
Chapter 2
An Information-Theoretic Upper Bound
on Planar Graphs Using Well-Orderly Maps

Nicolas Bonichon, Cyril Gavoille, and Nicolas Hanusse

Abstract This chapter deals with compressed coding of graphs. We focus on planar
graphs, a widely studied class of graphs. A planar graph is a graph that admits an
embedding in the plane without edge crossings. Planar maps (class of embeddings
of a planar graph) are easier to study than planar graphs, but as a planar graph may
admit an exponential number of maps, they give little information on graphs. In
order to give an information-theoretic upper bound on planar graphs, we introduce
a definition of a quasi-canonical embedding for planar graphs: well-orderly maps.
This appears to be an useful tool to study and encode planar graphs. We present
upper bounds on the number of unlabeled1 planar graphs and on the number of
edges in a random planar graph. We also present an algorithm to compute well-
orderly maps and implying an efficient coding of planar graphs.
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1 Introduction

In graph theory, a planar graph is a graph which can be embedded in the plane,
i.e., it can be drawn on the plane in such a way that its edges intersect only at their
endpoints. A planar graph drawn in the plane without edge intersections is called a

1Nodes and edges are not assumed to be labeled.
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planar map or a planar embedding of the graph. The class of planar graphs is one of
the most studied graphs.

How much information can contain a simple planar graph of n nodes? The
question is highly related to the number of planar graphs. Counting the number
of (non-isomorphic) planar graphs with n nodes is a well-known and long-standing
unsolved graph-enumeration problem (cf. [24]). There is no known close formula,
neither asymptotic nor even an asymptotic on the logarithm of this number. Any
asymptotic on the logarithm would give a bound on the number of independent
random bits needed to generate a planar graph uniformly at random (but not
necessary in polynomial time).

Random combinatorial object generation is an important activity regarding
average case complexity analysis of algorithms and testing algorithms on typical in-
stances. Unlike random graphs (the Erdös–Rényi graph Model), still little is known
about random planar graphs. Indeed adding an edge in a planar graph highly depends
on the location of all previous edges. Random planar maps, i.e., plane embeddings
of planar graphs, have been investigated more successfully. Schaeffer [35] and then
Banderier et al. [2] have showed how to generate in polynomial time several planar
map families, e.g., 3-connected planar maps. Unfortunately, this generating does
not give much information about random planar graphs because there are many
ways to embed a planar graph into the plane. On the positive side, some families of
planar graphs support efficient random generation: trees [1], maximal outerplanar
graphs [3, 14], and more recently labeled and unlabeled outerplanar graphs [4].

Besides the combinatorial aspect and random generation, an important attention
is given in Computer Science to efficiently represent discrete objects. Efficiently
means that the representation is succinct, i.e., the storage of these objects uses few
bits, and that the time to compute such representation is polynomial in their size.
Fast manipulation of the so-encoded objects and easy access to a part of the code
are also desirable properties. At least two scopes of applications of high interests are
concerned with planar graph representation: Computer Graphics and Networking.

Surface discretization of a 3D object outputs a list of 3D coordinates and a set
of adjacency relations. In the case of convex objects, the set of adjacency relations
is an unlabeled planar graph. In general, small degree faces are used for surface
discretization, with triangle or quad meshes. Then, a compressor is applied on the
planar graph. Performances are expressed averaging the number of bits per edge or
per node. They are evaluated among a benchmark of standard examples [21], due to
the lack of “good” random planar graph generator, or typical instance generator.
For example, King and Rossignac [22, 34] gave a triangulation compressor that
guarantees 3:67 bits per node, the best possible rate being log2.256=27/ � 3:24

bits per node from Tutte’s enumerative formula [39].
Routing table design for a network has been investigated in the case of planar

networks [15, 16, 26, 37]. The underlying graph of the network is preprocessed to
optimize routing tables, a data structure dedicated to each node in charge of finding
the next output port given the destination address of an incoming message. The
main objective is to minimize the size of the routing tables while maintaining routes
as short as possible. The strategy used by Gavoille and Hanusse [16] based on a
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k-page embedding, and then improved by Lu [26] with orderly spanning trees,
demonstrates that a compact planar graph representation helps for the design of
compact routing tables, especially when shortest paths are required.

1.1 Related Works

Succinct representation of n-node m-edge planar graphs has a long history.
Turán [38] pioneered a 4m bit encoding, which has been improved later by Keeler
and Westbrook [20] to 3:58m. Munro and Raman [29] then proposed a 2m C 8n bit
encoding based on the 4-page embedding of planar graphs (see [40]). In a series of
articles, Lu et al. [8,11] refined the coding to 4m=3C5n, thanks to orderly spanning
trees, a generalization of Schnyder’s trees [36]. Independently, codings have been
proposed for triangulations, where m D 3n�6. A 4n bit encoding has been obtained
by several authors [5,11,34], interestingly with rather different techniques, and then
improved by the Rossignac’s Edgebreaker [22], who guaranteed 3:67n bits for
triangulations and computable in O.n/ time. Actually, He et al. [19] showed that,
in O.n log n/ time, a space optimal encoding for triangulations and for unlabeled
planar graphs can be achieved. Hence, a O.n log n/ time and a 3:24n bit encoder
for triangulations exist. For that, they use a recursive separator decomposition of
the graph, and an exponential coding algorithm for the very end components of sub-
logarithmic size. However, the time complexity hidden in the big-O notation could
be of limited use in practice. To implement the encoder, one needs, for instance,
to implement planar isomorphism and Lipton–Tarjan planar separator [23]. The
time complexity has been recently improved to O.n/ for planar graphs by Lu [27].
Although the length of the coding is optimal, the approach of [19, 27] does not give
any explicit bound of the number of bits used in the representation.

If we are interested only in the information-theoretic bound of planar graphs or
in statistical properties of planar graphs (what a random planar graph looks like:
number of edges, connectivity, etc.), other tools can be used. Denise et al. [12]
specified a Markov chain on the space of all labeled planar graphs whose limit
distribution is the uniform distribution. Their experiments show that random planar
graphs have approximately 2n edges, and are connected but not 2-connected.
Although the Markov chain converges to the uniform distribution, it is not proved
whether this Markov chain becomes close enough to the uniform distribution after a
polynomial number of steps. It is, however, proved that almost all labeled planar
graphs have at least 1:5n edges, and that the number p.n/ of unlabeled planar
graphs satisfies that 1

n
log2 p.n/ tends to a constant � such that log2.256=27/ 6

� 6 log2.256=27/ C 3. The bounds on � easily derive from Tutte’s formula [39]:
Triangulations are planar graphs, and every planar graph is a subgraph of a
triangulation, thus having 23n�6 possible subsets of edges. There are also no more
than nŠ2�nCo.n/ labeled planar graphs as there are at most nŠ ways to label the nodes
of a graph.
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Osthus et al. [31] investigated triangulations containing any planar graph, and
they showed that there is no more than nŠ25:22nCo.n/ labeled planar graphs. Osthus
et al. [31] also showed that almost all labeled planar graphs have at most 2:56n

edges, and that almost all unlabeled planar graphs have at most 2:69n edges.
A lower bound of 13n=7 � 1:85n has been obtained by Gerke and McDiarmid [17],
improving the 1:5n lower bound of the expected number of edges of [12]. Properties
of random planar graphs have also been investigated in [28].

Gimenez and Noy [18] show that the number of edges of a random labeled planar
graph is asymptotically normal and the mean is 2:213n and variance is 0:4303n.
Unlike general graphs, labeled and unlabeled planar graphs do not have the same
growing rate (up to the nŠ term) as proved in [28]. So upper bounds on labeled
planar graphs do not transfer to upper bounds on unlabeled planar graphs, but the
reverse is true.

Using generating function techniques, Noy and Gimenez [18] proved that the
number of labeled connected planar graphs tends to nŠ24:767nCO.log n/. The number of
simple planar maps is asymptotic to 25:098nCO.log n/ (cf. algebraic generating function
presented in [25]) providing an upper bound for unlabeled planar graphs.

1.2 Presented Results

In this chapter, we present a new representation of planar graphs called well-orderly
maps. Starting from a planar graph, we show how to build and encode a well-orderly
map in linear time. Our construction leads to counting results about planar graphs.
More precisely, we show an upper bound of 24:91nCo.n/ on p.n/, the number of
unlabeled planar graphs with n nodes.

Since our upper bound can be parameterized with the number of edges, and
using the lower bound of [18], we are able to show that almost all unlabeled graphs
have at least 1:85n edges and at most 2:44n edges, setting a new lower bound and
improving the 2:69n upper bound of [31]. The presented results are a synthesis of
results presented in [6, 7].

