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Optimal control of ordinary differential

systems. Optimality conditions

This chapter and the next one are devoted to some basic ideas and techniques
in optimal control theory of ordinary differential systems. We do not treat
the optimal control problem or Pontryagin’s principle in their most general
form; instead we prefer a direct approach for some significant optimal control
problems in life sciences and economics governed by ordinary differential sys-
tems. We point out the main steps in the study of an optimal control problem
for each investigated example. These steps are similar for all examples. There
are, however, specific technical difficulties for each investigated problem.

The main goal of this chapter is to prove the existence of an optimal con-
trol and to obtain first-order necessary conditions of optimality (Pontryagin’s
principle) for some significant optimal control problems. The necessary opti-
mality conditions give valuable information about the structure of the optimal
control. Numerical algorithms to approximate the optimal control and corre-
sponding MATLAB R© programs are indicated.

A general formulation of Pontryagin’s principle for optimal control prob-
lems related to ordinary differential systems can be found in [Bar93] and
[Bar94].

2.1 Basic problem. Pontryagin’s principle

A quite general optimal control problem governed by an ordinary differential
system can be formulated in the following form,

Maximize L(u, xu) =
∫ T

0

G(t, u(t), xu(t))dt + ϕ(xu(T )), (P1)

subject to u ∈ K ⊂ L2(0, T ; IRm) (T > 0), where xu is the Carathéodory
solution to {

x′(t) = f(t, u(t), x(t)), t ∈ (0, T )
x(0) = x0.

(2.1)
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60 2 Optimality conditions

Here

G : [0, T ]× IRm × IRN → IR,

ϕ : IRN → IR,

f : [0, T ]× IRm × IRN → IRN ,

x0 ∈ IRN , m, N ∈ IN∗, and K ⊂ L2(0, T ; IRm) is a closed convex subset. From
now all elements of an IRn, n ∈ IN∗, are considered as column vectors.
Recall that a Carathéodory solution (we call it simply a solution) to (2.1) is a
function xu that belongs to AC([0, T ]; IRN ) (see Appendix A.3), and satisfies

{
(xu)′(t) = f(t, u(t), xu(t)) a.e. t ∈ (0, T )
xu(0) = x0.

L2(0, T ; IRm) is the set of the controllers.

This optimal control problem can be reformulated as the following mini-
mization problem,

Minimize {−L(u, xu)},
subject to u ∈ K ⊂ L2(0, T ; IRm).

We assume here that for any u ∈ L2(0, T ; IRm), Problem (2.1) admits a unique
solution, denoted by xu. Equation (2.1) is called the state problem (equation).

• u (∈ K) is called the control (or controller). This is a constrained control
because u ∈ K, and K is a subset of L2(0, T ; IRm).

• xu is the state corresponding to the control u, and the mapping.
• u �→ L(u, xu) = Φ(u) is the cost functional.

We say that u∗ ∈ K is an optimal control for Problem (P1) if

L(u∗, xu∗
) ≥ L(u, xu),

for any u ∈ K. The pair (u∗, xu∗
) is called an optimal pair and L(u∗, xu∗

)
is the optimal value of the cost functional. We also say that (u∗, x∗) is an
optimal pair if u∗ is an optimal control and x∗ = xu∗

.

Let u∗ ∈ K be an optimal control for (P1); that is,

∫ T

0

G(t, u∗(t), xu∗
(t))dt + ϕ(xu∗

(T )) ≥
∫ T

0

G(t, u(t), xu(t))dt + ϕ(xu(T )),

for any u ∈ K.

We assume that the following succession of operations and arguments is
allowed (under certain hypotheses – including Gâteaux differentiability (see
Appendix A.1.5) – on G, ϕ, and f). We use the notations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

fu =
∂f

∂u
, fx =

∂f

∂x

Gu =
∂G

∂u
, Gx =

∂G

∂x

ϕx =
∂ϕ

∂x

(see also Appendix A.1.5). Here Gu, Gx, and ϕx are considered as column
vectors.

Assume that the function defined on L2(0, T ; IRm), u �→ xu is everywhere
Gâteaux differentiable. We denote this differential by dxu.

Consider

V = {v ∈ L2(0, T ; IRm); u∗ + εv ∈ K for any ε > 0 sufficiently small}.
For any v ∈ V , we define z = dxu∗

(v); z is the solution to
{

z′(t) = fu(t, u∗(t), xu∗
(t))v(t) + fx(t, u∗(t), xu∗

(t))z(t), t ∈ (0, T )
z(0) = 0.

(2.2)

For an arbitrary but fixed v ∈ V we have that
∫ T

0

G(t, u∗(t), xu∗
(t))dt + ϕ(xu∗

(T )) ≥
∫ T

0

G(t, u∗(t) + εv(t), xu∗+εv(t))dt

+ ϕ(xu∗+εv(T )),

and consequently
∫ T

0

1
ε

[
G(t, u∗(t) + εv(t), xu∗+εv(t)) − G(t, u∗(t), xu∗

(t))
]
dt

+
1
ε

[
ϕ(xu∗+εv(T )) − ϕ(xu∗

(T ))
]
≤ 0,

for any v ∈ V, and for any ε > 0 sufficiently small.
We pass to the limit in the last inequality (ε → 0+) and we get that

∫ T

0

[v(t) · Gu(t, u∗(t), xu∗
(t)) + z(t) · Gx(t, u∗(t), xu∗

(t))]dt

+ z(T ) · ϕx(xu∗
(T )) ≤ 0

(2.3)

(here · denotes the usual scalar product on IRm as well as on IRN ), for any
v ∈ V .

Let p be the Carathéodory solution (we assume that this solution exists and is
unique), that we simply call the solution, to the adjoint problem (equation):
{

p′(t) = −f∗
x(t, u∗(t), xu∗

(t))p(t) − Gx(t, u∗(t), xu∗
(t)), t ∈ (0, T )

p(T ) = ϕx(xu∗
(T ))

(2.4)
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(p is called the adjoint state; the equation in (2.4) is linear).
Recall that if A : IRk −→ IRs is a linear (and bounded) operator (A may be
identified with a matrix, also denoted by A), then its adjoint operator A∗ :
IRs −→ IRk (also linear and bounded) may be identified with the transpose
of matrix A, and denoted also by A∗ (or AT ).

By multiplying (2.2) by p and integrating by parts on [0, T ] we get that

z(T ) · p(T )−
∫ T

0

z(t) · p′(t)dt

=
∫ T

0

[fu(t, u∗(t), xu∗
(t))v(t) + fx(t, u∗(t), xu∗

(t))z(t)] · p(t)dt,

for any v ∈ V . By (2.4) we obtain that

z(T ) · ϕx(xu∗
(T ))

+
∫ T

0

z(t) · [f∗
x(t, u∗(t), xu∗

(t))p(t) + Gx(t, u∗(t), xu∗
(t))]dt

=
∫ T

0

[v(t) · f∗
u(t, u∗(t), xu∗

(t))p(t) + z(t) · f∗
x(t, u∗(t), xu∗

(t))p(t)]dt,

and consequently∫ T

0

z(t) · Gx(t, u∗(t), xu∗
(t))dt + z(T ) · ϕx(xu∗

(T ))

=
∫ T

0

v(t) · f∗
u(t, u∗(t), xu∗

(t))p(t)dt,

for any v ∈ V . By (2.3) we finally get that∫ T

0

v(t) · [Gu(t, u∗(t), xu∗
(t)) + f∗

u(t, u∗(t), xu∗
(t))p(t)]dt ≤ 0,

for any v ∈ V , which means

Gu(·, u∗, xu∗
) + f∗

u(·, u∗, xu∗
)p ∈ NK(u∗), (2.5)

where NK(u∗) is the normal cone at K in u∗ (see Appendix A.1.4).
We get the same conclusion if we multiply (2.4) by z (after a similar
argumentation).
Equations (2.1), (2.4), and (2.5) represent Pontryagin’s (or maximum) prin-
ciple and (2.4) and (2.5) are the first-order necessary conditions of optimality
(optimality conditions) for the given optimal control problem.

The main goal now is to use the maximum principle in order to calculate an
optimal control u∗ or to approximate it by using an appropriate numerical
scheme. In order to use Condition (2.5) we need to determine the set NK(u∗).
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If we take, for example, K = L2(0, T ; IRm), then for any u ∈ K =
L2(0, T ; IRm), NK(u) = {0} ⊂ L2(0, T ; IRm).

