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Abstract. Higher homotopies are nowadays playing a prominent role in mathemat-
ics as well as in certain branches of theoretical physics. The purpose of the talk is
to recall some of the connections between the past and the present developments.
Higher homotopies were isolated within algebraic topology at least as far back as the
1940s. Prompted by the failure of the Alexander–Whitney multiplication of cocy-
cles to be commutative, Steenrod developed certain operations which measure this
failure in a coherent manner. Dold and Lashof extended Milnor’s classifying space
construction to associative H-spaces, and a careful examination of this extension led
Stasheff to the discovery of An-spaces and A∞-spaces as notions which control the
failure of associativity in a coherent way so that the classifying space construction
can still be pushed through.

Algebraic versions of higher homotopies have, as we all know, led Kontsevich
eventually to the proof of the formality conjecture. Homological perturbation theory
(HPT), in a simple form first isolated by Eilenberg and Mac Lane in the early
1950s, has nowadays become a standard tool to handle algebraic incarnations of
higher homotopies. A basic observation is that higher homotopy structures behave
much better relative to homotopy than strict structures, and HPT enables one to
exploit this observation in various concrete situations which, in particular, leads to
the effective calculation of various invariants which are otherwise intractable.

Higher homotopies abound but they are rarely recognized explicitly and their
significance is hardly understood; at times, their appearance might at first glance
even come as a surprise, for example in the Kodaira–Spencer approach to deforma-
tions of complex manifolds or in the theory of foliations.
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1 Introduction

It gives me great pleasure to join in this celebration of Murray Gerstenhaber’s
80th and Jim Stasheff’s 70th birthday. I had the good fortune to get into
contact with Jim some 25 years ago. In 1981/1982 I spent 6 months at the
Swiss Federal Institute of Technology (Zürich) as a Research Scholar. At the
time, I received a letter from Jim asking for details concerning my application
of twisting cochains to the calculation of certain group cohomology groups.
What had happened? At Zürich, I had lectured on this topic, and Peter Hilton
was among the audience. This was before the advent of the Internet; not
even e-mail was available, and people would still write ordinary snail mail
letters. Peter Hilton traveled a lot and in this way transmitted information;
in particular, he had told Jim about my attempts to do these calculations by
means of twisting cochains. By the way, since Peter Hilton was moving around
so much, once someone tried to get hold of him, could not manage to do so,
and asked a colleague for advice. The answer was: Stay where you are, and
Peter will certainly pass by.

At that time I knew very little about higher homotopies, but over the
years I have, like many of us, learned much from Jim’s insight, his habit of
bringing his readers, students, and coworkers out from “behind the cloud of
unknowing”, to quote some of Jim’s own prose in his thesis. All of us have
benefited from Jim’s generosity with ideas.

I cannot reminisce indefinitely, yet I would like to make two more remarks,
one related with language and in particular with language skills: For exam-
ple, I vividly remember, in the fall of 1987, there was a crash at Wall Street.
I inquired via e-mail – which was then available – whether this crash created
a problem, for Jim or more generally for academic life. His answer sounded
somewhat like “Not a problem, but quite a tizzy here”. So I had to look up
the meaning of “tizzy” in the dictionary. This is just one instance of how I and
presumably many others profited from Jim’s language skills. Sometimes Jim
answers an e-mail message of mine in Yiddish – apparently his grandfather
spoke Yiddish to his father. There is no standard Yiddish spelling and, when
I receive such a message, to uncover it, I must read it aloud myself to un-
derstand the meaning, for example “OY VEH” which, in standard German
spelling would be “Oh Weh”.

I feel honored by the privilege to have been invited to deliver this tribute
talk. I would like to make a few remarks related to Murray Gerstenhaber.
I met Murray some 20 years ago when I spent some time at the Institute in
Princeton. From my recollections, Murray was then a member of the alumni
board of the Institute and was always very busy. We got into real scientific
and personal contact only later. In particular, I was involved in reviewing
some of the Gerstenhaber–Schack results, and I will never forget that I learnt
from Murray about Wigner’s approach to the idea of contraction. Also from
time to time, beyond talking about mathematics, we talked about history.
For example, Ruth Gerstenhaber once observed how people would gather for
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tea in the Fuld Hall common room in the afternoon as usual around the
table, and no-one would say a word but, one after another, would eventually
leave the room murmuring “There is no counterexample”. The perception of
a mathematician through a nonmathematician is sometimes revealing.