1.3 Outline of the Chapter

Let us sketch our technique. Since the number of useful combinatorial objects are
numerous, we first briefly describe in Fig. 2.1 the different steps toward the compact
coding of planar graphs. Our real starting point is a planar map, sometimes called
planar embedding. To get a planar map from a planar graph, well-known linear time
algorithm can be used (see for instance [9]). Roughly speaking, we first present a
very particular embedding of a planar graph called well-orderly map and show how
to encode it using combinatorial tools like bijective combinatorics and a specific
compression technic of binary strings.
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Planar graph

Planar map

5+1=6 binary strings

6 compressed binary strings

GRAPH THEORY AND  GRAPH  ALGORITHMIC COMBINATORICS  AND  BINARY TEXT COMPRESSION

Balanced trees with n−2 inner vertices
Super−triangulation
= Minimal Realizer
= 3 well−orderly trees

Well−orderly map

Fig. 2.1 Roadmap toward the compact coding of a planar graph

A First Upper Bound Based on Triangulation

A natural approach to represent an n-node planar graph G is to consider a
triangulation of G, i.e., a supergraph S of G such that S is planar, has n nodes
and 3n � 6 edges. Then, G can be obtained by coding S and a set MS of edges such
that E.S/ n MS D E.G/. This way of representing a planar graph is suggested by
the .log2.256=27/ C 3/n D 6:24n bit upper bound of [12] mentioned above.

Introduction of Well-Orderly Maps and Super-Triangulation

To obtain a representation more compact than 6:24n bits, we need to carefully
construct S . In particular, crucial steps are the way we embed G into the plane,
and the way we triangulate its faces. In Sect. 2.2, we introduce a specific embedding
of G called a well-orderly map, and we show that it can be computed in linear
time. Given a well-orderly map, we present how to build the supergraph S of G,
called hereafter super-triangulation and defined in Sect. 2. More precisely, a super-
triangulation S has the property that for a given node v 2 S only, one can perform
in a unique manner a traversal of S by following a specific spanning tree T rooted in
v, called a well-orderly tree, such that T is contained in G. Hence, given the super-
triangulation S of G, MS is of cardinality at most .3n � 6/ � .n � 1/ D 2n � 5, and
the edges of MS can be described among the possible edges of S n T only, i.e., with
at most 2n bits. This already provides a .log2.256=27/ C 2/n D 5:24n bit upper
bound. Observe that the case G not connected can be easily transformed (in linear
time) into a new connected graph QG, e.g., by linking all the connected components
of G into a single node (see Sect. 4 for more details).

Using Minimal Realizer Properties

The next step consists in encoding in a very compact way the super-triangulation.
In Sect. 3.1, we represent the super-triangulation S by a realizer, that is a partition
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of the edges into three trees .T0; T1; T2/ (see Schnyder’s trees [36]). In our case, the
partition has specific properties and corresponds to minimal realizer. We also show
how to uniquely recover the three trees from such a super-triangulation. Different
properties of minimal realizer are useful since the knowledge of two well-orderly
trees implies a canonical description of the third one and can exploited to save bits.
At this point, the following properties are only given as an illustration:

• Every edge .u; v/ of S such that (1) u is the parent of v in T1 and (2) u is an inner
node in T2, must belong to G. This significantly saves bits in the coding of MS

since many edges of G can be guessed from S .
• An extra property is that two nodes belonging to the same branch of T2 have

the same parent in T1 (a branch is a maximal set of related nodes obtained
in a clockwise depth-first search of the tree, and such that a node belongs to
only one branch at the time, see Sect. 3). This latter property simplifies a lot the
representation of S . Knowing T2, T1 does not need to be fully represented. Only
one relevant edge per branch of T2 is enough. As any tree of a realizer can be
deduced from the two others, the representation of S can be compacted in a very
efficient way, storing for instance T2 and the relevant edges of T1.

Combining such properties and the optimal coding of realizer using the bijection of
Poulalhon and Schaeffer [33] (see also Theorem 2), we get an encoding of super-
triangulation presented in [7].

Compact Coding in Binary Strings

Finally, we show in Sect. 3 that the explicit representation of G is done with six
binary strings of different density (namely the ratio between the number of “ones”
it contains and its length): five for S and one for MS . We compact each string with
a variant of the Pagh’s compressor [32]. This allows to reach an optimal entropy
coding, i.e., with log2

�
n
k

�Co.n/ bits for an n-bit string of k ones.2 If we parametrize
the number of branches of T2 (or equivalently its number of leaves), an entropy
analysis shows that 4:91n bits are enough to represent G.

2 Embedding and Triangulating Algorithms

A plane embedding of a graph, or shortly a plane graph, is a mapping of each node
to a point of the plane and of each edge to the continuous curve joining the two ends
of this edge such that edges do not cross except, possibly, on a common extremity.
A graph that has a plane embedding is a planar graph.

2The original compressor runs in expected linear time. We give in this chapter a simpler guaranteed
linear time construction with asymptotically the same performances.
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Fig. 2.2 Relationship
between realizer and orderly
tree: (a) edge-orientation rule
around a node for a realizer,
and (b) blocks ordering
around an orderly node (T is
represented by directed edges
because the edge .v; w/ of T1)
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In this chapter, we deal with simple (no loops and no multi-edges) and undirected
graphs. If we cut the plane along the edges, the remainder falls into connected
regions of the plane, called faces. Each plane graph has a unique unbounded face,
called the outerface. The boundary of a face is the set of incident edges. The interior
edges are the edges non-incident to the boundary of the outerface, similarly for
interior nodes. Precise definitions can be founded for instance in [13, 30].

A triangulation is a plane embedding of a maximal planar graph, that is a planar
graph with n nodes and 3n � 6 edges. There is only one way to embed in the plane
(up to a continuous transformation), a maximal planar graph whose three nodes are
chosen to lie on the outerface.

2.1 Well-Orderly Tree, Realizer and Super-Triangulation

Let T be a rooted spanning tree of a plane graph H . Two nodes are unrelated if
neither of them is an ancestor of the other in T . An edge of H is unrelated if its
endpoints are unrelated.

We introduce well-orderly trees, a special case of orderly spanning trees of
Chiang, Lin, and Lu in [8], referred as simply orderly trees later. Let v1; : : : ; vn be
the clockwise preordering of the nodes in T (nodes ordered by their first visit in a
clockwise traversal of the tree T ). Recall that a node vi is orderly in H with respect
to T if the incident edges of vi in H form the following four blocks (possibly empty
set of vertices) in clockwise order around vi (see Fig. 2.2b):

• BP .vi /: the edge incident to the parent of vi

• B<.vi /: unrelated edges incident to nodes vj with j < i

• BC .vi /: edges incident to the children of vi

• B>.vi /: unrelated edges incident to nodes vj with j > i

A node vi is well orderly in H with respect to T if it is orderly, and if:

• The clockwise first edge .vi ; vj / 2 B>.vi /, if it exists, verifies that the parent of
vj is an ancestor of vi (in T ).

In other words, if .vi ; vj / the first edge of B>.vi /, then the parent of vj is an
ancestor of vi in T .
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Fig. 2.3 Two realizers for a triangulation. The tree T 0 rooted in r0 (the tree with bold edges
augmented with the edges .r0; r1/ and .r0; r2/) is well orderly in (b), and simply orderly in (a) (the
node v is not well orderly: .v; w/ is the clockwise first edge of B>.v/ and the parent of t is not an
ancestor of v). The clockwise preordering of T 0 in (a) is r0; r2; v; u; t; w; r1

Definition 1 (well-orderly tree). T is a well-orderly tree of H if all the nodes of T

are well orderly in H , and if the root of T belongs to the boundary of the outerface
of H (similarly for simply orderly tree).

Note that an orderly tree (simply or well orderly) is necessarily a spanning tree.
Observe also that the incident edges in H of a node of T are either in T or unrelated.
In particular, if an edge of H is related (i.e., one endpoint is a descendant of the other
one in T ), then it has to belong to T . It follows that all the neighbors in H of the
root of T are in T .

Definition 2 (well-orderly map). A plane graph H is a well-orderly map rooted
in v if H has a well-orderly tree of root v.

A convenient way to manipulate triangulations is to deal with realizers.

Definition 3 (realizer). A realizer of a triangulation is a partition of its interior
edges in three sets T0, T1, T2 of directed edges such that for each interior node v it
holds (see Fig. 2.2a):

• The clockwise order of the edges incident with v is: leaving in T0, entering in T1,
leaving in T2, entering in T0, leaving in T1, and entering in T2.

• There is exactly one leaving edge incident with v in T0, T1, and T2.

Observe that if .T0; T1; T2/ is a realizer, then .T1; T2; T0/ and .T2; T0; T1/ are
also realizers. Cyclic permutations of a realizer are not in general the only distinct
realizers of a given triangulation. Figure 2.3 depicts two realizers for a same
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triangulation. Actually, the number of n-node realizers is asymptotically 24nCO.log n/

(cf. [5]), whereas the number of triangulations is only .256=27/nCO.log n/ (cf. [39]).
Schnyder showed in [36] that each set Ti of a realizer induces a tree rooted

in one node of the outerface. Moreover, he described a linear time algorithm to
compute such trees. Hereafter, if R D .T0; T1; T2/ is a realizer, then for notational
convenience R also denotes the underlying triangulation.