If we take m = 1, and

K = {w ∈ L2(0, T ); L1 ≤ w(t) ≤ L2 a.e. t ∈ (0, T )},

where L1, L2 ∈ IR, L1 < L2, then for any u ∈ K we have

NK(u) = {w ∈ L2(0, T ); w(t) ≥ 0 if u(t) = L2, w(t) ≤ 0 if u(t) = L1,

w(t) = 0 if L1 < u(t) < L2 a.e. t ∈ (0, T )}

(see Appendix A.1.4).

A general scheme to prove the existence of an optimal control u∗ is the
following one.
Let

d = sup
u∈K

L(u, xu) ∈ IR.

For any n ∈ IN∗, there exists un ∈ K, such that

d − 1
n

< L(un, xun) ≤ d.

Step 1: Prove that there exists a subsequence {unk
} such that

unk
−→ u∗ weakly in L2(0, T ; IRm).

If for example, K is bounded, then the last conclusion follows immediately.
Inasmuch as K is a closed convex subset of L2(0, T ; IRm), K is also weakly
closed, and consequently u∗ ∈ K.

Step 2: Prove that there exists a subsequence of {xunk }, denoted by
{xunr }, convergent to xu∗

in C([0, T ]; IRN ) (sometimes the convergence in
L2(0, T ; IRN ) is enough).

Step 3: From

d − 1
nr

< L(unr , xunr ) ≤ d,

we get (by passing to the limit) that

L(u∗, xu∗
) = d,

and consequently u∗ is an optimal control for problem (P1).
Notice that we can derive (2.4) and (2.5) by using the Hamiltonian H ,
defined by

H(t, u, x, p) = G(t, u, x) + f(t, u, x) · p.



64 2 Optimality conditions

If we take
x′ = Hp

we get the state equation. By

p′ = −Hx

we get the adjoint equation and by

Hu ∈ NK(u∗),

we get (2.5).

Let us mention that some authors consider the following problem as the
adjoint problem:

{
p′(t) = −f∗

x(t, u∗(t), xu∗
(t))p(t) + Gx(t, u∗(t), xu∗

(t)), t ∈ (0, T )
p(T ) = −ϕx(xu∗

(T ))

The solution to this problem is p = −p̃, where p̃ is the solution to (2.4).

Condition (2.5) becomes

Gu(·, u∗, xu∗
) − f∗

u(·, u∗, xu∗
)p ∈ NK(u∗),

and the Hamiltonian H is:

H(t, u, x, p) = −G(t, u, x) + f(t, u, x) · p.

We, however, use both conventions (for the adjoint problem) in the next
chapters.

In most situations (2.1) appears as a semilinear problem; that is, f has
the following form,

f(t, u, x) = Ax + f̃(t, u, x),

where A : IRN −→ IRN is a (particular) linear operator. Then

fu = f̃u, fx = A + f̃x.

Several optimal control problems related to age-structured models, semilinear
parabolic equations or to integroparabolic equations may be written in the
abstract form (P1)–(2.1), where

G : [0, T ]× U × X → IR,

ϕ : X → IR
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(U, X are appropriate real Hilbert spaces), x0 ∈ X , and K ⊂ L2(0, T ; U) is a
closed convex subset. Here f has the above mentioned form, and A is a linear
(possibly unbounded) operator, A : D(A) ⊂ X → X (see Chapters 4 and 5).

Here we have presented only a general scheme and not a rigorous proof of the
maximum principle.

In the next sections we illustrate how this scheme works for significant ex-
amples of optimal control problems in life sciences and economics governed
by ordinary differential systems. We deduce the maximum principle again for
all these examples in a rigorous manner. We use the maximum principle to
calculate or to approximate optimal control. Chapters 4 and 5 are devoted to
control problems governed by partial differential equations. As announced the
scheme is the same, but there are, of course, more technical difficulties.

2.2 Maximizing total consumption

We consider a mathematical model of a simplified economy. Let x(t) be the
rate of production at the moment t ≥ 0 (the economical output). We have

x(t) = I(t) + C(t), t ≥ 0,

where

• I(t) is the rate of investment at the moment t.
• C(t) is the rate of consumption at the moment t.

Denote by u(t) ∈ [0, 1] the part of production x(t) that is allocated to invest-
ment at moment t; that is,

I(t) = u(t)x(t).

We obtain that
C(t) = (1 − u(t))x(t), t ≥ 0.

We deal with the simple case when the production growth rate is proportional
to the rate of investment. This means

x′(t) = γu(t)x(t),

where γ ∈ (0, +∞).

We introduce a “utility” function F (C), and we wish to find out the control
that maximizes the welfare integral

∫ T

0

e−δtF (C(t))dt.
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Here T > 0, and δ ≥ 0 is a discount rate (a measure of preference for earlier
rather than later consumption).

We simplify our model by taking F (C) = C and δ = 0. The total con-
sumption on the time interval [0, T ] is

∫ T

0

C(t)dt =
∫ T

0

(1 − u(t))x(t)dt.

We therefore obtain the following optimal control problem (see [Bar94]),

Maximize
∫ T

0

(1 − u(t))xu(t)dt, (P2)

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where xu is the solution
of {

x′(t) = γu(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

(2.6)

The problem seeks to find the control u that maximizes total consumption on
the time interval [0, T ].

The solution xu to (2.6) is given by

xu(t) = x0exp(
∫ t

0

γu(s)ds), t ∈ [0, T ].

Problem (P2) is a particular case of (P1), for m = 1, N = 1,

G(t, u, x) = (1 − u)x,

ϕ(x) = 0,

f(t, u, x) = γux

and
K = {w ∈ L2(0, T ); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, T )}.

Existence of an optimal pair for (P2)

Define

Φ(u) =
∫ T

0

(1 − u(t))xu(t)dt, u ∈ K

and let
d = sup

u∈K
Φ(u).
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Because for any u ∈ K we have that

0 < xu(t) ≤ x0e
γt, t ∈ [0, T ],

then we get that

0 ≤ Φ(u) =
∫ T

0

(1 − u(t))xu(t)dt ≤ x0TeγT .

In conclusion d ∈ [0, +∞).
So, for any n ∈ IN∗, there exists un ∈ K such that

d − 1
n

< Φ(un) ≤ d. (2.7)

K is a bounded subset of L2(0, T ), therefore it follows that there exists a
subsequence {unk

}k∈IN∗ such that

unk
−→ u∗ weakly in L2(0, T ). (2.8)

The limit u∗ belongs to K because K is a closed convex subset of L2(0, T ),
and so it is weakly closed. The last convergence and the explicit formula for
xu imply that

xunk −→ xu∗
in L2(0, T ). (2.9)

By (2.7) we get that

d − 1
nk

<

∫ T

0

(1 − unk
(t))xunk (t)dt ≤ d for any k ∈ IN∗. (2.10)

By (2.8) and (2.9) we obtain (we pass to the limit in (2.10)) that

d =
∫ T

0

(1 − u∗(t))xu∗
(t)dt,

that is, (u∗, xu∗
) is an optimal pair (and u∗ is an optimal control) for (P2).

In order to simplify the notations we denote x∗ := xu∗
.

The maximum principle

For an arbitrary but fixed v ∈ V = {w ∈ L2(0, T ); u∗ + εw ∈
K for any ε > 0 sufficiently small} we denote by z the solution to

{
z′(t) = γu∗(t)z(t) + γv(t)x∗(t), t ∈ (0, T )

z(0) = 0.
(2.11)
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z is given by

z(t) =
∫ t

0

exp{
∫ t

s

γu∗(τ)dτ}γv(s)x∗(s)ds, t ∈ [0, T ]. (2.12)

Inasmuch as
∫ T

0

(1 − u∗(t))x∗(t)dt ≥
∫ T

0

(1 − u∗(t) − εv(t))xu∗+εv(t)dt,

for any ε > 0 sufficiently small, we get that
∫ T

0

[(1 − u∗(t))
xu∗+εv(t) − x∗(t)

ε
− v(t)xu∗+εv(t)]dt ≤ 0. (2.13)

Let us prove that
xu∗+εv −→ x∗ in C([0, T ])

and
xu∗+εv − x∗

ε
−→ z in C([0, T ]),

as ε → 0+.

Indeed, for any ε > 0 sufficiently small we have

xu∗+εv(t) = x0 exp{γ
∫ t

0

(u∗(s) + εv(s))ds}

= xu∗
(t) exp{εγ

∫ t

0

v(s)ds}, t ∈ [0, T ],

which implies that

|xu∗+εv(t) − xu∗
(t)| = |xu∗

(t)| · | exp{εγ
∫ t

0

v(s)ds} − 1|, t ∈ [0, T ].

Because

| exp{εγ
∫ t

0

v(s)ds} − 1| −→ 0,

uniformly on [0, T ], we may infer that

xu∗+εv −→ x∗ in C([0, T ]).

