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1 Buddhism: The Medium of Interaction

The rock edicts of King Aśoka (third century b.c.e.) show that he had already
paved the way for the expansion of Buddhism outside India.2 Subsequently,
Buddhist missionaries took Buddhism to Central Asia, China, Korea, Japan,
and Tibet in the north, and to Burma, Ceylon, Thailand, Cambodia, and
other countries of the south. This helped in spreading Indian culture to
these countries. It is aptly observed that “Buddhism was, in fact, a spring
wind blowing from one end of the garden of Asia to the other end causing
to bloom not only the lotus of India, but the rose of Persia, the temple
flower of Ceylon, the zebina of Tibet, the chrysanthemum of China and the
cherry of Japan. It is also said that Asian culture is, as a whole, Buddhist
culture.”3 Moreover, some of these countries received with Buddhism
not only their religion but practically the whole of their civilization and
culture.

The generally accepted view is that China received Buddhism from the
nomadic tribes of Eastern Turkestan toward the end of the first century
b.c.e., although there is evidence to show that Indians had gone there ear-
lier to propagate the faith.4 The Chinese tradition narrates that the Han
emperor, Ming-Ti (first century c.e.), had sent an embassy to India to
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bring back Buddhist priests and scriptures.5 Consequently, two Indian monks,
Kia-yeh Mo-than (Kāśyapa Mātaṅga) and Chu-fa-lan (probably Dharmaratna
or Gobharana), reached the Han capital, Loyang. They learned Chinese and
translated Buddhist books, the first of which was Foshuo-ssu-shih-erh-cheng-
ching (the Sūtra of 42 Sections Spoken by Buddha).6 With the arrival of more
monks, both from India and Central Asia, the Loyang monastery became a
centre of Indian culture. A large number of Indian books were translated,
and people began to adopt Buddhist monastic rituals. Buddhism prevailed so
extensively that by the sixth century, the number of monasteries had rise to
about 30,000, and the number of monks and nuns to two million.7

The tradition of the Buddhist educational system gave birth to large-
scale monastic universities. Some of these famous universities were Nālandā,
Valabh̄i, Vikramśilā, Jagaddala, and Odantapur̄i. They attracted students
and scholars from all parts of Asia. Of these, the Nālandā university was
most famous, with about ten thousand students and fifteen hundred teachers.
The range of studies covered both sacred and secular subjects of Buddhist as
well as Brahminical learning. The monks eagerly studied, besides Buddhist
works (including Abhidharma-kośa), the Vedas, medicine, arithmetic, occult
sciences, and other popular subjects.8 There was special provision for the
study of astronomy, and it is said that the university included an astronomical
observatory.9

According to the findings of a modern Chinese historian (Liang Chi-Chao),
more than 160 Chinese pilgrims and scholars came to India between the fifth
and eighth centuries.10 Of these, Fa-Hien (fifth century), Yuan Chwang (sev-
enth century), and I-tsing (eighth century) are the most famous. Some of them
stayed and studied in India for several years. They returned to their homeland
with many Pali and Sanskrit works, hundreds of which were translated into
Chinese.

2 Indian Astronomy and Mathematics in Ancient China

We have seen that Buddhism was the medium for cultural exchange between
India and China, providing opportunities for the exchange of ideas. Buddhism
exerted great influence in various fields in China and was the main vehicle for
transmission of Indian scientific ideas to that land. The influence was so great

5 Mukherjee, P. K.: Indian Literature Abroad (China). Calcutta Oriental Press,
Calcutta, p. 1 (1928).

6 Ibid., pp. 2–3.
7 Chou Hsiang-Kuang: The History of Chinese Culture. Central Book Depot,
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9 See K. S. Shukla, Āryabhat.a (booklet), New Delhi, p. 5 (1976).
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that even scientists embraced the new faith. For instance, the astronomer
Han Chai and the mathematician Wang Fan (about 200 c.e.) both became
Buddhists (Mikami, p. 57). A great deal of Indian astronomy and mathematics
became known in China through the translation of Indian works, and through
the visits of Indian scholars. We shall briefly outline the broad facts in this
section.

