2.23.

Suppose that A ≥ 0. The result is trivial if A is the zero operator, so
assume A 6= 0. Let c = ‖A‖−1. Then for every x we have

〈cAx, x〉 ≤ |c| ‖Ax‖ ‖x‖ ≤ |c| ‖A‖ ‖x‖2 = ‖x‖2 = 〈Ix, x〉,

which in operator notation says that cA ≤ I. Since A has a square root if
and only if cA has a square root, we can simply replace A by cA. That is, it
suffices to prove the result under the assumptions that A ≥ 0, A ≤ I, and
‖A‖ = 1.

Let B = I −A. Set T0 = 0, T1 = 1
2B, and

Tn+1 =
1

2
(B + T 2

n ), n ≥ 2.

Each Tn is a polynomial in B, and therefore commutes with Tm and with
every operator that commutes with B. The polynomial defining Tn has only
nonnegative coefficients, so Tn ≥ 0. Further, Tn+1 − Tn is also a polynomial
in B with all nonnegative coefficients. Consequently, Tn − Tm ≥ 0 for all
n ≥ m ≥ 0.

By induction, ‖Tn‖ ≤ 1 for every n. Therefore, if we fix x ∈ H then

the sequence
(
〈Tnx, x〉

)
is a bounded, increasing sequence of nonnegative real

scalars. Hence this sequence must converge, and so is Cauchy. Now, if n ≥ m
then by using Theorem 1.37(c) and Lemma 2.17 we compute that

‖Tnx− Tmx‖2 = sup
‖y‖=1

|〈(Tn − Tm)x, y〉|2

≤ sup
‖y‖=1

|〈(Tn − Tm)x, x〉| |〈(Tn − Tm)y, y〉|

≤ sup
‖y‖=1

|〈Tnx, x〉 − 〈Tmx, x〉| ‖Tn − Tm‖ ‖y‖2

≤ 2 |〈Tnx, x〉 − 〈Tmx, x〉|.

Since
(
〈Tnx, x〉

)
is a Cauchy sequence of scalars, we conclude that {Tnx} is a

Cauchy sequence of vectors in H. Therefore {Tnx}n∈N converges in H, and we
define Tx to be the limit of this sequence. This operator T is bounded, linear,
and positive, and it commutes with B and with every operator that commutes
withB. Further, T = 1

2 (B+T 2). Consequently, the operator S = I−T satisfies
S2 = A, and S is positive since ‖T ‖ ≤ 1. ⊓⊔

In fact, the square root A1/2 is unique; see Exercise 2.24.
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Exercises

2.13. Let A : Cn → Cm be a linear operator, which we identify with its m×n
matrix representation. Show that the adjoint of A in the Hilbert space sense

(Definition 2.10) is the conjugate transpose matrix A∗ = AT, while the adjoint
of A in the Banach space sense (Definition 2.8) is the transpose matrix AT.

2.14. Let L, R be the left- and right-shift operators on ℓ2 defined in Exer-
cise 1.64. Show that R = L∗.

2.15. Fix λ ∈ ℓ∞, and let Mλ be the multiplication operator defined in Ex-
ercise 1.66. Find M∗

λ , and determine when Mλ is self-adjoint, positive, or
positive definite.

2.16. Prove Theorem 2.13.

2.17. Let M be a closed subspace of a Hilbert space H, and let P ∈ B(H) be
given. Show that P is the orthogonal projection of H onto M if and only if
P 2 = P, P ∗ = P, and range(P ) = M.

2.18. LetH be a Hilbert space and suppose that A, B ∈ B(H) are self-adjoint.
Show that ABA, and BAB are self-adjoint, but AB is self-adjoint if and only
if AB = BA. Exhibit self-adjoint operators A, B that do not commute.

2.19. Let H be a Hilbert space and let A ∈ B(H) be fixed.

(a) Show that if A is self-adjoint then all eigenvalues of A are real, and
eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

(b) Show that if A is a positive operator then all eigenvalues of A are real
and nonnegative.

(c) Show that if A is a positive definite operator then all eigenvalues of A
are real and strictly positive.

2.20. Let H, K be Hilbert spaces. Show that if A ∈ B(H,K), then A∗A ∈
B(H) and AA∗ ∈ B(K) are positive operators.

2.21. Let H be a Hilbert space. Given A ∈ B(H), show that ker(A) =

ker(A∗A) and range(A∗A) = range(A∗).

2.22. Let H, K be Hilbert spaces, and fix U ∈ B(H,K). Show that U is
unitary if and only if U is a bijection and U−1 = U∗.

2.23. Fill in the details in the proof of Theorem 2.18.

2.24. Let A be a positive operator on a Hilbert space H.

(a) Show that 〈Ax, x〉 = 0 if and only if Ax = 0.

(b) Show that the operator A1/2 constructed in Theorem 2.18 is unique,
i.e., there is only one positive operator S satisfying S2 = A.
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2.5 The Baire Category Theorem

Just as it is not possible to write the Euclidean plane R2 as the union of count-
ably many straight lines, the Baire Category Theorem states that a complete
metric space cannot be written as a countable union of “nowhere dense” sets.
Since we are mainly interested in Banach spaces in this volume, we will prove
this theorem in the setting of complete normed spaces, but the proof carries
over without change to complete metric spaces.