There are strong relationships between realizers and orderly trees (see Fig. 2.2).
In every realizer R D .T0; T1; T2/, T0 (and by cyclic permutation each Ti ) is an
orderly tree of R n fr1; r2g, where ri denotes the root of Ti . Indeed, the incident
edges with any node v that are not in T0 (thus that are unrelated with T0) are either
clockwise before the entering edges of T0 or clockwise after. Conversely, let T be
an orderly tree of a triangulation. Observe that the root of T has at least two children
(because its root is of degree at least two and all its neighbors must be in T ), and
thus T has at least two leaves. A realizer .T0; T1; T2/ can be obtained from T setting
T0 D T n fr1; r2g, where r1; r2 are, respectively, the clockwise last and first leaf of
T – actually it is not difficult to see that ri is the root of Ti – and setting, for all inner
nodes v, that the clockwise first edge of B>.v/ and the clockwise last edge of B<.v/

belong to T1 and T2, respectively (as illustrated in Fig. 2.2b). Observe that this latter
assignment for T1 and T2 is the only possible realizer with T0 D T n fr1; r2g.

For each tree Ti of a realizer, we denote by T i the tree composed of Ti augmented
with the two edges of the outerface incident to the root of Ti . A node of a rooted
tree is inner if it is neither the root nor a leaf. For every non-root node u 2 Ti , we
denote by pi.u/ the parent of u in Ti .

Definition 4 (super-triangulation). A realizer S D .T0; T1; T2/ is a super-
triangulation of a graph G if:

1. V.S/ D V.G/ and E.G/ � E.S/

2. E.T0/ � E.G/

3. T 0 is a well-orderly tree of S

4. For every inner node v of T2, .v; p1.v// 2 E.G/

Intuitively, a super-triangulation of a graph G is a specific triangulation of
the faces of a specific plane embedding of G. Before exploring more deeply the
properties of super-triangulations, observe that, from Definition 4, the tree T0 does
not span in general the graph G (cf. example in Fig. 2.4). Moreover, a non-connected
graph may have a super-triangulation. For example, if G has an edge and two
isolated nodes, in that case, E.T0/ D E.G/ is possible.

Theorem 1. Every connected planar graph with at least three nodes has a super-
triangulation, computable in linear time.

In particular, Theorem 1 implies that every connected planar graph has an
embedding which is a well-orderly map.
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Fig. 2.4 A planar graph G (a), a well-orderly map of G rooted at v1 with its well-orderly tree
(bold edges) (b), and a super-triangulation of G (c) (dotted edges are non-edges of G)

2.2 Computing a Super-Triangulation from a Well-Orderly Map

In order to prove Theorem 1, we need the next three lemmas. The proofs of these
lemmas are given after the proof of Theorem 1.

Lemma 1. Every well-orderly map rooted in some node v has a unique well-orderly
tree of root v.

Lemma 2. Let G be a connected planar graph, and let v be any node of G. Then G

has a well-orderly map of root v. Moreover, well-orderly trees and the well-orderly
map can be computed in linear time.

In [8], a result similar to Lemma 2 about simply orderly trees and embeddings
is proved. However, the extra condition reduces much more the choice of the
embedding for the input planar graph and leads to the uniqueness of the tree
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(Lemma 1). In the case of simply orderly embeddings, several orderly trees may
exist (cf. Fig. 2.3 where both orderly trees T 0 span the same triangulation). Actually,
the uniqueness concerns also the way to triangulate the faces of well-orderly maps,
thanks to the next lemma.

Lemma 3. Let T be the well-orderly tree of H rooted in some node r0, and assume
that T has at least two leaves. Let r2 and r1 be the clockwise first and last leaves
of T , respectively. Then, there is a unique super-triangulation .T0; T1; T2/ of the
underlying graph of H , preserving the embedding H , and such that each Ti has
root ri . Moreover, T0 D T n fr1; r2g and the super-triangulation are computable in
linear time.

First of all, let us show that Lemmas 1, 2, and 3 imply Theorem 1.

Proof of Theorem 1. Consider a connected planar graph G with at least three nodes,
and let v be any node of G with the only constraint that if G is a path, then v is
chosen to be of degree two (this is feasible since G has at least three nodes). Thanks
to Lemma 2, one can compute in linear time a well-orderly map H of G and a well-
orderly tree T rooted in v. Let us show that T has at least two leaves r1; r2 lying on
the outerface of H , r2 traversed before r1 in a clockwise preordering of T .

We show that T cannot be a chain, and thus has a node with at least two children
(and thus has two leaves). If G is a path, then T rooted in a node of degree two is
not a chain. Assume that G is not a path, but T is a chain. Then there exists an edge
of G that is not in T . However, all pairs of nodes of a chain are related, thus must
belong to T . Therefore, T is not a chain.

Lemma 3 can be therefore applied, and one can compute for G a super-
triangulation in linear time. ut
Proof of Lemma 1. Assume that H has two well-orderly trees T; T 0 rooted in v. Let
v1; : : : ; vn (resp. v0

1; : : : ; v0
n) be the clockwise preordering of the nodes of T (resp.

T 0). Let vi be the node such that the neighbors of vi in T and in T 0 differ, and such
that i is minimum. We have vt D v0

t for all t 6 i , and BC .vi / ¤ B 0
C .vi /, where

B 0
C .vi / denotes the children edge block around vi in T 0.
W.l.o.g. assume jBC .vi /j 6 jB 0

C .vi /j (the symmetric case is proved by exchang-
ing the role of T and T 0). Note that B<.vi / D B>.vi / D ¿ is impossible, otherwise
BC .vi / would consist of all the neighbors of vi (maybe the vi ’s parent excepted)
and jBC .vi /j 6 jB 0

C .vi /j and BC .vi / ¤ BC .vi / would be incompatible. Let e1

(resp. e2) be the clockwise first (resp. last) edge of BC .vi /. Let e be an arbitrary
edge of B 0

C .vi /. In the following, e1 6 e means either e1 D e, or e1 is clockwise
before e around vi .

Let us show that e1 6 e. This is clearly true if B<.vi / D ¿. If B<.vi / ¤ ¿, then
consider any edge .vi ; vh/ 2 B<.vi /. Then, .vi ; vh/ … B 0

C .vi /. Indeed, as h < i , the
path from vh to vi in T exists also in T 0, and the edge .vi ; vh/ of T 0 would create a
cycle in T 0. Thus, e1 6 e.
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If B>.vi / D ¿, then e 6 e2. Hence, e1 6 e 6 e2 which is incompatible with the
fact that B 0

C .vi / and BC .vi / are blocks of consecutive edges such that jBC .vi /j 6
jB 0

C .vi /j. Thus, we must have B>.vi / ¤ ¿.
Let .vi ; vj / be the clockwise first edge of B>.vi /. Then, .vi ; vj / … B 0

C .vi /.
Indeed, as T is well orderly, the vj ’s parent in T , say vk , is an ancestor of vi , so
k < i . As BC .vk/ D B 0

C .k/ for k < i , the edge .vk; vj / exists in T 0. Hence,
the path from vj to vi in T exists also in T 0, and the edge .vi ; vj / of T 0 would
create a cycle in T 0. It follows that every edge e 2 B 0

C .vi / is such that .vi ; vj / 6 e

and e ¤ .vi ; vj /. As the path from vi to vj in T exists also in T 0, the node vj is
after vi in a clockwise preorder of T 0. It follows that vi is not well orderly in T 0: a
contradiction. ut
Proof of Lemma 2. We first give a simple algorithm to construct a well-orderly map
of G. Then we give some hints for an O.n/ time implementation.

We start by computing an arbitrary plane embedding H of G such that v belongs
to the outerface of H . This can be done in O.n/ time [10]. Then we traverse H from
v to build a well-orderly tree T . However, not every plane embedding allows the
construction of a well-orderly tree. If during the construction, T does not span all the
nodes, the embedding of H is modified, and a new traversal is run again. We show
that, after a finite number of steps, the number of nodes covered by the traversal
increase, and so the construction converges to a well-orderly tree. To describe more
precisely the traversal and the modification of H , we need some definitions.

Let T be any tree of H rooted in v, not necessarily a spanning tree. A node
is free if it does not belong to T . An edge is free if one of its endpoints if free.
We extended the notion of well-orderly node as follows: a node is partially well
orderly (with respect to H and T ) if it is well orderly except that its edge-blocks
B< and B> (relative to a clockwise preordering of the nodes of T ) may contain
zero or more free edges. Moreover, the clockwise last edge of B< and the clockwise
first edge of B> are never free. T is partially well orderly if all the nodes of T are
partially orderly. Every well-orderly tree is a partially well-orderly tree that spans
H . The four edge-blocks around a partially well-orderly node u in T are denoted by
BP .v; T /, B<.v; T /, BC .v; T /, and B>.v; T /. For convenience, the clockwise last
edge of B<.v; T / is named the back-edge of u in T , and the clockwise first edge of
B>.v; T / is named the front-edge in T .