For any ε > 0 sufficiently small we consider

wε(t) =
xu∗+εv − x∗

ε
− z(t), t ∈ [0, T ].
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wε is the solution to{
w′(t) = γu∗(t)w(t) + γv(t)[xu∗+εv(t) − xu∗

(t)], t ∈ (0, T )
w(0) = 0,

and is given by

wε(t) = γ

∫ t

0

exp{γ
∫ t

s

u∗(τ)dτ}v(s)[xu∗+εv(s) − xu∗
(s)]ds, t ∈ [0, T ].

By taking into account the first convergence we deduce that

wε −→ 0 in C([0, T ]),

and consequently
xu∗+εv − x∗

ε
−→ z in C([0, T ]).

By (2.13) we obtain now that
∫ T

0

[(1 − u∗(t))z(t) − v(t)x∗(t)]dt ≤ 0. (2.14)

Let us denote by p the solution to{
p′(t) = −γu∗(t)p(t) + u∗(t) − 1, t ∈ (0, T )
p(T ) = 0.

(2.15)

p is given by

p(t) = −
∫ T

t

exp{
∫ s

t

γu∗(τ)dτ}(u∗(s) − 1)ds, t ∈ [0, T ].

If we multiply the differential equation in (2.15) by z and integrate over [0, T ]
we get that

∫ T

0

p′(t)z(t)dt = −
∫ T

0

γu∗(t)p(t)z(t)dt +
∫ T

0

(u∗(t) − 1)z(t)dt.

If we integrate by parts it follows by ((2.11) and (2.15)) that

−
∫ T

0

p(t)z′(t)dt = −
∫ T

0

γu∗(t)p(t)z(t)dt +
∫ T

0

(u∗(t) − 1)z(t)dt.

We again use (2.11) to obtain

−
∫ T

0

γu∗(t)z(t)p(t)dt −
∫ T

0

γv(t)x∗(t)p(t)dt

= −
∫ T

0

γu∗(t)p(t)z(t)dt +
∫ T

0

(u∗(t) − 1)z(t)dt,
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which implies
∫ T

0

(1 − u∗(t))z(t)dt =
∫ T

0

γv(t)x∗(t)p(t)dt.

This last relation and (2.14) imply that

∫ T

0

x∗(t)(γp(t) − 1)v(t)dt ≤ 0, (2.16)

for any v ∈ V . This is equivalent to

(γp − 1)x∗ ∈ NK(u∗).

If we take into account the structure of NK(u∗) we may conclude that

u∗(t) =

⎧⎨
⎩

0 if γp(t) − 1 < 0

1 if γp(t) − 1 > 0,
(2.17)

a.e. t ∈ (0, T ).

Let us give a direct proof of (2.17) starting from (2.16).

Denote by
A = {t ∈ (0, T ); γp(t) − 1 < 0}.

We prove that u∗(t) = 0 a.e. on A.

Assume by contradiction that there exists Ã ⊂ A, with meas(Ã) > 0 (meas
denotes the Lebesgue measure; see Appendix A.1.1) such that u∗(t) > 0 a.e.
in Ã. We can choose v ∈ L2(0, T ) such that v(t) < 0 a.e. in Ã, v(t) = 0 a.e.
in (0, T ) \ Ã and 0 ≤ u∗(t) + εv(t) ≤ 1 a.e. in (0, T ). It follows that

∫ T

0

x∗(t)(γp(t) − 1)v(t)dt =
∫

Ã

x∗(t)(γp(t) − 1)v(t)dt > 0,

because v(t) < 0, γp(t)− 1 < 0, x∗(t) > 0 on Ã, and meas(Ã) > 0. This is, of
course, in contradiction to (2.16).

In the same manner it follows that

u∗(t) = 1 a.e. t ∈ {s ∈ (0, T ); γp(s) − 1 > 0}.

The conclusion follows.

Remark 2.1. Equations (2.6), (2.15), and (2.17) represent the maximum prin-
ciple and (2.15) and (2.17) are the first-order necessary optimality conditions
for (P2).
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Calculation of the optimal control u∗

Our next goal is to use Pontryagin’s principle in order to get more information
on the optimal control u∗. We show that for our particular problem we are
able to calculate it exactly.

Let (T − η, T ] (η > 0) be a maximal interval where the continuous function p
satisfies γp(t) < 1. By (2.17) and (2.15) we see that

p′(t) = −1, t ∈ [T − η, T ],

which implies that
p(t) = T − t t ∈ [T − η, T ].

Therefore, if γT > 1 we have

p(t) = T − t t ∈ [T − 1
γ

, T ]

and
u∗(t) = 0 a.e. t ∈ (T − 1

γ
, T ).

Because p(T − ( 1
γ )) = 1

γ , we see that p′(t) ≤ 0 on a maximal interval
(T − (1/γ) − δ, T − (1/γ)] (δ > 0), and therefore γp(t) > 1 on this inter-
val. It also follows that⎧⎨

⎩
p′(t) = −γp(t)

u∗(t) = 1
on (T − 1

γ
− δ, T − 1

γ
).

Consequently

p(t) =
1
γ

exp{γ(T − 1
γ
− t)} t ∈ [T − 1

γ
− δ, T − 1

γ
].

This implies that δ = T − (1/γ) and that u∗(t) = 1 a.e. t ∈ [0, T − (1/γ)).

The conclusion is that

• If γT > 1, then

u∗(t) =

⎧⎨
⎩

1 if t ∈ [0, T − 1
γ )

0 if t ∈ [T − 1
γ , T ];

(2.18)

• If γT ≤ 1, then
u∗(t) = 0, t ∈ [0, T ]. (2.19)

This means that if the time interval is sufficiently long, then for a certain
interval of time the rate of investment should be maximal. After that we do
not invest any more (we just put everything for consumption).
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A control u∗ that takes values in a finite set {α1, α2, . . . , αk}, and
(u∗)−1(αi) is a measurable set for any i ∈ {1, 2, . . . , k} is called a
bang-bang control.
If there exist t0 < t1 < · · · < tk such that u∗ is constant on any
interval (ti−1, ti) (i = 1, k), then u∗ is a bang-bang control on (t0, tk)
and t1, t2, . . . , tk−1 are called switching points.

Remark 2.2. (i) The optimal control in our example is a bang-bang control
and has at most one switching point, namely T − (1/γ).

(ii) For our example we were able to calculate the optimal control. The form
of the optimal control is given by (2.18) and (2.19). This is, of course, a
fortunate situation.

(iii) After identifying L, G, ϕ, f, and K we were able to write Pontryagin’s
principle formally. What we have done in this section was to prove it and
use it in order to calculate the optimal control.

2.3 Maximizing the total population in a predator–prey
system

The following Lotka–Volterra system,
{

x′(t) = r1x(t) − μ1x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2x(t)y(t), t ∈ (0, T )

(T > 0) describes the dynamics of a predator–prey system on the time interval
(0, T ). Here x(t) represents the density of the prey population at moment t,
and y(t) the density of predators at moment t.

• r1 > 0 is the intrinsic growth rate of prey in the absence of predators.
• r2 > 0 is the decay rate of the predator population in the absence of prey.
• μ1 and μ2 are positive constants; μ1y(t) is the additional mortality rate

of prey at moment t, due to predation (it is proportional to the predator
population density); and μ2x(t) is the additional growth rate of prey at
moment t, due to the presence of prey (it is proportional to the prey
population density).

A more general model for the predator–prey system has been presented in
Section 1.7.

If the prey are partially separated from predators then the functional response
to predation changes and the system becomes

{
x′(t) = r1x(t) − μ1u(t)x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2u(t)x(t)y(t), t ∈ (0, T ), (2.20)

where 1 − u(t) represents the segregation rate at moment t (0 ≤ u(t) ≤ 1).
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Let the initial conditions be {
x(0) = x0 > 0
y(0) = y0 > 0.

(2.21)

We are interested in maximizing the total number of individuals of both pop-
ulations at moment T > 0. The problem may be reformulated (see [Y82] and
[Bar94]):

Maximize{xu(T ) + yu(T )}, (P3)

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where (xu, yu) is the
solution to (2.20) and (2.21).

Problem (P3) is a particular case of (P1), for m = 1, N = 2,

G(t, u, (x, y)) = 0,

ϕ(x, y) = x + y,

f(t, u, (x, y)) =

(
r1x − μ1uxy

−r2y + μ2uxy

)
,

and
K = {w ∈ L2(0, T ); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, T )}.

Existence of an optimal pair for (P3)

Define
Φ(u) = xu(T ) + yu(T ), u ∈ K,

and let
d = sup

u∈K
Φ(u).