Definition 2.19 (Nowhere Dense Sets). Let X be a Banach space, and
let E ⊆ X be given.

(a) E is nowhere dense or rare if X\E is dense in X.

(b) E is meager or first category if it can be written as a countable union of
nowhere dense sets.

(c) E is nonmeager or second category if it is not meager. ♦

We can restate the meaning of nowhere dense sets as follows (see Exer-
cise 2.25).

Lemma 2.20. Let E be a nonempty subset of a Banach space X. Then E is
nowhere dense if and only if E contains no nonempty open subsets. ♦

The set of rationals Q is not a nowhere dense subset of R, but it is meager
in R. Although it is not a real vector space and hence not a normed space,
Q under the metric d(x, y) = |x − y| is an example of an incomplete metric
space that is a meager subset of itself.

Now we prove the Baire Category Theorem.

Theorem 2.21 (Baire Category Theorem). Every Banach space X is a
nonmeager subset of itself. Consequently, if

X =
∞⋃
n=1

En

where each En is a closed subset of X, then at least one En contains a
nonempty open subset.

Proof. Suppose that X = ∪En where each En is nowhere dense. Then, by

definition, Un = X\En is dense, and it is open since En is closed.
Choose x1 ∈ U1 and let r1 > 0 be such that B1 = Br1(x1) ⊆ U1. Then

since U2 is dense, there exists a point x2 ∈ U2 ∩B1. Since U2 and B1 are both
open, there exists some r2 > 0 such that B2 = Br2(x2) ⊆ U2 ∩ B1. Without
loss of generality, we can take r2 small enough that we have both r2 < r1/2

and B2 ⊆ B1. Continuing in this way we obtain points xn ∈ Un and open
balls Bn = Brn(xn) ⊆ Un such that

rn <
rn−1

2
and Bn ⊆ Bn−1.
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In particular, rn → 0 and the balls Bn are nested.
Fix ε > 0, and let N be large enough so that rN < ε/2. If m, n > N,

then we have xm, xn ∈ BN . Hence ‖xm − xn‖ < 2rN < ε. Thus {xn}n∈N is
Cauchy, and therefore there exists some x ∈ X such that xn → x.

Now fix any N > 0. Then, since the Bn are nested, we have xn ∈ BN+1

for all n > N. As xn → x, this implies that x ∈ BN+1 ⊆ BN . This is true for
every N, so

x ∈
∞⋂
n=1

Bn ⊆
∞⋂
n=1

Un =
∞⋂
n=1

(X\En).

But then x /∈ ∪En, which is a contradiction. ⊓⊔

Exercises

2.25. Prove Lemma 2.20.

2.26. Show that Cc(R) is a meager subset of C0(R).

2.27. Suppose that f is an infinitely differentiable function on R such that
for each t ∈ R there exists some integer nt ≥ 0 so that f (nt)(t) = 0. Prove
that there exists some open interval (a, b) and some polynomial p such that
f(t) = p(t) for all t ∈ (a, b).

2.28. Let D be the subset of C[0, 1] consisting of all functions f ∈ C[0, 1]
that have a right-hand derivative at at least one point in [0, 1]. Show that D
is meager in C[0, 1], and conclude that there are functions in C[0, 1] that are
not differentiable at any point.

2.6 The Uniform Boundedness Principle

The Uniform Boundedness Principle states that a family of bounded linear
operators on a Banach space that are uniformly bounded at each individual
point must actually be uniformly bounded in operator norm.

Theorem 2.22 (Uniform Boundedness Principle). Let X be a Banach
space and Y a normed linear space. If {Ai}i∈I is any collection of operators
in B(X,Y ) such that

∀x ∈ X, sup
i∈I
‖Aix‖ < ∞,

then
sup
i∈I
‖Ai‖ < ∞.
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Proof. Set

En =
{
x ∈ X : sup

i∈I
‖Aix‖ ≤ n

}
.

Then X = ∪En by hypothesis, and since each Ai is continuous it follows
that En is closed. Consequently, the Baire Category Theorem implies that
some En must contain an open ball, say Br(x0) ⊆ En.

Given any nonzero x ∈ X, if we set y = x0 + sx with s = r
2‖x‖ then we

have y ∈ Br(x0) ⊆ En, and therefore

‖Aix‖ =
∥∥∥Ai

(y − x0

s

)∥∥∥ ≤ 1

s

(
‖Aiy‖+ ‖Aix0‖

)
≤ 2 ‖x‖

r
2n =

4n

r
‖x‖.

Consequently, ‖Ai‖ ≤ 4n/r, which is a constant independent of i. ⊓⊔

The following special case of the Uniform Boundedness Principle is often
useful (sometimes the names “Uniform Boundedness Principle” and “Banach–
Steinhaus Theorem” are used interchangeably). The proof of Theorem 2.23 is
assigned as Exercise 2.29.