The Mātaṅga-avadāna was translated (or retranslated) into Chinese in
about the third century c.e., although the original is believed to date ear-
lier.11 It gives the lengths of monthly shadows of a 12-inch gnomon, which is
the standard parameter of Indian astronomy. The work also mentions the 28
Indian naks.atras. .

Śārdūlakarn. āvadāna was translated into Chinese several times, beginning
in the second century. This work contains the usual Sanskrit names of the
28 naks.atras. starting with kr. ttikā, but the number of grahas mentioned is
only seven, excluding thereby Rāhu and Ketu, which were often added in the
manuscripts and translations.12 The measures of shadows for various parts of
the day mentioned in the work (pp. 54–55) are the same as in the Atharva
Vedāṅga Jyotis.a, verses 6 to 11.

Lalitavistara is another work that was translated into Chinese several
times from the first century onward. It is in this work that the famous
Buddhist centesimal-scale counting occurs during the dialogue between Prince
Gautamaand the mathematician Arjuna. The first series of counts ends with
tallaks.an. a (= 1053), beyond which eight more gan. anā series are mentioned.13

Atomic-scale counting is also mentioned (there being 710 paraman. us in one
aṅgulaparva) (p. 104).

Vasubandhu (fourth century) was so honoured for his work that he was
known as the Second Buddha. His Abhidharma-kośa, in which he wrote his
own commentary, is an encyclopedic work that played an important role
in propagating Buddhist philosophy and thought in Asia. It was translated
into Chinese and Tibetan. It contains early Buddhist ideas in cosmography
(Jambūdv̄ipa being given the form of a śakat.a) and astronomy (sun and moon
revolving around the Meru).14 It is through this work that we know that the
Buddhist school used 60 decuple terms in decimal counting.15

11 Yabuuti, K.: Indian and Arabian Astronomy in China. In: The Silver Jubilee
volume of the Zinbun-Kagaku-Kenkyusyo, Kyoto, pp. 585–603 (1954).

12 Mukhopadhyay, S. K. (ed.): The Śārdūlakarāvadāna. Visvabharati, Santiniketan,
pp. 46–53 and p. 104 (1954).

13 Vaidya, P. L. (ed.): Lalitavistara. Darbhanga, p. 103 (1958). The last number in
the final count will be equal to 107+9×46 = 10421.

14 Abhidharmakośa edited by Dvārikadas Sastri, 2 Volumes, Varanasi, III, 45–60
(1981) (Vol. I, pp. 506–518).

15 Ibid., p. 544.
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The Mahāprajñā-pāramitā Śāstra (of Nāgarjuna, second century) was
translated into Chinese by Kumāraj̄iva in the early fifth century.16 The as-
tronomical parameters mentioned in this translation are comparable to those
given in the Vedāṅga Jyotis.a.17

Bodhiruci I arrived in China (from central India) in 508 c.e., and is said
to have translated several Indian astronomical books into Chinese.18

An Indian system of numeration appeared in the Chinese work Ta Pao
Chi Ching (Mahāratnakūta Sūtra), translated by Upaśūnya (in 541 c.e.).19

Paramārtha (Po-lo-mo-tho), a native of Ujjain, arrived in China in
548 c.e. and translated about 70 works including the Abhidharmakośa
(vyākhyā)-śāstra and the Lokasthiti-abhidharmaśāstra (which has astronomi-
cal content).20

There was a brief setback to Indian activities in China when Wu-Ti came
to power in 557 c.e., but they were resumed during the Sui Dynasty (581–618
c.e.). The Indian pan.d. ita, Narendrayaśas, was recalled from exile in 582 c.e.
Among the works he translated was the Mahāvaipulya Mahāsannipāta Sūtra,
from Sanskrit. It contains naks.atras, the zodiacal cycle, calendrical material,
and other Indian astronomical theories.21

The Chinese translations of the following works are mentioned in the Sui
Shu, or Official History of the Sui Dynasty (seventh century):22