Before I go into the mathematical details of my talk, let us wish many
more years to Jim and Murray and their wives.

Let me now turn to my talk. There would be much more to say than
what I can explain in the remaining time. I shall touch on various topics and
make a number of deliberate choices and I will make the attempt to explain
some pieces of mathematics. However, my exposition will be far from being
complete or systematic and will unavoidably be biased. For example, there are
higher homotopies traditions in Russia and in Japan related with Lie loops,
Lie triple systems, and the like which I cannot even mention, cf. e.g., [Ki75]
and [SaMi88]. There is a good account of Jim Stasheff’s contributions up to
his 60th birthday, published at the occasion of this event [McCl99]. This was
just before the advent of Kontsevich’s proof of the formality conjecture. I will
try to complement this account and can thereby, perhaps, manage to avoid
too many repetitions. Also I will try to do justice to a number of less well
known developments.

2 The formality conjecture

Let me run right into modern times and right into our topic: Algebraic versions
of higher homotopies have, as we all know, led Kontsevich eventually to the
proof of the formality conjecture [Kon97]: Let M be a smooth manifold, let
A = C∞(M) and L = Vect(M), and consider the exterior A-algebra ΛAL on
L. Let Hoch(A) denote the Hochschild complex of A, suitably defined, e.g., in
the Fréchet sense. Given the vector fields X1, . . . , Xn on M , let ΦX1,...,Xn be
the Hochschild cochain given by

ΦX1,...,Xn(a1, . . . , an) =
1
n!

∑
sign(σ)

n∏

j=1

Xσ(j)(aj), a1, . . . , an ∈ A.

By a version of a classical result of Hochschild–Kostant–Rosenberg, the obvi-
ous map

ΛAL −→ Hoch(A), X1 ∧ . . . ∧Xn �→ ΦX1,...,Xn , (1)

is an isomorphism on cohomology. That is to say, the Hochschild cohomology
of A = C∞(M) amounts to the graded algebra ΛAL of multi vector fields
on M .

The standard Schouten–Nijenhuis bracket turns the suspension s(ΛAL) of
ΛAL – this is ΛAL, regraded up by 1, into an ordinary graded Lie algebra.
Here the grading convention is the standard one in algebraic topology to
the effect that, in particular, a differential lowers degree by 1. Likewise, the



28 J. Huebschmann

familiar Gerstenhaber bracket on Hoch(A) turns the suspension s(Hoch(A))
of Hoch(A) into an ordinary differential graded Lie algebra. However, the
morphism (1), while certainly being compatible with the differentials, is not
compatible with the Lie brackets.

For any differential graded Lie algebra g, the familiar C(artan) C(hevalley)
E(ilenberg)-construction Sc[g] furnishes a d(ifferential) g(raded) coalgebra.
In fact, given g, differential graded Lie algebra structures on g can be charac-
terized in terms of dg coalgebra structures on the symmetric coalgebra Sc[s(g)]
on the suspension s(g) of g: They correspond precisely to the dg coalgebra
structures determined by a linear term, the differential, and a quadratic term,
the bracket. This allows for immediate generalization: An sh-Lie algebra is a
vector space g together with a coalgebra differential on the symmetric coalge-
bra Sc[s(g)] on the suspension s(g) of g. The formality conjecture, as formu-
lated and established by Kontsevich [Kon97], says that (1) extends to a Lie
algebra twisting cochain

τ : Sc[s2(ΛAL)] −→ s(Hoch(A)). (2)

Here τ being a twisting cochain means that τ satisfies the deformation or
Maurer–Cartan equation. Such a Lie algebra twisting cochain furnishes an
sh-map from the ordinary (differential) graded Lie algebra s(ΛAL) to the
ordinary differential graded Lie algebra s(Hoch(A)).