Theorem 2.23 (Banach–Steinhaus Theorem). Let X and Y be Banach
spaces. If An ∈ B(X,Y ) for n ∈ N and Ax = limn→∞Anx exists for each
x ∈ X, then A ∈ B(X,Y ) and ‖A‖ ≤ supn ‖An‖ <∞. ♦

Note that the hypotheses of the Banach–Steinhaus Theorem do not imply
that An → A in operator norm. A counterexample is given in Exercise 2.30.

As an application of the Banach–Steinhaus Theorem, we prove a fact that

was used earlier to show that the dual space ℓp is (isomorphic to) ℓp
′

when p
is finite (see Theorem 1.73).

Theorem 2.24. Fix 1 ≤ p ≤ ∞ and any sequence of scalars y = (yk). Then∑
xkyk converges for all x ∈ ℓp if and only if y ∈ ℓp′ . Furthermore, in this

case Tyx = (xkyk) defines a bounded linear map of ℓp into ℓ1, and

∑

k

|xkyk| = ‖Tyx‖ℓ1 ≤ ‖x‖ℓp ‖y‖ℓp′ , x ∈ ℓp.

Proof. We will prove the case 1 < p <∞ (the cases p = 1 and p =∞ are Ex-
ercise 2.32). Assume that

∑
xkyk converges for all x ∈ ℓp. Define functionals

TN , T : ℓp → F by

Tx =
∞∑

k=1

xkyk and TNx =
N∑

k=1

xkyk.

Clearly TN is linear, and for x ∈ ℓp we have

|TNx| ≤
( N∑

k=1

|xk|p
)1/p ( N∑

k=1

|yk|p
′

)1/p′

≤ CN ‖x‖ℓp ,
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where CN =
(∑N

k=1 |yk|p
′)1/p′

is a finite constant independent of x (though

not independent of N). Therefore TN ∈ B(ℓp,F) = (ℓp)∗ for each N.
By hypothesis, TNx → Tx as N → ∞ for each x ∈ ℓp. The Banach–

Steinhaus Theorem therefore implies that T ∈ B(ℓp,F) = (ℓp)∗ and ‖T ‖ ≤
C = sup ‖TN‖ <∞.

At this point, if we accept the fact that (ℓp)∗ = ℓp
′

then we can argue as
follows. Since T ∈ (ℓp)∗ there must exist some z ∈ ℓp′ such that Tx = 〈x, z〉 =∑
xkzk for all x ∈ ℓp. Letting {δk} denote the standard basis vectors on ℓp,

we have yk = Tδk = zk for every k, so y = z ∈ ℓp′ .
However, since the current theorem was used in the proof that (ℓp)∗ = ℓp

′

,
in order to avoid circularity we need to give a direct proof that y belongs
to ℓp

′

. To do this, set

xN =
(
α1 |y1|p

′−1, . . . , αN |yN |p
′−1, 0, 0, . . .

)
∈ ℓp,

where αk is a scalar of unit modulus such that αkyk = |yk|. Then we have
from the definition of T that

|TxN | =

N∑

k=1

αk |yk|p
′−1 yk =

N∑

k=1

|yk|p
′

,

while from ‖T ‖ ≤ C we obtain

|TxN | ≤ C ‖xN‖ℓp = C

( N∑

k=1

|yk|(p
′−1)p

)1/p

= C

( N∑

k=1

|yk|p
′

)1/p

.

Combining the two preceding equations, dividing through by
(∑N

k=1 |yk|p
′)1/p

,
and noting that 1− 1

p = 1
p′ , this implies that

( N∑

k=1

|yk|p
′

)1/p′

=

( N∑

k=1

|yk|p
′

)1− 1
p

≤ C.

Letting N →∞, we see that ‖y‖ℓp′ ≤ C. ⊓⊔

Exercises

2.29. Prove Theorem 2.23.

2.30. Let {en} be an orthonormal basis for a Hilbert space H, and let PN be
the orthogonal projection of H onto span{e1, . . . , eN}. Show that PNx → x
for every x ∈ H, but ‖I − PN‖→/ 0 as N →∞.
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2.31. Let X, Y be Banach spaces. Suppose An ∈ B(X,Y ) for n ∈ N and
Ax = limn→∞ Anx exists for each x in a dense subspace S of X.

(a) Show that if supn ‖An‖ <∞ then A extends to a bounded map on X,

and Ax = limn→∞Anx for all x ∈ X.
(b) Give an example that shows that the hypothesis supn ‖An‖ < ∞ in

part (a) is necessary.

2.32. Prove Theorem 2.24 for the cases p = 1 and p =∞.

2.33. (a) Let X be a Banach space. Show that S ⊆ X∗ is bounded if and only
if sup

{
|〈x, x∗〉| : x∗ ∈ S

}
<∞ for each x ∈ X.

(b) Let X be a normed linear space. Show that S ⊆ X is bounded if and
only if sup

{
|〈x, x∗〉| : x ∈ S

}
<∞ for each x∗ ∈ X∗.

2.34. Fix 1 ≤ p, q ≤ ∞. Let A = [aij ]i,j∈N be an infinite matrix and set
ai = (aij)j∈N for each i ∈ N. Suppose that

(a) (Ax)i = 〈x, ai〉 =
∑
j aijxj converges for each x ∈ ℓp and i ∈ N, and

(b) Ax =
(
(Ax)i

)
i∈N

=
(
〈x, ai〉

)
i∈N
∈ ℓq for each x ∈ ℓp.