We run a procedure traversal .H; v/ applied on the current embedding H of
G, which returns a partially well-orderly tree T of H rooted in v (see Fig. 2.5 for
example). It initializes T WD fvg and treats v as follows:

(1) List in a clockwise manner around v the edges .v; u1/; : : : ; .v; uk/ that are after
the back-edge and before the front-edge of v in T (if the back-edge or the front-
edge does not exist, the list consists of all the edges incident with v not already
in T )

(2) Update T with the edges .v; u1/; : : : ; .v; uk/

(3) Recursively treat the nodes u1; : : : ; uk in that order
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Fig. 2.5 The partial tree
constructed by
traversal .H; v/ is in bold.
Free nodes are drawn white.
The dotted edge is the new
location of e after running
flip .H; e; .vi ; u/; .vj ; w// vj
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Let v1; : : : ; vp be the clockwise preordering of the nodes of T , the tree returned
by traversal .H; v/. Consider a node vi , and let Tvi be the tree obtained by
traversal .H; v/ after the treatment of vi . A key observation is that B<.vi ; Tvi / D
B<.vi ; T / and that B>.vi ; Tvi / D B>.vi ; T /. In particular, the back-edge and front-
edge of vi with respect to T and with respect to Tvi (if they exist) are the same.
After the treatment of vi , the edges around vi in Tvi form the four (possibly empty)
edge-blocks BP .vi ; Tvi /, B<.vi ; Tvi /, BC .vi ; Tvi /, and B>.vi ; Tvi /. Hence in T , the
edge-blocks around vi are: BP .vi ; T /, B<.vi ; T /, BC .vi ; T /, and B>.vi ; T /. To
show that T is partially well orderly, it remains to show that if .vi ; vj / 2 B>.vi ; T /

is the front-edge, then the parent of vj in T is an ancestor of vi . When visiting the
node vi in T , the edges of the tree constructed up to vi (i.e., Tvi�1) are either between
nodes vt with t < i , or are .vk; vj / with k < i and j > i . Moreover, vk belongs to
the path from vi to the root of T , v. Thus a front-edge .vi ; vj / is such that the parent
of vj is an ancestor of vi . Therefore, T is partially well orderly.

Assume that T does not cover all the nodes (if T is a spanning tree, then we are
done). Let vi be a node of T having an incident free edge. W.l.o.g., we assume
that B>.vi ; T / contains a free edge (cf. Fig. 2.5). The case where vi has a free
edge in B<.vi ; T / is symmetric. Let ei D .vi ; u/ be the clockwise last free edge
of B>.vi ; T /. (Actually one can choose any free edge that clockwise ends a block
of free edges in B>.vi ; T /). By definition, B>.vi ; T / contains at least one unrelated
edge (in particular the front-edge). Hence, let e D .vi ; vj / be the clockwise last
unrelated edge of B>.vi ; T / that is before ei . Finally, let ej D .vj ; w/ be the
clockwise first free edge of vj before e and such that there is no unrelated edge
between ej and e (so ej is the first edge of the block of free edges just before e). If
such edge does not exist, we set ej WD e. In other words, e, ei , and ej are chosen
such that the edges between e and ei in vi , and between e and ej in vj form a
maximal block of free edges. We change the embedding H by running the procedure
flip .H; e; ei ; ej / that works as follows: In vi , e is moved and inserted clockwise
after ei , and in vj , e is moved and inserted clockwise before ej . For convenience,
we say that a flip has been performed around e.
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Once H has been updated by flip .H; e; ei ; ej /, we reapply traversal on the
new embedding. Procedures traversal and flip are so applied up to get a spanning
tree. To complete the correctness, we need to show that flip keeps planarity, and
that the partial well-orderly tree obtained after calling traversal converges to a
spanning tree.

Let X be the set of free nodes forming the free edges between e and ei , and
between e and ej . For every x 2 X , let Cx denote the connected component
containing x in the subgraph of H induced by the free nodes. Let C D [x2XCx .
To prove that flip.H; e; ei ; ej / keeps planarity, we show that every path P from
y 2 C to the root v contains either vi or vj . Let R be the bounded connected
region of R2 n B , where B is the cycle composed of the path in T (the tree obtained
before calling flip) from vi to vj , and closed by the edge .vi ; vj /. Assume that P

contains a node vk 2 T with vk 2 R [ B , and k … fi; j g. W.l.o.g., assume that
vk is the first node T from y in P , and let .vk; z/ be the free edge of P . We have
.vk; z/ 2 B<.vk; T /, or .vk; z/ 2 B>.vk; T /. Let us assume .vk; z/ 2 B<.vk; T /, the
other case is symmetric. As B<.vk; T / ¤ ¿, vk has a back-edge. The back-edge
is .vk; vi /. Indeed, if the back-edge is .vk; vt /, t ¤ i , then the cycle composed of
the path in T between vk and vt , and closed by .vk; vt /, would disconnect Cz and˚
vi ; vj

�
, and vi or vj has a free neighbor in Cz. Thus the edge .vi ; vk/ exists and is

clockwise after .vi ; vj / since it belongs to R. As .vi ; vk/ disconnects vj from Cz,
there must exist a free edge .vi ; s/, for some s 2 Cz. This edge is clockwise after
.vi ; vk/: a contradiction with the definition of .vi ; vj /.

Therefore, the embedding returned by flip .H; e; ei ; ej / is a plane embedding
of G. Observe that whenever e has been moved below C , thanks to flip, the tree
returned by a new call to traversal contains T . Indeed, C is connected to GnC

only by vi and vj . Thus, the move of e cannot create an unrelated edge .vt ; x/ with
x 2 C and t … fi; j g. Assume that after moving e, traversal does not visit any new
node. Then, either vi has a front-edge and a free edge clockwise after its front-edge,
or vj has a back-edge and a free edge clockwise before its back-edge. Indeed, if not,
all the neighbors of vi and of vj would be related, and the size of T would increase.
Assume that vi has front-edge e0 and a free edge. It follows that a next call to flip can
be applied on an edge e0 clockwise before e. Hence, in at most deg.vi / calls to flip,
a new free neighbor of vi (or of vj ) will be visited. Observe that for every directed
edge e, there is at most one flip around e. On Fig. 2.5, after running flip around e,
and calling traversal, the tree T is augmented with (at least) the edge .vj ; w/.

This completes the correctness of the well-orderly map algorithm for G. Let us
evaluate its time complexity. There is at most O.n/ calls to traversal and to flip (as
there is at most one call to flip per directed edges), each one taking O.n/ time. Thus,
a naive implementation of that algorithm gives a O.n2/ time algorithm.

We first remark that flip can be implemented in O.1/ worst-case time, using
double pointers for the incident edge list of a node, and using for each edge a pointer
for each endpoint toward the edge pointer in the incident list. Moreover, as the tree
grows by adding edges, the construction of the whole tree costs O.n/ time. The only
difficulty is to efficiently manage the edges e, ei , and ej for preparing the call to flip.
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Fig. 2.6 An application of the recursive algorithm with the visit ordering of nodes (a), and the
final embedding with the well-orderly tree (b). Node labeled i is visited at step i , that is the edge
of the tree between i and its parent is created at step i . When node 6 is reached, a recursive step is
run on the nodes 3, 4, and 5, below the edge .2; 6/. In node 3, after a trivial recursive step (treatment
of node 4), a flip around .3; 5/ is performed. This allows to visit the nodes 7 and 8. At the time node
5 is treated, a flip around .5; 7/, and then around .5; 2/ is performed, allowing to visit the nodes 9,
10, and 11, completing the recursive step below the edge .2; 6/. Then, the last node 12 is visited

Note that when one treats a node vi with a front-edge .vi ; vk/, we have choice
to continue the construction of T (the notations refer to the example depicted on
Fig. 2.5): either one can continue T from vi , by treating viC1, or we can consider
the subgraph S delimited by the cycle composed of the path from vi to vk in T

and close by .vi ; vk/, and one can recursively apply the treatments of the nodes
of S (by treating vm, vl , and vj in Fig. 2.5). If in Tvi the nodes of S have been
visited in the order vi1 ; : : : ; vir , then the nodes are recursively treated in the order
vir ; : : : ; vi1 . Indeed both parts of the embedding (the part after vi , and the part inside
S ) cannot interact because of the edge e. The part of the tree composed of the
nodes after vj can be computed after computing the trees for S and after applying
flip .H; e; ei ; ej /. It is not difficult to see that the recursive version of the algorithm
allows to manage e, ei , and ej with a total of O.

Pn
iD1 deg.vi // D O.n/ time.

Figure 2.6 shows an example of the recursive algorithm. ut
Proof of Lemma 3. Let T be the well-orderly tree of H rooted in r0, and let T0 D
T n fr1; r2g, where r2; r1 are the clockwise first and last leaves of T .