The twisting cochain τ has homogeneous constituents τj , τ1 being essen-
tially the above morphism (1). The higher terms τj (j ≥ 2) are an instance
of higher homotopies, and τ is an instance of an sh-map, a term created by
Jim Stasheff, inspired by terminology introduced by Sugarawa [Su60/61], see
Section 4 below; here “sh” stands for “strongly homotopic.” Thus, without
having the language and notation of higher homotopies and that of defor-
mations at his disposal – remarkably, both Murray Gerstenhaber and Jim
Stasheff are behind the scene at this point and both from 1963 –Kontsevich
would not even have been able to phrase the formality conjecture. This con-
firms a variant of an observation which, with a grain of salt, reads thus:
Mathematics consists in continuous and discreet development of language and
notation.1

A key observation, advocated by Jim Stasheff from early on, is this: Even
though we start with strict objects, an sh-map between them may lead to
new insight, not necessarily available from ordinary strict maps. This kind of
observation has been successfully exploited in rational homotopy theory for
decades. Kontsevich noticed its significance in an area at first independent of
rational homotopy and, furthermore, managed to exhibit a particular sh-map
which establishes the formality conjecture.

R. Thom had raised the issue of existence of a graded commutative dif-
ferential graded algebra of cochains on a space [Th54/55]. This prompted the
1 In the early 1970s, when I was a student at the ETH Zürich, in lectures of

Prof. K. Chandrasekharan, I learned the following B. Russell quote: “What is
mathematics? Mathematics is a continuous and discreet science.”
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development of rational homotopy, starting notably with D. Quillen [Qu69]
and D. Sullivan [Su78]. A space whose rational (or real) cochain algebra is
sh-equivalent to its cohomology algebra is said to be formal , the term formal
referring to the fact that the rational homotopy type is then a formal conse-
quence of the structure of the cohomology ring. The term formality conjecture
derives from this tradition.

The statement of the formality conjecture implies, as we know, that every
Poisson bracket on a smooth manifold admits a deformation quantization.

3 Early History

One of the origins of homotopy is Gauß’ analytic expression for the linking
number of two closed curves (1833). One of the origins of higher homotopies
is the idea of a classifying space; this idea goes again back to Gauß (1828).
Another origin of higher homotopies is the usage of resolutions. It is a common
belief, perhaps, that resolutions go back at least to Hilbert’s exploration of
syzygies [Hi1890]. Hilbert studied syzygies in order to show that the generat-
ing function for the number of invariants of each degree is a rational function.
He also showed that, for a homogeneous ideal I of a polynomial ring S, the
“number of independent linear conditions for a form of degree d in S to lie
in I” is a polynomial function of d. However, this is not the entire story.
The problem of counting the number of conditions had already been con-
sidered for some time; it arose both in projective geometry and in invariant
theory. A general statement of the problem, with a clear understanding of
the role of syzygies – but without the word, introduced a few years later by
Sylvester (1814–1897) [Sy1853] – is given by Cayley (1821–1895) [Ca1848].
In fact, in a sense, Cayley somewhat develops what is nowadays referred to as
the Koszul resolution [Kos50] more than 100 years before Koszul. The termi-
nology homotopy was apparently created by H. Poincaré (1895). Poincaré also
introduced the familiar loop composition. Thus we see that, in the historical
perspective, Jim Stasheff is in excellent company.

4 Various 20th-century higher homotopies

Prompted by the failure of the Alexander–Whitney multiplication of cocy-
cles to be commutative, Steenrod developed the system of ∪i-products [St47].
These induce the squaring operations which, in turn, measure this failure
of commutativity in a coherent manner. The nontriviality of these operations
implies in particular that, over the integers, there is no way to introduce a dif-
ferential graded commutative algebra of cochains on a space. The ∪i-products
entailed the development of s(trongly)h(omotopy)c(ommutative) structures as
well as that of Steenrod operations.