1. Po-lo-mên Thien Wên Ching (Brahminical Astronomical Classic) in 21 books.
2. Po-lo-mên Chieh-Chhieh Hsien-jen Thien Wên Shuo (Astronomical Theories of

Brāhman. a Chieh-Chhieh Hsienjen) in 30 books.
3. Po-lo-mên Thien Ching (Brahminical Heavenly Theory) in one book.
4. Mo-têng-Chia Ching Huang-thu (Map of Heaven in the Mātaṅḡi Sūtra) in one

book.
5. Po-lo-mên Suan Ching (Brahminical Arithmetical classic) in three books.
6. Po-lo-mên Suan Fa (Brahminical Arithmetical Rules) in one book.
7. Po-lo-mên Ying Yang Suan Ching (Brahminical Method of Calculating Time)

in one book.

16 Bapat (ref. 2), p. 115.
17 Chin Keh-mu, “India and China: Scientific Exchange” in D. Chattopadhyaya

(ed.): Studies in History of Science in India. Vol. II, pp. 776–790, (1982) (Solar
month 30 1

2
days (year = 366 d.), P = 27 21

60
(cf. 27 21

67
), and S = 29 30

62
(cf. 29 32

62
).

18 Mukherjee (ref. 6), p. 38.
19 Needham, J.: Science and Civilization on China. Vol. III, Cambridge, UK, p. 88

(1959).
20 See Bapat (ref. 2), p. 214; Mukherjee (ref. 5), p. 34; and Needham (ref. 19), p.

707, where the Chinese title of the second work appears as Li Shih A-Pi-Than
Lun (Philosophical Treatise on the Preservation of the World).

21 Needham, J. (ref. 19), p. 716, and Chin Keh-mu (ref. 17), p. 784.
22 Gupta, R. C.: Indian Astronomy in China During Ancient Times.

Vishveshvaranand Indological Journal, XIX, 266–276, p. 270 (1981).
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Although these translations are lost, they were also mentioned in other
sources.

More vigorous contacts and activities took place during the glorious period
of the Tang Dynasty (618–907 c.e.). In response to an envoy sent by the Indian
king Hars.avardhana in 641 c.e. to China, two missions came from there to
India. Hiuen Tsang (or Yuan Chwang) needed 22 horses to carry the works
that he took from India to China in 645. He translated 75 of these, including
Abhidharmakośa.

The great influence of Indian astronomy at that time can be seen by the
presence of a number of Indian astronomers in the Chinese capital Chang-Nan,
where there was a school in which Indian sidhāntas were taught.23 In fact,
there were three clans of Indian astronomers, namely Kāśyapa, Gotama, and
Kumāra. These Indians were employed in the Chinese National Astronomical
Bureau and helped in improving the local calendar.

The greatest of these was Gotama Siddha (or Gautama Siddhārtha). He
became the president of the Chinese Astronomical Board and director of the
royal observatory. Under imperial order (from Hsuan-tsung) he translated
the famous Chiu Chih Li (“Navagraha Karan.a”) from Indian astronomical
material in 718 c.e. A few years later, he compiled the Khai-Yuan Chan
Ching (the Khai Yuan Treatise on Astronomy and Astrology) in 120 volumes,
of which the 104th is the Chiu Chih Li. It includes the Indian sine table (R = 3,
438, h = 225min) and Indian methods of calculation with nine numerals and
zero (denoted by a thick dot •). The astronomy was based on nine planets,
including Lo-hou and Chi-tu (which are Chinese forms of the Sanskrit names
Rāhu and Ketu).24

3 Earlier Chinese Parallels of Indian Mathematical
Pieces

Before addressing the question of mutual transmissions further, we shall first
mention the close resemblances that exist between some mathematical prob-
lems, rules, and formulas as found in China and India.

(I) The Broken Bamboo Problem (������ �	
� 
���
)

In China this is found in the famous Chiu Chang Suan Shu (Nine Chapters on
the Mathematical Art), whose present text is placed in the first century c.e.
Its ninth chapter, entitled “kou ku” (Right Triangles), contains the following
problem:25

23 Ibid., pp. 271–273.
24 The work has been fully translated with notes by Kiyori Yabuuti in his paper

“Researches on the Chiu-Chih Li Indian Astronomy under the Thang Dynasty”
Acta Asiatica, Vol. 36, pp. 7–48 (1979).