Identifying the matrix A with the map x 7→ Ax, prove that A ∈ B(ℓp, ℓq).

2.7 The Open Mapping Theorem

By Theorem 1.59, a function f : X → Y is continuous if the inverse image
under f of any open subset of Y is open in X. It is often important to consider
direct images of open sets as well.

Definition 2.25 (Open Mapping). Let X, Y be normed linear spaces. A
function A : X → Y is an open mapping if

U is open in X =⇒ A(U) is open in Y. ♦

In general, a continuous function need not be an open mapping. For ex-
ample, f(x) = sinx is a continuous mapping of the real line into itself, but f
maps the open interval (0, 2π) onto the closed interval [−1, 1].

The Open Mapping Theorem asserts that any continuous linear surjection
of one Banach space onto another must be an open mapping. The key to the

proof is the following lemma. For clarity, we will write BXr (x) and BYr (y) to
distinguish open balls in X from open balls in Y.

Lemma 2.26. Let X, Y be Banach spaces and fix A ∈ B(X,Y ). If A(BX1 (0))

contains an open ball in Y, then A(BX1 (0)) contains an open ball BYr (0) for
some r > 0.
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Proof. Suppose that A(BX1 (0)) contains some open ball BYs (z). We claim that
if we set r = s/2, then

BYr (0) ⊆ A(BX1 (0)). (2.5)

To see this, fix x ∈ BYr (0), i.e., ‖x‖X < r = s/2. Then 2x + z ∈ BYs (z) ⊆
A(BX1 (0)). Hence there exist vectors yn ∈ X with ‖yn‖X < 1 such that

Ayn → 2x + z. Also, z ∈ BYs (z) ⊆ A(BX1 (0)), so there exist vectors zn ∈ X
with ‖zn‖X < 1 such that Azn → z. Then wn = (yn − zn)/2 ∈ BX1 (0), and

Awn =
Ayn −Azn

2
→ (2x+ z)− z

2
= x as n→∞.

Hence x ∈ A(BX1 (0)), so equation (2.5) holds.
Now we will show that we actually have BYr/2(0) ⊆ A(BX1 (0)). To see this,

suppose that y ∈ BYr/2(0). Rescaling equation (2.5), we have y ∈ A(BX1/2(0)),

so there exists some x1 ∈ X with ‖x1‖ < 1/2 such that ‖y − Ax1‖ < r/4.

Then y − Ax1 ∈ BYr/4(0) ⊆ A(BX1/4(0)), so there exists some x2 ∈ X with

‖x2‖ < 1/4 such that ‖(y − Ax1) − Ax2‖ < r/8. Continuing in this way, we
obtain vectors xn ∈ X with ‖xn‖ < 2−n such that

‖y −Azn‖ <
r

2n+1
,

where zn =
∑n

k=1 xk. Hence Azn → y. However, {zn}n∈N is Cauchy in X, so
zn → z for some z ∈ X. Since A is continuous, it follows that y = Az. Since
‖y‖ < 1, we therefore have y ∈ A(BX1 (0)). ⊓⊔
Theorem 2.27 (Open Mapping Theorem). If X, Y are Banach spaces
and A : X → Y is a continuous linear surjection, then A is an open mapping.

Proof. Since A is surjective, we have

Y =
∞⋃
k=1

A(BXk (0)).

The Baire Category Theorem implies that some set A(BXk (0)) must contain
an open ball. Therefore, by Lemma 2.26, there is some r > 0 such that

BYr (0) ⊆ A(BX1 (0)). (2.6)

Now suppose that U ⊆ X is open and y ∈ A(U). Then y = Ax for some
x ∈ U, so BXs (x) ⊆ U for some s > 0. Rescaling equation (2.6), we have

BYt (0) ⊆ A(BXs (0)) for some t > 0. Therefore

BYt (y) = BYt (0) +Ax ⊆ A(BXs (0) + x) = A(BXs (x)) ⊆ A(U),

so A(U) is open. ⊓⊔
The hypotheses in the Open Mapping Theorem that X and Y are both

complete is necessary; see [Con90].
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Exercises

2.35. Let X and Y be Banach spaces. Show that A ∈ B(X,Y ) is surjective if
and only if range(A) is not meager in Y.

2.8 Topological Isomorphisms

Topological isomorphisms will play an important role in the remainder of this
volume.

Definition 2.28. Let X, Y be normed linear spaces.

(a) A linear operator T : X → Y is a topological isomorphism if T is a bijection
and both T and T−1 are continuous.

(b) We say that X and Y are topologically isomorphic if there exists a topo-
logical isomorphism T : X → Y. ♦

Every isometric isomorphism is a topological isomorphism, but the con-
verse need not hold (see Exercise 2.39).

For the case of linear operators on Banach spaces, we have the following
useful consequence of the Open Mapping Theorem.

Theorem 2.29 (Inverse Mapping Theorem). If X, Y are Banach spaces
and T : X → Y is a continuous linear bijection, then T−1 : Y → X is contin-
uous. Consequently T is a topological isomorphism.