It is obvious that d ∈ [0, +∞). For any n ∈ IN∗, there exists un ∈ K such
that

d − 1
n

< Φ(un) ≤ d.

Because

xun(t) = x0 exp{
∫ t

0

(r1 − μ1u(s)yun(s))ds} > 0,

yun(t) = y0 exp{
∫ t

0

(−r2 + μ2u(s)xun(s))ds} > 0,

for t ∈ [0, T ], we get that xun(t), yun(t) > 0 for any t ∈ [0, T ], and so

0 ≤ (xun)′(t) ≤ r1x
un(t) a.e. t ∈ (0, T ).
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This implies that
0 ≤ xun(t) ≤ x0e

r1T , t ∈ [0, T ],

and that {(xun)′}n is bounded in L∞(0, T ).

On the other hand we get that

0 ≤ yun(t) ≤ y0 exp{(−r2 + μ2x0e
r1T )T }, t ∈ [0, T ],

and as a consequence {(yun)′}n is bounded in L∞(0, T ). It follows that
{xun}n and {yun}n are bounded in C([0, T ]), and uniformly equicontinuous.
By Arzelà’s theorem, and by taking into account that {un}n is bounded in
L2(0, T ) we get that on a subsequence we have

unk
−→ u∗ weakly in L2(0, T )

xunk −→ x∗ in C([0, T ])

yunk −→ y∗ in C([0, T ])

(2.22)

(u∗ ∈ K because K is a closed convex subset of L2(0, T ), and consequently
weakly closed).

Inasmuch as

xunk (t) = x0 +
∫ t

0

[r1x
unk (s) − μ1unk

(s)xunk (s)yunk (s)]ds,

yunk (t) = y0 +
∫ t

0

[−r2y
unk (s) + μ2unk

(s)xunk (s)yunk (s)]ds,

for any t ∈ [0, T ], and by taking into account (2.22) we get that

x∗(t) = x0 +
∫ t

0

[r1x
∗(s) − μ1u

∗(s)x∗(s)y∗(s)]ds,

y∗(t) = y0 +
∫ t

0

[−r2y
∗(s) + μ2u

∗(s)x∗(s)y∗(s)]ds,

for any t ∈ [0, T ], which means that (x∗, y∗) is the solution to (2.20) and (2.21)
corresponding to u∗ (i.e., x∗ = xu∗

and y∗ = yu∗
). On the other hand by

d − 1
nk

< xunk (T ) + yunk (T ) ≤ d for any k ∈ IN∗,

and by using the convergences in (2.22) we may pass to the limit and obtain
that

d = xu∗
(T ) + yu∗

(T );

that is, u∗ is an optimal control for (P3); ((u∗, (x∗, y∗)) is an optimal pair for
(P3); i.e., u∗ is an optimal control and x∗ = xu∗

, y∗ = yu∗
).
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The maximum principle for (P3)

For an arbitrary but fixed v ∈ V = {w ∈ L2(0, T ); u∗ + εw ∈ K for any ε >
0 sufficiently small} we consider (z1, z2) the solution to

⎧⎪⎪⎨
⎪⎪⎩

z′1 = r1z1 − μ1u
∗z1y

∗ − μ1u
∗x∗z2 − μ1vx∗y∗, t ∈ (0, T )

z′2 = −r2z2 + μ2u
∗z1y

∗ + μ2u
∗x∗z2 + μ2vx∗y∗, t ∈ (0, T )

z1(0) = z2(0) = 0.

(2.23)

Because
x∗(T ) + y∗(T ) ≥ xu∗+εv(T ) + yu∗+εv(T ),

we get that

xu∗+εv(T ) − x∗(T )
ε

+
yu∗+εv(T ) − y∗(T )

ε
≤ 0, (2.24)

for any ε > 0 sufficiently small.
For ε > 0 sufficiently small we have that xu∗+εv satisfies

(xu∗+εv)′(t) ≤ r1x
u∗+εv(t) a.e. t ∈ (0, T ),

and consequently it follows that there exists M ∈ (0, +∞) such that

0 ≤ xu∗+εv(t) ≤ M for any t ∈ [0, T ],

for any ε > 0 sufficiently small. On the other hand

(yu∗+εv)′(t) ≤ (−r2 + Mμ2)yu∗+εv(t) a.e. t ∈ (0, T ),

and this implies that {yu∗+εv} is bounded in C([0, T ]) (for ε > 0 sufficiently
small). It follows that both sequences {xu∗+εv} and {yu∗+εv} are uniformly
bounded and uniformly equicontinuous on [0, T ]. By Arzelà’s theorem it fol-
lows that on a sequence εn ↘ 0 we have that

xu∗+εnv −→ x̃ in C([0, T ]),

yu∗+εnv −→ ỹ in C([0, T ]).
(2.25)

Because

xu∗+εnv = x0 +
∫ t

0

[r1x
u∗+εnv(s)−μ1(u∗(s)+ εnv(s))xu∗+εnv(s)yu∗+εnv(s)]ds

and

yu∗+εnv = y0+
∫ t

0

[−r2y
u∗+εnv(s)+μ2(u∗(s)+εnv(s))xu∗+εnv(s)yu∗+εnv(s)]ds,
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for any t ∈ [0, T ], we pass to the limit (and use (2.25)), and we get

x̃(t) = x0 +
∫ t

0

[r1x̃(s) − μ1u
∗(s)x̃(s)ỹ(s)]ds,

and

ỹ(t) = y0 +
∫ t

0

[−r2ỹ(s) + μ2u
∗(s)x̃(s)ỹ(s)]ds,

for any t ∈ [0, T ], which means that (x̃, ỹ) is the solution to (2.20) correspond-
ing to u∗; that is, x̃ = xu∗

, ỹ = yu∗
.

Define now

αn(t) =
1
εn

[
xu∗+εnv(t) − x∗(t)

]
− z1(t), t ∈ [0, T ],

βn(t) =
1
εn

[
yu∗+εnv(t) − y∗(t)

]
− z2(t), t ∈ [0, T ].

(αn, βn) is the solution to
⎧⎨
⎩

α′
n = r1αn − μ1u

∗αny∗ − μ1u
∗x∗βn + f1n(t), t ∈ (0, T )

β′
n = −r2βn + μ2u

∗αny∗ + μ2u
∗x∗βn + f2n(t), t ∈ (0, T )

αn(0) = βn(0) = 0

and f1n −→ 0, f2n −→ 0 in L∞(0, T ).

This yields

αn(t)2 + βn(t)2 ≤ c

∫ t

0

[αn(s)2 + βn(s)2]ds

+2
∫ t

0

[f1n(s)αn(s) + f2n(s)βn(s)]ds

≤ (c + 1)
∫ t

0

[αn(s)2 + βn(s)2]ds

+
∫ T

0

[f1n(t)2 + f1n(t)2]dt,

t ∈ [0, T ], where c > 0 is a constant independent of n. By Bellman’s lemma
(see Appendix A.2) we conclude that

0 ≤ αn(t)2 + βn(t)2 ≤ e(c+1)t

∫ T

0

[f1n(t)2 + f1n(t)2]dt,

for any t ∈ [0, T ]. We pass to the limit and conclude that

αn −→ 0, βn −→ 0 in C([0, T ]).
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This implies that

1
εn

[xu∗+εnv − x∗] −→ z1 in C([0, T ]),

and
1
εn

[yu∗+εnv − y∗] −→ z2 in C([0, T ]).

If we again use (2.24) we may infer that

z1(T ) + z2(T ) ≤ 0. (2.26)

Let (p1, p2) be the solution to⎧⎨
⎩

p′1 = −r1p1 + μ1u
∗y∗p1 − μ2u

∗y∗p2, t ∈ (0, T )
p′2 = r2p2 + μ1u

∗x∗p1 − μ2u
∗x∗p2, t ∈ (0, T )

p1(T ) = p2(T ) = 1.
(2.27)

By multiplying the first equation in (2.27) by z1 and the second one by z2

and integrating over [0, T ] we get that
∫ T

0

[p′1(t)z1(t) + p′2(t)z2(t)]dt

=
∫ T

0

[−r1p1(t)z1(t) + μ1u
∗(t)y∗(t)p1(t)z1(t) − μ2u

∗(t)y∗(t)p2(t)z1(t)

+ μ1u
∗(t)x∗(t)p1(t)z2(t) − μ2u

∗(t)x∗(t)p2(t)z2(t) + r2p2(t)z2(t)]dt.