We first show that r1 and r2 belong to the boundary of the outerface of H .
Consider Pi the path in T from r0 to ri , for i 2 f1; 2g. All the nodes of Pi must
belong to the outerface, in particular ri . Indeed, by induction (this is true for r0),
a node v of P2 (resp. P1) has an empty edge-bock B<.v/ (resp. B>.v/). Thus, the
clockwise first (resp. last) children of v (if it exists) must belong to the outerface.

Let H 0 (resp. G0) be the plane graph (resp. planar graph) obtained from H (resp.
from G) and augmented with the three edges between the ri ’s – keeping planarity
as r1; r2 lie on the outerface – such that they form the boundary of the outerface
of H 0. (Each edge is added only if it does not create multi-edges.) As the edges
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between the ri ’s belong to any super-triangulation of G, it remains to show that the
super-triangulation S D .T0; T1; T2/ for G0 preserving H 0 and with ri root of Ti ,
is unique. The super-triangulation for G must be same, S (these three edges cannot
create inner node for T2). We will first show how to construct S and then show that
it is unique.

First observe that T0 is a tree rooted in r0 (removing two leaves from T maintains
its connectivity). Clearly, E.T0/ � E.G/ � E.G0/, and T 0 is a well-orderly tree of
H 0 rooted in r0. By Lemma 1, T 0 is unique.

Let us construct the set T1. Let vi … fr0; r1g be a node of T 0. We apply the
following assignment rules (for the induction, we assume that the assignment has
been applied to r0 D v1; : : : ; vi�1, and that p1.r0/ D r1):

1. The clockwise first edge of B>.vi / (this edge-block is relative to T 0), if it exists,
belongs to T1.

2. If B>.vi / D ¿, then the edge leaving vi to the child of p0.vi / immediately after
vi clockwise around p0.vi /, if it exists, belongs to T1.

3. If B>.vi / D ¿, and if vi is the clockwise last child of p0.vi /, then
.vi ; p1.p0.vi /// belongs to T1.

Let us check that H 0[T1 is still a plane graph. No edge is added if Rule 1 applies.
For Rule 2, there are no edges incident to p0.vi / between vi and its next sibling,
keeping planarity of the embedding. And for Rule 3, p0.vi / has no children between
vi and p1.vi /, and allows to freely connect vi with p1.vi / since, by induction, one
can assume that the property holds for every node vj , j < i .

Let us check that fT0; T1g are two sets of a realizer. We have seen that T 0 is well
orderly. Every non-root node vi has assigned a parent in T1. Hence, T1 is connected.
We check that in each of the three rules, the parent of vi in T1 is assigned to a node
vj of T 0 with j > i . As a consequence, T1 has no cycle and is connected, so it
is a tree. We also check that the edge between vi and its parent in T1 is clockwise
after the children (if they exist) of vi in T0, and clockwise before the edge to p0.vi /.
Hence, such T1 set is compatible with the edge-orientation rule of realizers.

At this step H 0 [ T1 may contain edges that are assigned neither to T 0 nor to T 1.
Let X D E.H 0/ n .E.T 0/ [ E.T 1// be this edge set. Constructing T2 can be done
using Property 6. As there is only one way to select T2 from fT0; T1g, we need to
check that the edges of X are compatible with such set T2. Let e be an arbitrary edge
of X . Assume e D .vi ; vj / with i < j . Since e … T0, then e 2 B>.vi /. Moreover,
e … T1 implies that e is not the clockwise first edge of B>.vi /. Indeed, the clockwise
first edge of B>.vi / has been assigned to T1 by Rule 1. Therefore, e 2 T2 fulfills the
edge-orientation rule of realizers.

It follows that S D .T0; T1; T2/ is a realizer of the plane graph H 0 [ T1 [ T2.
We have seen that E.T0/ � E.G/ � E.G0/ and that T 0 is well orderly in H 0. By
the assignment rules, we remark that if the edge .v; p1.v// … E.G0/ (Rule 2 or 3),
then v cannot have any child in T2 (the edge .v; p1.v// forms a triangle with some
T0 and T1 edges). In other words, for every inner node v of T2, .v; p1.v// 2 E.G0/
(actually .v; p1.v// 2 E.G/). Thus, S is a super-triangulation for G0.
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It remains to show that S is the unique super-triangulation of G0 that preserve
H 0 and with ri root of Ti . As T0 is unique, and as, given fT0; T1g, T2 is unique, it
remains to prove that T1 is unique.

The clockwise first edge of B>.vi / must belong to T1 since the parent of vi in
T1 must be clockwise before the edges of T2 entering in vi . If B>.vi / D ¿, and if
vi has a sibling vj immediately clockwise after vi around p0.vi /, then .vi ; vj / must
be in T1. Otherwise, .vi ; vj / would be in T2 and vi D p2.vj / would create an inner
node of T2 in vi . However, as B>.vi / D ¿, .vi ; p1.vi // … E.G0/, contradicting
the super-triangulation definition. Finally, if B>.vi / D ¿, and if vi is the clockwise
last child of p0.vi /, then .vi ; p1.p0.vi /// must be in T1. Otherwise, .vi ; p1.p0.vi ///

would be in T2 and vi D p2.p1.p0.vi /// would create an inner node of T2 in vi . This
contradicts the super-triangulation definition since, as B>.vi / D ¿, .vi ; p1.vi // …
E.G0/.

Therefore, T1 is unique, and S is unique, completing the proof. ut

3 Encoding a Planar Graph with a Super-Triangulation

We start this section with some useful properties for coding super-triangulations.

3.1 Properties of Super-Triangulations

Straightforward from the equivalence between realizers and orderly trees of trian-
gulations, we have the following basic property:

Lemma 4. Let .T0; T1; T2/ be any realizer, and let v1; : : : ; vn be the clockwise
preordering of the nodes of T 0. For every vj with vi D p2.vj / and vk D p1.vj /,
then i < j < k and neither vi nor vk is related to vj in T 0.

A cw-triangle is a triple of nodes .u; v; w/ of a realizer such that p2.u/ D v,
p1.v/ D w, and p0.w/ D u. In the realizer depicted in Fig. 2.3a, .u; v; w/ forms a
cw-triangle, whereas the realizer of Fig. 2.3b has no cw-triangle.

Let v1; : : : ; vn be the clockwise preordering of the nodes of a tree T . The
subsequence vi ; : : : ; vj is a branch of T if it is a chain (i.e., vt is the parent of
vtC1 for every i 6 t < j ), and if j � i is maximal. Observe that vtC1 is necessarily
the first child of vt because of the ordering of the vertices. Branches partition the
nodes of T , and there is exactly one branch per leaf.

The tree T 0 of a realizer .T0; T1; T2/ has the branch property if for all nodes vj

and vi D p0.vj /, either p2.vj / D p2.vi /, or vk D p2.vj / with i < k < j (i.e.,
p2.vj / is a descendant of vi clockwise before vj in T 0). An important feature of the
branch property is that all the nodes of a given branch of T0 (maybe except the root
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of T0) must have the same parent in T2. Indeed, vj and vi D p0.vj / belong to the
same branch implies that j D i C 1, and thus, because there is no index k such that
i < k < j , p2.vj / D p2.vi / must hold.

Definition 5 (minimal realizer). A minimal realizer is a realizer having the cw-
triangle property.

Lemma 5. Let S D .T0; T1; T2/ be any realizer. The following statements are
equivalent:

1. S is a super-triangulation for some graph G.
2. S has no cw-triangle.
3. T i is well orderly in S , for every i 2 f0; 1; 2g.
4. T i has the branch property in S , for every i 2 f0; 1; 2g.

Proof. Let 30 (resp. 40) denote the property 3 (resp. 4) for T 0 only. To prove 1 ,
2 , 3 , 4, one can restrict our attention to 1 , 2 , 30 , 40 since “S has/has no
cw-triangle” is a property stable by cyclic permutation of the trees. Thus, if 2 , 30,
then 2 , 3, and similarly for 40.

By definition of a super-triangulation, 1 ) 30. Moreover, if S is a realizer
with T 0 well orderly, then the realizer S is a super-triangulation of the underlying
triangulation S (the four conditions trivially hold). Hence, 1 , 30.

To prove that 30 ) 2, assume that S has a cw-triangle .u; v; w/, and that T 0 is
well orderly in S . As w D p1.v/, then u is an ancestor of w in T 0. It follows that
v D p2.u/ is a descendant of u in T 0, contradicting Property 4. Hence, 30 ) 2.

To prove that 40 ) 2, assume that S has a cw-triangle .u; v; w/, and that T 0

has the branch property. u D p0.w/ and thus either p2.u/ D p2.w/ or p2.w/ is a
descendant of u contained inside the region bounded by the cw-triangle .u; v; w/.
Clearly, p2.u/ D p2.w/ is impossible, and by the edge-ordering rule of realizers
p2.w/ is outside the region bounded by the cw-triangle .u; v; w/. Hence, 40 ) 2.