Proof. The Open Mapping Theorem implies that T is an open mapping, so if
U ⊆ X is open then T (U) is an open subset of Y.However, since T is a bijection
we have (T−1)−1(U) = T (U). Hence the inverse image under T−1 of any open
set is open, which implies by Theorem 1.59 that T−1 is continuous. ⊓⊔

The next result is a typical application of the Inverse Mapping Theorem.

Theorem 2.30. Suppose X is a vector space that is complete with respect to
each of two norms ‖ · ‖ and ||| · |||. If there exists C > 0 such that ‖x‖ ≤ C |||x|||
for all x ∈ X, then ‖ · ‖ and ||| · ||| are equivalent norms on X.

Proof. The hypotheses imply that the identity map I : (X, ||| · |||)→ (X, ‖ · ‖)
is a bounded bijection, so, by the Inverse Mapping Theorem, the inverse map
I−1 : (X, ‖ · ‖)→ (X, ||| · |||) is a bounded bijection. Hence there is some c > 0
such that

|||x||| = |||I−1(x)||| ≤ c ‖x‖,
so the two norms are equivalent. ⊓⊔

The next theorem, whose proof is Exercise 2.42, states that the adjoint of
a topological isomorphism is itself a topological isomorphism.
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Theorem 2.31. Let X, Y be Banach spaces. If T : X → Y is a topological
isomorphism, then its adjoint T ∗ : Y ∗ → X∗ is a topological isomorphism, and
if T is an isometric isomorphism then so is T ∗. ♦

We will use the Inverse Mapping Theorem to derive two results for oper-
ators on Hilbert spaces. The following theorem shows that a bounded linear
operator has closed range if and only if its adjoint has closed range (this also
holds for operators on Banach space, see [Rud91, Thm. 4.14]).

Theorem 2.32. Fix A ∈ B(H,K), where H and K are Hilbert spaces. Then

range(A) is closed ⇐⇒ range(A∗) is closed.

Proof. ⇐. Suppose that range(A∗) is closed, and let M = range(A). Define
T ∈ B(H,M) by Tx = Ax for x ∈ H. Since range(T ) is dense in M, Theorem
2.13 implies that T ∗ : M → H is injective. Given y ∈ K, write y = m+e where
m ∈ M and e ∈ M⊥. Since ker(A∗) = range(A)⊥ = M⊥, for any x ∈ H we
have

〈x,A∗y〉 = 〈x,A∗m〉 = 〈Ax,m〉 = 〈Tx,m〉 = 〈x, T ∗m〉.

Hence A∗y = A∗m = T ∗m, and it follows from this that range(T ∗) =
range(A∗), which is closed. Now set N = range(T ∗) and define U ∈ B(M,N)
by Uy = T ∗y for y ∈ M. Then U is a continuous bijection, so it is a topo-
logical isomorphism by the Inverse Mapping Theorem. Theorem 2.31 there-
fore implies that U∗ ∈ B(N,M) is a topological isomorphism. In particular,
range(U∗) = M is closed.

Fix y ∈ M, so y = U∗x for some x ∈ N. Let z be any vector in K, and
let p be its orthogonal projection onto M. Then, since Ax, U∗x, and y all
belong to M,

〈y, z〉 = 〈U∗x, z〉
= 〈U∗x, p〉
= 〈x, Up〉
= 〈x, T ∗p〉
= 〈Tx, p〉
= 〈Ax, p〉 = 〈Ax, z〉.

Therefore y = Ax, so M ⊆ range(A) and hence range(A) = M is closed.

⇒. Since (A∗)∗ = A, this follows from the previous case. ⊓⊔

Our next application of the Inverse Mapping Theorem constructs a “pseu-
doinverse” of a bounded operator A that has closed range. Although A need
not be injective, the pseudoinverse A† acts as a right-inverse of A, at least
when we restrict the domain of A† to range(A).



2.8 Topological Isomorphisms 77

Theorem 2.33. Let H and K be Hilbert spaces. Assume that A ∈ B(H,K)
has closed range, and let P be the orthogonal projection of K onto range(A).
Then the mapping B : ker(A)⊥ → range(A) defined by Bx = Ax for x ∈
ker(A)⊥ is a topological isomorphism, and A† = B−1P ∈ B(K,H) satisfies
the following:

(a) AA†y = y for every y ∈ range(A),

(b) AA† is the orthogonal projection of K onto range(A), and

(c) A†A is the orthogonal projection of H onto range(A∗).

Proof. The mapping B is bounded and linear since it is a restriction of the
bounded mapping A. Further, the fact that H = ker(A) ⊕ ker(A)⊥ implies
that B is a bijection of ker(A)⊥ onto range(A). Applying the Inverse Mapping
Theorem, we conclude that B : ker(A)⊥ → range(A) is a topological isomor-
phism. Hence B−1 : range(A) → ker(A)⊥ is a topological isomorphism, and
therefore A† = B−1P is bounded. We assign the proof of statements (a)–(c)
as Exercise 2.43. ⊓⊔

Definition 2.34 (Pseudoinverse). Given A ∈ B(H,K), the operator A†

constructed in Theorem 2.33 is called the Moore–Penrose pseudoinverse, or
simply the pseudoinverse, of A. ♦

Exercise 2.44 gives an equivalent characterization of the pseudoinverse.