If we integrate by parts and use (2.23) we get after some calculation that

p1(T )z1(T ) + p2(T )z2(T ) − p1(0)z1(0) − p2(0)z2(0)

=
∫ T

0

x∗(t)y∗(t)v(t)[μ2p2(t) − μ1p1(t)]dt,

and consequently by (2.23) and (2.26) we get that

z1(T ) + z2(T ) =
∫ T

0

x∗(t)y∗(t)v(t)[μ2p2(t) − μ1p1(t)]dt ≤ 0,

for any v ∈ V . This implies (as in the previous section) that

u∗(t) =
{

0 if x∗(t)y∗(t)[μ2p2(t) − μ1p1(t)] < 0
1 if x∗(t)y∗(t)[μ2p2(t) − μ1p1(t)] > 0

a.e. on (0, T ). Because x0, y0 > 0, and x∗ and y∗ are positive functions, we
may conclude that

u∗(t) =
{

0 if μ2p2(t) − μ1p1(t) < 0
1 if μ2p2(t) − μ1p1(t) > 0 (2.28)

a.e. on (0, T ).

Equations (2.27) and (2.28) are the first-order necessary optimality conditions,
and (2.20)–(2.21), (2.27)–(2.28) represent the maximum principle for (P3).
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The structure of the optimal control u∗ for (P3)

Our next goal is to obtain more information about the structure of the optimal
control u∗.

• If μ2 < μ1, then μ2p2(T ) − μ1p1(T ) = μ2 − μ1 < 0, and then we may
choose a maximal interval (T − η, T ] (η > 0) where μ2p2(t)− μ1p1(t) < 0.
By (2.28) we have u∗(t) = 0 on (T − η, T ] and consequently

p′1(t) = −r1p1(t), p′2(t) = r2p2(t) a.e. t ∈ (T − η, T ).

This yields

p1(t) = exp{−r1(t − T )}, p2(t) = exp{r2(t − T )}, t ∈ [T − η, T ].

The function t �→ μ2 exp{r2(t− T )}− μ1 exp{−r1(t− T )} is increasing on
[T − η, T ], and this implies that T − η = 0 and

μ2p2(t) − μ1p1(t) < 0, t ∈ (0, T ),

and so u∗(t) = 0 a.e. on (0, T ).
• If μ2 = μ1, then (p1, p2) is the solution to

⎧⎨
⎩

p′1 = −r1p1 − μ1u
∗y∗(p2 − p1), t ∈ (0, T )

p′2 = r2p2 − μ1u
∗x∗(p2 − p1), t ∈ (0, T )

p1(T ) = p2(T ) = 1.

In conclusion

p2(t)−p1(t)=−
∫ T

t

[r2p2(s)+r1p1(s)]exp{μ1

∫ t

s

u∗(τ)[y∗(τ)−x∗(τ)]dτ}ds,

t ∈ [0, T ]. So, p2(t) − p1(t) < 0 on a maximal interval (T − η, T ] (η > 0)
and, in the same manner as in the previous case, it follows that u∗(t) = 0
a.e. on (0, T ).

• If μ2 > μ1, then there exists a maximal interval (T − η, T ] (η > 0) such
that

μ2p2(t) − μ1p1(t) > 0, t ∈ (T − η, T ].

By (2.28) we have u∗(t) = 1 on (T − η, T ]. We intend to prove that T − η
is a switching point for the optimal control u∗. Indeed, by (2.27) we get
that

μ2p2(t) − μ1p1(t) = −
∫ T−η

t

[r2μ2p2(s) + r1μ1p1(s)]

· exp{
∫ t

s

u∗(τ)[μ2x
∗(τ) − μ1y

∗(τ)]dτ} ds,

(2.29)

t ∈ [0, T − η]. On the other hand (p1, p2) is a solution to
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⎧⎨
⎩

p′1 = −p1(r1 − μ1y
∗) − μ2y

∗p2, t ∈ (T − η, T )
p′2 = −p2(μ2x

∗ − r2) + μ1x
∗p1, t ∈ (T − η, T )

p1(T ) = p2(T ) = 1.
(2.30)

Because μ2p2(t) − μ1p1(t) > 0, for any t ∈ (T − η, T ], then we get that

p1(t) ≥ exp{r1(T − t)} ≥ 1, t ∈ [T − η, T ].

Using the fact that μ2p2(T −η)−μ1p1(T−η) = 0 and (2.29) we obtain that
p2(T −η) > 0 and consequently μ2p2(t)−μ1p1(t) < 0 in a maximal interval
(T − η− ε, T − η] (ε > 0). This implies that u∗(t) = 0 on (T − η− ε, T − η].
On this interval we have

p1(t) = p1(T − η)exp{r1(T − η − t)},
p2(t) = p2(T − η)exp{r2(t − T + η)},

and in conclusion μ2p2 − μ1p1 is increasing on (T − η − ε, T − η). Hence

μ2p2(t) − μ1p1(t) < 0, t ∈ (T − η − ε, T − η),

and consequently T − η − ε = 0. The conclusion is that

u∗(t) =
{

0, t ∈ [0, T − η]
1, t ∈ (T − η, T ] (2.31)

a.e. on (0, T ).

So, we have a bang-bang optimal control with at most one switching point.
We can determine the switching point T − η, either by taking into account
(2.30) and μ2p2(T − η)− μ1p1(T − η) = 0, or by finding T − η ∈ [0, T ], which
maximizes Φ(u∗), where u∗ is given by (2.31).

Approximating the optimal control for (P3)

In order to approximate the optimal control u∗ we have to find η from formula
(2.31). A simple idea is to try τ (T − η in (2.31)) as switching point for the
control of the elements of a grid defined on [0, L] (we put L instead of T ) and
to get the one that provides the maximum value for Φ(u). Here

u(t) =
{

0, t ∈ [0, τ ]
1, t ∈ (τ, L].

Here is the algorithm.

Algorithm 2.1

/* Build the grid */
tspan = 0:h1:L ;
/* Try the grid points */
m = length(tspan) ;
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for i = 1 to m
τ = tspan(i) ;
/* S1 : Build the corresponding control uτ */

uτ (t) =
{

0, t ∈ [0, τ ]
1, t ∈ (τ, L].

/* S2 : Compute the state [x, y], the corresponding solution of system
(2.20) corresponding to u := uτ , with the initial conditions */

x(0) = x0, y(0) = y0.

/* S3 : Compute the corresponding value of the cost functional Φ */
fiu(i) = x(L) + y(L) ;

end–for
/* S4 : Find the maximal value of vector fiu */

Here is the corresponding program.

% file ppp1.m
% predator–prey model with bang-bang optimal control
clear
global r1 r2 mu1 mu2
global tsw
disp(’get model parameters’) ;
r1 = input(’r1 : ’) ;
mu1 = input(’mu1 : ’) ;
r2 = input(’r2 : ’) ;
mu2 = input(’mu2 : ’) ;
disp(’get data’) ;
L = input(’final time : ’) ;
h = input(’grid step : ’) ;
h1 = input(’switch step : ’) ;
x0 = input(’x(0) : ’) ;
y0 = input(’y(0) : ’) ;
lw = input(’LineWidth : ’) ; % for graphs ( plot )
tt = 0:h:L ; % ODE integration grid
n = length(tt) ;
tspan = 0:h1:L ; % switching points grid
m = length(tspan) ;
for i = 1:m

i
tsw = tspan(i) ; % tsw stands for switching point τ
[t q] = ode45(’bp2’,tt,[x0 ; y0]) ;
k = length(t) ;
fiu(i) = q(k,1) + q(k,2) ; % store cost functional value
clear t q % clear memory to avoid garbage for the next iteration
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end
w = fiu’ ;
save cont.txt w -ascii
disp(’FILE MADE’) ;
[vmax,j] = max(fiu) ; % maximal value and corresponding index
j
a1 = [’max = ’, num2str(vmax)] ;
disp(a1) ;
a2 = [’switch = ’, num2str(tspan(j))] ;
disp(a2) ;
plot(tspan,fiu,’LineWidth’,lw) ; grid
xlabel(’\bf u switch’,’FontSize’,16)
ylabel(’\bf \Phi(u {\tau})’,’FontSize’,16)
figure(2)
bar(fiu)
title(’\bf \Phi(u {\tau})’,’FontSize’,16)

We have used a vector, namely tt, for ode45 and another one, namely tspan,
for the switching points grid to get a faster program.