An A∞-structure may be described as a system of higher homotopies to-
gether with suitable coherence conditions. Massey products [Mas58] may be
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seen as invariants of certain A∞-structures. An elementary example arises
from the familiar Borromean rings, consisting of three circles which are pair-
wise unlinked but all together are linked. The name “Borromean” derives
from their appearance in the coat of arms of the house of the aristocratic
Borromean family in northern Italy. If we regard these rings as situated in
the 3-sphere, then the cohomology ring of the complement is a trivial algebra,
but there is a Massey product of three variables detecting the simultaneous
linking of all three circles.

At the time Massey products were isolated, Jim Stasheff was a graduate
student at Princeton. His advisor J. Moore suggested he look at the problem
of determining when a cohomology class of a based loop space ΩX was a
suspension or a loop class , i.e., came from a cohomology class of X . In pur-
suing this question, Stasheff was led to work of Sugawara [Su57], who had a
recognition principle for characterizing loop spaces up to homotopy type.

The ordinary loop multiplication on ΩX gives it the structure of an
H-space that is associative up to homotopy. Moore’s version of the loop space
shows that there is a based loop space which is homotopic to the familiar one
for which the loop multiplication is strictly associative. The conclusion is that
associativity is not a homotopy invariant property; we owe Jim a complete
understanding of the homotopy invariance properties of associativity, and his
solution furnishes a clean recognition principle for loop spaces and, in fact,
for an entire hierarchy of spaces between loop spaces and H-spaces, the loop
spaces being spaces which admit a classifying space.

Specifically, Stasheff defined a nested sequence of homotopy associativity
conditions and called a space an An-space if it satisfies the nth condition.
Every space is an A1-space, an H-space is an A2-space, and every homotopy
associative H-space is A3. An A∞-space has the homotopy type of a loop
space.

A. Dold and R. Lashof [DoLa59] generalized to associative H-spaces Mil-
nor’s construction of a classifying space for a topological group [Mi56]. Jim
Stasheff extended the Dold–Lashof construction to A∞-spaces through his
study of homotopy associativity of higher order: an A∞-structure precisely
gives a classifying space. All this was worked out in his thesis, published as
[St63]. Sugawara had introduced conditions for a group-like space, see the
definition in terms of the conditions 3.1–3.3 on p. 129 of [Su57] to be im-
posed upon two maps related by what Sugawara had called an iteration of
the standard relations. Altering the appropriate part of these conditions to
suit the case of associativity more precisely and naturally led Jim Stasheff,
apparently prompted by F. Adams, to isolating a now familiar family of poly-
hedra, that of associahedra. We shall see below that these polyhedra actually
constitute an operad . Moreover, following Sugawara [Su60/61], Stasheff de-
fined maps of An-spaces, referred to as An-maps, which are special kinds
of H-maps [St63] (Def. 4.4 p. 298); these maps are homotopy multiplicative
in a strong sense. Via Sugawara’s work, An-maps are related to the Dold
and Lashof construction. When the homotopies defining an An-map exist for
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all n, the corresponding map is strongly homotopy multiplicative in the sense
of Sugawara [Su60/61] (p. 259). Thus the sh-terminology we are so familiar
with nowadays was born.

The algebraic analogue of an An-space in the category of algebras is an
An-algebra, the case n =∞ being included here. The original and motivating
example was provided by the singular chains on the based loop space of a
space. This notion, and variants thereof, has found many applications. One
such variant, L∞-algebras, has already been mentioned. A key observation
here is that A∞-structures behave correctly with respect to homotopy, which
is not the case for strict structures. What corresponds to the classifying space
construction in geometry is now the bar tilde construction. Inside the bar tilde
construction, Massey products show up which determine the differentials in
the resulting bar construction spectral sequence. Stasheff referred to these
operations as Yessam operations. History relates that once, at the end of a
talk of Jim’s, S. Mac Lane asked the question: Who was Yessam?

Let me recall a warning, one of Jim’s favorite warnings in this context:
When the differential of an A∞-algebra is zero, the conditions force the algebra
to be strictly associative but there may still be nontrivial higher operations
encapsulating additional information, as the example of the Borromean rings
already shows where the nontriviality of the Massey product reflects the triple
linking.

Jim Stasheff continued to work in the realm of fibrations. There is, for
example, a notion of topological parallel transport developed by him. A recent
joint article of J. Stasheff and J. Wirth entitled Homotopy transition cocy-
cles [StWi] reworks and extends J. Wirth’s thesis written in 1965 under the
supervision of J. Stasheff.