25 Waerden, B. L. van der: Geometry and Algebra in Ancient Civilization. Springer–
Verlag, Berlin, p. 53 (1983).
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Problem 13: A bamboo is 1 chang (= 10 Chhih) tall. It is broken,
and the top touches the ground 3 chhih from the root. What is the
height of the break?

Fig. 1. The bamboo problem
Fig. 2. Solution to the
bamboo problem

The solution to the problem is (see Fig. 1)

y = (h − x2/h)/2 = 4
11
20

chhih.

It is understood that the solution is based on the Pythagorean property, so
that

y + z = h and z2 − y2 = x2.

One of the two similar examples given by Bhāskara I (629 c.e.) reads26

a���
��	����	 ���	 ����� �����	 �� ���� ।
��� ������ �����!"�# $� �% ���&� �'�
!���� ॥

as.t.ādaśakocchāyo vaṁśo vātena pātito mūlāt
s.ad. gatvāa. sau patitastribhujaṁ kr. tvākv bhagnah. syāt

A bamboo of height 18 is felled by the wind. It falls at (a distance of)
6 from the root (thus) forming a triangle. Where is the break?

26 Shukla, K. S. (ed.); Āryabhat̄iya with the commentary of Bhāskara I and
Someśvara, INSA, New Delhi, India, pp. 99–100 (1976).
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Bhāskara’s solution is based on applying the relation (see Fig. 2)

GF · GE = GB2,

which is given in Āryabhat. īya II, 17 (second half), on which he is commenting.
He gets

GE = x2/h = 2 = z − y.

Then doing saṁkraman. a with z + y = 18, he found z and y to be 10 and 8.

(II) Problem of a Reed in a Pond (���	dv���
)

This is problem no. 6 in the ninth chapter of the Chiu Chang Suan Shu:27

There is a pond whose section is a square of side 1 chang (= 10 chhih).
A reed grows at its centre and extends 1 chhih above the water. If the
reed is pulled to the side (of the pond), it reaches the back precisely.
What are the depth of the water and the length of the reed?

The solution given28 is x = (z2 − e2)/2e, where z is half the side of the
pond, and y = x + e (see Fig. 3).

Bhāskara I’s first similar example (out of two) reads29

Fig. 3. The reed problem
Fig. 4. Solution to the
reed problem

27 Waerden, B. L. van der (ref. 25), pp. 50–51.
28 Swetz, Frank: The Amazing Chiu Chang Suan Shu. Math. Teacher, 65, 423–430,

p. 429. Translation kindly supplied by D. B. Wagner.
29 Shukla (ed.), op. cit. (ref. 26), pp. 100–102. Shukla’s remark (p. 299) that the

Chinese and Hindu solutions are “quite different” is not justified, since both are
ultimately based on the Pythagorean property. The relation BC = y + x = z2/e
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���� $���pr
% +�� ������������ ,�# �� �������।
�-�� �.$�� /!�� , �-01� ����2��-�����॥

kamalṁ jalātpradr. śyaṁ vikasitamas. t.āńg. gulaṁ nivāten
nītaṁ majjati haste, śīghraṁ kamalāmbhasī vācye

A lotus in full bloom of 8 an. gulas is visible (just) above the water.
When carried away by the wind, it submerges just at the distance of 1
hasta (= 24 an.gulas). Tell quickly (the height of) the lotus plant and
(the depth of) the water.

His solution is again based on the same property of chords, namely (Fig. 4)

BC = BM2/AB = z2/e.