Exercises

2.36. Show that if T : X → Y is a topological isomorphism of a normed
space X onto a normed space Y, then a sequence {xn} is complete in X if and
only if {Txn} is complete in Y.

2.37. Let X and Y be normed linear spaces. Show that if T : X → Y is a
topological isomorphism, then ‖T−1‖−1 ‖x‖ ≤ ‖Tx‖ ≤ ‖T ‖ ‖x‖ for all x ∈ X.

2.38. Let X be a Banach space and Y a normed linear space. Suppose that
L : X → Y is bounded and linear. Prove that the following two statements
are equivalent.

(a) There exists c > 0 such that ‖Lx‖ ≥ c‖x‖ for all x ∈ X.
(b) L is injective and range(L) is closed.

Show further that, in case these hold, L : X → range(L) is a topological
isomorphism.

2.39. Given a sequence of scalars λ = (λk), define a mapping Tλ on sequences
x = (xk) by Tλx = (λkxk). Prove the following statements.

(a) Tλ is a bounded map of ℓ2 into itself if and only if λ ∈ ℓ∞.



78 2 Functional Analysis

(b) Tλ is a topological isomorphism of ℓ2 onto itself if and only if 0 <
inf |λk| ≤ sup |λk| <∞.

(c) Tλ is an isometric isomorphism of ℓ2 onto itself if and only if |λk| = 1
for every n.

2.40. Let X be a Banach space. Given T ∈ B(X), define T 0 = I. Show that
if ‖T ‖ < 1, then I − T is a topological isomorphism of X onto itself and
(I − T )−1 =

∑∞
n=0 T

n, where the series converges in operator norm (this is
called a Neumann series for (I − T )−1).

2.41. Show that if X is a Banach space, Y is a normed linear space, and
T : X → Y is a topological isomorphism, then Y is a Banach space.

2.42. Prove Theorem 2.31.

2.43. Show that the operator A† = B−1P defined in Theorem 2.33 satisfies
statements (a)–(c) of that theorem.

2.44. Assume that A ∈ B(H,K) has closed range, and let A† be its pseudoin-
verse. Prove the following statements.

(a) ker(A†) = range(A)⊥.

(b) range(A†) = ker(A)⊥.

(c) AA†y = y for all y ∈ range(A).

(d) A† is the unique operator in B(K,H) that satisfies statements (a)–(c)
above.

2.45. Let H be a Hilbert space. Given a positive definite operator A ∈ B(H),
prove the following statements.

(a) A is injective and has dense range.

(b) A is a topological isomorphism of H onto itself if and only if it is
surjective. Show by example that a positive definite operator need not be a
topological isomorphism.

(c) If A is a surjective positive definite operator, then (x, y) = 〈Ax, y〉
defines an inner product that is equivalent to the original inner product 〈·, ·〉
on H.

2.9 The Closed Graph Theorem

The Closed Graph Theorem provides a convenient means of testing whether
a linear operator on Banach spaces is continuous.

Theorem 2.35 (Closed Graph Theorem). Let X and Y be Banach spaces.
If T : X → Y is linear, then the following statements are equivalent.
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(a) T is continuous.

(b) If xn → x in X and Txn → y in Y, then y = Tx.

Proof. (a) ⇒ (b). This follows immediately from the definition of continuity.

(b) ⇒ (a). Assume that statement (b) holds. Define

|||x||| = ‖x‖X + ‖Tx‖Y , x ∈ X.

Now we appeal to Exercise 2.46, which states that ||| · ||| is a norm on X and X
is complete with respect to this norm.

Since ‖x‖X ≤ |||x||| for x ∈ X and X is complete with respect to both
norms, it follows from Theorem 2.30 that there exists a constant C > 0 such
that |||x||| ≤ C ‖x‖X for x ∈ X. Consequently, ‖Tx‖Y ≤ |||x||| ≤ C ‖x‖X , so T
is bounded. ⊓⊔

The name of the Closed Graph Theorem comes from the fact that hypoth-
esis (b) in Theorem 2.35 can be equivalently formulated as follows: The graph
of T, graph(T ) =

{
(f, T f) : f ∈ X

}
, is a closed subset of the product space

X × Y.
Exercise 2.49 shows that the hypothesis in the Closed Graph Theorem

that X is complete is necessary, and it can be shown that it is also necessary
that Y be complete.

Exercises

2.46. Prove the claim in Theorem 2.35 that ||| · ||| is a norm on X and X is
complete with respect to this norm.

2.47. Use the Closed Graph Theorem to give another proof of Theorem 2.24.

2.48. Use the Closed Graph Theorem to give another proof of Exercise 2.34.

2.49. Let Cb(R) and C1
b (R) be as in Exercise 1.22, and assume that the norm

on both of these spaces is the uniform norm. In this case Cb(R) is complete,
but C1

b (R) is not. Show that the differentiation operator D : C1
b (R)→ Cb(R)

given by Df = f ′ is unbounded, but has a closed graph, i.e., if fn → f
uniformly and f ′

n → g uniformly then f ′ = g.