5 Homological perturbations

Homological perturbation theory (HPT) has nowadays become a standard tool
to construct and handle A∞-structures. The term “homological perturbation”
is apparently due to J. Milgram [GuMi70]. The basic HPT-notion, that of
contraction, was introduced in Section 12 of [EML53/54]: A contraction

(X
∇−−−−→←−−−−
π

Y, h)

consists of chain complexes X and Y , chain maps ∇ : X → Y and π : Y → X ,
and a degree 1 morphism h : Y → Y such that

π∇ = Id, ∇π − Id = dh + hd, h∇ = 0, πh = 0, hh = 0.

The notion of “recursive structure of triangular complexes” in Section 5 [He54]
is also an example of what was later identified as a perturbation. The “per-
turbation lemma” [Gu72] is lurking behind the formulas in Chapter II of
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Section 1 of [Sh62] and seems to have first been made explicit by M. Barrat
(unpublished). The first instance known to us where it appeared in print is
[Br64]. Jim Stasheff collaborated with various colleagues on questions related
with homological perturbation theory [GuSt86], [GuLaSt90], [GuLaSt91] in-
cluding myself [HuSt02]. An issue dealt with in these papers, as well as in
my joint paper [HuKa91] with T. Kadeishvili, is that of compatibility of the
perturbation constructions with algebraic structure. This issue actually shows
up when one tries to construct e.g., models for differential graded algebras,
cf. also [Hu04b].

A homological algebra and higher homotopies tradition was created as well
by Berikashvili and his students in Georgia (at the time part of the USSR).
More precise comments about the historical development until the mid eighties
may be found in the article [HuKa91], and some specific comments about the
Georgian tradition in [Hu99].

In the articles [Hu89a], [Hu89b], [Hu89c], [Hu91], I explored the compati-
bility of the perturbation constructions with algebraic structure and developed
suitable algebraic HPT-constructions to exploit A∞-modules arising in group
cohomology. In this vein, I constructed suitable free resolutions from which I
was able to do explicit numerical calculations in group cohomology which until
today still cannot be done by other methods. In particular, spectral sequences
show up which do not collapse from E2. These results illustrate a typical phe-
nomenon: Whenever a spectral sequence arises from a certain mathematical
structure, there is, perhaps, a certain strong homotopy structure lurking be-
hind, and the spectral sequence is an invariant thereof. The higher homotopy
structure is then somewhat finer than the spectral sequence itself. It is also
worthwhile noting that the “tensor trick”, developed in [Hu86], may be seen
as a predecessor of the method of “labelled rooted trees”.

6 Quantum groups

The issues of associativity and coassociativity, as clarified by Jim Stasheff,
play a major role in the theory of quantum groups and variants thereof, e.g.,
quasi-Hopf algebras. Suffice it to mention here that Drinfel’d has introduced
a notion of quasi-Hopf algebra in which coassociativity of the diagonal is
modified in a way in which the pentagon condition plays a dominant role,
analogous to the hexagonal Yang–Baxter equation replacement for cocom-
mutativity. Now, given a quasi-Hopf algebra A, the quasi-Hopf structure
induces a multiplication BC × BC −→ BC on the classifying space BC of the
category C of A-modules, and the quasi-Hopficity says that this multiplication
is homotopy associative. More details and suitable references may be found
in [St90] and [St92].
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7 Operads

The notion of An-spaces and the clarity they provide for the recognition
problem for topological groups became the basis for the development of ho-
motopy invariant algebraic structures. In particular, the recognition problem
for infinite loop spaces and the simultaneous interest in coherence properties
in categories led to the idea of an operad [MacL65], [May72]. With hindsight
we recognize that a space is an A∞-space if and only if it is an algebra over a
suitably defined operad, the nonsymmetric operad K = {Kn} of associahedra.
In fact, this is the main result of Stasheff’s thesis, though not spelled out in
this language:

A connected space Y of the homotopy type of a CW-complex has the ho-
motopy type of a loop space if and only if there exist maps Kn × Y n → Y
which fit together to make Y an algebra over the operad K. In fact, Y then
has the homotopy type of the space ΩX where X is constructed as a quotient
of

∐
Kn × Y n. This brings the generalized classifying space construction to

the fore.
Likewise a graded object is an A∞-algebra if and only if it is an algebra

over a suitably defined operad, and an L∞-algebra can be characterized in
the same manner as well. In recent years many more new phenomena and
structures and, in particular, applications of operads have been found, in
particular in the theory of moduli spaces and in mathematical physics.