And then applying saṁkraman. a to y +x = z2/e and y−x = e, he gets
the height of the lotus y and the depth of the water x as 40 and 32 (an.gulas).
On simplification, Bhāskara’s solution

x =
1
2

(
z2

e
− e

)

becomes the same as the Chinese solution

(III) Approximate Volumes of a Sphere

The Chiu Chang Suan Shu (first century c.e.) used the approximate rule:

V =
9
2
r3 (11)

for calculating the diameter of a sphere when its volume V is known.30 In
India, Bhāskara I quotes a rule that gives (11) directly:31

3����454�� ����� ���# �6���	 �# 7!� 0���6��� ।

vyāsārdhadhanaṁ bhitvā navagun. itamayo gud. asya ghanagan. itam

The product of 9 and half the cube of the radius is the ball’s volume.

follows from the property of chords (which itself is based on the Pythagorean
property) or from y2 − x2 = z2 and y − x = e. The slight difference in methods
is not significant.

30 Mikami, Y.: The Development of Mathematics in China and Japan, reprinted by
Chelsea, New York, p. 14 (1961).

31 Shukla (ref. 26), p. 61.
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Two centuries later, Mahāvīra (about 850 c.e.) gave the same rule and re-
garded it, like Bhāskara, as only a vyāvahārika, or practical (not exact), rule.32

The same is also found in other Jaina works such as Tiloyasāra (gāthā 19) of
Nemicandra (about 975 c.e.) and the Gan. itasāra (V. 25) of T. hakkura Pheru
(about 1300 c.e.). This shows a Jaina tradition for (11).

Another item of interest is that in China, Liu Hui (third century) inter-
preted (11) wrongly as equivalent to33

V =
π2

2
r3. (12)

In India also, Mahāv̄ira seems to have thought that (11) was based on (12)
with the practical value π = 3. He further derived a better formula by taking
π =

√
10, which he considered to be sūks.ma.34

(IV) The Problem of 100 Chickens

In China, the earliest statement of the problem of a hundred chickens is found
in the Chang Chhiu-Chien Suan Ching (Arithmetical Classic of Chang Chhiu-
Chien), which is generally placed in the second half of the fifth century. It runs
as follows:35

A cock costs 5 pieces (wên) of money, a hen 3 pieces, and 3 chickens
1 piece. If we buy, with 100 pieces, 100 birds, what will be their re-
spective numbers?
(Answers: 4 + 18 + 78; 8 + 11 + 81; 12 + 4 + 84.)

A century later, Chen Luan gave two similar problems with cost 5, 4, 1/4,
(Answer: 15 + 1 + 84), and 4, 3, 1/3 (Answer: 8 + 14 + 78)36.
In India such problems appear in the Bakshāli Manuscript (whose exact

date is uncertain or controversial). One problem relates to buying a total of
20 animals (monkeys, horses, and deer) for a total of 20 pan. as at costs 1/4
(say), 4 and 1/2. (Answer: 2 + 5 + 15.)37

32 Jain, L. C. (ed.): Gan. itasārasaṅgraha (with Hindi translation), Sholapur, III, 28,
p. 259 (1963).

33 Wagner, D.B.: “Liu Hui and Tsu Keng-chih on the Volume of a Sphere,” Chinese
Science, No. 3, 59–79, p. 60 (1978).

34 Gupta, R. C.: “Volume of a Sphere in Ancient India,” paper presented at the
Seminar on Astronomy and Mathematics in Ancient India, Calcutta, May 19–21,
1987, has details.

35 Mikami (ref. 30), p. 43. On p. 39 he says that the work “probably belongs to
latter half of the sixth century.”

36 Ibid., p. 44.
37 Hayashi, Takao: The Bakshali Manuscript, Ph.D. thesis, Brown University,

p. 649 (1985). He places the work in the seventh century, which is somewhere in
the middle of the early (fourth century) and late (tenth century) dates assigned
to it.
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Another similar example relates to prices or earnings of men, women, and
śūdras or children at rates 3, 3/2, and 1/2. (Answer: 2 + 5 + 13.)38