2.10 Weak Convergence

In this section we discuss some types of “weak convergence” that we will
occasionally make use of (see especially Section 4.7). Part (a) of the following
definition recalls the usual notion of convergence as given in Definition 1.2,
and parts (b) and (c) introduce some new types of convergence.
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Definition 2.36. Let X be a Banach space.

(a) We say that a sequence {xn} of elements of X converges to x ∈ X if
limn→∞ ‖x − xn‖ = 0. For emphasis, we sometimes refer to this type of
convergence as strong convergence or norm convergence. We denote norm
convergence by xn → x or limn→∞ xn = x.

(b) A sequence {xn} of elements of X converges weakly to x ∈ X if

∀x∗ ∈ X∗, lim
n→∞

〈xn, x∗〉 = 〈x, x∗〉.

We denote weak convergence by xn
w→x.

(c) A sequence {x∗n} of functionals in X∗ converges weak* to x∗ ∈ X∗ if

∀x ∈ X, lim
n→∞

〈x, x∗n〉 = 〈x, x∗〉.

We denote weak* convergence by x∗n
w*−→x∗. ♦

Note that weak* convergence only applies to convergence of functionals in
a dual space X∗. However, since X∗ is a Banach space, we can consider strong
or weak convergence of functionals in X∗ as well as weak* convergence. By
definition, strong (norm), weak, and weak* convergence of a sequence {x∗n}
in X∗ mean:

x∗n → x∗ ⇐⇒ lim
n→∞

‖x∗ − x∗n‖ = 0,

x∗n
w→x∗ ⇐⇒ ∀x∗∗ ∈ X∗∗, lim

n→∞
〈x∗n, x∗∗〉 = 〈x∗, x∗∗〉,

x∗n
w*−→x∗ ⇐⇒ ∀x ∈ X, lim

n→∞
〈x, x∗n〉 = 〈x, x∗〉.

If X is reflexive then X = X∗∗, and therefore x∗n
w→x∗ if and only if

x∗n
w*−→x∗. For general Banach spaces, we have the following implications.

Lemma 2.37. Let X be a Banach space, and let xn, x ∈ X and x∗n, x
∗ ∈ X∗

be given.

(a) Strong convergence in X implies weak convergence in X :

xn → x =⇒ xn
w→x.

(b) Weak convergence in X∗ implies weak* convergence in X∗:

x∗n
w→x∗ =⇒ x∗n

w*−→x∗.

Proof. (a) Suppose that xn → x strongly, and fix any x∗ ∈ X∗. Since x∗ is

continuous we have limn→∞ 〈xn, x∗〉 = 〈x, x∗〉, so xn
w→x.
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(b) Suppose that x∗n, x
∗ ∈ X∗ and x∗n

w→x∗. Given x ∈ X we have
π(x) ∈ X∗∗, where π : X → X∗∗ is the natural embedding of X into X∗∗.
By definition of weak convergence, limn→∞ 〈x∗n, x∗∗〉 = 〈x∗, x∗∗〉 for every
x∗∗ ∈ X∗∗. Taking x∗∗ = π(x) in particular, we have

lim
n→∞

〈x, x∗n〉 = lim
n→∞

〈
x∗n, π(x)

〉
=
〈
x∗, π(x)

〉
= 〈x, x∗〉.

Thus x∗n
w*−→x∗. ⊓⊔

It is easy to see that strongly convergent sequences are norm-bounded
above. It is a more subtle fact that the same is true of weakly convergent
sequences.

Theorem 2.38. Let X be a Banach space.

(a) If {xn} ⊆ X and xn
w→x in X, then x is unique and sup ‖xn‖X <∞.

(b) If {x∗n} ⊆ X∗ and x∗n
w*−→x∗ in X∗, then x∗ is unique and sup ‖x∗n‖X∗ <

∞.

Proof. We prove statement (a) and assign statement (b) as Exercise 2.50.

Suppose that xn
w→x. If we also had xn

w→ y, then for each x∗ ∈ X∗ we
would have

〈x− y, x∗〉 = 〈x, x∗〉 − 〈y, x∗〉 = lim
n→∞

〈xn, x∗〉 − lim
n→∞

〈xn, x∗〉 = 0.

The Hahn–Banach Theorem (Corollary 2.3) therefore implies that x = y.
For each x ∈ X, let π(x) be the image of x in X∗∗ under the natural

embedding of X into X∗∗. Then for each x∗ ∈ X∗,

lim
n→∞

〈
x∗, π(xn)

〉
= lim

n→∞
〈xn, x∗〉 = 〈x, x∗〉.

Since convergent sequences of scalars are bounded, we therefore have

∀x∗ ∈ X∗, sup
n
|
〈
x∗, π(xn)

〉
| <∞.