8 Deformation theory

There is an obvious formal relationship between homological perturbations
and deformation theory but the relationship is actually much more profound:
In [HaSt79], Steve Halperin and Jim Stasheff developed a procedure by means
of which the classification of rational homotopy equivalences inducing a fixed
cohomology algebra isomorphism can be achieved. Moreover, one can explore
the rational homotopy types with a fixed cohomology algebra by studying
perturbations of a free differential graded commutative model by means of
techniques from deformation theory. This was initiated by M. Schlessinger and
J. Stasheff [SchlSt]. A related and independent development, phrased in terms
of what is called the functor D, is due to N. Berikashvili and his students at
Georgia, notably T. Kadeishvili and S. Saneblidze. Some details and references
are given in [Hu99]. A third approach in which only the underlying graded
vector space was fixed is due to Y. Felix [Fel79].

Prompted by a paper of Barannikov and Kontsevich [BaKo98], in [HuSt02],
Jim Stasheff and I developed an approach to constructing solutions of the mas-
ter equation by means of techniques from HPT. In that paper, we restricted
attention to contractions of a differential graded Lie algebra onto its homology.
More recently, I extended this approach to the situation of a contraction of a
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differential graded Lie algebra onto a general chain complex and thereby es-
tablished the perturbation lemma for differential graded Lie algebras [Hu07a].
Further, I generalized the statement of the perturbation lemma to arbitrary
sh-Lie algebras [Hu07b].

9 Strings

Operads and sh-Lie algebras show up naturally in string and conformal field
theories, and Jim Stasheff contributed to this area as well. Some details and
more references may be found in [St97b].

10 Cohomological physics

One of Jim’s long-term interests is physics. Due to his efforts it is, perhaps, no
longer a surprise that some structures of interest in physics can be explored
by means of tools going back to topology, including graded Lie algebras and
homological perturbations. Jim contributed to anomalies [St85] and invested
time and effort to unravel, for example, the structure behind a field theory
construction which originally goes back to Batalin, Fradkin, and Vilkovisky.
The term “cohomological physics” was created by Jim. See in particular [St96]
and [St97a] for details.

11 Higher homotopies, homological perturbations,
and the working mathematician

I have already explained how higher homotopies and homological perturba-
tions may be used to solve problems phrased in language entirely different
from that of higher homotopies and HPT. Higher homotopies and HPT-
constructions occur implicitly in a number of other situations in ordinary
mathematics where they are at first not even visible. I can only mention some
examples; these are certainly not exhaustive.

• Kodaira–Nirenberg–Spencer: Deformations of complex structures [KNS58];
• Frölicher spectral sequence of a complex manifold [Hu00];
• Toledo–Tong: Parametrix [ToTo76];
• Fedosov: Deformation quantization [Fed94];
• Whitney, Gugenheim: Extension of geometric integration to a contrac-

tion [Gu76], [Wh57]. Whitney’s geometric integration theory laid some of
the groundwork for Sullivan’s theory of rational differential forms quoted
above. The upshot of Gugenheim’s contribution here is that the integra-
tion map in de Rham theory is sh-multiplicative, the de Rham algebra
being an ordinary graded commutative algebra. This situation is formally
the same as that of the formality conjecture explained above;
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• Huebschmann: Foliations [Hu04a]; in this paper, the requisite higher ho-
motopies are described in terms of a generalized Maurer–Cartan algebra;

• Huebschmann: Equivariant cohomology and Koszul duality [Hu04c],
[Hu04d];

• Operads; see e.g., the conference proceedings which contain the article
[St97b].
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