An example of buying 100 birds (pigeons, cranes, swans, and peacocks)
with 100 rūpas (or pan. as) with rates 3/5, 5/7, 7/9, 9/3 occurs in
Śrīdhara’s Pātīgan. ita (Ex. 78–79) (eighth century) as well as in Mahāvīra’s
Gan. itasārasaṅgraha (VI, 152–153) (ninth century).39 This problem was quite
popular in India, and one of the many solutions is 15 pigeons, 28 cranes, 45
swans, 12 peacocks.40 Similar problems were also popular in other parts of
the world, as shown by works, of various authors starting with Alcuin (ninth
century).41

In simple matters, like the use of π = 3, we may accept independent
discoveries or inventions by different cultural groups. But when specific char-
acteristic rules and problems, such as (I)–(IV) considered above, are found
to occur in different cultural areas, we have to favor a theory of diffusion. Of
course, there may have been an older common source from which material
was possibly transmitted to the various cultural areas. B.L. van der Waerden
(p. 66) considers a pre-Babylonian common source for Chinese and Babylonian
algebra. In fact, he has formulated the thesis of a common Indo-European ori-
gin of mathematics that flowed to China, India, Babylonia, Greece, and Egypt
(pp. 67–69). We have evidence that some peculiar rules such as the “surveyor’s
rule” for the area of a quadrilateral42 and the use of h(c + h)/2 (or its other
derived forms) for the area of a segment of a circle were widely diffused.

Regarding pieces of (I)–(IV) discussed above, we have not come across
specific earlier instances in which these are found as such. It is therefore to
be presumed that there was some interaction that ultimately led to trans-
mission between China and India. We have already noted above that even
Chinese mathematicians, such as Wag Fan (about 200 c.e.), became Bud-
dhists (Mikami, ref. 28, 57). Needham43 mentions the monk Than Ying (about
440 c.e.), who could have been a teacher of Chiu Chang Suan Shu and com-
mentary by Liu Hui.

References to Buddhism and Buddhist works are found even in the math-
ematical treatises of China such as the Sun Tzu Suan Ching or Arithmetical
Manual of Master Sun, which is placed44 between 280 and 473 c.e. Master
38 Ibid., p. 650; and David Singmaster, Sources in Recreational Mathematics, 3rd

Preliminary Edition, p. 139, June 1988.
39 Shukla, K. S. (ed.): The Patiganita of Sridharacarya, Lucknow, pp. 80–83

(1959)(text) and 50–51 (transl.), Jain (ref. 30), p. 131.
40 Shukla (ref. 39) has given all the 16 solutions. Also see Hayashi (ref. 37), p. 650,

for more references.
41 Singmaster, op. cit. (ref. 38), pp. 139–144.
42 Gupta, R. C.: The Process of Averaging in Ancient and Medieval Mathematics.

Gan. ita Bhārat̄i, III, 32–42 (1981).
43 Needham (ref. 19), p. 149.
44 Mikami (ref. 30), p. 26.
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Sun’s work is important for early indeterminate analysis in China. Chen Luan
(sixth century), who was also interested in indeterminate analysis, was an ar-
dent believer of Buddhism. He read Buddhist works profoundly and mentioned
them in his writings.

At least some of the Indian scholars who visited China must have become
familiar to some extent with the local mathematical traditions, especially the
more popular common and recreational types of problems. Some of these In-
dians frequently returned to India (if only temporarily). In addition, Chinese
pilgrims, scholars, and envoys (including diplomats) who visited India may
have taken some Chinese mathematical classics, such as the famous Chiu
Chang Suan Shu, with them. Books may have been part of gifts that may
have been presented to the kings or universities. All such things indicate a
strong possibility of mathematical interaction between China and India. But
while these were documented in Chinese sources, there is no similar posi-
tive literary or other documentary evidence known from Indian sources that
specifies clearly the arrival of any Chinese mathematical material in India.45

4 I-Hsing (683–727 C.E.): The Great Chinese
Astronomer–Mathematician

By the end of the seventh century c.e., much Indian mathematics and math-
ematical astronomy was known in China. The compilation of Chiu Chih Li in
Chinese by Gautama Siddha from Sanskrit sources represents the culmination
of such transmissions in 718 c.e. Through this work, Indian methods of com-
putation based on the decimal place-value system (with a zero symbol) and
Indian trigonometry (based on sines) were formally introduced in China. The
analysis of the contents of Chiu Chih Li by Yabuuti (ref. 22 at the end) shows
that mathematical astronomy as found in Sūryasidhānta and in the works
of Varah.mihira (sixth century c.e.) and Brahmagupta (seventh century) was
known in China at the beginning of the eighth century.