Here is the function file bp2.m for the right-hand side of the differential system.

function out1 = bp2(t,q)
global r1 r2 mu1 mu2
global tsw
if t > tsw

u = 1 ;
else

u = 0 ;
end
out1 = [ r1*q(1) − mu1*u*q(1)*q(2) ; mu2*u*q(1)*q(2) − r2*q(2) ] ;

For a numerical test we have used r1 = 0.07, μ1 = 1, r2 = 0.6, μ2 = 2,
L = 50, h = 0.1, h1 = 1, x(0) = 0.04, y(0) = 0.02, and lw = 5. The graph of
the corresponding function τ �→ Φ(uτ ), where τ is the switching point of uτ ,
can be seen in Figures 2.1 and 2.2.
We have obtained a global maximum on [0, L] for τ∗ = 15, and the maximal
value of the cost functional is 1.5006. The program that uses the switch point
of the optimal control in order to plot the graphs for the corresponding state
components is ppp2.m:

% file ppp2.m
% predator–prey model with bang-bang optimal control
% makes graphs by using the switching point obtained by ppp1.m
clear
global r1 r2 mu1 mu2
global tsw
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Fig. 2.1. The dependence of the cost function with respect to the switching point
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Fig. 2.2. Another representation of the dependence of the cost function with respect
to the switching point τ



2.4 Insulin treatment model 83

. . . read parameters and data as in ppp1.m (except h) . . .
tspan = 0:h1:L ;
% graph of the control
m = length(tspan) ;
for i = 1:m

if tspan(i) > tsw
z(i) = 1 ;

else
z(i) = 0 ;

end
end
plot(tspan,z,’rs’) ; grid
axis([0 L −0.2 1.2])
xlabel(’\bf t’,’Fontsize’,16)
ylabel(’\bf u(t)’,’Fontsize’,16)
[t q] = ode45(’bp2’,[0 L],[x0 ; y0]) ;
% predator–prey populations graph
figure(2)
plot(t,q(:,1),’∗’,t,q(:,2),’ro’) ; grid
xlabel(’\bf t’,’FontSize’,16)
legend(’prey’,’predator’,0)
% xOy graph
figure(3)
plot(q(:,1),q(:,2),’LineWidth’,lw) ; grid
xlabel(’\bf x’,’Fontsize’,16)
ylabel(’\bf y’,’Fontsize’,16)

2.4 Insulin treatment model

We consider a model for insulin treatment for patients with diabetes. The main
problem for such a patient is to keep the blood glucose level close to a con-
venient value and to avoid large variations of it. In practice insulin injections
are used. An optimal control problem with impulsive controls is considered to
maintain a steady state of the blood glucose level. This problem does not fit
in the framework of Problem (P1) from Section 2.1 mainly because the con-
trol considered here is of impulsive type. We do, however, obtain first-order
necessary optimality conditions which are used to write a program.

In the case of diabetes the pancreas (the beta cells) is not able to provide
enough insulin to metabolize glucose. Blood glucose concentration increases
when glucose is administrated in mammals whereas insulin accelerates the
removal of glucose from the plasma. Therefore blood sugar decays to a normal
value of 0.8–1.2 g/l. Let us denote by I(t) the insulin concentration, and by
G(t) the glucose concentration at moment t ∈ [0, L] (L > 0).
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We now consider diabetic patients who are not able to produce enough insulin.
The insulin is supplied by injections. The glucose concentration can be easily
determined (measured). A corresponding simplified model for dynamics of the
insulin–glucose system is the following one (see [Che86, Chapter 6]):

⎧⎪⎨
⎪⎩

I ′(t) = dI(t), t ∈ (0, L)

G′(t) = bI(t) + aG(t), t ∈ (0, L)

I(0) = I0, G(0) = G0,

(2.32)

where d < 0 (|d| is the decay rate of insulin), a is the growth rate of glucose
(a �= d), b is a negative constant that can be measured, I0 is the initial con-
centration of insulin (injected), and G0 is the initial concentration of glucose.
The numerical tests show that model (2.32) works well only for I(t) and G(t)
between appropriate limits. For I0 and G0 outside the usual medical limits it
is possible to obtain negative values for I(t) and G(t) and therefore the model
fails. A more accurate model is, however, indicated at the end of this subsec-
tion. The reaction between I(t) and G(t) in (2.32) is a local linearization of
the full model presented later (see (2.41)).

The first program plots the graphs of insulin concentration and of glucose
concentration.

% file dbt1.m
% blood insulin–glucose system
% y(1) = insulin concentration
% y(2) = glucose concentration
clear
global a b d
L = input(’final time : ’) ;
h = input(’h : ’) ;
I0 = input(’I(0) : ’) ;
G0 = input(’G(0) : ’) ;
a = 0.0343 ;
b = −0.05 ;
d = −0.5 ;
tspan = 0:h:L ;
[t y] = ode45(’hum1’,tspan,[I0 ; G0]) ;
plot(t,y(:,1),’∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf I(t)’,’FontSize’,16)
figure(2)
plot(t,y(:,2),’r∗’) ; grid
xlabel(’\bf t’,’FontSize’,16)
ylabel(’\bf G(t)’,’FontSize’,16)
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We also have

function out1 = hum1(t,y)
global a b d
out1 = [d*y(1) ; b*y(1) + a*y(2)] ;

The numerical test is done for L = 10, h = 0.01, I0 = 15, and G0 = 2. The
evolution of insulin and glucose concentration are presented in Figures 2.3 and
2.4, respectively. Notice that I(t) decays to zero (the effect of the decay rate)
and G(t) reaches a convenient level. The insulin has a good effect because the
glucose level at the beginning was G0 = 2, and reaches approximatively, the
value 0.8 at the moment t = 6. After t = 7 the insulin effect almost vanishes
and the glucose level increases slowly.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

t

 I(
t)

Fig. 2.3. Insulin dynamics

System (2.32) can also be integrated mathematically. We first consider the
problem of insulin dynamics:{

I ′(t) = dI(t), t ∈ (0, L)
I(0) = I0

which has a unique solution given by

I(t) = I0e
dt, t ∈ [0, L]. (2.33)

If we use the form of I(t) given by (2.33), we obtain from (2.32) the following
linear model for the glucose dynamics,{

G′(t) = bI0e
dt + aG(t), t ∈ (0, L)

G(0) = G0,
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Fig. 2.4. Glucose dynamics

which gives the following formula for the glucose concentration,

G(t) = G0e
at +

bI0

d − a
(edt − eat), t ∈ [0, L]. (2.34)

Hence the solution of system (2.32) is given by formulae (2.33) and (2.34).
The corresponding program is

% file dbt2.m
% blood insulin–glucose system
% y1(t) = insulin concentration
% y2(t) = glucose concentration
% mathematical integration
clear
L = input(’final time : ’) ;
h = input(’h : ’) ;
I0 = input(’insulin(0) : ’) ;
G0 = input(’glucose(0) : ’) ;
a = 0.0343 ;
b = −0.05 ;
d = −0.5 ;
temp = b*I0/(d − a) ;
t = 0:h:L ;
v = exp(d*t) ;
w = exp(a*t) ;
y1 = I0*v ;
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y2 = G0*w + temp*(v − w) ;
% make figures as in previous program
% .....

The figures obtained are similar to the previous two figures.

We now consider an optimal control problem with impulsive control to obtain
a scheme of insulin treatment providing good control of glycemia over some
time interval. We denote by A the desired level of glucose. Assume that the
patient gets m injections of insulin at moments

0 = t1 < t2 < · · · < tm = L,

with corresponding amounts cj = c(tj), j = 1, 2, . . . , m and that the initial
concentration of insulin is I0 = 0. Usually the moments for injections are
fixed and we have tj+1 − tj = h for j = 1, . . . , m − 1. The dynamics of the
insulin–glucose system is then described by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I ′(t) = dI(t) +
m∑

j=1

cjδtj ,

G′(t) = bI(t) + aG(t),
I(0) = 0, G(0) = G0,

(2.35)

where δtj is the Dirac mass at tj . System (2.35) is equivalent to the following
one ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I ′(t) = dI(t), t ∈ (tj , tj+1), j ∈ {1, . . . , m − 1}
I(0) = 0
I(tj+) = I(tj−) + cj , j ∈ {1, . . . , m − 1}
G′(t) = bI(t) + aG(t), t ∈ (0, L)
G(0) = G0.

(2.36)

The solution of (2.35) in the sense of the theory of distributions (which is also
the solution to (2.36)) is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I(t) =
m∑

j=1

cjH(t − tj)ed(t−tj),

G(t) = G0e
at +

b

d − a
S(t),

(2.37)

t ∈ [0, L], where

S(t) =
m∑

j=1

cjH(t − tj)
[
ed(t−tj) − ea(t−tj)

]
, (2.38)
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and H is the step (Heaviside) function (i.e., H : IR → IR),

H(t) =
{

1 if t ≥ 0
0 if t < 0.

Therefore, function t �→ H(t − tj) in formulae (2.37) and (2.38), defined for
t ∈ [0, L], reads

H(t − tj) =
{

1 if t ∈ [tj , L]
0 if t ∈ [0, tj).