Let v1; : : : ; vn be the clockwise preordering of the nodes of T 0. To prove that
40 ) 3, assume that T 0 is orderly, but not well orderly in S . Thus, there is an edge
.vp; vj / with vj D p1.vp/ such that the nearest common ancestor between vp and
vj in T 0, say vt , is not vi D p0.vj /. Consider the cycle C formed by the path in
T 0 between vp and vj , and closed by the edge of .vp; vj /. Let B be the bounded
connected region of R2nC . Let us calculate p2.vi / and p2.vj /. By the edge-ordering
rule of realizers: (1) p2.vj / … B; (2) p2.vj / cannot belong to the path from vp to vt

in T 0 with the edge .vj ; p2.vj // lying outside B; and (3) p2.vj / cannot belong to the
path from vj to vt in T 0 since p2.vj / is never a descendant of vj in T 0 (Property 4).
Thus, p2.vj / … B [ C . Again, from the edge-ordering rule of realizers, p2.vi / must
belong to B [ C . It follows that p2.vi / D p2.vj / or vk D p2.vj / descendant of
vi such that i < k < j is impossible, contradicting the branch property. Hence,
40 ) 3.

It remains to show that 2 ) 40. We assume that S has no cw-triangle. Let vj be
any node, and let vi D p0.vj / and let vl D p2.vi /. We assume that k < l (T 0 has
not the branch property), and we will show a contradiction.
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Let vh D p0.vl /, and let P be the path in T 0 between vh and vk . Note that
vl … P because vl is not an ancestor of vk (k < l). Consider C the cycle obtained
by traveling vi , vl , vh, P , vk , vj , vi , and let B be the bounded connected region of
R

2 n C . Let Q1 be the path in T 1 from vl to r1, the root of T 1. By the edge-ordering
rule of realizers, the first edge of Q1 must belong to B [ C . Because r1 … B , Q1

must intersect C . By Property 4, the intersection must be in some vt with t > l .
This intersection cannot be in vi from the edge-ordering rule of realizers. Since the
nodes of P are vt ’s with t 6 max fh; kg < l , we have also that P \ Q1 D ¿. It
follows that Q1 intersect C in vj .

Let C1 be the cycle composed of Q1, vj , vi , vl , and let B1 be the bounded
connected region of R

2 n C1. Let us show that B1 [ C1 contains a cw-triangle.
Either C1 is a cw-triangle and we are done with a contradiction, or consider the
path Q2 in T 0 from p1.vl / to r0 (the root of T 0). Similarly, Q2 must intersect C1

in vi . The cycle C2 traveling vi , vl , p1.vl /, Q2 defines a connected region B2 of
R

2 n C2 with a number of faces at least one lower than the number of faces of B1.
Proceeding as previously, we can construct either a cw-triangle or a smaller region
with the same inductive property. As the number of faces is finite, it follows that
S has a cw-triangle: a contradiction completing the proof of 2 ) 40, and thus of
Lemma 5. ut
Lemma 6. A tree of a realizer is uniquely determined by given the two others.
Moreover, given the embedding of the two trees, it takes a linear time to construct
the third one.

Proof. By cyclic permutation of the trees, we only have to prove that the pair
fT0; T1g uniquely determines T2. Consider the plane graph H composed of T0 [ T1.
To construct T2, one needs to triangulate all the faces of H , except the outerface.
Let F be any face of H , and let B be its boundary. We assume that F is not the
outerface, and that T2 \ F contains at least one edge, i.e., that B has at least four
nodes.

Once F has been triangulated, B contains only three types of nodes depending
on whether the directed edges of T2 \ F are leaving, entering, or whether no edge
of T2 \ F are incident with them. Indeed, a node of B having leaving and entering
edges of T2 \ F would contradict the edge-ordering rule of realizers. Let us call
a sink a node of B having at least one entering edge of T2 \ F . Observe that B

contains exactly one sink: zero sink is clearly impossible (T2 \ F ¤ ¿), and two
or more sinks would provide a node with leaving and entering edges of T2 \ F ,
contradicting the edge-ordering rule of realizers. Clearly, once the sink has been
located on B , there is only one way to triangulate F . It remains to show that there
is only one place on B for a sink.

Traveling B clockwise around F , the two adjacent edges of B at every node v
form some cases named XiYj , where X; Y 2 fE; Lg and i; j 2 f0; 1g, with the
following interpretation: v is in the Case E0L1 if the edge clockwise before v in
B is entering (E) in v and belongs to T0, and if the edge clockwise after v in B is
leaving (L) v and belongs to T1. The other cases are defined similarly.
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Fig. 2.7 On the left, a tree of Bn (the root is indicated by a square). Then from left to right, the
partial closure of the tree

Let us show that v is a sink if and only if v is in the Case L0L1. If v is a sink, then
two adjacent edges of B with v must be leaving, and L0L1 is the only possibility
satisfying the edge-orientation rule of realizers. Now, assume that v occurs in the
Case L0L1. Then, T2 \ F has no edge leaving v. If v has no entering and leaving
edges in T2 \ F , then a node u 2 B adjacent to v must be a sink. The node
u is therefore in the Case E1Xi (if u is clockwise after v in B), or in the Case
Yj E0. However, we have already seen that a sink must be in the Case L0L1: a
contradiction. Thus, v is a sink.

It follows that the place of the unique sink on B is entirely determined by the
edge pattern of B induced by the pair fT0; T1g. Clearly, triangulate all the faces (by
determining the sinks) takes linear time, completing the proof. ut

In this section, we briefly recall a result from [33] about minimal realizers and
plane trees. An encoding of well-orderly maps follows.

3.2 Minimal Realizers and Plane Trees

The key point of this section is the definition of the operation of closure of planted
tree to get a realizer (Fig. 2.7). A tree is planted if it is rooted on a leaf, that is a
leaf is distinguished. Let Bn be the set of planted plane trees with n inner nodes and
2n leaves such that each node is adjacent to 2 leaves. Given a tree T in Bn, we can
easily say that:

• Its canonical orientation shall be toward the root for all inner edges and toward
the leaf for all dangling edges.

• Its canonical coloring described by the rule of Fig. 2.2a.

A triple .e1; e2; e3/ of edges of a map M is an admissible triple if and only if: i/
e1 D .v0; v1/, e2 D .v1; v2/, and e3 D .v2; v3/ appear consecutively in the clockwise
direction around the outer face and ii/ if v3 is a vertex of degree 1.

Definition 6 (local closure). The local closure of M with respect to an admissible
triple .e1; e2; e3/ is obtained by merging the leaf v3 on node v0 so as to create
triangular face.
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Fig. 2.8 The structure after a partial closure and the complete closure

The partial closure of a tree T ofBn is the map obtained by performing iteratively
the local closure of any available admissible triple in a greedy way. As shown
in [33], the local closure is well defined independently of the order of local closures.
Moreover, all the bounded faces of the resulting map are triangular, and the outer
face has the structure shown in Fig. 2.8a. In particular, in the partial closure of T ,
there are exactly two canonical nodes separating the dangling edges in the outer face
into two parts. Each of these parts contains dangling edges of same color. A tree T is
balanced if its root is one of the two canonical leaves. Finally, the complete closure
of a balanced tree T is the map obtained from the partial closure of T by merging
each remaining noncanonical leaf of each part into a root edge, as illustrated in
Fig. 2.8b.

Theorem 2 ([33]). Complete closure is a one-to-one correspondence between Bn�2

and triangulations with n nodes.

Observe that by construction the orientation of the dangling edge prevents the
formation of cw-triangles implying that using Complete Closure, we get a minimal
realizer.

Corollary 1. Complete closure is a one-to-one correspondence between balanced
trees with n � 2 and minimal realizers of triangulation with n nodes.

The following new lemma will serve to predict the entering edges created by
complete closure at a node.

Lemma 7. Let v be an inner node of a balanced tree B . Let e1 D .v; u/ and e2 D
.v; w/ be two consecutive edges around v in clockwise order. During the closure
algorithm, no edges will be inserted between e1 and e2 if and only if:

(a) w is a leaf of B or
(b) w is an inner node of B and the node t such that the edge e3 D .w; t/ is the next

edge around w after e2 in clockwise order is a leaf of B .
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Proof. Let v an inner node of a balanced tree B . Let us consider two consecutive
edges .v; u/, .v; w/ around v in clockwise order. If w is a leaf, then during the closure
it will merge with a node w0 and close a triangular face enclosing the corner between
.v; u/ and .v; w/. No other edge can thus arrive at this corner. Assume now that w
is an inner node of B . Let .w; t/ be the next edge around w in clockwise order. If
t is a leaf of B , then it will merge with u to form a triangular face, and again no
edge can arrive in the corner between .v; u/ and .v; w/. In the other cases, .v; w/ is
an inner edge followed by another inner edge .w; t/. Since an edge that forming a
triangular face that encloses the corner between .v; u/ and .v; w/ must be from w,
the corner is not enclosed. But at the end of the partial closure, there are no more
pairs of consecutive inner edges: some edge must have arrived in the corner. ut
Lemma 8. Let .T0; T1; T2/ be the minimal realizer encoded by a balanced tree B .
A node v of B is a leaf of T2 if and only if v has no incoming edge colored 2 in B

and,

1. The parent edge of v in B is colored 2 or
2. The parent edge of v in B is colored 1 or
3. The parent edge of v in B is colored 0 and v is the last child with an edge colored

0 in clockwise order around PB.v/ and

a) The parent edge of PB.v/ is colored 0 or
b) The parent edge of PB.v/ is colored 2.