At this time I-Hsing appeared on the Chinese scene. He was an able
mathematician, deeply learned in astronomy, and was well-versed in Sanskrit
(Mikami, ref. 28, p. 60). He combined in himself the traditions of Chinese and
Indian mathematical sciences. He became a Buddhist monk, attended con-
vocations of monks and śraman. as, and traveled widely to acquire knowledge
(Needham, ref. 17, p. 38).
45 There are similarities in many other mathematical works that we have not dis-

cussed here. Some of these are treated by B. Datta in his paper “On the Supposed
Indebtedness of Brahmagupta to Chiu Chang Suan Shu,” Bulletin of the Calcutta
Math. Soc., Vol. XXII, pp. 39–51 (1930). Datta does not mention Bhāskara I. Also
see van der Waerden (ref. 23), pp. 196–208, for π = 3.1416, and L.C. Jain, “Jaina
School of Mathematics (A Study in Chinese Influences and Transmissions),” in
Contribution of Jainism to Indian Culture (ed. by R.C. Dwivedi), Delhi, India,
206–220 (1975).
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I-Hsing won a great reputation for his combinatorial calculations. Due
to his Buddhist training, he could easily handle large numbers such as 3361

or 10172. His methods were capable of enumerating all possible changes and
transformations occurring on a go or chess board (Needham, ibid., p. 139).
He could also handle indeterminate problems involving large numbers (ibid.
pp. 119–120). In India, similar problems had already been solved by Bhāskara
I (early seventh century). Some scholars have confused him with I-Hsing, the
pilgrim.46

Between 721 and 727 c.e., I-Hsing prepared, by imperial order, a calendar
known as Ta Yen Li (Needham, ref. 17, p. 37), in which he applied higher
mathematics. Out of the 23 different systems of calendars known by that time,
I-Hsing’s was found to be accurate and has stood the test of time (Mikami,
ref. 28, p. 60).

Gautama Chuan (of the Kumāra clan) probably knew that one of his
Indian collegues had taught I-Hsing the method (say as given in the Sūrya-
Siddhānta) for relating gnomon shadows and solar zenith distance (or altitude)
by means of Chiu Chih Li’s sine table.47 I-Hsing fully used this knowledge.

Greatly influenced by Indian astronomy, I-Hsing made measurements in
ecliptic coordinates, which had previously played a minor role (Needham, ref.
17, p. 202). He was associated in training officials and observers for the great
meridian survey of 724 c.e.48 The observed data were also analyzed by him.
He developed a tangent table that is the earliest of its kind in the world. This
development was based on Indian information about the use and values of
sines, from which his tangent table was derived.49 He used methods of finite
differences, fitting of polynomials, and interpolation.50

46 Shukla (ref. 26), p. 311.
47 Cullen, C.: “An Eighth Century Chinese Table of Tangents,” Chinese Science,

No. 5, 1–33, p. 32 (1982).
48 Beer, A., et al.: An Eighth Century Meridian Line: I-Hsing’s Chain of Gnomons.

Vistas in Astronomy, Vol. 4, 3–28, p. 14 (1961).
49 Cullen (ref. 47), p. 32.
50 See Cullen’s paper (ref. 47) and Historia Mathematica, Vol. 11, pp. 45–46 (1984),

where it is stated that Liu Ch′uo (about 600 c.e.) knew the formula for interpola-
tion for equal intervals and Li Ch′un-feng (665 c.e.) had studied finite differences
up to the second order, and interpolation for equal as well as for unequal intervals.
See R. C. Gupta.: Second Order Interpolation in Indian Mathematics, etc. Indian
J. Hist. Sci., IV, 86–98 (1969).
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