The formula for G says that the effect of the insulin injection received at the
moment t = tj is valid only for t ≥ tj . The effect vanishes after some time
due to the exponential function with negative exponent.

Here is the optimal control problem (the insulin treatment) related to (2.35):

Minimize Ψ(c) =
1
2

∫ L

0

[G(t) − A]2dt, (I)

subject to c = (c1, . . . , cm) ∈ IRm, where (I, G) is the solution to (2.35). Here
the vector c is the control (which is in fact an impulsive control, a control that
acts only at some discrete moments of time).

The functional Ψ is quadratic with respect to every cj , thus it means that
there exists at least an optimal control c = (c1, . . . , cm) ∈ IRm. The optimal
control satisfies

∂Ψ

∂cj
(c) = 0, j = 1, . . . , m, (2.39)

a linear algebraic system with the unknowns cj , j = 1, . . . , m. We calculate
the partial derivatives and use formula (2.39) to get the following algebraic
linear system,

m∑
i=1

qijci = Bj , j ∈ {1, . . . , m},

where

qij = α

∫ L

0

H(t − ti)H(t − tj)ei(t)ej(t)dt, (2.40)

Bj =
∫ L

0

H(t − tj)ej(t)(A − G0e
at)dt =

∫ L

tj

ej(t)(A − G0e
at)dt,

i, j ∈ {1, . . . , m}. We have denoted

α =
b

d − a
,

and
ej(t) = ed(t−tj) − ea(t−tj), t ∈ [0, L], j ∈ {1, . . . , m}.
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If i > j, then ti > tj and Formula (2.40) reads

qij = α

∫ L

ti

ei(t)ej(t)dt.

Our goal is to solve system (2.39). However if a certain component cj is neg-
ative, this is meaningless from the medical point of view. If we introduce the
restrictions cj ≥ 0, j ∈ {1, . . . , m}, we get a mathematical programming prob-
lem which is more complicated. Another possibility is to introduce restrictions
of the form 0 ≤ cj ≤ c̄, j ∈ {1, . . . , m}, and to use a projected gradient method
(see Chapter 3). But this is more complicated also. To establish a treatment
policy we can simply take cj := 0 if cj < 0. Then we have to add glucose,
usually from food, or to replace the negative dose of the injection by cj = 0,
and consequently to obtain suboptimal control. For our numerical test made
for medically appropriate values of G(0) the solution was positive.

We return to the linear system. The algorithm to compute the transpose of
matrix Q, that is, QT = [qij ], is:

for j = 1 to m
for i = 1 to j

compute qij = α
∫ L

tj
ei(t)ej(t)dt

end–for
for i = j+1 to m

compute qij = α
∫ L

ti
ei(t)ej(t)dt

end–for
end–for

Then we transpose the matrix [qij ] obtained above and we get Q. We leave
it to the reader to write the corresponding program. The values of the system
parameters are a = 0.1, b = −0.05, and d = −0.5. Below we give only the
sequence to compute the matrix Q and the right-hand side B of the system
Qc = B.

. . .
Q = zeros(m − 1) ;
for j = 1:m − 1

tj = t(j) ;
for i = 1:j

ti = t(i) ;
Q(i,j) = alf*quadl(’fi1’,tj,L) ;

end
for i = j+1:m − 1

ti = t(i) ;
Q(i,j) = alf*quadl(’fi2’,ti,L) ;

end
end
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Q = Q′ ;
for j = 1:m − 1

tj = t(j) ;
B(j) = quadl(’psi’,t(j),L) ;

end
B = B′ ;
% solve system Qc = B
c = Q\B ;
. . .

The function file fi1.m computes the matrix components qij for i ≤ j.

function y = fi1(t)
global ti tj
global a d
y = 0 ;
if t >= tj

temp1 = exp(d*(t − tj)) − exp(a*(t − tj)) ;
temp2 = exp(d*(t − ti)) − exp(a*(t − ti)) ;
y = temp1 .* temp2 ;

end

The function file fi2.m computes the matrix components qij for i > j. It is
similar to fi1.m. There is only one difference. The statement

if t >= tj

is replaced by
if t >= ti

The function file psi.m computes the right-hand side components Bj .

function y = psi(t)
global tj
global a d
global a1
global G0
y = 0 ;
if t >= tj

temp1 = exp(d*(t − tj)) − exp(a*(t − tj)) ;
temp2 = a1 − G0*exp(a*t) ;
y = temp1 .* temp2 ;

end

We pass now to numerical examples.

Example 1. We take L = 48 (hours), G(0) = 2, A = 1, and m = 9 (number of
injections). It follows that the interval between successive injections is h = 6
(hours). The insulin “shots” are represented in Figure 2.5.
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Fig. 2.5. The insulin doses for 48 h
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Fig. 2.6. The insulin doses for 60 h

Example 2. Another experiment was done with L = 60, G(0) = 2, A = 0.8,
and m = 11 (h = 6). The results are given in Figure 2.6.
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Fig. 2.7. The blood glucose concentration for the second numerical experiment

To complete our investigation we have also computed the glucose level given
by formulae (2.37) and (2.38). The shape of the blood glucose concentration
for the second numerical experiment is given in Figure 2.7. Let us remark that
the glucose level decays from G(0) = 2 under the desired level A = 0.8 and
then remains quite close to it. For the first numerical experiment the behavior
of G(t) is similar.

Remark 2.3. Equation (2.39) are the first-order optimality conditions for
Problem (I).

We propose that the reader investigate in a similar manner the following
optimal control problem.

Minimize Ψ(c) =
1
2

∫ L

0

[G(t) − A]2dt, (I1)

subject to c = (c1, c2, . . . , cm) ∈ IRm, where (I, G) is the solution to the
following more accurate model,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I ′(t) = dI(t) +
m∑

j=1

cjδtj ,

G′(t) = bI(t)G(t) + aG(t),
I(0) = 0, G(0) = G0.

(2.41)

It is also important to investigate both optimal control problems under the
control constraints
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cj ≥ 0, j ∈ {1, 2, . . . , m}.
A better way to control the glucose level is, however, to act on insulin concen-
tration (by injections) as well as on glucose concentration (by the food from
usual meals).

2.5 Working examples

2.5.1 HIV treatment

We consider here a mathematical model that describes the interaction of the
immune system with the HIV (human immunodeficiency virus) proposed in
[KLS97]. Next we propose two optimal control problems based on chemother-
apy which affects either the viral infectivity or the viral productivity.

The immune system is modeled in terms of the population of CD4+ T cells
(see [PKD93], [HNP95], and [PN02]). Let

T (t) denote the concentration of uninfected CD4+ T cells.
Ti(t) denote the concentration of infected CD4+ T cells.
V (t) denote the concentration of free infectious virus particles

at moment t. The dynamics of the system is modeled by the following initial-
value problem.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T ′(t) =
s

1+V (t)
− μ1T (t)+rT (t)

(
1−T (t)+Ti(t)

Tmax

)
−k1V (t)T (t),

T ′
i (t) = k1V (t)T (t) − μ2Ti(t),

V ′(t) = −k1V (t)T (t) − μ3V (t) + Nμ2Ti(t),

T (0) = T0, Ti(0) = Ti0, V (0) = V0,

(2.42)

t ∈ (0, L) (L > 0), where s, k1, r, N, μ1, μ2, μ3, Tmax are positive constants and
T0, Ti0, V0 ≥ 0 are the initial concentrations of CD4+ T cells, infected CD4+

T cells, and free infectious virus particles, respectively.

The term s/(1 + V ) represents a source term; the dependence upon the viral
concentration V models the fact that infection of precursors of T cells may
occur, thus reducing the production of the uninfected T cells.

The term −k1V T in the first equation in (2.42) together with +k1V T in the
second equation in (2.42) models is the infection of T cells due to the viral
concentration V ; the term −k1V T in the third equation in (2.42) models the
binding of viruses to uninfected T cells, thus leading to infection.

μ1, μ2, μ3 denote natural decay rates.
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The term Nμ2Ti in the third equation in (2.42) models the production of
viruses during the decay of infected T cells.

The term

r

(
1 − T (t) + Ti(t)

Tmax

)

represents the production rate of T cells.

Chemotherapy by a drug may either:

• Affect the virus infectivity, so that the second equation in (2.42) is modified
into the following (see [BKL97]),

T ′
i (t) = u(t)k1V (t)T (t) − μ2Ti(t), t ∈ (0, L),

u(t) being the control variable, that is, the strength of the chemotherapy.
The first and third equations should be modified accordingly.