Proof. For the node v to be a leaf in T2, it must have no incoming edge of color 2

in B , and no edge must be inserted between its outgoing edges of color 0 and 1.
When the parent edge of v has color 2 or 1, the outgoing edge of color 0 connects to
a leaf and Case (a) of the previous lemma ensures that no edge arrives between this
outgoing edge of color 0 and the outgoing edge of color 1. When the parent edge of
v has color 0, if the next edge in clockwise order around the parent PB.v/ of v in B

is an outgoing edge (of color 1), then Case (b) of the previous lemma ensures that
no edge of color 2 arrives.

Finally, we need to check in the remaining cases that an incoming edge of color 2

indeed arrives between the two outgoing edges of color 0 and 1. This could happen if
the corner we consider was part of the unbounded face after the partial closure. But
in the remaining cases, both the edge .v; PB.v// and the next edge in clockwise order
around PB.v/ are incoming. Since the form of the boundary after partial closure
prohibits two consecutive incoming edges, the proof of the lemma is complete. ut

3.3 Representation of Planar Graphs with Binary Strings

Along this section, we consider S D .T0; T1; T2/ be any super-triangulation of G,
a connected planar graph with n nodes and m edges. We show how to use S to
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efficiently represent G. Let `.B/ be the number of vertices of B corresponding to
the leaves of T2, where S D .T0; T1; T2/ is obtained by the complete closure of B .

Theorem 3. Any well-orderly map with n nodes can be coded by a pair .B; W /

where B is a balanced tree of Bn�2 and W a bit string of length nC`.B/. Encoding
and decoding takes linear time.

The following lemmas describe in detail the key points of Theorem 3.

Lemma 9. Let B be a balanced tree such that the corresponding super-
triangulation S D .T0; T1; T2/ has i2 inner nodes in the tree T2. The balanced
tree B can be encoded with five binary strings S1; S2; S3; S4, and S5 and four
integers a0; a0

0; a1; i2 6 n such that:

#S1 D �
n�a0

i2�a0

�
, #S2 D �

n�a1

a0

0

�
, #S3 D �

nCa1

a1

�
, #S4 D �

a1Ca0Ca0

0
a0

�
and #S5 D

� n�a1�a0

0

n�a1�a0

0�i2

�
.

Proof. Let B be a colored balanced tree. We partition the nodes of B in the
following way:

• A1: the set of nodes v such that the edge .v; PB.v// is colored 1.
• A2: the set of nodes v such that the edge .v; PB.v// is colored 2.
• A0

0: the set of nodes v and such that the edge .PB.v/; PB.PB.v// is colored either
0 or 2, and such that v is the last child in clockwise order with the edge .v; PB.v//

is colored 0.
• A0: the set of nodes that are not in the previous sets.

Note that the root of B is in A0 and for every node v of A0, the edge .v; PB.v// is
colored 0. Assume that we are coding the balanced tree B . The only information
we need, for each node in the prefix clockwise order, is its number of children in
A0, A0

0, A1, and A2. In order to encode efficiently a well-orderly map, we need to
introduce another parameter in our encoding. Let I2 be the set of nodes of B that
will be inner nodes in the tree T2 of the corresponding realizer S D .T0; T1; T2/.

We give some preliminary remarks:

1. Nodes of A1 cannot have children in A0
0.

2. Every node of A0 [ A0
0 [ A2 has at most one child in A0

0.
3. A0 � I2 (see Lemma 8).
4. Every node of A0

0 [ A1 [ A2 which is also in I2 has at least one child in A2 (see
Lemma 8).

5. Every node of V n A1 can have children in A0 only if it has a child in A0
0.

6. Only nodes of I2 can have children in T2.

To encode the balanced tree, we will build five binary strings. With these strings
we will determine, for each node, its number of children in each subset.

The first string, S1, tells which node belongs to I2. Since all the nodes of A0 are
in I2 (see Remark 3), S1 stores the information for all the other nodes. Hence for
each node of V n A0, the corresponding bit is set to 1 if the node belongs to I2 and
is set to 0 otherwise. Hence, the string S1 contains n � a0 bits and i2 � a0 1’s.
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The second string S2 is used to determine whether a node has a child in A0
0. Since

all the nodes of A1 have a child in A0
0 (see Remark 1), S2 stores this information for

all the other nodes: the corresponding bit is set to 1 if the node has one child in A0
0

and to 0 otherwise. Hence, the string S2 contains n � a1 bits and a0
0 1’s.

The string S3 stores, for each node, its number of children in A1 in a
“Lukasiewicz” way. For each v node of B in the prefix clockwise order, we append
to S3 as many 1’s as the number of children of v in A1 and then we insert a 0. Hence,
the string S3 contains n C a1 bits and a1 1’s.

The string S4 stores the number of children in A0. This information has to be
stored for each node of A1 and for each node that has a child in A0

0 (see Remark 5).
Hence for each of these nodes, we proceed as for the string S3. Hence, the string S4

contains a1 C a0
0 C a0 bits and a0 1’s.

The string S5 helps to determine the number of children in A2. We only need to
store this information for the nodes of I2 (see Remark 6). Moreover, for these nodes
that are in A0 [ A0

0 [ A2, we already know that they have at least one child in A2;
so we only need to count the other 1’s. Hence for each of these nodes, we proceed
as for the strings S3 and S4. We obtain a string i2 C .a2 � .i2 � a0// D n � a1 � a0

0

bits with a2 � .i2 � a0/ D n � a1 � a0
0 � i2 1’s. ut

Lemma 10. Let H be a well-orderly map with n nodes and m edges. H can
be encoded with six binary strings (five for the minimal realizer and a last one
to store the missing edges) and four integers a0; a1; a0

0; i2 2 Œ0; n� such that:

#S1 D �
n�a0

i2�a0

�
, #S2 D �

n�a1

a0

0

�
, #S3 D �

nCa1

a1

�
, #S4 D �

a1Ca0Ca0

0
a0

�
, #S5 D � n�a1�a0

0

n�a1�a0

0�i2

�
,

#S6 D �
2n�i2

m�n�i2

�
.

Proof. With S1 � S5 a minimal realizer is encoded (Lemma 9). The last string
indicates the edges to delete to rebuild the well-orderly map: for each v, one bit
is used to indicate if the edge .v; p2.v// has to be removed, and for each leaf v of T2,
one bit is used to indicate if the edge .v; p1.v// has to be removed. ut

We present here a variant of the Pagh’s compressor [32]. We denote by #S the
number of binary strings having the same length and the same number of ones
than S .

Lemma 11. Every binary string S of length n can be coded into a binary string of
length log2.#S/CO.n log log n= log n/. Moreover, knowing n, coding and decoding
S can be done in linear time, assuming a RAM model of computation on words of
! > log2 n bits.

Proof. The main idea is to split S into blocks of equal size b, and to code each
block optimally. Each block encoding takes a time exponential in b. However, the
code of all possible blocks can be tabulated once in time O.2b/ D O.n/, for suitable
b small enough. Optimality of the coding derives from optimality of each block by
super-additivity of binomials. More precisely, we proceed as follows.
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Let b D blog2 n � log2 log2 nc. Note that 2b 6 n= log2 n. Standard arithmetic
operations on integers in the range Œ0; 2b/ can be done in constant time since ! > b,
by loading each integer into a word of length ! and padded with left extra zeros.
Let kp denote

�
b
p

�
. We need the construction of some tables.

We first construct a table L such that for every p 2 Œ0; b�, LŒp� D ˙
log2 kp

�
. All

the numbers k0; : : : ; kb are computed, thanks to the Pascal’s method, namely using
iteratively the formula

�
i
j

�D �
i�1
j �1

�C�i�1
j

�
for all i 6 b and j 6 min fi; pg. This uses

O.b2/ b-bit numbers. In total, the construction of L is done in O.b2CPp log kp/ D
O.log2 n/ time, as it costs no more than O.log kp/ D O.b/ time to compute˙

log kp

�
, that is the position of the leading bit of kp in its binary representation.