Hence, by the Uniform Boundedness Principle, sup ‖π(xn)‖X∗∗ < ∞. Since
‖π(xn)‖X∗∗ = ‖xn‖X (Theorem 2.6), we conclude that {xn} is bounded
in X. ⊓⊔

Strong, weak, and weak* convergence can all be defined in terms of topolo-
gies on X or X∗. For example, the strong topology is induced from the norm
‖ · ‖ on X. The weak topology on X is induced from the family of seminorms
ρx∗(x) = |〈x, x∗〉| with x∗ ranging through X∗. The weak* topology on X∗

is induced from the family of seminorms ρx(x
∗) = |〈x, x∗〉| with x ranging

through X. One difference between these latter two topologies and the strong
topology is that, because the weak and weak* topologies are not defined by a



82 2 Functional Analysis

norm, in order to rigorously relate topological concepts to limit concepts we
must use nets instead of ordinary sequences indexed by the natural numbers.
For example, a set E ⊆ X is weakly closed if its complement is an open set in
the weak topology, and this is equivalent to the requirement that E contains
all of its weak limit points (compare Lemma 1.16). However, the definition of
a weak limit is a point x ∈ X for which there exists a net {xi}i∈I such that xi
converges to x in the appropriate net sense (see the discussion in Section 3.2).

We will not pursue the connection between weak or weak* convergence
and topologies in this volume, but we sketch the proof of one result in order
to give a brief (albeit incomplete) illustration of these ideas.

Theorem 2.39. Let M be a subspace of a normed space X. If M is strongly
closed (i.e., closed with respect to the norm topology), then it is weakly closed
(i.e., closed with respect to the weak topology).

Proof. If M = X then we are done, so suppose that M is strongly closed
and there exists some vector x /∈ M. Then, by the Hahn–Banach Theorem
(Corollary 2.4), there exists an x∗ ∈ X∗ such that x∗|M = 0 and 〈x, x∗〉 = 1.

By definition, X∗ is the set of all strongly continuous linear functionals
on X, so we know that the functional x∗ is strongly continuous. On the other
hand, if xn

w→x then, by definition of weak convergence, 〈xn, x∗〉 → 〈x, x∗〉.
Hence, simply by definition, each element of X∗ is weakly continuous (techni-
cally, we should justify this by using nets instead of sequences, but the idea
is the same).

Just as in Theorem 1.59, weak continuity of x∗ is equivalent to the fact
that the inverse image of any open set in the codomain of x∗ (which is F)
is weakly open in X. Therefore, since F\{0} is an open subset of F, the set
U = (x∗)−1(F\{0}) ⊆ X is open in the weak topology. Since x∗ maps every
element of M to zero, no element of M is contained in U, i.e., U ⊆ X\M.
Further, x ∈ U since 〈x, x∗〉 6= 0. Thus, given an arbitrary element x ∈ X\M,
we have found a weakly open set U such that x ∈ U ⊆ X\M. Therefore
X\M is open in the weak topology, which says that M is closed in the weak
topology. ⊓⊔

The converse of Theorem 2.39 is true as well, i.e., every weakly closed
subspace is strongly closed. In fact, since strong convergence always implies
weak convergence, every strong limit point of an arbitrary set is a weak limit
point. Therefore, if a set is weakly closed then it contains all of its weak limit
points and hence contains all of its strong limit points. Thus every weakly
closed set is strongly closed. By taking complements, every weakly open set
is strongly open, so the weak topology is a subset of the strong topology.
However, the strong and weak topologies are distinct in infinite-dimensional
spaces, so in general it is not true that every strongly closed set is weakly
closed—this is why Theorem 2.39 is interesting!

The strong, weak, and weak* topologies are only three specific examples of
topologies on a Banach space X or X∗. There are many other topologies that
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are useful in specific applications. Additionally, there are many other useful
vector spaces that are not Banach spaces, but for which topologies can still
be defined. We shall not deal with such topological vector spaces, but instead
refer to texts such as [Con90] for details.

Exercises

2.50. Prove part (b) of Theorem 2.38.

2.51. In this exercise we will denote the components of x ∈ ℓp by x =
(
x(k)

)
.

(a) Given 1 < p <∞ and xn, y ∈ ℓp, show that xn
w→ y in ℓp if and only if

sup ‖xn‖ℓp <∞ and xn converges componentwise to y, i.e., limn→∞ xn(k) =
y(k) for each k ∈ N. Does either implication remain valid if p = 1?

(b) Given 1 ≤ p ≤ ∞ and xn, y ∈ ℓp, show that xn
w*−→ y in ℓp if and only

if xn converges componentwise to y and sup ‖xn‖ℓp <∞ (recall that ℓ1 ∼= c0
∗

and ℓp
′ ∼= (ℓp)∗ for 1 ≤ p <∞).

2.52. Show that if {xn} is an orthonormal sequence in a Hilbert space H,

then xn
w→ 0.



http://www.springer.com/978-0-8176-4686-8


	2 Functional Analysis
	2.1 The Hahn–Banach Theorem and Its Implications
	Exercises

	2.2 Reflexivity
	Exercises

	2.3 Adjoints of Operators on Banach Spaces
	Exercises

	2.4 Adjoints of Operators on Hilbert Spaces
	Exercises

	2.5 The Baire Category Theorem
	Exercises

	2.6 The Uniform Boundedness Principle
	Exercises

	2.7 The Open Mapping Theorem
	Exercises

	2.8 Topological Isomorphisms
	Exercises

	2.9 The Closed Graph Theorem
	Exercises

	2.10 Weak Convergence
	Exercises