• Or reduce the viral production, which is most applicable to drugs such
as protease inhibitors (see [KLS97]), thus modifying the third equation in
(2.42) into

V ′(t) = −k1V (t)T (t) − μ3V (t) + u(t)Nμ2Ti(t), t ∈ (0, L).

The second equation should be modified accordingly.
In either case the cost functional to maximize is

∫ L

0

[aT (t) − 1
2
(1 − u(t))2]dt,

(a > 0) subject to u ∈ L2(0, L), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, L), which means
maximizing the number of uninfected T cells, while simultaneously minimizing
the “cost” of the chemotherapy to the human body.
A greater or lower value for a corresponds to a lower or greater importance
given to minimizing the “cost” of the chemotherapy to the human body.

We propose that the reader derive the first-order necessary conditions of op-
timality for both optimal control problems.

Hint. The first optimal control problem proposed here is a particular case of
(P1) (Section 2.1), for

G(t, u, T, Ti, V ) = aT − 1
2
(1 − u)2, ϕ(T, Ti, V ) = 0,

f(t, u, T, Ti, V ) =

⎛
⎜⎝

s

1 + V
− μ1T + rT (1 − T + Ti

Tmax
) − k1uV T

k1uV T − μ2Ti

−k1uV T − μ3V + Nμ2Ti

⎞
⎟⎠

and
K = {w ∈ L2(0, L); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, L)}.
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The second optimal control problem proposed here is a particular case of (P1),
for the same G, ϕ, K (as for the previous proposed problem), and

f(t, u, T, Ti, V ) =

⎛
⎜⎜⎜⎜⎜⎝

s

1 + V
− μ1T + rT (1 − T + Ti

Tmax
) − k1V T

k1V T − μ2uTi

−k1V T − μ3V + uNμ2Ti

⎞
⎟⎟⎟⎟⎟⎠

.

2.5.2 The control of a SIR model

We describe here the dynamics of a disease (transmitted only by contact
between infectious and susceptible individuals) in a biological population using
the following standard SIR model with vital dynamics (see [Cap93]).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S′(t) = mN − mS(t) − cS(t)I(t) − u(t)S(t),

I ′(t) = −mI(t) + cS(t)I(t) − dI(t),

R′(t) = −mR(t) + u(t)S(t) + dI(t),

(2.43)

for t ∈ (0, L), L > 0, together with the initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0. (2.44)

Here

S(t) represents the density of susceptible individuals,
I(t) represents the density of infectious individuals, and
R(t) represents the density of recovered (and immune) individuals

at moment t. N = S(t) + I(t) + R(t) = S0 + I0 + R0 > 0 is a constant that
represents the density of total population which is assumed to be constant.

Here m, c, d are positive constants. The incidence of the disease is described by
the term cS(t)I(t). The constant d represents the rate at which the infectious
individuals recover.

The control u represents the part of the susceptible population being vacci-
nated. The vaccinated individuals recover.

We propose that the reader investigate the following optimal control problem
for the above-mentioned SIR model:

Minimize
∫ L

0

[I(t) + au(t)2]dt,

(a > 0) subject to u ∈ L2(0, L), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, L), where
(S, I, R) is the solution to (2.43) and (2.44).
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This means we are interested in minimizing the infectious population while
simultaneously minimizing the “cost” of vaccination. A greater or lower value
for a means a greater or lower importance given to minimizing the cost of
vaccination.
Derive the maximum principle.

Hint. This problem is a particular case of (P1) (Section 2.1), for m = 1,
N = 3, T := L,

G(t, u, S, I, R) = I + au2, ϕ(S, I, R) = 0,

f(t, u, S, I, R) =

⎛
⎝mN − mS − cSI − uS

−mI + cSI − dI
−mR + uS + dI

⎞
⎠ ,

and
K = {w ∈ L2(0, L); 0 ≤ w(t) ≤ M a.e. t ∈ (0, L)}.

Another important optimal control problem related to the SIR model pro-
posed to the reader is the following identification problem,

Minimize
∫ L

0

[I(t) − Ĩ(t)]2dt,

subject to c ∈ [0, M ] (M > 0), where Ĩ ∈ C([0, L]), Ĩ(t) ≥ 0 for any t ∈ [0, L]
is a known function and (S, I, R) is the solution to⎧⎪⎪⎨

⎪⎪⎩

S′(t) = mN − mS(t) − cS(t)I(t), t ∈ (0, L)
I ′(t) = −mI(t) + cS(t)I(t) − dI(t), t ∈ (0, L)
R′(t) = −mR(t) + dI(t), t ∈ (0, L)
S(0) = S0, I(0) = I0, R(0) = R0.

Here m, d, S0, I0, R0 are given constants. The meaning of this problem is the
following one. Knowing the number of infectious individuals at any moment
we wish to determine the infectivity rate c.

Bibliographical Notes and Remarks

There is an extensive mathematical literature devoted to optimal control the-
ory. This domain developed enormously after the pioneering work of Pon-
tryagin and his collaborators. One of the main purposes when investigating
an optimal control problem is to derive first-order necessary conditions of
optimality (Pontryagin’s principle). Here is a list of important monographs
devoted to this subject: [LM67], [Kno81], [Bar93], [Bar94], and [Son98]. More
applied optimal control problems can be found only in a few monographs; see
[Kno81], [Che86], [Bar94], [Ani00], and [Tre05]. For applications in biology,
with a few MATLAB programs we cite [LW07].
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Exercises

2.1. Derive the maximum principle for the following problem:

Maximize{xu(T ) + γyu(T )},

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where (xu, yu) is the
solution to the predator–prey system:

⎧⎨
⎩

x′(t) = r1x(t) − μ1u(t)x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2u(t)x(t)y(t), t ∈ (0, T )
x(0) = x0, y(0) = y0.

Hint. Proceed as in Section 2.3. This problem is a particular case of (P1)
(Section 2.1), for m = 1, N = 2,

G(t, u, x, y) = 0, ϕ(x, y) = x + γy,

f(t, u, x, y) =

⎛
⎝ r1x − μ1uxy

−r2y + μ2uxy

⎞
⎠ ,

and
K = {w ∈ L2(0, T ); 0 ≤ w(t) ≤ 1 a.e. t ∈ (0, T )}.

2.2. Derive the maximum principle for the following problem,

Maximize{xu(T ) + yu(T )},

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ 1 a.e. t ∈ (0, T ), where (xu, yu) is the
solution to the predator–prey system

⎧⎨
⎩

x′(t) = r1x(t) − kx(t)2 − μ1u(t)x(t)y(t), t ∈ (0, T )
y′(t) = −r2y(t) + μ2u(t)x(t)y(t), t ∈ (0, T )
x(0) = x0, y(0) = y0.

Here r1, r2, k, μ1, μ2 are positive constants, and kx represents an additional
mortality rate and is due to the overpopulation; kx2 is a logistic term for the
prey population.

Hint. Proceed as in Section 2.1. This problem is a particular case of (P1)
(Section 2.1).

2.3. Obtain the maximum principle for the following optimal harvesting
problem:

Maximize
∫ T

0

u(t)xu(t)dt,
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subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, T ), where xu is
the solution to the following Malthusian model of population dynamics,

{
x′(t) = r(t)x(t) − u(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

Here xu(t) represents the density of individuals of a population species at
time t, r ∈ C([0, T ]) gives the growth rate, and u(t) is the harvesting effort
(a control) and plays the role of an additional mortality rate.

∫ T

0
u(t)xu(t)dt

represents the total harvested population on the time interval [0, T ].

Hint. Let u∗ be an optimal control. Here are the first-order necessary opti-
mality conditions:

{
p′(t) = −r(t)p(t) + u∗(t)(1 + p(t)), t ∈ (0, T )
p(T ) = 0,

u∗(t) =
{

0 if 1 + p(t) < 0
M if 1 + p(t) > 0.

2.4. Obtain the maximum principle for the following optimal harvesting prob-
lem:

Maximize
∫ T

0

u(t)xu(t)dt,

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, T ), where xu is
the solution to the following logistic model of population dynamics,

{
x′(t) = rx(t) − kx(t)2 − u(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

Here r, k, x0 are positive constants.

2.5. Derive the optimality conditions for the following problem,

Maximize
∫ T

0

u(t)xu(t)dt − c

∫ T

0

u(t)2dt,

subject to u ∈ L2(0, T ), 0 ≤ u(t) ≤ M (M > 0) a.e. t ∈ (0, T ), where xu is
the solution to the following logistic model of population dynamics,

{
x′(t) = rx(t) − kx(t)2 − u(t)x(t), t ∈ (0, T )
x(0) = x0 > 0.

Here c, r, k, x0 are positive constants. This problem seeks to maximize the
harvest while minimizing effort.
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