We construct a table P of integers in the range Œ0; b� such that for every i 2
Œ0; 2b/, P Œi� is the number of ones in the binary representation of i . The table P can
be constructed in time and space O.b2b/ D O.n/. However, the time can be reduced
to O.b2b=2/ D O.

p
n log n / (and even smaller) using a table P 0 for half-words of

db=2e bits. Indeed, we have P Œi� D P 0Œi=2bb=2c� C P 0Œi mod 2bb=2c�.
For each p 2 f0; : : : ; bg, we compute a table Dp (used for decoding) such that,

for every i 2 Œ0; kp/, DpŒi � is a distinct binary string of length b having p ones.
Strings of Dp are lexicographically ordered. Generating all Dp’s costs O.2b/ D
O.n= log n/ time and O.b2b/ D O.n/ space by running all binary strings s 2 Œ0; 2b/

by increasing value, and filling the right entry DP Œs�Œip� (and updating the current
index ip).

Finally, we construct a table C (used for coding) such that for every s 2 Œ0; 2b/,
C Œs� denotes the index i such that DpŒi � D s, where p D P Œs�. The index i D C Œs�

is stored on b bits, although only the LŒp� D ˙
log2 kp

�
least significant bits of i

are useful since i 2 Œ0; kp/. To construct C , we iterate for all p 2 Œ0; b� and all
i 2 Œ0; kp/: C ŒDpŒi �� D i . Once Dp and P have been computed, constructing C

costs O.
Pb

pD0 kp/ D O.2b/ D O.n= log n/ of time and O.b2b/ D O.n/ of space.
Let q D bn=bc be the number of blocks of b bits in S . If b does not divide n, the

last n mod b bits will be treated separately. For the coding and decoding procedure,
we iterate on each block of S times (so q times) the following steps:

1. Read from S the next b-bit block s, manipulated as an index of Œ0; 2b/

2. Write in S 0 (the coding string) the value P Œs� as a binary number on dlog2 be bits
3. Write in S 0 the string composed of the LŒs� most significant bits of C Œs�

We end the coding process by writing in S 0 the n mod b remaining bits of S (if any).
The decoding procedure of S 0 in S is:

1. Read from S 0 the dlog2 be bits to form the value p

2. Read from S 0 the next LŒp� bits, representing an integer i 2 Œ0; kp/

3. Write in S the string DpŒi �

We end the decoding process by writing in S the n mod b remaining bits of S 0
(if any).
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Coding and decoding procedures clearly take O.q/ D O.n= log n/ time, once the
tables L; P; Dp; C have been generated. The correctness of the coding and decoding
is clear from symmetry of the above procedures.

It remains to show that the length of S 0 does not exceed log2.#S/ C
O.n log log n= log n/. Let pi be the number of ones in the i th b-bit block of S ,
for i 2 f1; : : : ; qg. From the coding procedure, the number of bits written in S 0 for
the i th block is: dlog2 be C ˙

log2 kpi

�
. Summing over all the blocks, we obtain the

following upper bound for the length of S 0:

qX

iD1

�dlog2 be C ˙
log2 kpi

��C .n mod b/ D
 

qX

iD1

log2 kpi

!

C O.b C q log b/:

Observe that by super-additivity
�

a
b

� � �a0

b0

�
6
�

aCa0

bCb0

�
, so

qY

iD1

kpi D
qY

iD1

 
b

pi

!

6
 

bq
P

i pi

!

D #S;

where S is the string composed of the first bq bits of S . Since the length and the
number of ones between S and S differ by at most b, it follows that j log2.#S/ �
log2.#S/j D O.b log n/ D O.log2 n/. Therefore, we have that the length of S 0 is
no more than:

 

log2

qY

iD1

kpi

!

C O.b C q log b/ 6 log2.#S/ C O.n log log n= log n/

as claimed, completing the proof. ut

4 Entropy Analysis

The length of the coding of well-orderly map depends of the number of the edges
of the well-orderly map.

The following two results are obtained from the analysis of the length of the code
given in Lemma 10. The length of this code depends on the number of edges of the
well-orderly map (see Fig. 2.9).

Theorem 4. Every connected planar graph with n nodes and m edges can be
encoded in linear time with at most 4:91n C o.n/ bits or 2:82m C o.m/ bits. In
particular, the number of well-orderly maps with n nodes (resp. with m edges) is at
most 24:91nCo.n/ (resp. 22:82mCo.m/).

Proof (Sketch). From Lemma 10, we obtain an explicit coding composed of six
binary strings S1; S2; :::; S6 and four integers a0; a1; a0

0; i2.
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Fig. 2.9 (a) Number of bits necessary to encode a well-orderly map with m D ˛n edges, where
1 6 ˛ 6 3. (b) Coding analyses: Number of bits per edges of a well-orderly map with m D ˛n

edges, where 1 6 ˛ 6 3

Thanks to Lemma 11, we can encode in linear time a planar graph with at most
log2.#S1/C log2.#S2/C log2.#S3/C log2.#S4/C log2.#S5/C log2.#S6/CO.log n/

bits. Computing the maximum length of the codes (over all parameters a0; a1; :::; i2
and m or n) :

W D W.n; m/ D max
a0;a1;:::;i2

(

log2

 
n � a0

i2 � a0

!

C log2

 
n � a1

a0
0

!

C log2

 
n C a1

a1

!

C log2

 
a1 C a0 C a0

0

a0

!

C log2

 
n � a1 � a0

0

n � a1 � a0
0 � i2

!

C log2

 
2n � i2

m � n � i2

!)

C O.log n/;

we obtain (see Fig. 2.9a) that W 6 4:91n C o.n/. Since G is connected, we have
n � 1 6 m 6 3n � 6 and so log n D log m C O.1/. Hence, we also have (see
Fig. 2.9b) that W 6 2:28m C o.m/. ut
Theorem 5. Almost all unlabeled connected planar graphs on n nodes have at least
1:85n edges and at most 2:44n edges.

Proof. (sketch). Our code can be parameterized with the number of edges. The
length of the coding is no more than W.m; n/ bits. Using a reduction from arbitrary
planar graphs to connected planar graphs, we can apply our upper bound. Combined
with the 4:767n bit lower bound derived from the number of labelled planar graphs
of [18], we derive two numbers ˛1 D 1:85 and ˛2 D 2:44 such that for a connected
planar graph with ˛n edges, ˛1 6 ˛ 6 ˛2, our representation is below 4:767n (See
Fig. 2.9a). ut
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Fig. 2.10 Representation of
a non-connected planar graph
G by a triple .k; QG; v/

v2

v3

v6
v5

v4

v1

G

v

G̃

The bound proposed here was for connected planar graphs. This bound can also
be apply on planar graphs (not necessarily connected).

Remind that p.n/ is the number of unlabeled n-node planar graphs. Let q.n/

denote the number of unlabeled connected planar graphs on n nodes. To relate p.n/

and q.n/, we represent every planar graph G with k > 1 connected components by
a triple .k; QG; v/, where QG and v are defined as follows. Let vi be any non-cut-vertex
of the i th component of G. (Recall that a cut-vertex of a graph is a node whose
removal strictly increases the number of connected components. A leaf of a tree
being not a cut-vertex, it is clear that every connected graph has a non-cut-vertex).
We merge all the connected components of G by identifying all the vi ’s into a single
node v as shown in Fig. 2.10.

Clearly QG is planar and connected. One can obtain G from .k; QG; v/ by splitting
v in QG. All the k0 6 k connected components obtained by this way are included in
G (there is no risk to disconnect a single connected component of G as vi ’s are not
cut-vertices of each connected component of G). To fully recover G, we may add
k �k0 isolated nodes. The number of nodes of QG is n�.k0 �k/�k0 C1 D n�k C1.
From this representation, it follows that:

p.n/ 6
nX

kD1

k � q.n � k C 1/ � .n � k C 1/ 6 n3q.n/ (2.1)

as q.n/ clearly increases with n.
In [7], it is shown that the number of n-node well-orderly maps is upper bounded

by �nCo.n/ with � D 8=.
p

189 C 114
p

3 � 6
p

3 � 9/ � 30:0612. From the above
discussion, we have:

Theorem 6. The number p.n/ of unlabeled n-node planar graphs, for n large
enough, satisfies

p.n/ 6 �nCo.n/ 6 24:91n :

5 Summary and Conclusion

Counting the number of unlabeled planar n-node graph is still an open problem. In
this chapter, we show the best known upper bound that equals 30:0612nCo.n/. More-
over, we propose a compact encoding of planar graphs using a new combinatorial
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object called well-orderly map with log2 30:0612 � 4:91 bits per node. The coding
and the decoding can be done in linear time.

Since a planar graph can be represented by several well-orderly maps, a possible
way to get a smaller bound would be to define a smaller class of planar maps.
Finding a way to assign to any planar graph at most 2o.n/ planar embeddings is
enough to get the asymptotic value of constant growth. Another direction consists
in counting the number of labeled planar graphs and computing the average number
of symmetries (automorphisms) per graph. The first step has been done by Gimenez
and Noy [18], but the knowledge of the average number of symmetries is still a
problem.
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